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ON THE LEBESGUE–NAGELL EQUATION

BY

ANDRZEJ DĄBROWSKI (Szczecin)

Abstract. We completely solve the Diophantine equations x2 + 2aqb = yn (for q =
17, 29, 41). We also determine all C = pa1

1 · · · pak
k and C = 2a0pa1

1 · · · pak
k , where p1, . . . , pk

are fixed primes satisfying certain conditions. The corresponding Diophantine equations
x2 +C = yn may be studied by the method used by Abu Muriefah et al. (2008) and Luca
and Togbé (2009).

1. Introduction. The Diophantine equation x2+C = yn (x ≥ 1, y ≥ 1,
n ≥ 3) has a rich history. Lebesgue [9] proved that this equation has no
solution when C = 1. Cohn [7] solved the equation for several values of
1 ≤ C ≤ 100. The remaining values of C in the above range were covered by
Mignotte and de Weger [13] and by Bugeaud, Mignotte and Siksek [5]. Barros
in his recent PhD thesis considered the range −100 ≤ C ≤ −1. Also, several
authors (Abu Muriefah, Arif, Le, Luca, Pink, Togbé,...) became interested
in the case where only the prime factors of C are specified (see, for instance,
introductions to [2], [11] and [12]). Abu Muriefah, Luca, Siksek and Tengely
[1] studied the more general equation x2 + C = 2yn.

Consider the Diophantine equation x2+C = yn, where C = pa1
1 · · · p

ak
k or

2a0pa1
1 · · · p

ak
k , and p1, . . . , pk are fixed primes satisfying the following three

conditions:

(I) pi ≡ 1 (mod 4) for all i = 1, . . . , k.

Write C = dz2 with d squarefree. Let h(−d) denote the class number of
the imaginary quadratic field Q(

√
−d). Let rad(n) denote the radical of the

positive integer n (product of all prime divisors of n).

(II) rad(h(−d)) | 6 for any decomposition C = dz2 as above.
(III) rad(pi ± 1) | 2 · 3 · 5 · 7 for all i = 1, . . . , k.

In such cases we can apply the method used in [2] and [12]. If we are
able to determine all S-integral points (with S an explicit set of rational
primes) on some associated elliptic curves, then we can completely solve
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such Diophantine equations. Conditions (I)–(III) above were suggested by
Section 5 in [2].

In this paper, we determine all values of C satisfying conditions (I)–(III)
(Lemma 2). Radicals of C take exactly 41 values. Some of the equations
x2 + C = yn with C listed in Lemma 2 were studied in the literature; these
include rad(C) ∈ {5, 13, 17, 29, 41, 97, 2 · 5, 2 · 13, 5 · 13, 2 · 5 · 13}.

Consider C listed in Lemma 2, with rad(C) = 2q. The cases rad(C) =
10, 26 were studied in [11] and [12]. We consider the three remaining cases.
We solve completely the Diophantine equations x2 + 2aqb = yn for q = 17,
29, and 41. We apply the method used in [2] and [12]. For n = 3 and n = 4,
the problem is reduced to finding all {2, q}-integral points on some elliptic
curves. For n ≥ 5 we use the theory of primitive divisors for Lucas sequences
[3] to deduce that, at most, the cases n = 5, n = 7 are possible. In these cases,
we reduce again the problem to computation of all {2, q}-integral points on
some elliptic curves. The calculations were done using Magma [4].

Theorem 1. The only solutions of the equation

(1) x2 + 2a17b = yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a, b ≥ 0,

are:
n = 3, (x, y, a, b) ∈ {(5, 3, 1, 0), (11, 5, 2, 0)};
n = 4, (x, y, a, b) ∈ {(47, 9, 8, 1), (8, 3, 0, 1), (1087, 33, 8, 1), (7, 3, 5, 0),

(9, 5, 5, 1), (4785, 71, 9, 3), (15, 7, 7, 1), (495, 23, 11, 1)};
n = 8, (x, y, a, b) = (47, 3, 8, 1).

Theorem 2. The only solutions of the equation

(2) x2 + 2a29b = yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a, b ≥ 0,

are:
n = 3, (x, y, a, b) ∈ {(5, 3, 1, 0), (11, 5, 2, 0), (3, 5, 2, 1), (26661, 905, 20, 1),

(14149, 585, 8, 1), (79, 33, 10, 1), (1465, 129, 4, 1),
(95, 33, 5, 2), (73052815, 174753, 17, 2)};

n = 4, (x, y, a, b) = (7, 3, 5, 0);
n = 7, (x, y, a, b) = (278, 5, 0, 2).

Theorem 3. The only solutions of the equation

(3) x2 + 2a41b = yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a, b ≥ 0,

are:
n = 3, (x, y, a, b) ∈ {(5, 3, 1, 0), (11, 5, 2, 0)};
n = 4, (x, y, a, b) ∈ {(840, 29, 0, 2), (7, 3, 5, 0), (87, 13, 9, 1), (33, 7, 5, 1)};
n = 5, (x, y, a, b) = (38, 5, 0, 2).
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2. Some useful results. First, let us determine all the primes p ≡
1 (mod 4) satisfying condition (III).

Lemma 1. There are exactly eight primes p ≡ 1 (mod 4) satisfying con-
dition (III): 5, 13, 17, 29, 41, 97, 449, 4801.

Proof. We have to find all primes p ≡ 1 (mod 4) satisfying p+1 = 2·3b5c7d
and p− 1 = 2α3β5γ7δ. We consider two cases.

Case (i): b+ β > 0, c+ γ > 0 and d+ δ > 0. Using [8] (or [10, Theorem
4]), we find that the equation p2 − 1 = 2α+13b+β5c+γ7d+δ has exactly six
solutions:

52−1 = 23 ·3, 172−1 = 25 ·32, 292−1 = 23 ·3 ·5 ·7, 412−1 = 24 ·3 ·5 ·7,
4492 − 1 = 27 · 32 · 52 · 7, 48012 − 1 = 27 · 3 · 52 · 74.

Case (ii): b + β = 0 or c + γ = 0 or d + δ = 0. In this case, we obtain
two additional primes 13 and 97. To check this statement, one can use, for
instance, [6, Theorems 1 and 2]. We omit the details.

Now we are ready to determine all values of C satisfying (I)–(III).

Lemma 2.

(i) The prime power pa satisfies conditions (I)–(III) iff p∈ {5, 13, 17, 29,
41, 97}.

(ii) The number C = 2a0pa satisfies (I)–(III) iff p ∈ {5, 13, 17, 29, 41}.
(iii) The odd number C = paqb (p, q different odd primes) satisfies

(I)–(III) iff pq ∈ {5 ·13, 5 ·17, 5 ·29, 5 ·41, 13 ·17, 13 ·29, 13 ·41, 17 ·29,
17 · 41, 17 · 97, 29 · 41}.

(iv) The number C = 2a0paqb (p, q different odd primes) satisfies
(I)–(III) iff pq ∈ {5 · 13, 5 · 17, 5 · 41, 13 · 17, 17 · 41}.

(v) The odd number C = pa1
1 p

a2
2 p

a3
3 (p1, p2, p3 different odd primes)

satisfies (I)–(III) iff p1p2p3 ∈ {5 · 13 · 17, 5 · 13 · 29, 5 · 13 · 41,
5 · 17 · 29, 5 · 17 · 41, 5 · 29 · 41, 13 · 17 · 29, 13 · 17 · 41, 13 · 29 · 41}.

(vi) The number C = 2a0pa1
1 p

a2
2 p

a3
3 (p1, p2, p3 different odd primes) sat-

isfies (I)–(III) iff p1p2p3 ∈ {5 ·13 ·29, 5 ·17 ·29, 13 ·17 ·29, 13 ·29 ·41}.
(vii) The number C with ≥ 4 different odd prime factors satisfies (I)–(III)

iff C = 5a13b17c41d.

Proof. Class number calculations, using Pari. For instance, (i) and (ii)
follow from the following data:

h(−5) = h(−10) = 2, h(−13) = 2, h(−26) = 6,
h(−17) = h(−34) = 4, h(−29) = 6, h(−58) = 2,
h(−41) = 8, h(−82) = 4, h(−97) = 4, h(−194) = 20,
h(−449) = 20, h(−898) = 12, h(−4801) = 56, h(−9602) = 88.



248 A. DĄBROWSKI

3. The case n = 3

Lemma 3. Let n = 3.

(i) The only solutions to equation (1) are

(x, y, a, b) ∈ {(5, 3, 1, 0), (11, 5, 2, 0)}.
(ii) The only solutions to equation (2) are

(x, y, a, b) ∈ {(5, 3, 1, 0), (11, 5, 2, 0), (26661, 905, 20, 1),
(14149, 585, 8, 1), (79, 33, 10, 1), (1465, 129, 4, 1),
(95, 33, 5, 2), (73052815, 174753, 17, 2)}.

(iii) The only solutions to equation (3) are

(x, y, a, b) ∈ {(5, 3, 1, 0), (11, 5, 2, 0)}.
Proof. Let q ∈ {17, 29, 41}. Write the equation x2 +2aqb = y3 as (x/z3)2

+A = (y/z2)3, where A is a 6th power free positive integer, defined by 2aqb =
Az6 with some integer z. Of course, A = 2αqβ with α, β ∈ {0, 1, 2, 3, 4, 5},
and we obtain the equations

V 2 = U3 − 2αqβ

with U = y/z2, V = x/z3. We have to determine {2, q}-integral points on
these 36 elliptic curves; this can be done using Magma. Note that we only
need to consider “admissible” points (U, V ) (see [12, p. 141]), i.e.

• we discard the solutions with U ≤ 0 or V = 0;
• we do not consider the solutions having the numerators of U and V

not coprime;
• if U, V ∈ Z, then z = 1;
• if U and V are rationals which are not integers, then their numerators

give x and y, and z is determined by their denominators. Therefore, a
and b are determined from the formula 2aqb = Az6.

Here are the results of our Magma calculations.
(i) The only “admissible” {2, 17}-integral points on V 2 = U3− 2α17β are

(U, V, α, β) ∈ {(3, 5, 1, 0), (5, 11, 2, 0)}.
(ii) The only “admissible” {2, 29}-integral points on V 2 = U3−2α29β are

(U, V, α, β) ∈ {(3, 5, 1, 0), (5, 11, 2, 0), (5, 3, 2, 1), (905, 26661, 20, 1),
(585, 14149, 8, 1), (33, 79, 10, 1), (129, 1465, 4, 1),
(33, 95, 5, 2), (174753, 73052815, 17, 2)}.

(iii) The only “admissible” {2, 41}-integral points on V 2 = U3 − 2α41β

are
(U, V, α, β) ∈ {(3, 5, 1, 0), (5, 11, 2, 0)}.
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4. The case n = 4

Lemma 4. Let n = 4.

(i) The only solutions to equation (1) are

(x, y, a, b) ∈ {(47, 9, 8, 1), (8, 3, 0, 1), (1087, 33, 8, 1), (7, 3, 5, 0),
(9, 5, 5, 1), (4785, 71, 9, 3), (15, 7, 7, 1), (495, 23, 11, 1)}.

(ii) The only solution to equation (2) is (x, y, a, b) = (7, 3, 5, 0).
(iii) The only solutions to equation (3) are

(x, y, a, b) ∈ {(840, 29, 0, 2), (7, 3, 5, 0), (87, 13, 9, 1), (33, 7, 5, 1)}.

Proof. Let q ∈ {17, 29, 41}. Write the equation x2 +2aqb = y4 as (x/z2)2

+ A = (y/z)4, where A is a 4th power free positive integer, defined by
2aqb = Az4 with some integer z. Of course, A = 2αqβ with α, β ∈ {0, 1, 2, 3},
and we obtain the equations

V 2 = U4 − 2αqβ

with U = y/z, V = x/z2. We have to determine {2, q}-integral points on
these 16 elliptic curves. As in the case n = 3, we only need to consider
“admissible” points (U, V ).

Here are the results of our Magma calculations.

(i) The only “admissible” {2, 17}-integral points on V 2 = U4− 2α17β are

(U, V, α, β) ∈ {(9, 47, 8, 1), (3, 8, 0, 1), (33, 1087, 8, 1), (3, 7, 5, 0),
(5, 9, 5, 1), (71, 4785, 9, 3), (7, 15, 7, 1), (23, 495, 11, 1)}.

(ii) The only “admissible” {2, 29}-integral point on V 2 = U4 − 2α29β is

(U, V, α, β) = (3, 7, 5, 0).

(iii) The only “admissible” {2, 41}-integral points on V 2 = U4 − 2α41β

are

(U, V, α, β) ∈ {(29, 840, 0, 2), (3, 7, 5, 0), (13, 87, 9, 1), (7, 33, 5, 1)}.

5. The case n ≥ 5. Let q ∈ {17, 29, 41}. We rewrite the Diophantine
equation x2 + 2aqb = yn as x2 + dz2 = yn, where d = 1, 2, q, 2q according
to the parities of the exponents of a and b. Factoring the last equation in
Q(
√
−d) we get (x + z

√
−d)(x − z

√
−d) = yn. Here z = 2αqβ for some

nonnegative integers α and β. Conditions (I) and (II) allow us to assume
that x+ z

√
−d = γn with some algebraic integer γ = u+ v

√
−d ∈ Z[

√
−d].

As a consequence,

(4) 2α+1qβ
√
−d = γn − γn.
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Let n ≥ 5 be a prime. The Lucas number Ln := (γn − γn)/(γ − γ) has a
primitive prime factor (it cannot be defective, see Table 1 in [3]). A primitive
prime factor r of Ln satisfies the congruence r ≡ e (modn), where e =

(−4d
r

)
.

5.1. The Diophantine equation x2 +2a17b = yn. In this case r = 17,
hence n | 16 or n | 18. Therefore (1) has no solution with prime n ≥ 5. Note,
using Lemma 4(i), that (1) has a solution (x, y, a, b) = (47, 3, 8, 1) for n = 8.

5.2. The Diophantine equation x2 +2a29b = yn. In this case r = 29,
hence n | 28 or n | 30. Therefore, n = 7 and d = 1 or n = 5 and d = 2.

Case n = 7. Using (4) with n = 7, d = 1, we obtain
(5) v(7u6 − 35u4v2 + 21u2v4 − v6) = 2α29β.

Since u and v are coprime, we have the following possibilities.
(a) v = ±2α29β, (b) v = ±29β, (c) v = ±2α, (d) v = ±1.

We only need to look at the last two possibilities.
In case (c), v = ±2α, and the Diophantine equation (5) is

7u6 − 35u4v2 + 21u2v4 − v6 = ±29β.

Dividing both sides by v6, we obtain
(6) 7X3 − 35X2 + 21X − 1 = D1Y

2,

where X = u2/v2, Y = 29β1/v3, β1 = bβ/2c, D1 = ±1,±29.
In the case D1 = ±1, we have to find {2}-integral points on the elliptic

curves
(7) 7X3 − 35ηX2 + 21X − η = D1Y

2, η = ±1.

We mutiply both sides of (7) by 72 to obtain
(8) U3 − 35ηU2 + 147U − 49η = V 2,

where (U, V ) = (7ηX, 7Y ) are {2}-integral points on the above elliptic
curves.

Using Magma, we find (U, V ) ∈ {(1, 8), (58,−293)} (hence, (X,Y ) ∈
{(1/7, 8/7), (58/7,−293/7)}) for η = 1. These do not lead to solutions of (2).

If η = −1, we find (U, V ) ∈ {(−21, 56), (−5, 8), (0, 7), (7,−56), (39, 344),
(301/4,−6377/8)} (and hence (X,Y ) ∈ {(3, 8), (5/7, 8/7), (0, 1), (−1,−8),
(−39/7, 344/7), (−43/4,−911/8)}). These do not lead to solutions of (2)
either.

Consider the caseD1 =±29.The unique{2}-integral point (2349,−87464)
on the elliptic curve U3 − 35 · 29U2 + 21 · 7 · 292U − 72 · 293 = V 2 does not
lead to a solution of (2). Magma finds the {2}-integral points (−812, 5887),
(−377, 6728), (−5,−776), (91, 4648), (1015, 47096), (8365/4,−941297/8) on
the elliptic curve U3 + 35 · 29U2 + 21 · 7 · 292U + 72 · 293 = V 2. The point
(−812, 5887) leads to the solution (x, y, a, b) = (278, 5, 0, 2) of (2).
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Consider case (d), v = ±1. We have to find integral points on

(9) 7X3 − 35X2 + 21X − 1 = D1Y
2,

where D1 = ±1,±2,±29,±58.
The cases D1 = ±1,±29 were treated above.
Consider the case D1 = ±2. There exists no integral point on the curve

U3 − 35 · 2U2 + 21 · 7 · 22U − 72 · 23 = V 2, and there are two integral points
(−14, 56), (7, 91) on the curve U3 + 35 · 2U2 + 21 · 7 · 22U + 72 · 23 = V 2.
These do not lead to solutions of (2).

Consider the case D1 = ±58.There exists no integral point on the curve
U3 − 35 · 2 · 29U2 + 21 · 7 · 22 · 292U − 7223 · 293 = V 2 and there are two
integral points (58, 6728), (879,−51883) on the curve U3 +35 · 2 · 29U2 +21 ·
7 · 22 · 292U + 7223 · 293 = V 2. These do not lead to solutions of (2).

Case n = 5. Using (4) with n = 5, d = 2, we obtain

(10) v(5u4 − 20u2v2 + 4v4) = 2α29β.

As in the case n = 7, we only need to check v = ±2α, v = ±1.
In the first case, the Diophantine equation (10) is 5u4 − 20u2v2 + 4v4 =

±29β . Dividing both sides by v4, we obtain

(11) 5X4 − 20X2 + 4 = D1Y
2,

where X = u/v, Y = 29β1/v2, β1 = bβ/2c, and D1 = ±1,±29. Using
Magma we find three {2}-integral points (0, 2), (2, 2), (−2, 2) on (11) with
D1 = 1, and none in the remaining cases. These points do not lead to
solutions of (2).

In the second case, the Diophantine equation (10) is 5u4 − 20u2 + 4 =
±2α29β . We need to find integral points on the curves 5X4 − 20X2 + 4 =
D1Y

2, D1 = ±1,±2,±29,±58. Magma finds no solution.

5.3. The Diophantine equation x2 + 2a41b = yn. We have
(−4

41

)
=(−8

41

)
= 1, hence in this case n = 5, d = 1 or n = 5, d = 2.

Using (4) with n = 5, d = 2, we obtain

(12) v(5u4 − 20u2v2 + 4v4) = 2α41β.

We only need to check v = ±2α, v = ±1.
In the first case, the Diophantine equation (12) is 5u4 − 20u2v2 + 4v4 =

±41β . Dividing both sides by v4, we obtain

(13) 5X4 − 20X2 + 4 = D1Y
2,

whereX = u/v, Y = 41β1/v2, β1 = bβ/2c, andD1 = ±1,±41. Using Magma
we find three {2}-integral points (0, 2), (2, 2), (−2, 2) on (13) with D1 = 1,
and none in the remaining cases. These points do not lead to solutions of (3).
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In the second case, the Diophantine equation (12) is 5u4 − 20u2 + 4 =
±2α41β . We need to find integral points on the curves 5X4 − 20X2 + 4 =
D1Y

2, D1 = ±1,±2,±41,±82. Magma finds no solution.
Using (4) with n = 5, d = 1, we obtain v(5u4 − 10u2v2 + v4) = 2α41β .

In the case v = ±2a we obtain 5u4 − 10u2v2 + v4 = ±41β . Magma finds
{2}-integral points on

5X4 − 10X2 + 1 = ±D1Y
2, D1 = ±1,±41,

namely, (1, 2) if D1 = −1, and (2, 1) if D1 = 41. The point (2, 1) gives the
new solution (x, y) = (38, 5) of (3).

In the case v = ±1, we obtain 5u4−10u2v2 +v4 = ±2α41β . Magma finds
no integral points on the curves

5X4 − 10X2 + 1 = ±D1Y
2, D1 = ±1,±41± 2,±82.
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