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Abstract. We give sufficient conditions on Banach spaces £ and F' so that their
projective tensor product F ®, F' and the duals of their projective and injective tensor
products do not have the Dunford—Pettis property. We prove that if E* does not have the
Schur property, F' is infinite-dimensional, and every operator T : E* — F™** is completely
continuous, then (E ®. F)* does not have the DPP. We also prove that if E* does not
have the Schur property, F' is infinite-dimensional, and every operator T : F** — E* is
completely continuous, then (E ®, F)* ~ L(E, F*) does not have the DPP.

1. Definitions and notation. Our notation and terminology are stan-
dard. Throughout this paper, X, Y, E, and F will denote Banach spaces.
The unit ball of X will be denoted by Bx, and X* will denote the continu-
ous linear dual of X. The set of all operators from X to Y will be denoted
by L(X,Y), and the compact, resp. completely continuous operators will be
denoted by K(X,Y), resp. CC(X,Y). The operator T is completely con-
tinuous (or Dunford—Pettis) if 7" maps weakly Cauchy sequences to norm
convergent sequences, and T is unconditionally converging if T maps weakly
unconditionally convergent (wuc) series to unconditionally convergent series.

A Banach space X has the Dunford—Pettis property (DPP) if every
weakly compact operator 7' with domain X is completely continuous. Equiv-
alently, X has the DPP if and only if z} (x,,) — 0 for all weakly null sequences
(7,,) in X and (z}) in X* (see [19]). Schur spaces, C(K) spaces, and L' ()
spaces have the DPP ([2], [29], |23]). Reflexive infinite-dimensional spaces
do not have the DPP. The Dunford—Pettis property is stable under comple-
mented subspaces. If E* has the DPP, then E has the DPP [19]. A dual
Banach space E* has the Schur property if and only if E has the DPP and
6y = E (|27, |33]). The reader can check Diestel [18], [19], Diestel and Uhl
[21], and Andrews [I] for a guide to the extensive classical literature deal-
ing with the DPP, equivalent formulations of the preceding definitions, and
undefined notation and terminology.
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A bounded subset A of X (resp. A of X*) is called a V*-subset of X
(resp. a V-subset of X*) provided that

limsup{|z} (z)| : 2z € A} =0

(resp. limsup{|z*(z,)| : ¥ € A} =0)

for each wuc series ) |z, in X* (resp. wuc series Y | x,, in X). A Banach space
X has property (V) if every V-subset of X* is relatively weakly compact, and
X has property (V*) if every V*-subset of X is relatively weakly compact [31].
A Banach space X has property (V) if and only if every unconditionally
converging operator with domain X is weakly compact [31]. Pelczynski [31]
proved that C(K) spaces have property (V).

A topological space S is called scattered (or dispersed) if every nonempty
closed subset of S has an isolated point [38]. A compact Hausdorff space K
is scattered if and only if ¢; < C(K) (see [32]).

The Banach-Mazur distance d(E, F) between two isomorphic Banach
spaces E and F is defined by inf(||T||||7~!||), where the infimum is taken
over all isomorphisms T' from E onto F'. A Banach space F is called an £.-
space (resp. Li-space) [8] if there is a A > 1 so that every finite-dimensional
subspace of E is contained in another subspace N with d(N, ¢%) < X (resp.
d(N,£7) < \) for some integer n. Complemented subspaces of C(K') spaces
(resp. Li(u) spaces) are Loo-spaces (resp. Li-spaces) [8, Proposition 1.26].
The dual of an £1-space (resp. Loo-space) is an Loo-space (resp. L1-space) [8]
Proposition 1.27]. Complemented subspaces of L.-spaces (resp. L£1-spaces)
are Loo-spaces (resp. Li-spaces) [8, Proposition 1.28]|. The L.o-spaces, L£;-
spaces, and their duals have the DPP [8, Corollary 1.30].

Several authors studied whether the DPP of F and F implies the DPP of
their projective tensor product £ ®, F' and of their injective tensor product
E.F (1, [, 0], [, [13], 2], P4, [26], 28], [36], [40]). Talagrand [0
gave an example of a Banach space E so that £* has the Schur property, but
C([0,1],E) ~ C[0,1] ® E and L*([0,1], E*) ~ L'[0,1] ®, E* do not have
the DPP. Dobrakov [22] showed that if X is a Schur space, then C'(K, X) ~
C(K) ®c X has the DPP. Andrews [I] proved that if X* is a Schur space,
then Ly (p, X) ~ L1(u) ® X has the DPP if y is finite. Bourgain [9] showed
that for any countable measure p and any compact Hausdorff space K, the
spaces L1(u, C(K)), C(K,Li(p)), and their duals have the DPP.

Ryan [36] proved that if E and F' have the DPP and contain no copy
of /1, then F ®, F has the DPP and contains no copy of ¢;. Bombal and
Villanueva proved that if K7 and K> are infinite compact Hausdorff spaces,
then C(K;) ®; C(K2) has the DPP if and only if both K; and K, are
scattered [0, Theorem 2.2|. Gonzalez and Gutiérrez proved that if E' does not
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have the Schur property, F' contains a copy of ¢1, and L(E, F*) = CC(E, F*),
then E @, F does not have the DPP [28, Theorem 3].

In this paper we give sufficient conditions on Banach spaces E and F' so
that the projective tensor product E®, F, the duals (F®, F)* and (E®.F)*
of their projective and injective tensor products, and the bidual (E®, F')** of
their projective tensor product do not have the DPP. We use the sequential
characterization [I9] of the DPP to show that, in some cases, these spaces
fail to have the DPP. Our results generalize those in [5] and [28§].

2. The DPP on tensor products. We start by studying the DPP on
projective tensor products. We note that there are examples of spaces F and
F so that the projective tensor product of E and F has the DPP. Specifically,
since 1 @ €1 ~ {1 (see |35, p. 43|), ¢1 ®, ¢1 has the Schur property, and thus
the DPP. Ryan [36] proved that if E* and F™* have the Schur property, then
(E ®r F)* ~ L(E, F*) has the Schur property. Hence E ®, F' has the DPP.
We will need the following results.

OBSERVATION 1. If F has the DPP and property (V) and F' has prop-
erty (V), then L(E,F*) = CC(E, F*). Indeed, since F' has property (V),
F* is weakly sequentially complete [3I], and ¢g «+ F*. If T : E — F*
is an operator, then 7" is unconditionally converging [3]. Since F has property
(V') and the DPP, T is weakly compact [31], and thus completely continuous.

OBSERVATION 2.

(i) If ¢4 — X, then X* does not have the Schur property (since
¢y — X implies L1 — X*; see [18, p. 212]).

(ii) If X is infinite-dimensional and has the Schur property, then X*
does not have the Schur property. Indeed, let (x,) be a sequence
of norm one elements of X such that ||z, — z,,] > 1/2 for all
n # m. Then (z,) has no norm Cauchy subsequence, hence no
weakly Cauchy subsequence. By Rosenthal’s ¢1-theorem, ¢1 — X,
and (i) applies.

(iii) If X is infinite-dimensional, then X** does not have the Schur
property. Indeed, if X** has the Schur property, so does X. Then
01 — X, hence {1 — X* (see [18, p. 211]), and (i) applies.

OBSERVATION 3. If X* does not have the Schur property and X has the
DPP, then ¢; — X (see [27], [33]).

OBSERVATION 4. If X is infinite-dimensional and has property (V'), then
X does not have the Schur property. To see this, suppose that X has the
Schur property. Then ¢y <= X, and the identity map ¢ on X is uncondition-
ally converging [3]. Since X has property (V'), i is weakly compact. Hence
By is relatively (weakly) compact, a contradiction.
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OBSERVATION 5. If E and F' are infinite-dimensional L..-spaces, then
L(E,F*) = CC(E, F*) (see |20, Theorems 3.7 and 2.17]).

LEMMA 1 ([B]). Suppose that L(E, F*) = CC(E,F*), (xy) is a weakly
null sequence in E and (y,) is a bounded sequence in F. Then the sequence
(T @ yn) is weakly null in E @, F.

The following lemma is essentially contained in [28] (see the proof of
Theorem 12 there); see also [21L p. 256]. We include a different proof for the
convenience of the reader.

LEMMA 2 ([28]). If (zy) is weakly null in E and (yn) is bounded in F,
then (x, ® yn) is weakly null in E @, F.

Proof. Let (x,) be weakly null in E and (y,) be bounded in F. Then
(Tn @Yn, x* RY*) = x*(zn)y* (yn) — 0 for all * € E*, y* € F*. Consider the
compact product space Bg+ X Bp+, where Bg+~ and Bp+ are equipped with
their compact w*-topologies. Since E and F are closed subspaces of C'(Bg+)
and C(Bp+), E®. F is a closed subspace of C'(Bg+ X Bp+). By the Lebesgue
dominated convergence theorem, (x, ® y,) is weakly null in C(Bg+ X Bp+),
hence in £ ®, F'. n

THEOREM 3. Suppose that E and F* do not have the Schur property,
and L(E,F*) = CC(E,F*). Then E @, F does not have the DPP.

Proof. Let (z5,) be a weakly null sequence in E and (z}) be a bounded
sequence in E* such that z}(x,) = 1 for all n. Let (y)) be a weakly null
sequence in F* and (y,) be a bounded sequence in F' such that v (y,) = 1
for all n. Then (x} ® v, 2z, ® yp) = 1. By Lemma |1} (z, ® yy) is weakly
null in £ ®, F. By Lemma [2| (2} ® y};) is weakly null in E* ®. F*, hence in
(E @y F)* ~ L(E,F*). Then E ®, F does not have the DPP. u

COROLLARY 4 (|28, Theorem 3|). Suppose that E does not have the Schur
property, {1 — F, and L(E, F*) = CC(E,F*). Then E @, F does not have
the DPP.

Proof. By Observation 2(i), F* does not have the Schur property. Apply
Theorem [3 =

Actually Corollary [] implies Theorem [3] so they are equivalent. Indeed,
assume that Theorem [3| does not hold. In particular, F* does not have the
Schur property and F ®, F has the DPP. Hence F', which is isomorphic to a
complemented subspace of E®, F', has the DPP. By Observation 3, /1 <— F'.
Hence Corollary [] does not hold.

The next result is similar to [28, Corollary 5|. We include the proof for
the convenience of the reader.
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COROLLARY 5. Suppose that E and F' are infinite-dimensional, L(E, F*)
=CC(E,F*), L(F,E*) = CC(F,E"), and EQ. F has the DPP. Then either
E and F have the Schur property, or E* and F* have the Schur property.

Proof. If E has the Schur property, then E* does not have the Schur
property (by Observation 2(ii)). Since F ®, E ~ E ®, F has the DPP,
Theorem [3] implies that F' has the Schur property.

If E does not have the Schur property, Theorem [3| implies that F* has
the Schur property. Then F' does not have the Schur property. Since F'®, E
has the DPP, Theorem 3| implies that E* has the Schur property. =

COROLLARY 6.

(i) If E and F are infinite-dimensional, L(E**, F*) = CC(E**, F*),
and L(F, E***) = CC(F, E***), then E** @, F does not have the
DPP.

(ii) If E and F are infinite-dimensional, L(E**, F***) = CC(E**, F***),
and L(F**, E**) = CC(F**, E*"), then E** @, F** does not have
the DPP.

Proof. Suppose that E** @, F has the DPP. By Corollary |5 either £**
and F have the Schur property, or E*** and F* have the Schur property. By
Observation 2(iii), neither E** nor E*** can have the Schur property.

(i) Apply (i).

If £ and F are infinite-dimensional L..-spaces, then they satisfy the
hypotheses of Corollary@ (by Observation 5), and so E**®, F and E** @, F**
do not have the DPP. The hypotheses of Corollary [6[i) (resp. (ii)) are also
satisfied if £ and F' are infinite-dimensional spaces such that E** and F
(resp. F**) have the DPP and property (V') (by Observation 1).

Examples of spaces with the DPP and property (V') are the disk algebra
A, H*, (H*®)** [6], [15], and biduals of L-spaces (since they are comple-
mented in C'(K) spaces [8]). Thus, e.g., (H>®)* @, A, (H*®)* @, H*>, and
(H*)** @, (H*)** do not have the DPP.

COROLLARY 7. Suppose that E and F' have the DPP and do not have the
Schur property, L(E, F*) = CC(E,F*), and L(F,E*) = CC(F,E*). Then
the following are equivalent:

(i) 41~ E and {1 < F.
(ii) (F ®x F)* has the Schur property.
(iii) (F ®x F)* has the DPP.
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(iv) E ®y F has the DPP.
(v) E* and F* have the Schur property.

Proof. (i)=-(ii). By Observation 3, E* and F* have the Schur property.
Then (E ®, F)* ~ L(E, F*) has the Schur property [36].

(ii)=-(iii) and (iii)=-(iv) are clear. (iv)=-(v) follows by Corollary
(v)=(i) is justified by Observation 2(i). =

The following result generalizes Theorem 2.2 of [5].

COROLLARY 8. Suppose that E and F are infinite-dimensional spaces
with the DPP and property (V). Then the conclusion of C’orollary 18 true.

Proof. By Observation 1, we have L(E, F*) = CC(E, F*) and L(F, E*)
= CC(F, E*). By Observation 4, E and F' do not have the Schur property.
Apply Corollary [7] =

EXAMPLE. The spaces A and H have the DPP and property (V'), and
contain copies of ¢1 (see [0], [7], [17], [37]). Let E, F be A or H*. Then, by
Corollary 8| E ®, F does not have the DPP.

Next we give some results about the DPP of duals of injective tensor
products. It is known that (E ®¢ F)* = I(E,F*), the space of integral
operators from E to F™* (see [21], Corollary VII1.2.12]).

LEMMA 9 ([26]). E** ®. F is a closed subspace of (E ®, F)**.

THEOREM 10. If E* does not have the Schur property, F is infinite-
dimensional, and L(E*, F**) = CC(E*, F**), then

(i) (E®c F)* does not have the DPP.
(ii) E ® F** does not have the DPP.

Proof. By Observation 2(iii), F** does not have the Schur property. Let
(x}) be a weakly null sequence in E* and (z,,) be a bounded sequence in E
so that 2} (z,,) = 1 for all n. Let (y*) be a weakly null sequence in F** and
() be a bounded sequence in F* so that y*(y*) = 1 for all n. Then we
have (1) (z, ® y*, x;, @y;) = 1.

By Lemmal[l] (2}, ® ;) is weakly null in E* ®, F*, hence (2) (z}, ® y};) is
weakly null in (E ®¢ F)*. By Lemma [2| we deduce (3) (z, ® y}*) is weakly
null in £ ®, F**.

(i) By Lemmal[9] (z, ® y*) is weakly null in (E ® F)**. By (1) and (2),
(E ®c F)* does not have the DPP.

(i) (E ® F)* is a closed linear subspace of (E @, F**)* (|21, Corollary
VIII.2.13]), hence by (2), (z} ®y;) is weakly null in (E ®. F**)*. By (1) and
(3), E ®c F** does not have the DPP. =

Theorem [10](i) simplifies the proof of |28, Theorem 10]; the assumption
{1 — F* there is superfluous.
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COROLLARY 11.

(i) If E and F are infinite-dimensional, E* has the DPP and property
(V), and F* has property (V), then E®¢ F** does not have the DPP.

(ii) If ¢4 < E and 121 s F*, then E ®. F** does not have the DPP.

Proof. (i) By Observation 1, L(E*, F**) = CC(E*, F**). By Observa-
tion 4, E* does not have the Schur property. Apply Theorem (ii).

(i) Suppose first that E = ¢;. Since {1 <> F*, we have ¢y <> F** (see
[3]). Then every operator T' : ¢, — F** is unconditionally converging, and

thus completely continuous (since ¢, has property (V) and the DPP). By
Theorem [10{ii), 1 ®c F** does not have the DPP.

Now suppose that £ < E.If T is the identity on F** and P : F — 0
is a projection, then P ®. I : F ®. F** — {1 ®. F™ is a projection. Since
{1 ®c F** does not have the DPP, E ®. F** does not have the DPP. =

COROLLARY 12 ([28]). If E and F are infinite-dimensional L1-spaces,
then

(i) (F®. F)* does not have the DPP.
(ii) E ®c F** does not have the DPP.

Proof. Since E and F' are infinite-dimensional Li-spaces, {1 < F and
¢, <5 F (see [8, Proposition 1.24]). Then ¢y < E* (see [3]), and thus E* does
not have the Schur property. Further, E* and F* are infinite-dimensional
Loo-spaces, and thus L(E*, F**) = CC(E*, F**) (by Observation 5).

(i) Apply Theorem [10]i).

(ii) Apply Theorem [10[ii). m

In the next results we consider the DPP of duals of projective tensor
products.

THEOREM 13. Suppose that E* does not have the Schur property, F' is
infinite-dimensional, and L(F**,E*) = CC(F**,E*). Then (E ®, F)* ~
L(E, F*) does not have the DPP.

Proof. By Observation 2(iii), F** does not have the Schur property. Re-
placing E and F' in Theorem [3| by F** and E respectively, one obtains from
its proof a weakly null sequence (z, ®y}*) in E®, F**, and a weakly null se-
quence () ®@yr) in E*®F*, hence in L(E, F*), such that = (z,,)y*(y) =1
for all n.

Define the bounded operator S : E @, F** — L(E, F*)* by

(S(z@y™),T)=(T"(y™),x) forT e L(E,F*),x€E,y™ e F™.

Note that (S(z, ® yi*)) is weakly null in L(E,F*)* and (S(z, ® y*),
xh @yry =k (vn)y*(yr) = 1. Then L(E, F*) ~ (E ®, F)* does not have
the DPP. u
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COROLLARY 14.

(i) Suppose that E* does not have the Schur property, ¢ N E, and

6y < F*. Then (E ®4 F)* does not have the DPP.

(ii) (|28, Theorem 15|) Suppose that E* does not have the Schur prop-
erty, {1 <> E**, and {1 < F*. Then (E ®, F)* does not have the
DPP.

(i) Suppose that E has property (V), €1 — E, and ¢, < F*. Then
(E ®@x F)* does not have the DPP.

(iv) Suppose that by — E, {1 N E, F* has property (V*), and {1 — F*.
Then (E ®x F)* does not have the DPP.

Proof. (i) Suppose first that F* = ¢1. Since {4 N E, we have ¢y -~ E*.
Then every operator T : ¢, — E* is unconditionally converging, and thus
completely continuous. By Theorem L(E, (1) does not have the DPP.

Now suppose that ¢1 S PP P - l1 is a projection, then the
operator Q : L(E,F*) — L(FE,{;) defined by Q(T) = PT is a projection
of L(E, F*) onto L(E, ;). Since L(E, ¢1) does not have the DPP, L(E, F*)
does not have the DPP.

(ii) If 44 < FE, then ¢y — E*. So £y is a quotient of £**, hence £, N
(see [18, p. 72]). Apply (i).

(iii) Since F has property (V'), E* is weakly sequentially complete [31].
Then ¢y <~ E*, and thus #; <% E. By Observation 2(i), E* does not have
the Schur property. Apply (i).

(iv) By Observation 2(i) again, E* does not have the Schur property. If
F* has property (V*) and ¢; < F*, then ¢, <» F*, by results of [4], [25].
Apply (i). =

COROLLARY 15. Suppose that EE and F' have the DPP, {4 N E, s F,
and 01 < E*, 0 <5 F*. Then the properties (i), (i), (iii), and (v) in Corol-
lary[7] are equivalent.

Proof. The proof is the same as for Corollary [7] except for (iii)=(v),
where one uses Corollary [14[i).

A Banach space X has the approzimation property if for every compact
subset K of X and every € > 0 there exists a finite rank operator §': X — X
such that ||z — Sz| < e for every z € K. Examples of spaces with the
approximation property include C(K) spaces, co, €5, 1 < p < 00, Ly(p)
(1 any measure), 1 < p < oo, and C(K)* (see [21], [35]). We recall that if
X* or Y has the approximation property, then K (X,Y) = X*®.Y (see [35]
Corollary 4.13]).
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COROLLARY 16.

(i) (JII) If E and F are infinite-dimensional Loo-spaces, then
(E ®@x F)** does not have the DPP.

(ii) (|28 Corollary 11]) The space (C(K1)®xC(K2))** does not have the
DPP, for all infinite compact spaces K1 and Ks.

Proof. (i) First assume that ¢; > E. Then CC(E, F*) = K(E, F*) (see
[34, p. 377]). Further, since E* (or F'*) has the approximation property [16,
p. 306], we have K(E,F*) = E* @, F*. By Observation 5, CC(E, F*) =
L(E,F*) ~ (FE ®; F)*. Therefore

(E®; F)" ~ E*® F*.

Since E and F' are infinite-dimensional L-spaces, F* and F* are infinite-
dimensional £;-spaces. By Corollary [12[i), (E* ®c F*)* does not have the
DPP. Therefore (E ®@, F)** ~ (E* ® F*)* does not have the DPP.

Now assume that /1 «— FE. If ¥ and F are infinite-dimensional Lo-
spaces, then they satisfy the hypotheses of Corollary Indeed, since E*
is an L;-space, E* is weakly sequentially complete [8, Corollary 1.29]. Then

co <+ E*, and thus ¢ <> E (see [3]). Further, {1 <> E* (sce [8, Proposition
1.24]). Similarly, £, <> F and ¢ <> F*. Corollaryimplies that (E®, F)*,
hence (F ®;, F)**, does not have the DPP.

(ii) For infinite compact Hausdorff spaces K, C'(K) spaces are infinite-
dimensional L-spaces (by [8, Proposition 1.26]). Apply (i). =

In [12, Corollary 1.5], the authors proved (using different techniques) that
the space (C(K1) @ C(K2))*™* even contains a complemented copy of £s.

We can now give families of spaces with the Schur property whose duals
fail to have the DPP. See also [19], [39].

REMARK 1. Suppose that E and F' are infinite-dimensional £.-spaces
not containing copies of ¢;. Then (E ®, F)* has the Schur property by
Observation 5 and Corollary [7, while (E @, F)** does not have the DPP by
Corollary Examples are C'(K) spaces, where K is scattered, or a separable
Loo-space Y so that Y is somewhat reflexive, {1 <» Y, and Y* ~ ¢ (see [10]).

REMARK 2. Suppose that F and F' are infinite-dimensional spaces with
the Schur property. By [30], [36], £ ®, F' has the Schur property.

(i) If moreover E* has the DPP and property (V) and F* has prop-
erty (V), then (E ®. F)* does not have the DPP by Observation 1,
Observation 2(i), and Theorem [10]

(ii) If moreover E and F are infinite-dimensional L£i-spaces, then
(E ®c F)* does not have the DPP by Corollary [12{1).
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