ON THE DUNFORD-PETTIS PROPERTY OF TENSOR PRODUCT SPACES

BY

IOANA GHENCIU (River Falls, WI)

Abstract. We give sufficient conditions on Banach spaces E and F so that their projective tensor product $E \otimes_{\pi} F$ and the duals of their projective and injective tensor products do not have the Dunford–Pettis property. We prove that if E^* does not have the Schur property, F is infinite-dimensional, and every operator $T: E^* \to F^{**}$ is completely continuous, then $(E \otimes_{\epsilon} F)^*$ does not have the DPP. We also prove that if E^* does not have the Schur property, F is infinite-dimensional, and every operator $T: F^{**} \to E^*$ is completely continuous, then $(E \otimes_{\pi} F)^* \simeq L(E, F^*)$ does not have the DPP.

1. Definitions and notation. Our notation and terminology are standard. Throughout this paper, X, Y, E, and F will denote Banach spaces. The unit ball of X will be denoted by B_X , and X^* will denote the continuous linear dual of X. The set of all operators from X to Y will be denoted by L(X,Y), and the compact, resp. completely continuous operators will be denoted by K(X,Y), resp. CC(X,Y). The operator T is completely continuous (or Dunford–Pettis) if T maps weakly Cauchy sequences to norm convergent sequences, and T is unconditionally converging if T maps weakly unconditionally convergent series.

A Banach space X has the Dunford- $Pettis\ property\ (DPP)$ if every weakly compact operator T with domain X is completely continuous. Equivalently, X has the DPP if and only if $x_n^*(x_n) \to 0$ for all weakly null sequences (x_n) in X and (x_n^*) in X^* (see [19]). Schur spaces, C(K) spaces, and $L^1(\mu)$ spaces have the DPP ([2], [29], [23]). Reflexive infinite-dimensional spaces do not have the DPP. The Dunford-Pettis property is stable under complemented subspaces. If E^* has the DPP, then E has the DPP [19]. A dual Banach space E^* has the Schur property if and only if E has the DPP and $\ell_1 \hookrightarrow E$ ([27], [33]). The reader can check Diestel [18], [19], Diestel and Uhl [21], and Andrews [1] for a guide to the extensive classical literature dealing with the DPP, equivalent formulations of the preceding definitions, and undefined notation and terminology.

DOI: 10.4064/cm125-2-7

²⁰¹⁰ Mathematics Subject Classification: 46B20, 46B25, 46B28.

Key words and phrases: Dunford–Pettis property, completely continuous operators, injective and projective tensor products.

A bounded subset A of X (resp. A of X^*) is called a V^* -subset of X (resp. a V-subset of X^*) provided that

$$\lim_{n} \sup \{|x_{n}^{*}(x)| : x \in A\} = 0$$
(resp.
$$\lim_{n} \sup \{|x^{*}(x_{n})| : x^{*} \in A\} = 0$$
)

for each wuc series $\sum x_n^*$ in X^* (resp. wuc series $\sum x_n$ in X). A Banach space X has property (V) if every V-subset of X^* is relatively weakly compact, and X has property (V^*) if every V^* -subset of X is relatively weakly compact [31]. A Banach space X has property (V) if and only if every unconditionally converging operator with domain X is weakly compact [31]. Pełczyński [31] proved that C(K) spaces have property (V).

A topological space S is called *scattered* (or *dispersed*) if every nonempty closed subset of S has an isolated point [38]. A compact Hausdorff space K is scattered if and only if $\ell_1 \hookrightarrow C(K)$ (see [32]).

The Banach–Mazur distance d(E,F) between two isomorphic Banach spaces E and F is defined by $\inf(\|T\|\|T^{-1}\|)$, where the infimum is taken over all isomorphisms T from E onto F. A Banach space E is called an \mathcal{L}_{∞} -space (resp. \mathcal{L}_1 -space) [8] if there is a $\lambda \geq 1$ so that every finite-dimensional subspace of E is contained in another subspace N with $d(N, \ell_{\infty}^n) \leq \lambda$ (resp. $d(N, \ell_1^n) \leq \lambda$) for some integer n. Complemented subspaces of C(K) spaces (resp. $L_1(\mu)$ spaces) are \mathcal{L}_{∞} -spaces (resp. \mathcal{L}_1 -spaces) [8, Proposition 1.26]. The dual of an \mathcal{L}_1 -space (resp. \mathcal{L}_{∞} -space) is an \mathcal{L}_{∞} -space (resp. \mathcal{L}_1 -spaces) are \mathcal{L}_{∞} -spaces (resp. \mathcal{L}_1 -spaces) [8, Proposition 1.27]. Complemented subspaces of \mathcal{L}_{∞} -spaces (resp. \mathcal{L}_1 -spaces) are \mathcal{L}_{∞} -spaces (resp. \mathcal{L}_1 -spaces) [8, Proposition 1.28]. The \mathcal{L}_{∞} -spaces, \mathcal{L}_1 -spaces, and their duals have the DPP [8, Corollary 1.30].

Several authors studied whether the DPP of E and F implies the DPP of their projective tensor product $E \otimes_{\pi} F$ and of their injective tensor product $E \otimes_{\epsilon} F$ ([1], [5], [9], [14], [13], [22], [24], [26], [28], [36], [40]). Talagrand [40] gave an example of a Banach space E so that E^* has the Schur property, but $C([0,1],E) \simeq C[0,1] \otimes_{\epsilon} E$ and $L^1([0,1],E^*) \simeq L^1[0,1] \otimes_{\pi} E^*$ do not have the DPP. Dobrakov [22] showed that if X is a Schur space, then $C(K,X) \simeq C(K) \otimes_{\epsilon} X$ has the DPP. Andrews [1] proved that if X^* is a Schur space, then $L_1(\mu,X) \simeq L_1(\mu) \otimes_{\pi} X$ has the DPP if μ is finite. Bourgain [9] showed that for any countable measure μ and any compact Hausdorff space K, the spaces $L_1(\mu,C(K))$, $C(K,L_1(\mu))$, and their duals have the DPP.

Ryan [36] proved that if E and F have the DPP and contain no copy of ℓ_1 , then $E \otimes_{\pi} F$ has the DPP and contains no copy of ℓ_1 . Bombal and Villanueva proved that if K_1 and K_2 are infinite compact Hausdorff spaces, then $C(K_1) \otimes_{\pi} C(K_2)$ has the DPP if and only if both K_1 and K_2 are scattered [5, Theorem 2.2]. González and Gutiérrez proved that if E does not

have the Schur property, F contains a copy of ℓ_1 , and $L(E, F^*) = CC(E, F^*)$, then $E \otimes_{\pi} F$ does not have the DPP [28, Theorem 3].

In this paper we give sufficient conditions on Banach spaces E and F so that the projective tensor product $E \otimes_{\pi} F$, the duals $(E \otimes_{\pi} F)^*$ and $(E \otimes_{\epsilon} F)^*$ of their projective and injective tensor products, and the bidual $(E \otimes_{\pi} F)^{**}$ of their projective tensor product do not have the DPP. We use the sequential characterization [19] of the DPP to show that, in some cases, these spaces fail to have the DPP. Our results generalize those in [5] and [28].

2. The DPP on tensor products. We start by studying the DPP on projective tensor products. We note that there are examples of spaces E and F so that the projective tensor product of E and F has the DPP. Specifically, since $\ell_1 \otimes_{\pi} \ell_1 \simeq \ell_1$ (see [35, p. 43]), $\ell_1 \otimes_{\pi} \ell_1$ has the Schur property, and thus the DPP. Ryan [36] proved that if E^* and F^* have the Schur property, then $(E \otimes_{\pi} F)^* \simeq L(E, F^*)$ has the Schur property. Hence $E \otimes_{\pi} F$ has the DPP. We will need the following results.

OBSERVATION 1. If E has the DPP and property (V) and F has property (V), then $L(E, F^*) = CC(E, F^*)$. Indeed, since F has property (V), F^* is weakly sequentially complete [31], and $c_0 \hookrightarrow F^*$. If $T: E \to F^*$ is an operator, then T is unconditionally converging [3]. Since E has property (V) and the DPP, T is weakly compact [31], and thus completely continuous.

Observation 2.

- (i) If $\ell_1 \hookrightarrow X$, then X^* does not have the Schur property (since $\ell_1 \hookrightarrow X$ implies $L_1 \hookrightarrow X^*$; see [18, p. 212]).
- (ii) If X is infinite-dimensional and has the Schur property, then X^* does not have the Schur property. Indeed, let (x_n) be a sequence of norm one elements of X such that $||x_n x_m|| \ge 1/2$ for all $n \ne m$. Then (x_n) has no norm Cauchy subsequence, hence no weakly Cauchy subsequence. By Rosenthal's ℓ_1 -theorem, $\ell_1 \hookrightarrow X$, and (i) applies.
- (iii) If X is infinite-dimensional, then X^{**} does not have the Schur property. Indeed, if X^{**} has the Schur property, so does X. Then $\ell_1 \hookrightarrow X$, hence $\ell_1 \hookrightarrow X^*$ (see [18, p. 211]), and (i) applies.

OBSERVATION 3. If X^* does not have the Schur property and X has the DPP, then $\ell_1 \hookrightarrow X$ (see [27], [33]).

OBSERVATION 4. If X is infinite-dimensional and has property (V), then X does not have the Schur property. To see this, suppose that X has the Schur property. Then $c_0 \hookrightarrow X$, and the identity map i on X is unconditionally converging [3]. Since X has property (V), i is weakly compact. Hence B_X is relatively (weakly) compact, a contradiction.

OBSERVATION 5. If E and F are infinite-dimensional \mathcal{L}_{∞} -spaces, then $L(E, F^*) = CC(E, F^*)$ (see [20, Theorems 3.7 and 2.17]).

LEMMA 1 ([5]). Suppose that $L(E, F^*) = CC(E, F^*)$, (x_n) is a weakly null sequence in E and (y_n) is a bounded sequence in F. Then the sequence $(x_n \otimes y_n)$ is weakly null in $E \otimes_{\pi} F$.

The following lemma is essentially contained in [28] (see the proof of Theorem 12 there); see also [21, p. 256]. We include a different proof for the convenience of the reader.

LEMMA 2 ([28]). If (x_n) is weakly null in E and (y_n) is bounded in F, then $(x_n \otimes y_n)$ is weakly null in $E \otimes_{\epsilon} F$.

Proof. Let (x_n) be weakly null in E and (y_n) be bounded in F. Then $\langle x_n \otimes y_n, x^* \otimes y^* \rangle = x^*(x_n)y^*(y_n) \to 0$ for all $x^* \in E^*$, $y^* \in F^*$. Consider the compact product space $B_{E^*} \times B_{F^*}$, where B_{E^*} and B_{F^*} are equipped with their compact w^* -topologies. Since E and F are closed subspaces of $C(B_{E^*})$ and $C(B_{F^*})$, $E \otimes_{\epsilon} F$ is a closed subspace of $C(B_{E^*} \times B_{F^*})$. By the Lebesgue dominated convergence theorem, $(x_n \otimes y_n)$ is weakly null in $C(B_{E^*} \times B_{F^*})$, hence in $E \otimes_{\epsilon} F$.

THEOREM 3. Suppose that E and F^* do not have the Schur property, and $L(E, F^*) = CC(E, F^*)$. Then $E \otimes_{\pi} F$ does not have the DPP.

Proof. Let (x_n) be a weakly null sequence in E and (x_n^*) be a bounded sequence in E^* such that $x_n^*(x_n) = 1$ for all n. Let (y_n^*) be a weakly null sequence in F^* and (y_n) be a bounded sequence in F such that $y_n^*(y_n) = 1$ for all n. Then $\langle x_n^* \otimes y_n^*, x_n \otimes y_n \rangle = 1$. By Lemma 1, $(x_n \otimes y_n)$ is weakly null in $E \otimes_{\pi} F$. By Lemma 2, $(x_n^* \otimes y_n^*)$ is weakly null in $E^* \otimes_{\epsilon} F^*$, hence in $(E \otimes_{\pi} F)^* \simeq L(E, F^*)$. Then $E \otimes_{\pi} F$ does not have the DPP.

COROLLARY 4 ([28, Theorem 3]). Suppose that E does not have the Schur property, $\ell_1 \hookrightarrow F$, and $L(E, F^*) = CC(E, F^*)$. Then $E \otimes_{\pi} F$ does not have the DPP.

Proof. By Observation 2(i), F^* does not have the Schur property. Apply Theorem 3. \blacksquare

Actually Corollary 4 implies Theorem 3, so they are equivalent. Indeed, assume that Theorem 3 does not hold. In particular, F^* does not have the Schur property and $E \otimes_{\pi} F$ has the DPP. Hence F, which is isomorphic to a complemented subspace of $E \otimes_{\pi} F$, has the DPP. By Observation 3, $\ell_1 \hookrightarrow F$. Hence Corollary 4 does not hold.

The next result is similar to [28, Corollary 5]. We include the proof for the convenience of the reader. COROLLARY 5. Suppose that E and F are infinite-dimensional, $L(E, F^*)$ = $CC(E, F^*)$, $L(F, E^*) = CC(F, E^*)$, and $E \otimes_{\pi} F$ has the DPP. Then either E and F have the Schur property, or E^* and F^* have the Schur property.

Proof. If E has the Schur property, then E^* does not have the Schur property (by Observation 2(ii)). Since $F \otimes_{\pi} E \simeq E \otimes_{\pi} F$ has the DPP, Theorem 3 implies that F has the Schur property.

If E does not have the Schur property, Theorem 3 implies that F^* has the Schur property. Then F does not have the Schur property. Since $F \otimes_{\pi} E$ has the DPP, Theorem 3 implies that E^* has the Schur property.

COROLLARY 6.

- (i) If E and F are infinite-dimensional, $L(E^{**}, F^{*}) = CC(E^{**}, F^{*})$, and $L(F, E^{***}) = CC(F, E^{***})$, then $E^{**} \otimes_{\pi} F$ does not have the DPP.
- (ii) If E and F are infinite-dimensional, $L(E^{**}, F^{***}) = CC(E^{**}, F^{***})$, and $L(F^{**}, E^{***}) = CC(F^{**}, E^{***})$, then $E^{**} \otimes_{\pi} F^{**}$ does not have the DPP.

Proof. Suppose that $E^{**} \otimes_{\pi} F$ has the DPP. By Corollary 5, either E^{**} and F have the Schur property, or E^{***} and F^{**} have the Schur property. By Observation 2(iii), neither E^{***} nor E^{****} can have the Schur property.

(ii) Apply (i). ■

If E and F are infinite-dimensional \mathcal{L}_{∞} -spaces, then they satisfy the hypotheses of Corollary 6 (by Observation 5), and so $E^{**} \otimes_{\pi} F$ and $E^{**} \otimes_{\pi} F^{**}$ do not have the DPP. The hypotheses of Corollary 6(i) (resp. (ii)) are also satisfied if E and F are infinite-dimensional spaces such that E^{**} and F (resp. F^{**}) have the DPP and property (V) (by Observation 1).

Examples of spaces with the DPP and property (V) are the disk algebra $A, H^{\infty}, (H^{\infty})^{**}$ [6], [15], and biduals of \mathcal{L}_{∞} -spaces (since they are complemented in C(K) spaces [8]). Thus, e.g., $(H^{\infty})^{**} \otimes_{\pi} A, (H^{\infty})^{**} \otimes_{\pi} H^{\infty}$, and $(H^{\infty})^{**} \otimes_{\pi} (H^{\infty})^{**}$ do not have the DPP.

COROLLARY 7. Suppose that E and F have the DPP and do not have the Schur property, $L(E, F^*) = CC(E, F^*)$, and $L(F, E^*) = CC(F, E^*)$. Then the following are equivalent:

- (i) $\ell_1 \hookrightarrow E$ and $\ell_1 \hookrightarrow F$.
- (ii) $(E \otimes_{\pi} F)^*$ has the Schur property.
- (iii) $(E \otimes_{\pi} F)^*$ has the DPP.

- (iv) $E \otimes_{\pi} F$ has the DPP.
- (v) E^* and F^* have the Schur property.

Proof. (i) \Rightarrow (ii). By Observation 3, E^* and F^* have the Schur property. Then $(E \otimes_{\pi} F)^* \simeq L(E, F^*)$ has the Schur property [36].

(ii)⇒(iii) and (iii)⇒(iv) are clear. (iv)⇒(v) follows by Corollary 5. (v)⇒(i) is justified by Observation 2(i). \blacksquare

The following result generalizes Theorem 2.2 of [5].

Corollary 8. Suppose that E and F are infinite-dimensional spaces with the DPP and property (V). Then the conclusion of Corollary 7 is true.

Proof. By Observation 1, we have $L(E, F^*) = CC(E, F^*)$ and $L(F, E^*) = CC(F, E^*)$. By Observation 4, E and F do not have the Schur property. Apply Corollary 7.

EXAMPLE. The spaces A and H^{∞} have the DPP and property (V), and contain copies of ℓ_1 (see [6], [7], [17], [37]). Let E, F be A or H^{∞} . Then, by Corollary 8, $E \otimes_{\pi} F$ does not have the DPP.

Next we give some results about the DPP of duals of injective tensor products. It is known that $(E \otimes_{\epsilon} F)^* = I(E, F^*)$, the space of integral operators from E to F^* (see [21, Corollary VIII.2.12]).

LEMMA 9 ([26]). $E^{**} \otimes_{\epsilon} F$ is a closed subspace of $(E \otimes_{\epsilon} F)^{**}$.

Theorem 10. If E^* does not have the Schur property, F is infinite-dimensional, and $L(E^*, F^{**}) = CC(E^*, F^{**})$, then

- (i) $(E \otimes_{\epsilon} F)^*$ does not have the DPP.
- (ii) $E \otimes_{\epsilon} F^{**}$ does not have the DPP.

Proof. By Observation 2(iii), F^{**} does not have the Schur property. Let (x_n^*) be a weakly null sequence in E^* and (x_n) be a bounded sequence in E so that $x_n^*(x_n) = 1$ for all n. Let (y_n^{**}) be a weakly null sequence in F^{**} and (y_n^*) be a bounded sequence in F^* so that $y_n^{**}(y_n^*) = 1$ for all n. Then we have $(1) \langle x_n \otimes y_n^{**}, x_n^* \otimes y_n^* \rangle = 1$.

By Lemma 1, $(x_n^* \otimes y_n^*)$ is weakly null in $E^* \otimes_{\pi} F^*$, hence (2) $(x_n^* \otimes y_n^*)$ is weakly null in $(E \otimes_{\epsilon} F)^*$. By Lemma 2, we deduce (3) $(x_n \otimes y_n^{**})$ is weakly null in $E \otimes_{\epsilon} F^{**}$.

- (i) By Lemma 9, $(x_n \otimes y_n^{**})$ is weakly null in $(E \otimes_{\epsilon} F)^{**}$. By (1) and (2), $(E \otimes_{\epsilon} F)^{*}$ does not have the DPP.
- (ii) $(E \otimes_{\epsilon} F)^*$ is a closed linear subspace of $(E \otimes_{\epsilon} F^{**})^*$ ([21, Corollary VIII.2.13]), hence by (2), $(x_n^* \otimes y_n^*)$ is weakly null in $(E \otimes_{\epsilon} F^{**})^*$. By (1) and (3), $E \otimes_{\epsilon} F^{**}$ does not have the DPP.

Theorem 10(i) simplifies the proof of [28, Theorem 10]; the assumption $\ell_1 \hookrightarrow F^*$ there is superfluous.

Corollary 11.

- (i) If E and F are infinite-dimensional, E^* has the DPP and property (V), and F^* has property (V), then $E \otimes_{\epsilon} F^{**}$ does not have the DPP.
- (ii) If $\ell_1 \stackrel{c}{\hookrightarrow} E$ and $\ell_1 \stackrel{c}{\leadsto} F^*$, then $E \otimes_{\epsilon} F^{**}$ does not have the DPP.

Proof. (i) By Observation 1, $L(E^*, F^{**}) = CC(E^*, F^{**})$. By Observation 4, E^* does not have the Schur property. Apply Theorem 10(ii).

(ii) Suppose first that $E = \ell_1$. Since $\ell_1 \stackrel{c}{\hookrightarrow} F^*$, we have $c_0 \hookrightarrow F^{**}$ (see [3]). Then every operator $T: \ell_{\infty} \to F^{**}$ is unconditionally converging, and thus completely continuous (since ℓ_{∞} has property (V) and the DPP). By Theorem 10(ii), $\ell_1 \otimes_{\epsilon} F^{**}$ does not have the DPP.

Now suppose that $\ell_1 \stackrel{c}{\hookrightarrow} E$. If I is the identity on F^{**} and $P: E \to \ell_1$ is a projection, then $P \otimes_{\epsilon} I: E \otimes_{\epsilon} F^{**} \to \ell_1 \otimes_{\epsilon} F^{**}$ is a projection. Since $\ell_1 \otimes_{\epsilon} F^{**}$ does not have the DPP, $E \otimes_{\epsilon} F^{**}$ does not have the DPP.

COROLLARY 12 ([28]). If E and F are infinite-dimensional \mathcal{L}_1 -spaces, then

- (i) $(E \otimes_{\epsilon} F)^*$ does not have the DPP.
- (ii) $E \otimes_{\epsilon} F^{**}$ does not have the DPP.

Proof. Since E and F are infinite-dimensional \mathcal{L}_1 -spaces, $\ell_1 \stackrel{c}{\hookrightarrow} E$ and $\ell_1 \stackrel{c}{\hookrightarrow} F$ (see [8, Proposition 1.24]). Then $c_0 \hookrightarrow E^*$ (see [3]), and thus E^* does not have the Schur property. Further, E^* and F^* are infinite-dimensional \mathcal{L}_{∞} -spaces, and thus $L(E^*, F^{**}) = CC(E^*, F^{**})$ (by Observation 5).

- (i) Apply Theorem 10(i).
- (ii) Apply Theorem 10(ii). ■

In the next results we consider the DPP of duals of projective tensor products.

THEOREM 13. Suppose that E^* does not have the Schur property, F is infinite-dimensional, and $L(F^{**}, E^*) = CC(F^{**}, E^*)$. Then $(E \otimes_{\pi} F)^* \simeq L(E, F^*)$ does not have the DPP.

Proof. By Observation 2(iii), F^{**} does not have the Schur property. Replacing E and F in Theorem 3 by F^{**} and E respectively, one obtains from its proof a weakly null sequence $(x_n \otimes y_n^{**})$ in $E \otimes_{\pi} F^{**}$, and a weakly null sequence $(x_n^* \otimes y_n^*)$ in $E^* \otimes_{\epsilon} F^*$, hence in $L(E, F^*)$, such that $x_n^*(x_n)y_n^{**}(y_n^*) = 1$ for all n.

Define the bounded operator $S: E \otimes_{\pi} F^{**} \to L(E, F^*)^*$ by

$$\langle S(x\otimes y^{**}),T\rangle=\langle T^*(y^{**}),x\rangle\quad \text{ for }T\in L(E,F^*),\,x\in E,\,y^{**}\in F^{**}.$$

Note that $(S(x_n \otimes y_n^{**}))$ is weakly null in $L(E, F^*)^*$ and $\langle S(x_n \otimes y_n^{**}), x_n^* \otimes y_n^* \rangle = x_n^*(x_n)y_n^{**}(y_n^*) = 1$. Then $L(E, F^*) \simeq (E \otimes_{\pi} F)^*$ does not have the DPP. \blacksquare

Corollary 14.

- (i) Suppose that E^* does not have the Schur property, $\ell_1 \stackrel{c}{\hookrightarrow} E$, and $\ell_1 \stackrel{c}{\hookrightarrow} F^*$. Then $(E \otimes_{\pi} F)^*$ does not have the DPP.
- (ii) ([28, Theorem 15]) Suppose that E^* does not have the Schur property, $\ell_1 \stackrel{c}{\hookrightarrow} E^{**}$, and $\ell_1 \stackrel{c}{\hookrightarrow} F^*$. Then $(E \otimes_{\pi} F)^*$ does not have the DPP.
- (iii) Suppose that E has property (V), $\ell_1 \hookrightarrow E$, and $\ell_1 \stackrel{c}{\hookrightarrow} F^*$. Then $(E \otimes_{\pi} F)^*$ does not have the DPP.
- (iv) Suppose that $\ell_1 \hookrightarrow E$, $\ell_1 \stackrel{c}{\hookrightarrow} E$, F^* has property (V^*) , and $\ell_1 \hookrightarrow F^*$. Then $(E \otimes_{\pi} F)^*$ does not have the DPP.
- *Proof.* (i) Suppose first that $F^* = \ell_1$. Since $\ell_1 \stackrel{c}{\hookrightarrow} E$, we have $c_0 \hookrightarrow E^*$. Then every operator $T : \ell_{\infty} \to E^*$ is unconditionally converging, and thus completely continuous. By Theorem 13, $L(E, \ell_1)$ does not have the DPP.

Now suppose that $\ell_1 \stackrel{c}{\hookrightarrow} F^*$. If $P: F^* \to \ell_1$ is a projection, then the operator $Q: L(E, F^*) \to L(E, \ell_1)$ defined by Q(T) = PT is a projection of $L(E, F^*)$ onto $L(E, \ell_1)$. Since $L(E, \ell_1)$ does not have the DPP, $L(E, F^*)$ does not have the DPP.

- (ii) If $\ell_1 \stackrel{c}{\hookrightarrow} E$, then $c_0 \hookrightarrow E^*$. So ℓ_1 is a quotient of E^{**} , hence $\ell_1 \stackrel{c}{\hookrightarrow} E^{**}$ (see [18, p. 72]). Apply (i).
- (iii) Since E has property (V), E^* is weakly sequentially complete [31]. Then $c_0 \hookrightarrow E^*$, and thus $\ell_1 \stackrel{c}{\hookrightarrow} E$. By Observation 2(i), E^* does not have the Schur property. Apply (i).
- (iv) By Observation 2(i) again, E^* does not have the Schur property. If F^* has property (V^*) and $\ell_1 \hookrightarrow F^*$, then $\ell_1 \stackrel{c}{\hookrightarrow} F^*$, by results of [4], [25]. Apply (i). \blacksquare

COROLLARY 15. Suppose that E and F have the DPP, $\ell_1 \stackrel{c}{\hookrightarrow} E$, $\ell_1 \stackrel{c}{\hookrightarrow} F$, and $\ell_1 \stackrel{c}{\hookrightarrow} E^*$, $\ell_1 \stackrel{c}{\hookrightarrow} F^*$. Then the properties (i), (ii), (iii), and (v) in Corollary 7 are equivalent.

Proof. The proof is the same as for Corollary 7, except for (iii) \Rightarrow (v), where one uses Corollary 14(i).

A Banach space X has the approximation property if for every compact subset K of X and every $\epsilon > 0$ there exists a finite rank operator $S: X \to X$ such that $||x - Sx|| \le \epsilon$ for every $x \in K$. Examples of spaces with the approximation property include C(K) spaces, c_0 , ℓ_p , $1 \le p < \infty$, $L_p(\mu)$ (μ any measure), $1 \le p < \infty$, and $C(K)^*$ (see [21], [35]). We recall that if X^* or Y has the approximation property, then $K(X,Y) = X^* \otimes_{\epsilon} Y$ (see [35, Corollary 4.13]).

Corollary 16.

- (i) ([11]) If E and F are infinite-dimensional \mathcal{L}_{∞} -spaces, then $(E \otimes_{\pi} F)^{**}$ does not have the DPP.
- (ii) ([28, Corollary 11]) The space $(C(K_1) \otimes_{\pi} C(K_2))^{**}$ does not have the DPP, for all infinite compact spaces K_1 and K_2 .

Proof. (i) First assume that $\ell_1 \hookrightarrow E$. Then $CC(E, F^*) = K(E, F^*)$ (see [34, p. 377]). Further, since E^* (or F^*) has the approximation property [16, p. 306], we have $K(E, F^*) = E^* \otimes_{\epsilon} F^*$. By Observation 5, $CC(E, F^*) = L(E, F^*) \simeq (E \otimes_{\pi} F)^*$. Therefore

$$(E \otimes_{\pi} F)^* \simeq E^* \otimes_{\epsilon} F^*.$$

Since E and F are infinite-dimensional \mathcal{L}_{∞} -spaces, E^* and F^* are infinite-dimensional \mathcal{L}_1 -spaces. By Corollary 12(i), $(E^* \otimes_{\epsilon} F^*)^*$ does not have the DPP. Therefore $(E \otimes_{\pi} F)^{**} \simeq (E^* \otimes_{\epsilon} F^*)^*$ does not have the DPP.

Now assume that $\ell_1 \hookrightarrow E$. If E and F are infinite-dimensional \mathcal{L}_{∞} -spaces, then they satisfy the hypotheses of Corollary 15. Indeed, since E^* is an \mathcal{L}_1 -space, E^* is weakly sequentially complete [8, Corollary 1.29]. Then $c_0 \hookrightarrow E^*$, and thus $\ell_1 \stackrel{c}{\hookrightarrow} E$ (see [3]). Further, $\ell_1 \stackrel{c}{\hookrightarrow} E^*$ (see [8, Proposition 1.24]). Similarly, $\ell_1 \stackrel{c}{\hookrightarrow} F$ and $\ell_1 \stackrel{c}{\hookrightarrow} F^*$. Corollary 15 implies that $(E \otimes_{\pi} F)^*$, hence $(E \otimes_{\pi} F)^{**}$, does not have the DPP.

(ii) For infinite compact Hausdorff spaces K, C(K) spaces are infinite-dimensional \mathcal{L}_{∞} -spaces (by [8, Proposition 1.26]). Apply (i).

In [12, Corollary 1.5], the authors proved (using different techniques) that the space $(C(K_1) \otimes_{\pi} C(K_2))^{**}$ even contains a complemented copy of ℓ_2 .

We can now give families of spaces with the Schur property whose duals fail to have the DPP. See also [19], [39].

REMARK 1. Suppose that E and F are infinite-dimensional \mathcal{L}_{∞} -spaces not containing copies of ℓ_1 . Then $(E \otimes_{\pi} F)^*$ has the Schur property by Observation 5 and Corollary 7, while $(E \otimes_{\pi} F)^{**}$ does not have the DPP by Corollary 16. Examples are C(K) spaces, where K is scattered, or a separable \mathcal{L}_{∞} -space Y so that Y is somewhat reflexive, $\ell_1 \hookrightarrow Y$, and $Y^* \simeq \ell_1$ (see [10]).

REMARK 2. Suppose that E and F are infinite-dimensional spaces with the Schur property. By [30], [36], $E \otimes_{\epsilon} F$ has the Schur property.

- (i) If moreover E^* has the DPP and property (V) and F^* has property (V), then $(E \otimes_{\epsilon} F)^*$ does not have the DPP by Observation 1, Observation 2(i), and Theorem 10.
- (ii) If moreover E and F are infinite-dimensional \mathcal{L}_1 -spaces, then $(E \otimes_{\epsilon} F)^*$ does not have the DPP by Corollary 12(i).

REFERENCES

- K. T. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35–41.
- [2] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289–305.
- [3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–174.
- [4] F. Bombal, On (V*) sets and Pełczyński's property (V*), Glasgow Math. J. 32 (1990), 109–120.
- [5] F. Bombal and I. Villanueva, On the Dunford-Pettis property of the tensor product of C(K) spaces, Proc. Amer. Math. Soc. 129 (2001), 1359-1363.
- [6] J. Bourgain, New Banach space properties of the disc algebra and H^{∞} , Acta Math. 152 (1984), 1–48.
- [7] —, H^{∞} is a Grothendieck space, Studia Math. 75 (1983), 193–216.
- [8] —, New Classes of \mathcal{L}^p -Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.
- [9] —, On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265–272.
- [10] J. Bourgain and F. Delbaen, A class of special \mathcal{L}_{∞} spaces, Acta Math. 145 (1981), 155–176.
- [11] F. Cabello Sánchez and R. García, The bidual of a tensor product of Banach spaces, Rev. Mat. Iberoamer. 21 (2005), 843–861.
- [12] F. Cabello Sánchez, D. Pérez-García and I. Villanueva, Unexpected subspaces of tensor products, J. London Math. Soc. 74 (2006), 512–526.
- [13] R. Cilia, A remark on the Dunford-Pettis property in $L_1(\mu, X)$, Proc. Amer. Math. Soc. 120 (1994), 183–184.
- [14] R. Cilia and J. M. Gutiérrez, Complemented copies of ℓ_p spaces in tensor products, Czechoslovak Math. J. 57 (2007), 319–329.
- [15] M. D. Contreras and S. Díaz, Some Banach space properties of the duals of the disk algebra and H[∞], Michigan Math. J. 46 (1999), 123–141.
- [16] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, Math. Stud. 176, North-Holland, Amsterdam, 1993.
- [17] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284–294.
- [18] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- [19] —, A survey of results related to the Dunford-Pettis property, in: Contemp. Math. 2, Amer. Math. Soc., Providence, RI, 1980, 15–60.
- [20] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
- [21] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [22] I. Dobrakov, On representation of linear operators on C₀(T, X), Czechoslovak Math. J. 21 (1971), 13–30.
- [23] N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323–392.
- [24] G. Emmanuele, Some remarks on lifting of isomorphic properties to injective and projective tensor products, Portugal. Math. 53 (1996), 253–255.
- [25] —, On the Banach spaces with the property (V*) of Pełczyński, Ann. Mat. Pura Appl. 152 (1988), 171–181.

- [26] G. Emmanuele, Remarks on weak compactness of operators defined on certain injective tensor products, Proc. Amer. Math. Soc. 116 (1992), 473–476.
- [27] H. Fakhoury, Sur les espaces de Banach ne contenant pas l¹(N), Math. Scand. 41 (1977), 277–289.
- [28] M. González and J. M. Gutiérrez, The Dunford-Pettis property on tensor products, Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192.
- [29] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129–173.
- [30] F. Lust, Produits tensoriels injectifs d'espaces de Sidon, Colloq. Math. 32 (1975), 285–289.
- [31] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
- [32] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math. 18 (1959), 211–222.
- [33] P. Pethe and N. Thakare, Note on Dunford-Pettis property and Schur property, Indiana Univ. Math. J. 27 (1978), 91–92.
- [34] H. P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362–377.
- [35] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, London, 2002.
- [36] —, The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. Math. 35 (1987), 785–792.
- [37] E. Saab and P. Saab, On stability problems of some properties in Banach spaces, in: K. Jarosz (ed.), Function Spaces, Lecture Notes in Pure Appl. Math. 136, Dekker, New York, 1992, 367–394.
- [38] Z. Semadeni, Banach Spaces of Continuous Functions, Monograf. Mat. 55, PWN, Warszawa, 1971.
- [39] C. P. Stegall, Duals of certain spaces with the Dunford-Pettis property, Notices Amer. Math. Soc. 19 (1972), A-799.
- [40] M. Talagrand, La propriété de Dunford-Pettis dans C(K, E) et $L^1(E)$, Israel J. Math. 44 (1983), 317–321.

Ioana Ghenciu Mathematics Department University of Wisconsin-River Falls River Falls, WI 54022, U.S.A. E-mail: ioana.ghenciu@uwrf.edu

> Received 12 August 2011; revised 28 November 2011 (5534)