ON THE LEBESGUE-NAGELL EQUATION
 BY
 ANDRZEJ DĄBROWSKI (Szczecin)

Abstract

We completely solve the Diophantine equations $x^{2}+2^{a} q^{b}=y^{n}$ (for $q=$ $17,29,41)$. We also determine all $C=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $C=2^{a_{0}} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, where p_{1}, \ldots, p_{k} are fixed primes satisfying certain conditions. The corresponding Diophantine equations $x^{2}+C=y^{n}$ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

1. Introduction. The Diophantine equation $x^{2}+C=y^{n}(x \geq 1, y \geq 1$, $n \geq 3$) has a rich history. Lebesgue [9] proved that this equation has no solution when $C=1$. Cohn [7] solved the equation for several values of $1 \leq C \leq 100$. The remaining values of C in the above range were covered by Mignotte and de Weger [13] and by Bugeaud, Mignotte and Siksek [5]. Barros in his recent PhD thesis considered the range $-100 \leq C \leq-1$. Also, several authors (Abu Muriefah, Arif, Le, Luca, Pink, Togbé,...) became interested in the case where only the prime factors of C are specified (see, for instance, introductions to [2], [11] and [12]). Abu Muriefah, Luca, Siksek and Tengely [1] studied the more general equation $x^{2}+C=2 y^{n}$.

Consider the Diophantine equation $x^{2}+C=y^{n}$, where $C=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ or $2^{a_{0}} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, and p_{1}, \ldots, p_{k} are fixed primes satisfying the following three conditions:
(I) $p_{i} \equiv 1(\bmod 4)$ for all $i=1, \ldots, k$.

Write $C=d z^{2}$ with d squarefree. Let $h(-d)$ denote the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Let $\operatorname{rad}(n)$ denote the radical of the positive integer n (product of all prime divisors of n).
(II) $\operatorname{rad}(h(-d)) \mid 6$ for any decomposition $C=d z^{2}$ as above.
(III) $\operatorname{rad}\left(p_{i} \pm 1\right) \mid 2 \cdot 3 \cdot 5 \cdot 7$ for all $i=1, \ldots, k$.

In such cases we can apply the method used in [2] and [12]. If we are able to determine all S-integral points (with S an explicit set of rational primes) on some associated elliptic curves, then we can completely solve

[^0]such Diophantine equations. Conditions (I)-(III) above were suggested by Section 5 in [2].

In this paper, we determine all values of C satisfying conditions (I)-(III) (Lemma 2). Radicals of C take exactly 41 values. Some of the equations $x^{2}+C=y^{n}$ with C listed in Lemma 2 were studied in the literature; these include $\operatorname{rad}(C) \in\{5,13,17,29,41,97,2 \cdot 5,2 \cdot 13,5 \cdot 13,2 \cdot 5 \cdot 13\}$.

Consider C listed in Lemma 2, with $\operatorname{rad}(C)=2 q$. The cases $\operatorname{rad}(C)=$ 10,26 were studied in [11] and [12]. We consider the three remaining cases. We solve completely the Diophantine equations $x^{2}+2^{a} q^{b}=y^{n}$ for $q=17$, 29, and 41. We apply the method used in [2] and [12]. For $n=3$ and $n=4$, the problem is reduced to finding all $\{2, q\}$-integral points on some elliptic curves. For $n \geq 5$ we use the theory of primitive divisors for Lucas sequences [3] to deduce that, at most, the cases $n=5, n=7$ are possible. In these cases, we reduce again the problem to computation of all $\{2, q\}$-integral points on some elliptic curves. The calculations were done using Magma [4].

ThEOREM 1. The only solutions of the equation

$$
\begin{equation*}
x^{2}+2^{a} 17^{b}=y^{n}, \quad x, y \geq 1, \operatorname{gcd}(x, y)=1, n \geq 3, a, b \geq 0 \tag{1}
\end{equation*}
$$

are:
$n=3, \quad(x, y, a, b) \in\{(5,3,1,0),(11,5,2,0)\} ;$
$n=4, \quad(x, y, a, b) \in\{(47,9,8,1),(8,3,0,1),(1087,33,8,1),(7,3,5,0)$, $(9,5,5,1),(4785,71,9,3),(15,7,7,1),(495,23,11,1)\} ;$
$n=8, \quad(x, y, a, b)=(47,3,8,1)$.
THEOREM 2. The only solutions of the equation

$$
\begin{equation*}
x^{2}+2^{a} 29^{b}=y^{n}, \quad x, y \geq 1, \operatorname{gcd}(x, y)=1, n \geq 3, a, b \geq 0 \tag{2}
\end{equation*}
$$

are:
$n=3, \quad(x, y, a, b) \in\{(5,3,1,0),(11,5,2,0),(3,5,2,1),(26661,905,20,1)$, $(14149,585,8,1),(79,33,10,1),(1465,129,4,1)$, $(95,33,5,2),(73052815,174753,17,2)\} ;$
$n=4, \quad(x, y, a, b)=(7,3,5,0) ;$
$n=7, \quad(x, y, a, b)=(278,5,0,2)$.
Theorem 3. The only solutions of the equation

$$
\begin{equation*}
x^{2}+2^{a} 41^{b}=y^{n}, \quad x, y \geq 1, \operatorname{gcd}(x, y)=1, n \geq 3, a, b \geq 0 \tag{3}
\end{equation*}
$$

are:
$n=3, \quad(x, y, a, b) \in\{(5,3,1,0),(11,5,2,0)\} ;$
$n=4, \quad(x, y, a, b) \in\{(840,29,0,2),(7,3,5,0),(87,13,9,1),(33,7,5,1)\} ;$
$n=5, \quad(x, y, a, b)=(38,5,0,2)$.
2. Some useful results. First, let us determine all the primes $p \equiv$ $1(\bmod 4)$ satisfying condition (III).

LEmma 1. There are exactly eight primes $p \equiv 1(\bmod 4)$ satisfying condition (III): 5, 13, 17, 29, 41, 97, 449, 4801.

Proof. We have to find all primes $p \equiv 1(\bmod 4)$ satisfying $p+1=2 \cdot 3^{b} 5^{c} 7^{d}$ and $p-1=2^{\alpha} 3^{\beta} 5^{\gamma} 7^{\delta}$. We consider two cases.

CASE (i): $b+\beta>0, c+\gamma>0$ and $d+\delta>0$. Using [8] (or [10, Theorem 4]), we find that the equation $p^{2}-1=2^{\alpha+1} 3^{b+\beta} 5^{c+\gamma} 7^{d+\delta}$ has exactly six solutions:

$$
\begin{gathered}
5^{2}-1=2^{3} \cdot 3, \quad 17^{2}-1=2^{5} \cdot 3^{2}, \quad 29^{2}-1=2^{3} \cdot 3 \cdot 5 \cdot 7, \quad 41^{2}-1=2^{4} \cdot 3 \cdot 5 \cdot 7 \\
449^{2}-1=2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7, \quad 4801^{2}-1=2^{7} \cdot 3 \cdot 5^{2} \cdot 7^{4}
\end{gathered}
$$

CASE (ii): $b+\beta=0$ or $c+\gamma=0$ or $d+\delta=0$. In this case, we obtain two additional primes 13 and 97 . To check this statement, one can use, for instance, [6, Theorems 1 and 2]. We omit the details.

Now we are ready to determine all values of C satisfying (I)-(III).
Lemma 2.
(i) The prime power p^{a} satisfies conditions (I)-(III) iff $p \in\{5,13,17,29$, 41, 97\}.
(ii) The number $C=2^{a_{0}} p^{a}$ satisfies (I)-(III) iff $p \in\{5,13,17,29,41\}$.
(iii) The odd number $C=p^{a} q^{b}(p, q$ different odd primes) satisfies (I)-(III) iff $p q \in\{5 \cdot 13,5 \cdot 17,5 \cdot 29,5 \cdot 41,13 \cdot 17,13 \cdot 29,13 \cdot 41,17 \cdot 29$, $17 \cdot 41,17 \cdot 97,29 \cdot 41\}$.
(iv) The number $C=2^{a_{0}} p^{a} q^{b}$ (p, q different odd primes) satisfies (I)-(III) iff $p q \in\{5 \cdot 13,5 \cdot 17,5 \cdot 41,13 \cdot 17,17 \cdot 41\}$.
(v) The odd number $C=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}}\left(p_{1}, p_{2}, p_{3}\right.$ different odd primes) satisfies (I)-(III) iff $p_{1} p_{2} p_{3} \in\{5 \cdot 13 \cdot 17,5 \cdot 13 \cdot 29,5 \cdot 13 \cdot 41$, $5 \cdot 17 \cdot 29,5 \cdot 17 \cdot 41,5 \cdot 29 \cdot 41,13 \cdot 17 \cdot 29,13 \cdot 17 \cdot 41,13 \cdot 29 \cdot 41\}$.
(vi) The number $C=2^{a_{0}} p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}}\left(p_{1}, p_{2}, p_{3}\right.$ different odd primes) satisfies (I)-(III) iff $p_{1} p_{2} p_{3} \in\{5 \cdot 13 \cdot 29,5 \cdot 17 \cdot 29,13 \cdot 17 \cdot 29,13 \cdot 29 \cdot 41\}$.
(vii) The number C with ≥ 4 different odd prime factors satisfies (I)-(III) iff $C=5^{a} 13^{b} 17^{c} 41^{d}$.

Proof. Class number calculations, using Pari. For instance, (i) and (ii) follow from the following data:

$$
\begin{aligned}
& h(-5)=h(-10)=2, \quad h(-13)=2, \quad h(-26)=6 \\
& h(-17)=h(-34)=4, \quad h(-29)=6, \quad h(-58)=2 \\
& h(-41)=8, \quad h(-82)=4, \quad h(-97)=4, \quad h(-194)=20 \\
& h(-449)=20, \quad h(-898)=12, \quad h(-4801)=56, \quad h(-9602)=88
\end{aligned}
$$

3. The case $n=3$

Lemma 3. Let $n=3$.
(i) The only solutions to equation (11) are

$$
(x, y, a, b) \in\{(5,3,1,0),(11,5,2,0)\} .
$$

(ii) The only solutions to equation (2) are

$$
\begin{aligned}
(x, y, a, b) \in\{ & (5,3,1,0),(11,5,2,0),(26661,905,20,1), \\
& (14149,585,8,1),(79,33,10,1),(1465,129,4,1), \\
& (95,33,5,2),(73052815,174753,17,2)\} .
\end{aligned}
$$

(iii) The only solutions to equation (3) are

$$
(x, y, a, b) \in\{(5,3,1,0),(11,5,2,0)\} .
$$

Proof. Let $q \in\{17,29,41\}$. Write the equation $x^{2}+2^{a} q^{b}=y^{3}$ as $\left(x / z^{3}\right)^{2}$ $+A=\left(y / z^{2}\right)^{3}$, where A is a 6 th power free positive integer, defined by $2^{a} q^{b}=$ $A z^{6}$ with some integer z. Of course, $A=2^{\alpha} q^{\beta}$ with $\alpha, \beta \in\{0,1,2,3,4,5\}$, and we obtain the equations

$$
V^{2}=U^{3}-2^{\alpha} q^{\beta}
$$

with $U=y / z^{2}, V=x / z^{3}$. We have to determine $\{2, q\}$-integral points on these 36 elliptic curves; this can be done using Magma. Note that we only need to consider "admissible" points (U, V) (see [12, p. 141]), i.e.

- we discard the solutions with $U \leq 0$ or $V=0$;
- we do not consider the solutions having the numerators of U and V not coprime;
- if $U, V \in \mathbb{Z}$, then $z=1$;
- if U and V are rationals which are not integers, then their numerators give x and y, and z is determined by their denominators. Therefore, a and b are determined from the formula $2^{a} q^{b}=A z^{6}$.
Here are the results of our Magma calculations.
(i) The only "admissible" $\{2,17\}$-integral points on $V^{2}=U^{3}-2^{\alpha} 17^{\beta}$ are

$$
(U, V, \alpha, \beta) \in\{(3,5,1,0),(5,11,2,0)\}
$$

(ii) The only "admissible" $\{2,29\}$-integral points on $V^{2}=U^{3}-2^{\alpha} 29^{\beta}$ are

$$
\begin{aligned}
(U, V, \alpha, \beta) \in & \{(3,5,1,0),(5,11,2,0),(5,3,2,1),(905,26661,20,1), \\
& (585,14149,8,1),(33,79,10,1),(129,1465,4,1), \\
& (33,95,5,2),(174753,73052815,17,2)\} .
\end{aligned}
$$

(iii) The only "admissible" $\{2,41\}$-integral points on $V^{2}=U^{3}-2^{\alpha} 41^{\beta}$ are

$$
(U, V, \alpha, \beta) \in\{(3,5,1,0),(5,11,2,0)\}
$$

4. The case $n=4$

Lemma 4. Let $n=4$.
(i) The only solutions to equation (11) are

$$
\begin{aligned}
(x, y, a, b) \in\{ & (47,9,8,1),(8,3,0,1),(1087,33,8,1),(7,3,5,0), \\
& (9,5,5,1),(4785,71,9,3),(15,7,7,1),(495,23,11,1)\} .
\end{aligned}
$$

(ii) The only solution to equation (2) is $(x, y, a, b)=(7,3,5,0)$.
(iii) The only solutions to equation (3) are

$$
(x, y, a, b) \in\{(840,29,0,2),(7,3,5,0),(87,13,9,1),(33,7,5,1)\}
$$

Proof. Let $q \in\{17,29,41\}$. Write the equation $x^{2}+2^{a} q^{b}=y^{4}$ as $\left(x / z^{2}\right)^{2}$ $+A=(y / z)^{4}$, where A is a 4th power free positive integer, defined by $2^{a} q^{b}=A z^{4}$ with some integer z. Of course, $A=2^{\alpha} q^{\beta}$ with $\alpha, \beta \in\{0,1,2,3\}$, and we obtain the equations

$$
V^{2}=U^{4}-2^{\alpha} q^{\beta}
$$

with $U=y / z, V=x / z^{2}$. We have to determine $\{2, q\}$-integral points on these 16 elliptic curves. As in the case $n=3$, we only need to consider "admissible" points (U, V).

Here are the results of our Magma calculations.
(i) The only "admissible" $\{2,17\}$-integral points on $V^{2}=U^{4}-2^{\alpha} 17^{\beta}$ are $(U, V, \alpha, \beta) \in\{(9,47,8,1),(3,8,0,1),(33,1087,8,1),(3,7,5,0)$,

$$
(5,9,5,1),(71,4785,9,3),(7,15,7,1),(23,495,11,1)\} .
$$

(ii) The only "admissible" $\{2,29\}$-integral point on $V^{2}=U^{4}-2^{\alpha} 29^{\beta}$ is

$$
(U, V, \alpha, \beta)=(3,7,5,0) .
$$

(iii) The only "admissible" $\{2,41\}$-integral points on $V^{2}=U^{4}-2^{\alpha} 41^{\beta}$ are

$$
(U, V, \alpha, \beta) \in\{(29,840,0,2),(3,7,5,0),(13,87,9,1),(7,33,5,1)\} .
$$

5. The case $n \geq 5$. Let $q \in\{17,29,41\}$. We rewrite the Diophantine equation $x^{2}+2^{a} q^{b}=y^{n}$ as $x^{2}+d z^{2}=y^{n}$, where $d=1,2, q, 2 q$ according to the parities of the exponents of a and b. Factoring the last equation in $\mathbb{Q}(\sqrt{-d})$ we get $(x+z \sqrt{-d})(x-z \sqrt{-d})=y^{n}$. Here $z=2^{\alpha} q^{\beta}$ for some nonnegative integers α and β. Conditions (I) and (II) allow us to assume that $x+z \sqrt{-d}=\gamma^{n}$ with some algebraic integer $\gamma=u+v \sqrt{-d} \in \mathbb{Z}[\sqrt{-d}]$. As a consequence,

$$
\begin{equation*}
2^{\alpha+1} q^{\beta} \sqrt{-d}=\gamma^{n}-\bar{\gamma}^{n} . \tag{4}
\end{equation*}
$$

Let $n \geq 5$ be a prime. The Lucas number $L_{n}:=\left(\gamma^{n}-\bar{\gamma}^{n}\right) /(\gamma-\bar{\gamma})$ has a primitive prime factor (it cannot be defective, see Table 1 in [3]). A primitive prime factor r of L_{n} satisfies the congruence $r \equiv e(\bmod n)$, where $e=\left(\frac{-4 d}{r}\right)$.
5.1. The Diophantine equation $x^{2}+2^{a} 17^{b}=y^{n}$. In this case $r=17$, hence $n \mid 16$ or $n \mid 18$. Therefore (1) has no solution with prime $n \geq 5$. Note, using Lemma 4(i), that (1) has a solution $(x, y, a, b)=(47,3,8,1)$ for $n=8$.
5.2. The Diophantine equation $x^{2}+2^{a} 29^{b}=y^{n}$. In this case $r=29$, hence $n \mid 28$ or $n \mid 30$. Therefore, $n=7$ and $d=1$ or $n=5$ and $d=2$.

CASE $n=7$. Using (4) with $n=7, d=1$, we obtain

$$
\begin{equation*}
v\left(7 u^{6}-35 u^{4} v^{2}+21 u^{2} v^{4}-v^{6}\right)=2^{\alpha} 29^{\beta} . \tag{5}
\end{equation*}
$$

Since u and v are coprime, we have the following possibilities.
(a) $v= \pm 2^{\alpha} 29^{\beta}$,
(b) $v= \pm 29^{\beta}$,
(c) $v= \pm 2^{\alpha}$,
(d) $v= \pm 1$.

We only need to look at the last two possibilities.
In case (c), $v= \pm 2^{\alpha}$, and the Diophantine equation (5) is

$$
7 u^{6}-35 u^{4} v^{2}+21 u^{2} v^{4}-v^{6}= \pm 29^{\beta} .
$$

Dividing both sides by v^{6}, we obtain

$$
\begin{equation*}
7 X^{3}-35 X^{2}+21 X-1=D_{1} Y^{2} \tag{6}
\end{equation*}
$$

where $X=u^{2} / v^{2}, Y=29^{\beta_{1}} / v^{3}, \beta_{1}=\lfloor\beta / 2\rfloor, D_{1}= \pm 1, \pm 29$.
In the case $D_{1}= \pm 1$, we have to find $\{2\}$-integral points on the elliptic curves

$$
\begin{equation*}
7 X^{3}-35 \eta X^{2}+21 X-\eta=D_{1} Y^{2}, \quad \eta= \pm 1 \tag{7}
\end{equation*}
$$

We mutiply both sides of (7) by 7^{2} to obtain

$$
\begin{equation*}
U^{3}-35 \eta U^{2}+147 U-49 \eta=V^{2}, \tag{8}
\end{equation*}
$$

where $(U, V)=(7 \eta X, 7 Y)$ are $\{2\}$-integral points on the above elliptic curves.

Using Magma, we find $(U, V) \in\{(1,8),(58,-293)\}$ (hence, $(X, Y) \in$ $\{(1 / 7,8 / 7),(58 / 7,-293 / 7)\})$ for $\eta=1$. These do not lead to solutions of (2).

If $\eta=-1$, we find $(U, V) \in\{(-21,56),(-5,8),(0,7),(7,-56),(39,344)$, $(301 / 4,-6377 / 8)\}$ (and hence $(X, Y) \in\{(3,8),(5 / 7,8 / 7),(0,1),(-1,-8)$, $(-39 / 7,344 / 7),(-43 / 4,-911 / 8)\})$. These do not lead to solutions of (2) either.

Consider the case $D_{1}= \pm 29$. The unique $\{2\}$-integral point (2349,-87464) on the elliptic curve $U^{3}-35 \cdot 29 U^{2}+21 \cdot 7 \cdot 29^{2} U-7^{2} \cdot 29^{3}=V^{2}$ does not lead to a solution of (2). Magma finds the $\{2\}$-integral points ($-812,5887$), $(-377,6728),(-5,-776),(91,4648),(1015,47096),(8365 / 4,-941297 / 8)$ on the elliptic curve $U^{3}+35 \cdot 29 U^{2}+21 \cdot 7 \cdot 29^{2} U+7^{2} \cdot 29^{3}=V^{2}$. The point $(-812,5887)$ leads to the solution $(x, y, a, b)=(278,5,0,2)$ of (2).

Consider case (d), $v= \pm 1$. We have to find integral points on

$$
\begin{equation*}
7 X^{3}-35 X^{2}+21 X-1=D_{1} Y^{2} \tag{9}
\end{equation*}
$$

where $D_{1}= \pm 1, \pm 2, \pm 29, \pm 58$.
The cases $D_{1}= \pm 1, \pm 29$ were treated above.
Consider the case $D_{1}= \pm 2$. There exists no integral point on the curve $U^{3}-35 \cdot 2 U^{2}+21 \cdot 7 \cdot 2^{2} U-7^{2} \cdot 2^{3}=V^{2}$, and there are two integral points $(-14,56),(7,91)$ on the curve $U^{3}+35 \cdot 2 U^{2}+21 \cdot 7 \cdot 2^{2} U+7^{2} \cdot 2^{3}=V^{2}$. These do not lead to solutions of (22).

Consider the case $D_{1}= \pm 58$. There exists no integral point on the curve $U^{3}-35 \cdot 2 \cdot 29 U^{2}+21 \cdot 7 \cdot 2^{2} \cdot 29^{2} U-7^{2} 2^{3} \cdot 29^{3}=V^{2}$ and there are two integral points $(58,6728),(879,-51883)$ on the curve $U^{3}+35 \cdot 2 \cdot 29 U^{2}+21$. $7 \cdot 2^{2} \cdot 29^{2} U+7^{2} 2^{3} \cdot 29^{3}=V^{2}$. These do not lead to solutions of (2).

Case $n=5$. Using (4) with $n=5, d=2$, we obtain

$$
\begin{equation*}
v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)=2^{\alpha} 29^{\beta} . \tag{10}
\end{equation*}
$$

As in the case $n=7$, we only need to check $v= \pm 2^{\alpha}, v= \pm 1$.
In the first case, the Diophantine equation 10 is $5 u^{4}-20 u^{2} v^{2}+4 v^{4}=$ $\pm 29^{\beta}$. Dividing both sides by v^{4}, we obtain

$$
\begin{equation*}
5 X^{4}-20 X^{2}+4=D_{1} Y^{2} \tag{11}
\end{equation*}
$$

where $X=u / v, Y=29^{\beta_{1}} / v^{2}, \beta_{1}=\lfloor\beta / 2\rfloor$, and $D_{1}= \pm 1, \pm 29$. Using Magma we find three $\{2\}$-integral points $(0,2),(2,2),(-2,2)$ on (11) with $D_{1}=1$, and none in the remaining cases. These points do not lead to solutions of (2).

In the second case, the Diophantine equation $\sqrt{10}$ is $5 u^{4}-20 u^{2}+4=$ $\pm 2^{\alpha} 29^{\beta}$. We need to find integral points on the curves $5 X^{4}-20 X^{2}+4=$ $D_{1} Y^{2}, D_{1}= \pm 1, \pm 2, \pm 29, \pm 58$. Magma finds no solution.
5.3. The Diophantine equation $x^{2}+2^{a} 41^{b}=y^{n}$. We have $\left(\frac{-4}{41}\right)=$ $\left(\frac{-8}{41}\right)=1$, hence in this case $n=5, d=1$ or $n=5, d=2$.

Using (4) with $n=5, d=2$, we obtain

$$
\begin{equation*}
v\left(5 u^{4}-20 u^{2} v^{2}+4 v^{4}\right)=2^{\alpha} 41^{\beta} . \tag{12}
\end{equation*}
$$

We only need to check $v= \pm 2^{\alpha}, v= \pm 1$.
In the first case, the Diophantine equation (12) is $5 u^{4}-20 u^{2} v^{2}+4 v^{4}=$ $\pm 41^{\beta}$. Dividing both sides by v^{4}, we obtain

$$
\begin{equation*}
5 X^{4}-20 X^{2}+4=D_{1} Y^{2} \tag{13}
\end{equation*}
$$

where $X=u / v, Y=41^{\beta_{1}} / v^{2}, \beta_{1}=\lfloor\beta / 2\rfloor$, and $D_{1}= \pm 1, \pm 41$. Using Magma we find three $\{2\}$-integral points $(0,2),(2,2),(-2,2)$ on 13$)$ with $D_{1}=1$, and none in the remaining cases. These points do not lead to solutions of (3).

In the second case, the Diophantine equation (12) is $5 u^{4}-20 u^{2}+4=$ $\pm 2^{\alpha} 41^{\beta}$. We need to find integral points on the curves $5 X^{4}-20 X^{2}+4=$ $D_{1} Y^{2}, D_{1}= \pm 1, \pm 2, \pm 41, \pm 82$. Magma finds no solution.

Using (4) with $n=5, d=1$, we obtain $v\left(5 u^{4}-10 u^{2} v^{2}+v^{4}\right)=2^{\alpha} 41^{\beta}$. In the case $v= \pm 2^{a}$ we obtain $5 u^{4}-10 u^{2} v^{2}+v^{4}= \pm 41^{\beta}$. Magma finds $\{2\}$-integral points on

$$
5 X^{4}-10 X^{2}+1= \pm D_{1} Y^{2}, \quad D_{1}= \pm 1, \pm 41
$$

namely, $(1,2)$ if $D_{1}=-1$, and $(2,1)$ if $D_{1}=41$. The point $(2,1)$ gives the new solution $(x, y)=(38,5)$ of (3).

In the case $v= \pm 1$, we obtain $5 u^{4}-10 u^{2} v^{2}+v^{4}= \pm 2^{\alpha} 41^{\beta}$. Magma finds no integral points on the curves

$$
5 X^{4}-10 X^{2}+1= \pm D_{1} Y^{2}, \quad D_{1}= \pm 1, \pm 41 \pm 2, \pm 82
$$

REFERENCES

[1] F. S. Abu Muriefah, F. Luca, S. Siksek and Sz. Tengely, On the Diophantine equation $x^{2}+C=2 y^{n}$, Int. J. Number Theory 5 (2009), 1117-1128.
[2] F. S. Abu Muriefah, F. Luca and A. Togbé, On the Diophantine equation $x^{2}+$ $5^{a} 13^{b}=y^{n}$, Glasgow Math. J. 50 (2008), 175-181.
[3] Yu Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75-122.
[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language, in: Computational Algebra and Number Theory (London, 1993), J. Symbolic Comput. 24 (1997), 235-265.
[5] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation, Compos. Math. 142 (2006), 31-62.
[6] -, 一, 一, A multi-Frey approach to some multi-parameter families of diophantine equations, Canad. J. Math. 60 (2008), 491-519.
[7] J. H. E. Cohn, The Diophantine equation $x^{2}+c=y^{n}$, Acta Arith. 65 (1993), 367-381.
[8] A. Dąbrowski, On the Brocard-Ramanujan problem and generalizations, Colloq. Math., to appear.
[9] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation $x^{m}=y^{2}+1$, Nouv. Ann. Math. 9 (1850), 178-181.
[10] F. Luca and F. Najman, On the largest factor of $x^{2}-1$, Math. Comp. 80 (2011), 429-435.
[11] F. Luca and A. Togbé, On the Diophantine equation $x^{2}+2^{a} 5^{b}=y^{n}$, Int. J. Number Theory 4 (2008), 973-979.
[12] -, -, On the Diophantine equation $x^{2}+2^{a} 13^{b}=y^{n}$, Colloq. Math. 116 (2009), 139-146.
[13] M. Mignotte and B. M. M. de Weger, On the Diophantine equations $x^{2}+74=y^{5}$ and $x^{2}+86=y^{5}$, Glasgow Math. J. 38 (1996), 77-85.

Andrzej Dąbrowski
Institute of Mathematics
University of Szczecin
Wielkopolska 15
70-451 Szczecin, Poland
E-mail: dabrowsk@wmf.univ.szczecin.pl

Received 7 November 2011;
revised 1 December 2011

[^0]: 2010 Mathematics Subject Classification: 11D61, 11Y50, 11D41.
 Key words and phrases: Diophantine equations, exponential equations, elliptic curves.

