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ON THE DUNFORD–PETTIS PROPERTY
OF TENSOR PRODUCT SPACES

BY

IOANA GHENCIU (River Falls, WI)

Abstract. We give sufficient conditions on Banach spaces E and F so that their
projective tensor product E ⊗π F and the duals of their projective and injective tensor
products do not have the Dunford–Pettis property. We prove that if E∗ does not have the
Schur property, F is infinite-dimensional, and every operator T : E∗ → F ∗∗ is completely
continuous, then (E ⊗ε F )∗ does not have the DPP. We also prove that if E∗ does not
have the Schur property, F is infinite-dimensional, and every operator T : F ∗∗ → E∗ is
completely continuous, then (E ⊗π F )∗ ' L(E,F ∗) does not have the DPP.

1. Definitions and notation. Our notation and terminology are stan-
dard. Throughout this paper, X, Y , E, and F will denote Banach spaces.
The unit ball of X will be denoted by BX , and X∗ will denote the continu-
ous linear dual of X. The set of all operators from X to Y will be denoted
by L(X,Y ), and the compact, resp. completely continuous operators will be
denoted by K(X,Y ), resp. CC(X,Y ). The operator T is completely con-
tinuous (or Dunford–Pettis) if T maps weakly Cauchy sequences to norm
convergent sequences, and T is unconditionally converging if T maps weakly
unconditionally convergent (wuc) series to unconditionally convergent series.

A Banach space X has the Dunford–Pettis property (DPP) if every
weakly compact operator T with domain X is completely continuous. Equiv-
alently,X has the DPP if and only if x∗n(xn)→ 0 for all weakly null sequences
(xn) in X and (x∗n) in X∗ (see [19]). Schur spaces, C(K) spaces, and L1(µ)
spaces have the DPP ([2], [29], [23]). Reflexive infinite-dimensional spaces
do not have the DPP. The Dunford–Pettis property is stable under comple-
mented subspaces. If E∗ has the DPP, then E has the DPP [19]. A dual
Banach space E∗ has the Schur property if and only if E has the DPP and
`1 X↪→ E ([27], [33]). The reader can check Diestel [18], [19], Diestel and Uhl
[21], and Andrews [1] for a guide to the extensive classical literature deal-
ing with the DPP, equivalent formulations of the preceding definitions, and
undefined notation and terminology.
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A bounded subset A of X (resp. A of X∗) is called a V ∗-subset of X
(resp. a V -subset of X∗) provided that

lim
n

sup{|x∗n(x)| : x ∈ A} = 0

(resp. lim
n

sup{|x∗(xn)| : x∗ ∈ A} = 0)

for each wuc series
∑
x∗n in X∗ (resp. wuc series

∑
xn in X). A Banach space

X has property (V ) if every V -subset of X∗ is relatively weakly compact, and
X has property (V ∗) if every V ∗-subset ofX is relatively weakly compact [31].
A Banach space X has property (V ) if and only if every unconditionally
converging operator with domain X is weakly compact [31]. Pełczyński [31]
proved that C(K) spaces have property (V ).

A topological space S is called scattered (or dispersed) if every nonempty
closed subset of S has an isolated point [38]. A compact Hausdorff space K
is scattered if and only if `1 X↪→ C(K) (see [32]).

The Banach–Mazur distance d(E,F ) between two isomorphic Banach
spaces E and F is defined by inf(‖T‖‖T−1‖), where the infimum is taken
over all isomorphisms T from E onto F . A Banach space E is called an L∞-
space (resp. L1-space) [8] if there is a λ ≥ 1 so that every finite-dimensional
subspace of E is contained in another subspace N with d(N, `n∞) ≤ λ (resp.
d(N, `n1 ) ≤ λ) for some integer n. Complemented subspaces of C(K) spaces
(resp. L1(µ) spaces) are L∞-spaces (resp. L1-spaces) [8, Proposition 1.26].
The dual of an L1-space (resp. L∞-space) is an L∞-space (resp. L1-space) [8,
Proposition 1.27]. Complemented subspaces of L∞-spaces (resp. L1-spaces)
are L∞-spaces (resp. L1-spaces) [8, Proposition 1.28]. The L∞-spaces, L1-
spaces, and their duals have the DPP [8, Corollary 1.30].

Several authors studied whether the DPP of E and F implies the DPP of
their projective tensor product E ⊗π F and of their injective tensor product
E ⊗ε F ([1], [5], [9], [14], [13], [22], [24], [26], [28], [36], [40]). Talagrand [40]
gave an example of a Banach space E so that E∗ has the Schur property, but
C([0, 1], E) ' C[0, 1] ⊗ε E and L1([0, 1], E∗) ' L1[0, 1] ⊗π E∗ do not have
the DPP. Dobrakov [22] showed that if X is a Schur space, then C(K,X) '
C(K) ⊗ε X has the DPP. Andrews [1] proved that if X∗ is a Schur space,
then L1(µ,X) ' L1(µ)⊗πX has the DPP if µ is finite. Bourgain [9] showed
that for any countable measure µ and any compact Hausdorff space K, the
spaces L1(µ,C(K)), C(K,L1(µ)), and their duals have the DPP.

Ryan [36] proved that if E and F have the DPP and contain no copy
of `1, then E ⊗π F has the DPP and contains no copy of `1. Bombal and
Villanueva proved that if K1 and K2 are infinite compact Hausdorff spaces,
then C(K1) ⊗π C(K2) has the DPP if and only if both K1 and K2 are
scattered [5, Theorem 2.2]. González and Gutiérrez proved that if E does not
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have the Schur property, F contains a copy of `1, and L(E,F ∗) = CC(E,F ∗),
then E ⊗π F does not have the DPP [28, Theorem 3].

In this paper we give sufficient conditions on Banach spaces E and F so
that the projective tensor product E⊗πF , the duals (E⊗πF )∗ and (E⊗εF )∗

of their projective and injective tensor products, and the bidual (E⊗πF )∗∗ of
their projective tensor product do not have the DPP. We use the sequential
characterization [19] of the DPP to show that, in some cases, these spaces
fail to have the DPP. Our results generalize those in [5] and [28].

2. The DPP on tensor products. We start by studying the DPP on
projective tensor products. We note that there are examples of spaces E and
F so that the projective tensor product of E and F has the DPP. Specifically,
since `1⊗π `1 ' `1 (see [35, p. 43]), `1⊗π `1 has the Schur property, and thus
the DPP. Ryan [36] proved that if E∗ and F ∗ have the Schur property, then
(E ⊗π F )∗ ' L(E,F ∗) has the Schur property. Hence E ⊗π F has the DPP.
We will need the following results.

Observation 1. If E has the DPP and property (V ) and F has prop-
erty (V ), then L(E,F ∗) = CC(E,F ∗). Indeed, since F has property (V ),
F ∗ is weakly sequentially complete [31], and c0 X↪→ F ∗. If T : E → F ∗

is an operator, then T is unconditionally converging [3]. Since E has property
(V ) and the DPP, T is weakly compact [31], and thus completely continuous.

Observation 2.

(i) If `1 ↪→ X, then X∗ does not have the Schur property (since
`1 ↪→ X implies L1 ↪→ X∗; see [18, p. 212]).

(ii) If X is infinite-dimensional and has the Schur property, then X∗

does not have the Schur property. Indeed, let (xn) be a sequence
of norm one elements of X such that ‖xn − xm‖ ≥ 1/2 for all
n 6= m. Then (xn) has no norm Cauchy subsequence, hence no
weakly Cauchy subsequence. By Rosenthal’s `1-theorem, `1 ↪→ X,
and (i) applies.

(iii) If X is infinite-dimensional, then X∗∗ does not have the Schur
property. Indeed, if X∗∗ has the Schur property, so does X. Then
`1 ↪→ X, hence `1 ↪→ X∗ (see [18, p. 211]), and (i) applies.

Observation 3. If X∗ does not have the Schur property and X has the
DPP, then `1 ↪→ X (see [27], [33]).

Observation 4. If X is infinite-dimensional and has property (V ), then
X does not have the Schur property. To see this, suppose that X has the
Schur property. Then c0 X↪→ X, and the identity map i on X is uncondition-
ally converging [3]. Since X has property (V ), i is weakly compact. Hence
BX is relatively (weakly) compact, a contradiction.
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Observation 5. If E and F are infinite-dimensional L∞-spaces, then
L(E,F ∗) = CC(E,F ∗) (see [20, Theorems 3.7 and 2.17]).

Lemma 1 ([5]). Suppose that L(E,F ∗) = CC(E,F ∗), (xn) is a weakly
null sequence in E and (yn) is a bounded sequence in F . Then the sequence
(xn ⊗ yn) is weakly null in E ⊗π F .

The following lemma is essentially contained in [28] (see the proof of
Theorem 12 there); see also [21, p. 256]. We include a different proof for the
convenience of the reader.

Lemma 2 ([28]). If (xn) is weakly null in E and (yn) is bounded in F ,
then (xn ⊗ yn) is weakly null in E ⊗ε F .

Proof. Let (xn) be weakly null in E and (yn) be bounded in F . Then
〈xn⊗yn, x∗⊗y∗〉 = x∗(xn)y∗(yn)→ 0 for all x∗ ∈ E∗, y∗ ∈ F ∗. Consider the
compact product space BE∗ × BF ∗ , where BE∗ and BF ∗ are equipped with
their compact w∗-topologies. Since E and F are closed subspaces of C(BE∗)
and C(BF ∗), E⊗εF is a closed subspace of C(BE∗×BF ∗). By the Lebesgue
dominated convergence theorem, (xn ⊗ yn) is weakly null in C(BE∗ ×BF ∗),
hence in E ⊗ε F .

Theorem 3. Suppose that E and F ∗ do not have the Schur property,
and L(E,F ∗) = CC(E,F ∗). Then E ⊗π F does not have the DPP.

Proof. Let (xn) be a weakly null sequence in E and (x∗n) be a bounded
sequence in E∗ such that x∗n(xn) = 1 for all n. Let (y∗n) be a weakly null
sequence in F ∗ and (yn) be a bounded sequence in F such that y∗n(yn) = 1
for all n. Then 〈x∗n ⊗ y∗n, xn ⊗ yn〉 = 1. By Lemma 1, (xn ⊗ yn) is weakly
null in E ⊗π F . By Lemma 2, (x∗n⊗ y∗n) is weakly null in E∗⊗ε F ∗, hence in
(E ⊗π F )∗ ' L(E,F ∗). Then E ⊗π F does not have the DPP.

Corollary 4 ([28, Theorem 3]). Suppose that E does not have the Schur
property, `1 ↪→ F , and L(E,F ∗) = CC(E,F ∗). Then E ⊗π F does not have
the DPP.

Proof. By Observation 2(i), F ∗ does not have the Schur property. Apply
Theorem 3.

Actually Corollary 4 implies Theorem 3, so they are equivalent. Indeed,
assume that Theorem 3 does not hold. In particular, F ∗ does not have the
Schur property and E⊗π F has the DPP. Hence F , which is isomorphic to a
complemented subspace of E⊗πF , has the DPP. By Observation 3, `1 ↪→ F .
Hence Corollary 4 does not hold.

The next result is similar to [28, Corollary 5]. We include the proof for
the convenience of the reader.
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Corollary 5. Suppose that E and F are infinite-dimensional, L(E,F ∗)
= CC(E,F ∗), L(F,E∗) = CC(F,E∗), and E⊗πF has the DPP. Then either
E and F have the Schur property, or E∗ and F ∗ have the Schur property.

Proof. If E has the Schur property, then E∗ does not have the Schur
property (by Observation 2(ii)). Since F ⊗π E ' E ⊗π F has the DPP,
Theorem 3 implies that F has the Schur property.

If E does not have the Schur property, Theorem 3 implies that F ∗ has
the Schur property. Then F does not have the Schur property. Since F ⊗π E
has the DPP, Theorem 3 implies that E∗ has the Schur property.

Corollary 6.

(i) If E and F are infinite-dimensional, L(E∗∗, F ∗) = CC(E∗∗, F ∗),
and L(F,E∗∗∗) = CC(F,E∗∗∗), then E∗∗ ⊗π F does not have the
DPP.

(ii) If E and F are infinite-dimensional, L(E∗∗, F ∗∗∗) = CC(E∗∗, F ∗∗∗),
and L(F ∗∗, E∗∗∗) = CC(F ∗∗, E∗∗∗), then E∗∗ ⊗π F ∗∗ does not have
the DPP.

Proof. Suppose that E∗∗ ⊗π F has the DPP. By Corollary 5, either E∗∗
and F have the Schur property, or E∗∗∗ and F ∗ have the Schur property. By
Observation 2(iii), neither E∗∗ nor E∗∗∗ can have the Schur property.

(ii) Apply (i).

If E and F are infinite-dimensional L∞-spaces, then they satisfy the
hypotheses of Corollary 6 (by Observation 5), and so E∗∗⊗πF and E∗∗⊗πF ∗∗
do not have the DPP. The hypotheses of Corollary 6(i) (resp. (ii)) are also
satisfied if E and F are infinite-dimensional spaces such that E∗∗ and F
(resp. F ∗∗) have the DPP and property (V ) (by Observation 1).

Examples of spaces with the DPP and property (V ) are the disk algebra
A, H∞, (H∞)∗∗ [6], [15], and biduals of L∞-spaces (since they are comple-
mented in C(K) spaces [8]). Thus, e.g., (H∞)∗∗ ⊗π A, (H∞)∗∗ ⊗π H∞, and
(H∞)∗∗ ⊗π (H∞)∗∗ do not have the DPP.

Corollary 7. Suppose that E and F have the DPP and do not have the
Schur property, L(E,F ∗) = CC(E,F ∗), and L(F,E∗) = CC(F,E∗). Then
the following are equivalent:

(i) `1 X↪→ E and `1 X↪→ F .
(ii) (E ⊗π F )∗ has the Schur property.
(iii) (E ⊗π F )∗ has the DPP.
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(iv) E ⊗π F has the DPP.
(v) E∗ and F ∗ have the Schur property.

Proof. (i)⇒(ii). By Observation 3, E∗ and F ∗ have the Schur property.
Then (E ⊗π F )∗ ' L(E,F ∗) has the Schur property [36].

(ii)⇒(iii) and (iii)⇒(iv) are clear. (iv)⇒(v) follows by Corollary 5.
(v)⇒(i) is justified by Observation 2(i).

The following result generalizes Theorem 2.2 of [5].

Corollary 8. Suppose that E and F are infinite-dimensional spaces
with the DPP and property (V ). Then the conclusion of Corollary 7 is true.

Proof. By Observation 1, we have L(E,F ∗) = CC(E,F ∗) and L(F,E∗)
= CC(F,E∗). By Observation 4, E and F do not have the Schur property.
Apply Corollary 7.

Example. The spaces A and H∞ have the DPP and property (V ), and
contain copies of `1 (see [6], [7], [17], [37]). Let E, F be A or H∞. Then, by
Corollary 8, E ⊗π F does not have the DPP.

Next we give some results about the DPP of duals of injective tensor
products. It is known that (E ⊗ε F )∗ = I(E,F ∗), the space of integral
operators from E to F ∗ (see [21, Corollary VIII.2.12]).

Lemma 9 ([26]). E∗∗ ⊗ε F is a closed subspace of (E ⊗ε F )∗∗.

Theorem 10. If E∗ does not have the Schur property, F is infinite-
dimensional, and L(E∗, F ∗∗) = CC(E∗, F ∗∗), then

(i) (E ⊗ε F )∗ does not have the DPP.
(ii) E ⊗ε F ∗∗ does not have the DPP.

Proof. By Observation 2(iii), F ∗∗ does not have the Schur property. Let
(x∗n) be a weakly null sequence in E∗ and (xn) be a bounded sequence in E
so that x∗n(xn) = 1 for all n. Let (y∗∗n ) be a weakly null sequence in F ∗∗ and
(y∗n) be a bounded sequence in F ∗ so that y∗∗n (y∗n) = 1 for all n. Then we
have (1) 〈xn ⊗ y∗∗n , x∗n ⊗ y∗n〉 = 1.

By Lemma 1, (x∗n⊗y∗n) is weakly null in E∗⊗π F ∗, hence (2) (x∗n⊗y∗n) is
weakly null in (E ⊗ε F )∗. By Lemma 2, we deduce (3) (xn ⊗ y∗∗n ) is weakly
null in E ⊗ε F ∗∗.

(i) By Lemma 9, (xn⊗ y∗∗n ) is weakly null in (E ⊗ε F )∗∗. By (1) and (2),
(E ⊗ε F )∗ does not have the DPP.

(ii) (E ⊗ε F )∗ is a closed linear subspace of (E ⊗ε F ∗∗)∗ ([21, Corollary
VIII.2.13]), hence by (2), (x∗n⊗y∗n) is weakly null in (E⊗εF ∗∗)∗. By (1) and
(3), E ⊗ε F ∗∗ does not have the DPP.

Theorem 10(i) simplifies the proof of [28, Theorem 10]; the assumption
`1 ↪→ F ∗ there is superfluous.
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Corollary 11.

(i) If E and F are infinite-dimensional, E∗ has the DPP and property
(V ), and F ∗ has property (V ), then E⊗εF ∗∗ does not have the DPP.

(ii) If `1
c
↪→ E and `1 X

c
↪→ F ∗, then E ⊗ε F ∗∗ does not have the DPP.

Proof. (i) By Observation 1, L(E∗, F ∗∗) = CC(E∗, F ∗∗). By Observa-
tion 4, E∗ does not have the Schur property. Apply Theorem 10(ii).

(ii) Suppose first that E = `1. Since `1 X
c
↪→ F ∗, we have c0 X↪→ F ∗∗ (see

[3]). Then every operator T : `∞ → F ∗∗ is unconditionally converging, and
thus completely continuous (since `∞ has property (V ) and the DPP). By
Theorem 10(ii), `1 ⊗ε F ∗∗ does not have the DPP.

Now suppose that `1
c
↪→ E. If I is the identity on F ∗∗ and P : E → `1

is a projection, then P ⊗ε I : E ⊗ε F ∗∗ → `1 ⊗ε F ∗∗ is a projection. Since
`1 ⊗ε F ∗∗ does not have the DPP, E ⊗ε F ∗∗ does not have the DPP.

Corollary 12 ([28]). If E and F are infinite-dimensional L1-spaces,
then

(i) (E ⊗ε F )∗ does not have the DPP.
(ii) E ⊗ε F ∗∗ does not have the DPP.

Proof. Since E and F are infinite-dimensional L1-spaces, `1
c
↪→ E and

`1
c
↪→ F (see [8, Proposition 1.24]). Then c0 ↪→ E∗ (see [3]), and thus E∗ does

not have the Schur property. Further, E∗ and F ∗ are infinite-dimensional
L∞-spaces, and thus L(E∗, F ∗∗) = CC(E∗, F ∗∗) (by Observation 5).

(i) Apply Theorem 10(i).
(ii) Apply Theorem 10(ii).

In the next results we consider the DPP of duals of projective tensor
products.

Theorem 13. Suppose that E∗ does not have the Schur property, F is
infinite-dimensional, and L(F ∗∗, E∗) = CC(F ∗∗, E∗). Then (E ⊗π F )∗ '
L(E,F ∗) does not have the DPP.

Proof. By Observation 2(iii), F ∗∗ does not have the Schur property. Re-
placing E and F in Theorem 3 by F ∗∗ and E respectively, one obtains from
its proof a weakly null sequence (xn⊗y∗∗n ) in E⊗πF ∗∗, and a weakly null se-
quence (x∗n⊗y∗n) in E∗⊗εF ∗, hence in L(E,F ∗), such that x∗n(xn)y∗∗n (y∗n) = 1
for all n.

Define the bounded operator S : E ⊗π F ∗∗ → L(E,F ∗)∗ by

〈S(x⊗ y∗∗), T 〉 = 〈T ∗(y∗∗), x〉 for T ∈ L(E,F ∗), x ∈ E, y∗∗ ∈ F ∗∗.
Note that (S(xn ⊗ y∗∗n )) is weakly null in L(E,F ∗)∗ and 〈S(xn ⊗ y∗∗n ),
x∗n ⊗ y∗n〉 = x∗n(xn)y

∗∗
n (y∗n) = 1. Then L(E,F ∗) ' (E ⊗π F )∗ does not have

the DPP.
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Corollary 14.

(i) Suppose that E∗ does not have the Schur property, `1 X
c
↪→ E, and

`1
c
↪→ F ∗. Then (E ⊗π F )∗ does not have the DPP.

(ii) ([28, Theorem 15]) Suppose that E∗ does not have the Schur prop-
erty, `1 X

c
↪→ E∗∗, and `1

c
↪→ F ∗. Then (E ⊗π F )∗ does not have the

DPP.
(iii) Suppose that E has property (V ), `1 ↪→ E, and `1

c
↪→ F ∗. Then

(E ⊗π F )∗ does not have the DPP.
(iv) Suppose that `1 ↪→ E, `1 X

c
↪→ E, F ∗ has property (V ∗), and `1 ↪→ F ∗.

Then (E ⊗π F )∗ does not have the DPP.

Proof. (i) Suppose first that F ∗ = `1. Since `1 X
c
↪→ E, we have c0 X↪→ E∗.

Then every operator T : `∞ → E∗ is unconditionally converging, and thus
completely continuous. By Theorem 13, L(E, `1) does not have the DPP.

Now suppose that `1
c
↪→ F ∗. If P : F ∗ → `1 is a projection, then the

operator Q : L(E,F ∗) → L(E, `1) defined by Q(T ) = PT is a projection
of L(E,F ∗) onto L(E, `1). Since L(E, `1) does not have the DPP, L(E,F ∗)
does not have the DPP.

(ii) If `1
c
↪→ E, then c0 ↪→ E∗. So `1 is a quotient of E∗∗, hence `1

c
↪→ E∗∗

(see [18, p. 72]). Apply (i).
(iii) Since E has property (V ), E∗ is weakly sequentially complete [31].

Then c0 X↪→ E∗, and thus `1 X
c
↪→ E. By Observation 2(i), E∗ does not have

the Schur property. Apply (i).
(iv) By Observation 2(i) again, E∗ does not have the Schur property. If

F ∗ has property (V ∗) and `1 ↪→ F ∗, then `1
c
↪→ F ∗, by results of [4], [25].

Apply (i).

Corollary 15. Suppose that E and F have the DPP, `1 X
c
↪→ E, `1 X

c
↪→ F ,

and `1
c
↪→ E∗, `1

c
↪→ F ∗. Then the properties (i), (ii), (iii), and (v) in Corol-

lary 7 are equivalent.

Proof. The proof is the same as for Corollary 7, except for (iii)⇒(v),
where one uses Corollary 14(i).

A Banach space X has the approximation property if for every compact
subset K of X and every ε > 0 there exists a finite rank operator S : X → X
such that ‖x − Sx‖ ≤ ε for every x ∈ K. Examples of spaces with the
approximation property include C(K) spaces, c0, `p, 1 ≤ p < ∞, Lp(µ)
(µ any measure), 1 ≤ p < ∞, and C(K)∗ (see [21], [35]). We recall that if
X∗ or Y has the approximation property, then K(X,Y ) = X∗⊗ε Y (see [35,
Corollary 4.13]).
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Corollary 16.

(i) ([11]) If E and F are infinite-dimensional L∞-spaces, then
(E ⊗π F )∗∗ does not have the DPP.

(ii) ([28, Corollary 11]) The space (C(K1)⊗πC(K2))∗∗ does not have the
DPP, for all infinite compact spaces K1 and K2.

Proof. (i) First assume that `1 X↪→ E. Then CC(E,F ∗) = K(E,F ∗) (see
[34, p. 377]). Further, since E∗ (or F ∗) has the approximation property [16,
p. 306], we have K(E,F ∗) = E∗ ⊗ε F ∗. By Observation 5, CC(E,F ∗) =
L(E,F ∗) ' (E ⊗π F )∗. Therefore

(E ⊗π F )∗ ' E∗ ⊗ε F ∗.

Since E and F are infinite-dimensional L∞-spaces, E∗ and F ∗ are infinite-
dimensional L1-spaces. By Corollary 12(i), (E∗ ⊗ε F ∗)∗ does not have the
DPP. Therefore (E ⊗π F )∗∗ ' (E∗ ⊗ε F ∗)∗ does not have the DPP.

Now assume that `1 ↪→ E. If E and F are infinite-dimensional L∞-
spaces, then they satisfy the hypotheses of Corollary 15. Indeed, since E∗
is an L1-space, E∗ is weakly sequentially complete [8, Corollary 1.29]. Then
c0 X↪→ E∗, and thus `1 X

c
↪→ E (see [3]). Further, `1

c
↪→ E∗ (see [8, Proposition

1.24]). Similarly, `1 X
c
↪→ F and `1

c
↪→ F ∗. Corollary 15 implies that (E⊗π F )∗,

hence (E ⊗π F )∗∗, does not have the DPP.
(ii) For infinite compact Hausdorff spaces K, C(K) spaces are infinite-

dimensional L∞-spaces (by [8, Proposition 1.26]). Apply (i).

In [12, Corollary 1.5], the authors proved (using different techniques) that
the space (C(K1)⊗π C(K2))∗∗ even contains a complemented copy of `2.

We can now give families of spaces with the Schur property whose duals
fail to have the DPP. See also [19], [39].

Remark 1. Suppose that E and F are infinite-dimensional L∞-spaces
not containing copies of `1. Then (E ⊗π F )∗ has the Schur property by
Observation 5 and Corollary 7, while (E ⊗π F )∗∗ does not have the DPP by
Corollary 16. Examples are C(K) spaces, whereK is scattered, or a separable
L∞-space Y so that Y is somewhat reflexive, `1 X↪→ Y , and Y ∗ ' `1 (see [10]).

Remark 2. Suppose that E and F are infinite-dimensional spaces with
the Schur property. By [30], [36], E ⊗ε F has the Schur property.

(i) If moreover E∗ has the DPP and property (V ) and F ∗ has prop-
erty (V ), then (E ⊗ε F )∗ does not have the DPP by Observation 1,
Observation 2(i), and Theorem 10.

(ii) If moreover E and F are infinite-dimensional L1-spaces, then
(E ⊗ε F )∗ does not have the DPP by Corollary 12(i).



230 I. GHENCIU

REFERENCES

[1] K. T. Andrews, Dunford–Pettis sets in the space of Bochner integrable functions,
Math. Ann. 241 (1979), 35–41.

[2] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures,
Canad. J. Math. 7 (1955), 289–305.

[3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in
Banach spaces, Studia Math. 17 (1958), 151–174.

[4] F. Bombal, On (V ∗) sets and Pełczyński’s property (V ∗), Glasgow Math. J. 32
(1990), 109–120.

[5] F. Bombal and I. Villanueva, On the Dunford–Pettis property of the tensor product
of C(K) spaces, Proc. Amer. Math. Soc. 129 (2001), 1359–1363.

[6] J. Bourgain, New Banach space properties of the disc algebra and H∞, Acta Math.
152 (1984), 1–48.

[7] —, H∞ is a Grothendieck space, Studia Math. 75 (1983), 193–216.
[8] —, New Classes of Lp-Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.
[9] —, On the Dunford–Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265–272.
[10] J. Bourgain and F. Delbaen, A class of special L∞ spaces, Acta Math. 145 (1981),

155–176.
[11] F. Cabello Sánchez and R. García, The bidual of a tensor product of Banach spaces,

Rev. Mat. Iberoamer. 21 (2005), 843–861.
[12] F. Cabello Sánchez, D. Pérez-García and I. Villanueva, Unexpected subspaces of

tensor products, J. London Math. Soc. 74 (2006), 512–526.
[13] R. Cilia, A remark on the Dunford–Pettis property in L1(µ,X), Proc. Amer. Math.

Soc. 120 (1994), 183–184.
[14] R. Cilia and J. M. Gutiérrez, Complemented copies of `p spaces in tensor products,

Czechoslovak Math. J. 57 (2007), 319–329.
[15] M. D. Contreras and S. Díaz, Some Banach space properties of the duals of the disk

algebra and H∞, Michigan Math. J. 46 (1999), 123–141.
[16] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, Math.

Stud. 176, North-Holland, Amsterdam, 1993.
[17] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977),

284–294.
[18] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Sprin-

ger, New York, 1984.
[19] —, A survey of results related to the Dunford–Pettis property, in: Contemp. Math. 2,

Amer. Math. Soc., Providence, RI, 1980, 15–60.
[20] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge

Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
[21] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc.,

Providence, RI, 1977.
[22] I. Dobrakov, On representation of linear operators on C0(T,X), Czechoslovak Math.

J. 21 (1971), 13–30.
[23] N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer.

Math. Soc. 47 (1940), 323–392.
[24] G. Emmanuele, Some remarks on lifting of isomorphic properties to injective and

projective tensor products, Portugal. Math. 53 (1996), 253–255.
[25] —, On the Banach spaces with the property (V∗) of Pełczyński, Ann. Mat. Pura

Appl. 152 (1988), 171–181.

http://dx.doi.org/10.1007/BF01406706
http://dx.doi.org/10.4153/CJM-1955-032-1
http://dx.doi.org/10.1017/S0017089500009113
http://dx.doi.org/10.1090/S0002-9939-00-05662-8
http://dx.doi.org/10.1007/BF02392189
http://dx.doi.org/10.1090/S0002-9939-1981-0593470-8
http://dx.doi.org/10.1112/S0024610706023118
http://dx.doi.org/10.1007/s10587-007-0062-8
http://dx.doi.org/10.1016/0021-8693(77)90328-3
http://dx.doi.org/10.1090/S0002-9947-1940-0002020-4
http://dx.doi.org/10.1007/BF01766147


DUNFORD–PETTIS PROPERTY 231

[26] G. Emmanuele, Remarks on weak compactness of operators defined on certain in-
jective tensor products, Proc. Amer. Math. Soc. 116 (1992), 473–476.

[27] H. Fakhoury, Sur les espaces de Banach ne contenant pas l1(N), Math. Scand. 41
(1977), 277–289.

[28] M. González and J. M. Gutiérrez, The Dunford–Pettis property on tensor products,
Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192.

[29] A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du
type C(K), Canad. J. Math. 5 (1953), 129–173.

[30] F. Lust, Produits tensoriels injectifs d’espaces de Sidon, Colloq. Math. 32 (1975),
285–289.

[31] A. Pełczyński, Banach spaces on which every unconditionally converging operator is
weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962),
641–648.

[32] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math.
18 (1959), 211–222.

[33] P. Pethe and N. Thakare, Note on Dunford–Pettis property and Schur property,
Indiana Univ. Math. J. 27 (1978), 91–92.

[34] H. P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math.
99 (1977), 362–377.

[35] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, London,
2002.

[36] —, The Dunford–Pettis property and projective tensor products, Bull. Polish Acad.
Sci. Math. 35 (1987), 785–792.

[37] E. Saab and P. Saab, On stability problems of some properties in Banach spaces, in:
K. Jarosz (ed.), Function Spaces, Lecture Notes in Pure Appl. Math. 136, Dekker,
New York, 1992, 367–394.

[38] Z. Semadeni, Banach Spaces of Continuous Functions, Monograf. Mat. 55, PWN,
Warszawa, 1971.

[39] C. P. Stegall, Duals of certain spaces with the Dunford–Pettis property, Notices
Amer. Math. Soc. 19 (1972), A-799.

[40] M. Talagrand, La propriété de Dunford–Pettis dans C(K,E) et L1(E), Israel J.
Math. 44 (1983), 317–321.

Ioana Ghenciu
Mathematics Department
University of Wisconsin-River Falls
River Falls, WI 54022, U.S.A.
E-mail: ioana.ghenciu@uwrf.edu

Received 12 August 2011;
revised 28 November 2011 (5534)

http://dx.doi.org/10.1090/S0002-9939-1992-1120506-5
http://dx.doi.org/10.4153/CJM-1953-017-4
http://dx.doi.org/10.1512/iumj.1978.27.27008
http://dx.doi.org/10.2307/2373824
http://dx.doi.org/10.1007/BF02761990



	Definitions and notation
	The DPP on tensor products

