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BY

B. A. F. WEHRFRITZ (London)

Abstract. If X is a property or a class of groups, an automorphism ¢ of a group
G is X-finitary if there is a normal subgroup N of G centralized by ¢ such that G/N is
an X-group. Groups of such automorphisms for G a module over some ring have been
very extensively studied over many years. However, for groups in general almost nothing
seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general
case for X the class of finite groups. Here we look further at the finite case but our
main results concern the cases where X is either the class of polycyclic-by-finite groups
or the class of Chernikov groups. The latter presents a new perspective on some work of
Ya. D. Polovitskil in the 1960s, which seems to have been at least partially overlooked in
recent years. Our polycyclic cases present a different view of work of S. Franciosi, F. de
Giovanni and M. J. Tomkinson from 1990. We describe the polycyclic cases in terms of
matrix groups over the integers, and the Chernikov case in terms of matrix groups over
the complex numbers.

1. Introduction. Let X be a class of groups. Say that an automorphism
~ of a group G is X-finitary if there is a normal subgroup N of G such that
[N,7] = (1) and G/N is an X-group. We are only interested here in the
cases of X being either the class F of all finite groups, or the class P of all
polycyclic groups, or the class PF of all polycyclic-by-finite groups, or the
class Ch of all Chernikov groups. In each of these cases the set Fx Aut G of
all X-finitary automorphisms of G is a (normal) subgroup of Aut G and N
can be taken to be C(7)e = yeq Ca(7)?. We consider here the structure
of subgroups I' of these FxAutG. (Unless otherwise indicated, X below
denotes one of F, P, PF or Ch. Also we sometimes use the expanded terms
finite-finitary, polycyclic-finitary etc. instead of F-finitary, P-finitary etc.)

First we consider the finite-finitary case. Note that here an alternative
definition is: v € Aut G is finite-finitary if and only if the index (G : Cg(7))
is finite. According to Mathematical Reviews Belyaev and Shved [I] prove
the following (I have been unable to obtain a copy of this paper and hence
have been unable to check its contents for myself): I < FpAut G is abelian-
by-(locally finite), (locally finite)-by-abelian, locally centre-by-finite and (pe-
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riodic abelian)-by-(centre-by-(locally finite)). (These four theorems all follow
from our results below.) In the earlier paper [13] the current author consid-
ered the case where G is abelian. In this case we showed in particular that I
is locally finite with a normal subgroup N lying in the Fitting subgroup of
I" such that I'/N embeds into a direct product of finitary linear groups over
fields of prime order. Further we showed that any periodic abelian group A
always embeds into FpAut G for some abelian group G, and embeds into
FrAut G for some periodic abelian group G if and only if A has a residu-
ally finite subgroup B such that A/B is a direct product of cyclic groups.
[13] contains further results of this type.

Let Fg denote the class of all groups I' for which there exists an em-
bedding of I' into FrAut G for some group G. If V is a vector space over
a finite field F, then FpAutV contains the finitary general linear group
FGL(V) = FAutp V over V with equality if F' has prime order, so all fini-
tary linear groups over finite fields lie in Fg. All such groups are locally
finite. Also the following holds (see below):

STATEMENT 1.1. Every abelian group lies in Fg; more generally, so does
each FC-group.

Obviously such groups are not necessarily locally finite. Also there are
finitary linear groups over finite fields that are not FC-groups, for example
infinite simple such groups. It is easy to see that the class Fg is closed under
the subgroup operator S and the direct product operator D. (The infinite
dihedral group is not in Fg, being finitely generated but not centre-by-finite;
it is also residually finite. Thus Fg is not closed under the poly, residual and
cartesian operators P, R and C. However, it is Ry-closed since Ry < SD.)

Every group that can be constructed from the above examples of Fp-
groups and repeated use of the S and D operators is centre-by-(locally finite).
Moreover every centre-by-(locally finite) group satisfies the conclusions of the
four theorems of Belyaev and Shved quoted above. Frequently Fg-groups
are centre-by-(locally finite). Below, Fitt G denotes the Fitting subgroup of
a group G, 7(G) its unique maximal locally-finite normal subgroup, A(G)
its FC-centre and (1 (G) its centre. The rank of G is the supremum, over the
finitely generated subgroups X of G, of the minimum number of generators
of X, so rank G is a non-negative integer or infinity.

PROPOSITION 1.2. Let G be a group and I a subgroup of FpAut G. Under
any one of the following five conditions I" is at least centre-by-(locally finite):

(a) G is an FC-group; here I' is locally finite.

(b) Fitt G is periodic; here I' is locally finite.

(¢) [G, Il <7(G)N A(G); here I is locally finite.
(d) 7(G) N A(G) = (1); here I' is abelian.
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(e) G is a finite extension of a torsion-free soluble group of finite rank;
here I' is centre-by-finite.

Notice that (e) here covers all polycyclic groups. However:
STATEMENT 1.3. Not every Fg-group is centre-by-(locally finite).

Below we present a range of groups G for which FgAut G is not centre-
by-periodic. The simplest to state and prove is the wreath product of A by
a cyclic group of order 2, where A is the direct product of an infinite cyclic
group and a Priifer p®°-group for some prime p. Requiring only a little more
proof is the split extension (x)A, where A is as above and x has order 2 and
inverts A (meaning that a® = a~! for all a in A).

Conversely:

STATEMENT 1.4. Not every centre-by-(locally finite) group is in Fg; in-
deed, nor is every locally finite group.

For example, P. Hall’s countable universal locally finite group U (see [5],
Chapter 6, especially 6.4 and 6.1]) is not, the basic reason being the following
proposition and the simplicity of U.

PROPOSITION 1.5. Any simple group X in Fg is isomorphic to a finitary
linear group over a field of prime order.

Obviously the case where X' is finite is of no interest in this context.
The infinite locally-finite simple finitary linear groups have been completely
classified by J. I. Hall [4]. Thus if X is infinite in Proposition then X' is
either a finitary analogue of the alternating groups, the symplectic groups,
the special unitary groups or the orthogonal groups, or one of the finitary
analogues of the (projective) special linear groups, clearly over a locally finite
field and in fact over a finite field, though this is far from obvious.

We now turn to the polycyclic cases. It is not as straightforward as just
replacing F in the Belyaev—Shved theorem by P or PF and in some ways
the conclusions here are more elegant.

THEOREM 1.6. Let I' be a locally (soluble-by-finite) subgroup of
FprAut G for some group G. Then I is locally (polycyclic-by-finite).

We abbreviate the conclusion here to I' € L(PF). The first hypothesis
on I we also shorten to I' € L(SF). If I' € L(PF) then clearly I satisfies
all four of the Belyaev—Shved conclusions with PF replacing the word finite.
(In the finite-finitary case the conclusion corresponding to that of 1.6 would
be that I' < FpAut G and I" € L(SF) together imply that I" is locally finite,
a conclusion that is clearly false, since every abelian group is in Fg.)

In 1.6 we do need some restriction on I' beyond I' < FppAut G, for
clearly AutG = FppAut G whenever G € PF. For example GL(2,Z) =
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FpAut Z? is not in L(PF); it contains non-abelian free subgroups. (Z de-
notes the integers.) However, we can draw positive conclusions about arbi-
trary subgroups I" of FprpAut G, weaker, of course, than I" € L(PF). Denote
by Lz the class of all groups that can be embedded into some GL(n, Z), where
n is a positive integer. As usual A denotes the class of all abelian groups
and G N A the class of all finitely generated abelian groups.

THEOREM 1.7. Let I' < FppAut G for some group G. Then I is locally
in the class (G N A)Lg. Also I' is locally residually finite.

Thus if I" is finitely generated in 1.7, then I' has a free abelian normal
subgroup of finite rank with I'/A € Ly. Analogously to the class Fr we define
the classes Fp and Fpg. Trivially Fpr O Fg U Fp. This is not an equality.
For example, let G denote the wreath product of an infinite cyclic group by
a finite non-abelian simple group S. Then G/(1(G) =2 I' < FprpAut G in the
obvious way. Now S embeds into I" and finite Fp-groups are easily seen to be
soluble, so I ¢ Fp. Further I is finitely generated but not centre-by-finite, so
I' ¢ Fy. (With different terminology, the class Fgna is extensively discussed
in [I4], at least where G is abelian.)

In our final two sections we indicate how a similar analysis can be applied
to the class Ch of Chernikov groups. This involves replacing the maximal
condition on subgroups by the minimal condition. The results here are nec-
essarily weaker; for a start the automorphism group of a Chernikov group
need not be countable, unlike that of a PF-group. Also it need not have
a faithful representation of finite degree over any field. However, its outer
automorphism group does at least have a faithful representation over the
complex numbers C (e.g. |5, 3.38|) and some use can be made of this. Let
L¢ denote the class of all groups that can be embedded into GL(n,C) for
some positive integer n. We can at least prove the following (compare 1.7
above).

THEOREM 1.8. Let I' < FenAut G for some group G. Then I is locally
in the class (F~S N A)Lc. Also I is locally residually finite.

Here F~SNA denotes the class of torsion-free abelian groups. Theorem 1.8
and for that matter Theorem 1.7 are really results about finitely generated
such subgroups I" and more information about these I" are given by Lemmas
5.2 and 7.5 below. Actually all finitely generated L¢ groups lie in Fcy,, the
latter denoting the Ch analogue of Fg and Fpp (and trivially all Ly groups
are in Fp). More precisely, we prove the following.

THEOREM 1.9. Let I' be a finitely generated group. The following are
equivalent:

(a) I' e Lc.
(b) I' embeds into Aut G for some Ch group G.
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(¢) There exists a positive integer v such that for almost all primes p the
group I' embeds into the automorphism group of the divisible abelian
p-group of rank r.

However, not every finitely generated (F*S N A)Lc group lies in L¢, the
free (soluble group of derived length at most 3) of rank 2 being such an
example, since free metabelian groups of finite rank lie in L¢ by a theorem
of Magnus (see [9, 2.11] and use [9] 3.6]). A similar example is the wreath
product of a cyclic group of infinite order by the free metabelian group of
rank 2 (see [9, 10.21]). Of course Theorems 1.8 and 1.9 leave unanswered
questions.

2. Belyaev and Shved type results

LEMMA 2.1. Let N be a normal subgroup of a group G. If I' = (y €
Aut G : [N,~] = (1)), then [G,I',N] = (1).

Proof. Clearly [N,G] < N and [N,I'] = (1), so [N,G,I'] = (1) =
[I, N, G]. Therefore [G, I', N] = (1).

LEMMA 2.2. Let A be an abelian normal subgroup of a group G. If
A/C4l(g) is periodic for all g € G, then [A, G| is periodic.

In particular this shows that the fourth Belaev and Shved property fol-
lows from the first and third (actually it also follows from the first and the
second).

Proof. We may factor by the torsion subgroup of A and assume that
A is torsion-free. Let a € A and g € G. There is a positive integer n with
[a™, g] = 1. Then (a9)" = (a")? = a™ and a¥ and a both lie in the torsion-free
abelian group A. Hence a9 = a and consequently [A, G| = (1).

From now on in this section we consider an arbitrary group G and some
subgroup I" of FpAut G. We work throughout inside the holomorph of G
and more particularly in its subgroup I'G. Thus I'® denotes the normal
subgroup (g1, : g € G) of I'G.

LEMMA 2.3. Suppose I' is finitely generated. Then I is finite, I" is
centre-by-finite, [G, I is centre-by-finite and [G, I', I'°] is finite.

Proof. Now I'= (71, ...,7%m) is finitely generated and Cq(I") =, Ca(v:).
Thus G has a subgroup N of finite index centralized by I" and we can choose
N normal in G. Then Cp(G/N) has finite index in I" and by stability theory
embeds into the abelian group Der(G, (1(N)) of derivations. Therefore I" is
at least abelian-by-finite. Set C' = Cg(N) and Z = C NN = (1(NV). By
Lemma 2.1 we have [G,I'] < C.

Now (C : Z) is finite, so C is centre-by-finite and hence C” is finite
(Schur’s Theorem, e.g. [I5, 1.18] or use [9, 4.21]). If T" denotes the maximal



6 B. A. F. WEHRFRITZ

periodic normal subgroup of C, then C’ < T and C/T is torsion-free abelian
with I" centralizing its subgroup Z7T'/T of finite index. Therefore [C, '] < T
by Lemma 2.2. Also [G,I'] < C, so [G, '] is centre-by-finite.

Certainly G, N, C and C’ are all normal in I'G, and Z is central in
I'C and of finite index in C. Then Cr(C/Z) has finite index in I" and is
finitely generated. Further Cr(C/Z)/Cr(C) embeds into the abelian group
Hom(C'/Z, Z), which has finite exponent dividing the order of C'/Z. Hence
Cr(C) has finite index in I" and therefore the conjugacy class ¢/ is finite
for every ¢ € C. But C = XZ and I' = (V) for some finite sets X and Y.
Thus

[C,F]z([x,y]FC:xGX&yGY>

is finitely generated. But [C, I'] < T'; consequently, [C, I'] is finite.

Now [C,I'%] = [C,[G, T < [C,I]C", since [G,I'] < C. Therefore
[C, '] is also finite and consequently so is [G, I, I'“]. Clearly I" stabilizes
the series G > C > [C, I'“], so I'" < Cr(G/[C, I'“]). Also I'/Cr([C, I'%]) is
finite and

X =Cr(G/[0, 1) nCr((C, I'Y)

embeds into Der(G, ¢;([C, I'“])), which is abelian of finite exponent (divid-
ing the order of [C, I"]). But I is finitely generated and abelian-by-finite,
therefore X, Cr(G/[C, I'%]) and hence I" are all finite. By the ‘converse’ of
Schur’s Theorem (e.g. [9, 4.24]), I" is centre-by-finite.

REMARK. In Lemma 2.3 let d denote the minimal number of generators
of I' and n the index of N in G. Following through the proof above shows that
the orders of I, I'/¢;(I") and [G, I, '] are all bounded by integer-valued
functions of d and n only.

LEMMA 2.4. Suppose [G,I'] is periodic and lies in the FC-centre of G.
Then I is locally finite.

Proof. We may assume that I is finitely generated. Let N and C' be as
in the proof of Lemma 2.3, so [G, '] < C. Let ¢ € [G, I']. Then c lies in the
FC-centre of G, so ¢© is finite. As in the proof of Lemma 2.3 we have ¢/'¢
finite. It follows that ¢!'“ is finite for every ¢ € [G,I']. Now G = XN and
I' = (Y') for some finite sets X and Y, so

G, T =(z,y]'“:ze X &yeY)

is finitely generated. By hypothesis [G, I'] is periodic, FC and hence locally
finite. Therefore [G,I'] is finite. If X' = Cp (|G, I']), then X' is normal in I,
I'/ X is finite, X' stabilizes the series G > [G, '] > (1) and X' embeds into
the abelian group Der(G, (1 (|G, I'])) of finite exponent dividing the order of
(G, I']. Also I' is finitely generated. Therefore I" is finite.
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THEOREM 2.5 (Belyaev and Shved).

(a) I is locally finite.

(b) I' is abelian-by-(locally finite).

(c) I is locally centre-by-finite and [G,I'] is locally (centre-by-finite and
normal in G).

(d) If H is any subgroup of I', then [H,I'| is periodic and normal in I .

(e) I'is (periodic abelian)-by-(centre-by-(locally finite)).

Proof. Let A be a finitely generated subgroup of I'. Then A’ is finite
by Lemma 2.3 and these A’ form a local system for I". Therefore I" is
locally finite. Further by Lemma 2.3 each [G, A, AG] is finite and normal in
G and these subgroups form a local system for [G, I, I'“]. Thus [G, I, I'“]
is periodic and lies in the FC-centre of G. Set X' = Cr([G, I']). Then I'/X¥ is
locally finite by Lemma 2.4. Clearly X' stabilizes the series G > [G, '] > (1),
so X is abelian and I is abelian-by-(locally finite). This proves (a) and (b).
Now (c) follows from Lemma 2.3 and the simple fact that [G, A] is normal
in G for all A, and (d) follows from (a) since clearly [H,I'] < I"". Finally if
X is as in the proof of (b), then [X, I'] is periodic abelian by (d). Clearly
Y /[X, I is central in I" and I'/ X is locally finite. The proof is complete.

LEMMA 2.6. Suppose G is an FC-group. Then I' is locally finite.

Proof. If G is periodic the claim is immediate from Lemma 2.4. We may
assume that [ is finitely generated. Suppose first that G is abelian. With NV
and Z as in the proof of Lemma 2.3 we see that Cr(G/N) has finite index
in I" and embeds into Hom(G/N, Z). The latter is abelian with exponent
dividing (G : N), and I is finitely generated. Therefore I is finite. (Actually
this is part of [13, Proposition 1.1].)

Now consider the general case and set A = (1(G), so G/A is locally
finite (e.g. see |9, 4.32]). There exists A; < A with A; torsion-free and A/A;
periodic. Set B = (), cp(A1)7. Since I'/Cr(A) is finite by the abelian case,
it follows that A/B is periodic and B is torsion-free, central in G and normal
in I'G. Clearly I'/Cp(B) is finite since I'/Cr(A) is finite, and I'/Cr(G/B)
is finite by the periodic case (G/B is periodic). Finally Cr(B) N Cr(G/B)
embeds into Hom(G/B, B). The latter is trivial since G/B is periodic and
B is torsion-free. Therefore I is finite.

LEMMA 2.7. If Fitt G is periodic, then I' is locally finite.

Proof. Let v € I'. There exists N normal in G of finite index and cen-
tralized by . For some n > 0 we have 7" centralizing G/N. If Z denotes
the centre of N then (y™) embeds into the direct product Z(“N) of (G : N)
copies of Z (e.g. see [5, 1.C.3]) and Z < Fitt G, so Z is periodic. Therefore
Z(GN) ig periodic, ~ has finite order, I" is periodic and consequently I is
locally finite.
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LEMMA 2.8. Suppose H < GL(n, F) is a linear group of finite degree n
over the field F. If H is locally centre-by-finite, then H/(1(H) is locally
finite.

Proof. Let X <Y < H, where X and Y are finitely generated and hence
centre-by-finite. Then X? < Y° < (1(Y) by [10, 5.4], where X° denotes
the connected component of X containing 1 (ditto Y° for V). Thus XY <
Nysyx Q1Y) < G(H). But (X : X9) is always finite. Therefore H/(1(H) is
locally finite.

LEMMA 2.9. If G is a finite extension of a torsion-free soluble group of
finite rank, then I' = FpAut G is centre-by-finite.

Proof. Since I' < Aut G, I' embeds into GL(n,Q) for some integer n
and Q the field of rational numbers (see [11, 1.2]). Then I'/(1(I") is locally
finite by 2.5 and 2.8. But I'/{;(I") is also isomorphic to a linear group of
finite degree over Q by [10, 6.4 and 5.4]. Consequently, I'/¢;(I") is finite by
10} 9.33].

Proposition 1.2 now follows, for part (a) is given by Lemma 2.6, part (b)
by Lemma 2.7, part (c) by Lemma 2.4, part (d) by Lemma 2.3 since here by
hypothesis [G, I, I'] = (1), and part (e) by Lemma 2.9.

3. Examples: non-(centre-by-periodic) groups. Consider an ad-
ditive abelian group A = T & E, where T is periodic and E is torsion-
free. Let H = {# € Hom(E,T) : (E : kerf) < oo}. Clearly H is a sub-
group of Hom(E,T) and H.AutT < H. For § € H let [f] denote the map
t+e — (t+ef)+e of A into itself, with the obvious notation. Then [f] € Aut A
(with [0]71 = [~0]) and Ca([0]) > T @ ker 6. If also ¢ € H, then

(t+e)f][op] = (t+eb+ep)+e=(t+e)|f+ ¢

Set A={[0]:0 € H}. Then A < FgAut A.

Suppose in addition that 7" has infinite exponent and E = (e) @ E; for
some e # 0 and some F; < E. Suppose t € T and m > 0 with m¢ # 0.
There exists 6 in H with ef =t and E 60 = {0} and then (me)[0] = mt +me
# me. Since T has infinite exponent we see that C,y(A) = {0}. In particular
A/C4(A) is not periodic.

Let G = (z)(A; x Ag), where a — a; is an isomorphism of A onto the
multiplicative copy A; of A for i = 1,2, where |x| = 2 and where a] = as
and a3 = a; for all a in A. For a € A let 0, denote the inner isomorphism
of G given by conjugation by a; (that is, g — (a71)1g(a1)). Set ¥ = {0, :
a € A} < Aut@G. Clearly A1Ay < Cg(0,), so in fact ¥ < FpAutG. Any
~v in FpAut A acts on G via zy = = and (a;)y = (ay); for all @ € A and
i =1,2. Clearly Cg(y) > Ca(y)1 X Ca(7)2, so v € FpAut G. In particular,
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in this way, we may regard A as a subgroup of FpAutG. Set I' = (A, X)) <
FFAut G.
Let a,b € A, 0 € A and g € G. Then

TO, = aflxal = a:ala;l % x unless a =0,

9(02)” = (a1 (96™")a1)s = (ad); ' g(ad)1 = goas,
9oy = by rar garby = goato,
xd=x, so d#aog, foralla#0.

Thus X is A-isomorphic to A via a — o, and I is the split extension of X
by A, and as such is isomorphic to the split extension of A by A. Finally,
A/C4(A4) is not periodic, so X/Cx(A) is not periodic and consequently I'
is not centre-by-periodic. We have now proved the following.

LEMMA 3.1. Let G be the wreath product of an abelian group A = T X
(e) x E1, where T is periodic of infinite exponent, e has infinite order and
Ey is torsion-free, by a cyclic group of order 2. Then FpAut G is not centre-
by-periodic.

REMARK 3.2. The arguments above show that FgpAut A can be regarded
as a subgroup of FrAut G and then we have

FFAU.tG Z (FFAut A)Z Z (FFAut T)A(FFAut E)Z,

so the examples above can have very large finite-finitary automorphism
groups.

We return now to our additive group A =T & E =T & (e) ® E1. Set
S ={teT:2t=0}. Clearly T'/S has infinite exponent, assuming we keep
our assumption that 7" does. Let t € T and m > 0 with mt ¢ S. Define
6 € H by ef =t and E10 = {0}. Then

(me)[0] = m(ef) + me = mt + me ¢ S + me.
Thus [me, [0]] ¢ S. Consequently, (4/5)/C4/s(4) is not periodic.

From now on write A multiplicatively and let G = (z)A, where z has
order 2 and inverts A. Now inversion is central in Aut A. Thus the action of
FrAut A on A extends to G by centralizing = and clearly this action on G
is finite-finitary. Hence we may assume that A < FpAut G with 2 € Cg(A).
For a € A let 0, denote the inner automorphism ¢ — a~'ga of G. Clearly
A < Cg(oy). Set X = {0, : a € A}. Then ¥ < FpAutG and hence
I'=(A,%) <FrpAutG.

If a € A, then zo, = za®. Then the map a — o, determines an iso-
morphism of A/S onto X. Clearly (0,)° = 045 for all § € A. Thus A/S
and X are A-isomorphic and hence X'/Csx(A) is not periodic. Therefore
I' is not centre-by-periodic. (Also A centralizes x and X' centralizes A, so



10 B. A. F. WEHRFRITZ

ANX = (1) and again I is the split extension of X' by A.) We have now
proved the following.

LEMMA 3.3. Let G = (x)A be the split extension of A by (x), where
A =T x (e) x Ey is as in Lemma 3.1 and x is the inversion automorphism
of A. Then FpAut G is not centre-by-periodic.

The minimal case of both Lemmas 3.1 and 3.3 is when A is the direct
product of a Priifer p>°-group for some prime p and an infinite cyclic group.
Thus we have now confirmed statement 1.3 and the claims in the paragraph
immediately following it. In both these cases, G is a soluble group of finite
abelian total rank and Hirsch numbers 2 and 1 respectively. (A soluble group
G has finite abelian total rank if G has finite Hirsch number and 7(G) satisfies
the minimal condition on subgroups.) Suppose G is a finite extension of a
soluble group of finite abelian total rank. If G has no Priifer subnormal
subgroups, then G is (torsion-free)-by-finite and I" = FpAut G is centre-by-
finite by Proposition 1.2. If G has no infinite cyclic subnormal subgroups,
then Fitt G is periodic and I is locally finite, also by Proposition 1.2. Lemma
3.3 shows that if G contains at least one Priifer subgroup and at least one
infinite cyclic subgroup, then I" need not be centre-by-periodic, which tidies
things up nicely.

4. Examples: centre-by-(locally finite) groups

Proof of Statement 1.1. Let I' be any FC-group. We claim that I" € Fg.
Let G = (z)(I} x I%) be the wreath product of I and a cyclic group of
order 2, where |z| = 2, I'1 and I are copies of I', and z interchanges I
and Iy. It is easy to check that Cg(7y) has finite index in G for every v € I}
and that N (G) = (1). Thus I" embeds into FpAut G via any isomorphism
of I' to I followed by conjugation on G.

Proof of Proposition 1.5. Suppose I' is an infinite simple subgroup of
FrAut G for some group G. Note first that I" is locally finite (since I always
is by 2.5). If I' does not act faithfully on [G, I, I"“], it centralizes it. But
then I stabilizes the series G > [G, '] > [G, I, '] > (1) and consequently
is nilpotent. Thus I" acts faithfully on [G,I’,I"“] and we may henceforth
assume that G is locally finite-normal by Lemma 2.3.

Suppose G is locally nilpotent. Since G is also locally finite-normal, it
is hypercentral. If I' centralizes every upper central factor of G, a simple
induction on the central height of G (and the simplicity of I") shows the I
centralizes (G, which it does not. Thus we may assume that G is abelian.
Suppose I' centralizes every elementary abelian ['-invariant section of G.
Then since I' is perfect simple, I' centralizes G/G™ for every positive in-
teger n. But then I' centralizes G/(),, G" and [, G". This implies that I’
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is abelian, which it is not. Thus we may assume that G is an elementary
abelian p-group for some prime p and then FpAut G is the finitary linear
group FAutgr(y) (G). This settles this case.

Now consider the case where G is not locally nilpotent. Choose A < I
finite but not nilpotent. There exists N normal of finite index in G that
is centralized by A and there exists H > N normal in G with G/H = S
(finite) simple. Set K =(((X <G : G/X = 5). Clearly K is normal in I'G.
We claim that I" acts faithfully on some section of G that is residually a
specific finite simple group. If not, [G,I'] < K and I acts faithfully on K.
Clearly (K : KNN) < (G : N).If [G, I'] is not contained in N we repeat the
above step, replacing G and N by K and K NN and, if possible, keep going.
After a finite number, 7 say, of steps we arrive at [G,['] < N. But then A is
nilpotent, which we have assumed otherwise. Thus I" acts faithfully on some
section of G that is residually a specific finite simple group. Consequently,
we may assume that G is residually a specific finite simple group S. If S is
cyclic, then G is abelian and we are back in the previous case. Thus assume
S is a perfect finite simple group.

Let 2 ={S; :i € I} be the set of all normal subgroups of G isomorphic
to S. We claim that G = (S; : ¢ € I), from which it follows that G is the
direct product of the S;. Now G is locally finite-normal. Let X < Y be
non-trivial finite normal subgroups of G. Then there exist distinct normal
subgroups Hy, ..., H, of G with each G/H; isomorphic to S such that with
H =(); Hj we have X N H = (1). Then G/H = S and XH/H = X is a
normal subgroup of G/H. Hence X = X; x --- x X,,, for some X; = S. In
the same way we have Y = Y7 x --- x Y, with each Y} isomorphic to S. But
X is normal in Y, so each X is a Y}, for some k = k(j). Consequently, each
X is normal in Y, for all such Y. Therefore each X is an S; and therefore

The normal subgroups of G are the (S; : i € J) as J ranges over all
possible subsets of I. Clearly I" embeds into Sym({?2) via its action on G. If
N is a normal subgroup of G of finite index, then N = (S, : i € J) with J
cofinite in I, the latter since G/N = (S; : i € I\ J). Thus I' < FSym({2).
Therefore I' is a finitary alternating group, not necessarily over {2 itself; this
follows from a theorem of Wielandt [16, Satz 9.4|. The finitary alternating
groups are finitary linear, in fact over any field, via (infinite) permutation
matrices. The proof is complete.

Proof of Statement 1.4. We prove that Hall’s countable universal locally
finite group is not an Fg-group. If it were it would be isomorphic to some
finitary linear group by Proposition 1.5, and hence (see [3, 6.1]) so would
every countable locally finite group. However, there are very many such
groups that are not isomorphic to finitary linear groups. For example, finitary
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linear Baer groups are Fitting groups (see the theorem of [12]), and there
are countable locally finite Baer p-groups, p a prime, that are not Fitting
groups (see [9, Vol. 2, p. 4]).

5. The polycyclic cases

LEMMA 5.1. Let K and Z be normal subgroups of a group G such that
Z < KNG(G) and K/Z € PF. Suppose G/Cq(K) is finitely generated.
Then K =TZ, where T is a PF-subgroup normal in G.

Proof. There are finite sets X and Y with K = (X)Z, G = (Y)Cq(K)
and Y = Y1 For each # € X and y € Y there exists z(z,y) € Z with
z¥ € (X)z(z,y).Set S = (2(z,y) rx € Xandy € Y)and T = (X)S. Then T’
is finitely generated, T/(T'NZ) € PF and TNZ < (;(T). Therefore T' € PF,
e.g. by [I5, 3.9]. Also G centralizes S, and Y normalizes T'. Therefore G
normalizes 7.

REMARK. In Lemma 5.1 we can weaken the hypothesis that G/Cq(K) is
finitely generated to G/Cq(K/K') being finitely generated, which makes 5.1
much more similar to its Ch analogue, Lemma 7.3 below. (In Section 5 we
do not need the weaker hypothesis, but in Section 7 the stronger hypothesis
is definitely insufficient.) To see that this strengthening of 5.1 holds, note
that K/(1(K) € PF, so K’ € PF (see [9, Vol. 1, p. 115]). Thus one may
pass to G/K' and then 5.1 in its present form applies.

LEMMA 5.2. For some group G, let I' be a finitely generated subgroup of
FprAut G. The following hold:

(a) If G is centre-by-PF, then G' € PF and I' € Ly.
b) [G,I'] is centre-by-PF.

) |G, I, I'“] € PF.

d) I'e (GNA)Lg.

) If I' is soluble-by-finite, then I' € PF.

) I is residually finite.

(
(c
(
(e
(f

Proof. There exists a normal subgroup N of G with [N,I'] = (1) and
G/N € PF.

(a) Here G/(1(G) € PF. Apply Lemma 5.1 with K, Z and G replaced
by G, NN (1 (G) and I'G respectively. Thus G = T'Z for some PF-subgroup
T normal in I'G and Z central in I'G. Then I' embeds into Aut7T and so
lies in Ly, by a theorem of Merzlyakov (6] or [I1} 1.4]). Finally G’ € PF (see
[9, Vol. 1, p. 115]).

(b) Set C' = Cg(N) and note that [G,I'] < C' by Lemma 2.1. Then
CNN < G(C)and C/(CNN) = CN/N < G/N, so C is centre-by-PF.
Part (b) follows.
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(¢) Applying Lemma 5.1 to Z = CNN < C < I'C we have C =TZ
for some PF-subgroup T normal in I'C, and Z central in I'C". Then [C, I']
equals [T, I'] < T and so is a PF-group. Also so is C’ by [9 Vol. 1, p. 115]
again. Consequently, since [G, '] < C,

(c, % =[c,[G, NI < [c, ¢!

is also a PF-subgroup. Part (c) follows.

(d) Set ¥ = Cr(G/[C, %) nCr([C,T%)). Now G = (X)N for some
finite subset X. If 0 € ¥ and = € X, then [Nz,0] = {[z,0]} and 0 —
([, 0])zex is an embedding of ¥ into A = ((1([C, T'¢]))¥X (cf. [5, 1.C.3(a)]).
But [C,I'%] € PF and X is finite; therefore A and so X are finitely gen-
erated abelian groups. Now I'/Cr([C,I'“]) € Lz by Merzlyakov’s theorem
again, since [C, '] € PF. Also I stabilizes the series G > C > [C, I'%], so
I'" < Cr(G/[C, I'Y]) and I'/Cr(G/[C, I'“]) is abelian and finitely generated.
Trivially such a group lies in Ly. Therefore I'/ ¥ € Lz and part (d) follows.

(e) Soluble Lyz-groups are always polycyclic (a theorem of Mal’tsev, e.g.
see [15, 4.4]) and clearly (G N A)P = P. Therefore part (d) implies (e).

(f) Now [C, '] € PF, so if n is a positive integer, then [C, ']/[C, [']"
is finite and (,[C,I"“]" = (1). Hence N, Cr(G/[C,I'“") = (1) and
Cr([C,I'%)/[C, I'%") stabilizes G > C > [C,I'“] > [C,'“]". Thus
I'/Cr(G/[C, I'%]") is nilpotent-by-finite, is by hypothesis finitely generated,
and therefore is residually finite. Consequently, I" is residually finite.

Clearly essentially the same proof yields the following (although (a) fol-
lows from 5.2(a), (b) from 2.1 and then (c)—(f) are immediate from (b) and
5.2(c)—(f).

LEMMA 5.3. For some group G, let I' be a finitely generated subgroup of
Fp Aut G. The following hold:

(a) If G is centre-by-P, then G' € P and I' € Ly.
b) [G, I is centre-by-P.
¢) [G, I, %] € P.
) I'e (G N A)LZ
e) If I' is soluble, then I € P.
f) I is residually finite.

Note that Theorem 1.6 is an immediate consequence of 5.2(e), and The-
orem 1.7 is an immediate consequence of 5.2(d) and 5.2(f).

6. Examples: polycyclic groups. We have already pointed out that
Fpr O FrUFp. If R is a ring with its additive group finitely generated (e.g.
R =Z) and if M is any R-module, then the finitary (module) automorphism
group FAutr M lies in Fp. In particular FAuty A lies in Fp for every abelian
group A. A group G is X-finitary if G/Cg(g%) € X for every g € G; that
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is, G is X-finitary if and only if Inn G < Fx Aut G (assuming X is quotient-
closed). An F-finitary group is just an FC-group and PF-finitary groups in
[2] are called PC-groups. Note that to say G is X-finitary is not the same as
saying G € Fx, even for X equal to F, P or PF: if GG is an infinite simple
finitary linear group over a finite field, then G lies in Fg N Fp but clearly
cannot be PF-finitary. Of course if G is X-finitary, then Inn G € Fx. Any
F-finitary group I' lies in Fg by 1.1. The trick used in the proof of 1.1,
namely letting G be the wreath product of I" with a cyclic group of order 2
and allowing I' to act on GG via the inner automorphisms of G induced by
one of the two direct factors of the base group isomorphic to I', proves the
following.

STATEMENT 6.1. Every PF-finitary (resp. P-finitary) group lies in Fpg
(resp. Fp).

Thus PF-finitary L(SF)-groups are locally PF-groups by 1.6 and 6.1. In
fact much more is already known to be true. Write G € L(<« PF) if G has

a local system of normal PF-subgroups of GG, and similarly with P in place
of PF.

THEOREM 6.2 (Franciosi, de Giovanni and Tomkinson [2]). A group G
is PF-finitary if and only if G € L(< PF); also G is P-finitary if and only
if G e L(«P).

Note that the corresponding statement for the class F is false; that is,
being an FC-group is not the same as being locally (finite normal). It is easy
to derive a proof of 6.2 from what we have done above.

Proof. Let G be PF-finitary and pick ¢ € G. Set N = Cg(g%) and
K = Cg(N). Now G/N € PF, so G = (Y)N for some finite subset ¥ of G.
Then G/Cg(Y%) is also in PF. Set Z = Cx(Y®). Then K/Z € PF and
7Z < (1(G), so K =TZ by Lemma 5.1, where T is in PF and normal in G.
But g € K, so (g)T is in PF and is normal in G. Consequently, (¢%) < (g)T
is also in PF and therefore G € L(< PF).

Conversely, suppose G € L(<x PF) and choose g € G. Then (¢¢) € PF,
so G/Cq(g%) € Ly by Merzlyakov’s theorem. Thus G is PF-finitary by the
following lemma.

LEMMA 6.3. If G < GL(n,Z) is locally (soluble-by-finite), then G € PF.

Proof. If X <Y are finitely generated subgroups of G, then X% < Y?°
and are soluble, so M = Jy X U is a locally soluble, normal subgroup of G
with G/M locally finite (see [10, Chapter 5]). Then M is soluble [10] 3.8],
so its (Zariski) closure N in G is a soluble normal subgroup of G [10, 5.9
and 5.11] and G/N is isomorphic to a (locally finite) subgroup of GL(r, Q)
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for some integer r > 1 [I0} 6.4]. Then G/N is finite by [10, 9.33] and N is
polycyclic by Mal’tsev’s theorem [15] 4.4].

Returning to the proof of 6.2, if G € L(< P), then clearly every PF-image
of G is locally soluble and hence polycyclic. Thus G is P-finitary by the PF
case above. If G is P-finitary, then every section of G is P-finitary and also
G € L(< PF) by the PF case. But finite P-finitary groups clearly are soluble,
so G € L(<« P). All parts of 6.2 are now proved.

7. The Chernikov case. The basic properties in this case were discov-
ered by Yu. D. Polovitskil. In [7] (see also [9} 4.27]), he proved that if G is a
group with G/(;(G) € Ch, then G’ € Ch, and in [8] he proved that a group
G is Ch-finitary if and only if for all 2 € G we have (%) € Ch.G; and
G /Cq(2%) periodic. (G denotes the class of all cyclic groups.) The latter is
not quite in the form using the local operator that we have used in the F, P
and PF cases and Polovitskii’s Second Theorem can be reworked as follows
(but see the end of this section for proofs).

STATEMENT 7.1. A group G is Ch-finitary if and only if G is a union
of normal subgroups L satisfying [L,G] € Ch with G/Cg(L) periodic.

Thus if G is a Ch-finitary group, then G’ < 7(G), every periodic normal
subgroup of G is locally (a normal Ch-subgroup of G) and 7(G) is the union
of all the normal Ch-subgroups of G.

With Fecyp defined analogously to Fg and Fp etc., clearly Fop D Fp. If
I' is Ch-finitary then I' € F ¢y via the usual trick of letting G be the wreath
product of I" by a cyclic group of order 2. As with the PF case, Fop-groups
need not by Ch-finitary and for much the same reason. If G € Ch, then
FecnAut G = Aut G € Ch.L¢. Polovitskii’s Second Theorem suggests that
perhaps we should be working with Ch.G rather that Ch. However, if
G € Ch.Gq, then Aut G lies in Ch.L¢ but need not be Ch-finitary; just
consider the extension G of a Priifer p>°-group C by its automorphism x
given by a® = a!*? for all @ € C, when G is in Ch but neither G nor Inn G is
Ch-finitary. However Ch.G1-groups always lie in Fop, (see Lemma 8.3 below).

Suppose G is abelian. Then FopAut G is studied in [14], being denoted
there by F1 Auty G. For example, it is shown in [14] that if G is abelian, then
FcnAut G is locally residually finite [I4] 104] and is an extension of a locally
residually nilpotent group by an Fp-group [14, 2;]. Further FpAut G is an
extension of a Fitting group by a group that is not necessarily in Fcp, but is
quite close to it (see [I4, 2!]). Thus there is some sort of vague relationship
between the classes Fp and Fcy. Taking G to be a divisible abelian p-group
of rank n shows that GL(n,Z)) lies in Fcp (where Z, denotes the ring of
p-adic integers) and in particular that Fcp NLe O Lyz. Then [10, 2.11| shows
that any free metabelian group of finite rank (indeed of rank at most the
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cardinality of C) embeds into GL(2,Z,) and so lies in Fcyp; presumably this
also holds for such groups of any rank.

LEMMA 7.2. Let G be a Ch-group and I' a subgroup of Aut G. If

(a) G is abelian or
(b) I' is finitely generated,

then I' € Lc.

Proof. (a) Note first that finite extensions of L¢-groups are in L¢ (e.g.
[10, 2.3]). Here G = F & D, where F is finite and D is divisible. Then
Hom(D, F') = {0}, Hom(F, D) is finite and

Aut G = ((Aut F) x (Aut D))(1 + Hom(F, D)).

Also (Aut F') x (Aut D) lies in L¢ and has finite index in Aut G. Part (a)
follows.

(b) Let A denote the finite residual of G, so A is divisible abelian and
G/A is finite. There is a finite subgroup K of G such that KA = G and
such that K and K¢ are conjugate in G for every automorphism ¢ of G (see
[5, 3.9]). Let ¢* be the inner automorphism of G determined by the element
g € G. Then Aut G = Npyg(K).G*, so if C = Cay(K) then CA* has
finite index in Aut G.

Now I is finitely generated, so I'NC' A* is too and 'NCA* < (X,Y) for
some finite subsets X of C and Y of A*. But A* is a divisible abelian normal
Ch-subgroup of Aut G, so (YX) is finite. Hence (X) has finite index in (X, Y).
Now (X) < C and C N Caytg(A) = (1) (since KA = G), so C embeds into
Aut G/Cputc(A) and hence into Aut A, which is an L¢-group, for example
by part (a). Therefore C, (X), (X,Y), I'NCA* and I" are all in L¢.

We now produce analogues of 5.1 and 5.2.

LEMMA 7.3. Let K and Z be normal subgroups of a group G such that
Z < KNG(G) and K/Z € Ch. Suppose G/Cq(K/K') is finitely generated.
Then [K,G] € Ch.

Proof. By Polovitskil’s First Theorem K’ € Ch and K’ is clearly normal
in G and contained in [K,G]. Thus we may pass to G/K' and assume that
K is abelian. Then G = (X)Cg(K) for some finite set X. If z € X, then
kZ — [k,x] is a homomorphism of K/Z into K and hence [K,z] € Ch.
Let T = ([K,z] : ® € X) < [K,G]. Then T € Ch. Also z € X centralizes
K/[K,z], so (X) centralizes K/T, as trivially so does Cq(K). Therefore
[K,G] =T € Ch.

LEMMA 7.4. Let H be a Ch-group and A an H-module whose additive
group is a Ch-group. Then Der(H,A) = S x T, where S is Z-torsion-free
and T € Ch. If H is divisible, then T = (0).



FINITARY AUTOMORPHISM GROUPS 17

Proof. Let K denote the finite residual of H. Now Autyz A is residually
finite. Hence K acts trivially on A and Der(K, A) = Hom(K, A), which is
torsion-free (e.g. [3, p. 182]). If H = K, then Der(H, A) is torsion-free.

Now H/K is finite; let X be a (finite) transversal of H to K. If x € X,
k € K and § € Der(H, A), then

(vk)§ = (26)k + k6 = 0 + ko.

Hence § — {(26)zcx, 0|k } is an additive embedding of Der(H, A) into AX) @
Hom (K, A). Thus the torsion subgroup T of Der(H, A) embeds into AX) and
as such lies in Ch. Consequently, Der(H, A) = S @ T for some torsion-free
S by [3, 21.2 and 27.5].

LEMMA 7.5. For some group G, let I' be a finitely generated subgroup of
FenAut G. The following hold:

(a) If G is centre-by-Ch, then |G, I'|G' = |G, I'G] € Ch.

(b) [G,I] is centre-by-Ch.

(c) [G,I,I'%] € Ch.

(d) I' is residually finite.

(e) I'e (FSNA)Lc.

(f) I' is (torsion-free)-by-finite.

(g) If 7(G)=(1), more generally if G has no non-trivial normal Ch-sub-
groups, then I' is finitely generated abelian.

By 6.2 a finitely generated group is PF-finitary if and only if it is PF.
Since GNCh = F, the Ch analogue of this, namely that a finitely generated
group is Ch-finitary if and only if it is F-finitary (and hence centre-by-finite),
is immediate.

Proof. There is a normal subgroup N of G centralized by I" with G /N € Ch.

(a) Here also G/(1(G) € Ch and therefore so does G/Z for Z = N N
(1(G). Clearly Z < (1(I'G). Thus [G, I'G] € Ch by 7.3, where we have taken
G for K and I'G for G.

(b) Set C' = C(N) and note that [G,I'] < C by 2.1. Now set Z = CNN.
Then Z = ¢(N) < ¢i(C) and C/Z = CN/N < G/N € Ch. Thus C is
centre-by-Ch and part (b) follows.

(c) Since C' is centre-by-Ch, part (a) implies that [C,I'C] € Ch. But
[G,I'] < C, so I'C is normal in I'G. Hence [C,I"%] < [C, I'C] and part (c)
follows.

(d) Let B/N denote the finite residual of G/N. Then G/B and I'/Cr(G/B)
are finite, so Cr(G/B) is also finitely generated. Thus we may assume that
(G, I < B.

Suppose I' = (y1,...,7¥m). Now B/N is a divisible abelian Ch-group.
For r > 1 set B, = {b € B :b" € N}. Then each B,/N is finite. By [5],
3.9] there is a finite subgroup K/N of G/N with KB = G such that K~ is
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conjugate to K, in particular by an element of B, for every «v in I'. Hence
for each i there exists b; € B with K~; = bi_lei. There exists s > 1 with
each b; in Bs. Suppose s divides r. Then B, /N is finite and I" normalizes
KB,. Hence I'/Cr(K B;) embeds into FpAut(K B,). As such it is finitely
generated and, by 2.3, centre-by-finite. Thus I'/Cq(K B, ) is residually finite.
Clearly (), Cr(KB;) = Cr(G) = (1). Therefore I' is residually finite.
(e)Set ¥ = Cr(G/[C, I'1)NCr([C, I'“]). Now I stabilizes the series G' >
C > [C, T, so I'/Cr(G/[C, T'%]) is abelian, finitely generated and hence
an Le¢-group. Also I'/Cr([C, I'“]) € L¢ by 7.2. Consequently, I'/ ¥ € L.
Now N centralizes I'C, so the map o — (gN +— [g,0]) is a well-defined
embedding of X into Der(G/N, ¢;([C, I'%])). Thus the torsion subgroup T of
X lies in Ch by 7.4. But X is residually finite by part (d), so 7" is finite. Again
by (d) there is a normal subgroup A of I' of finite index with ANT = (1).
Then AN X is torsion-free abelian. Also A/(A N X) embeds into I'/X and
hence is in L¢. Further I'/A is finite. Therefore I'/(ANX') € L¢ by [10] 2.3].
(f) Finitely generated Lc-groups are (torsion-free)-by-finite [10} 4.8]. Thus
part (f) is an easy consequence of part (e).
(g) Here [G,I,I'] = (1) by part (c), so stability theory shows that I" is
abelian and, by hypothesis, finitely generated.

Note that Theorem 1.8 follows from parts (d) and (e) of Lemma 7.5.
Our final three lemmas of Section 7 prove both 7.1 and Polovitskii’s Second
Theorem.

LEMMA 7.6. Let G be a group. Then (%) € Ch.Gq for all x € G if and
only if [(z%),G] € Ch for all v € G.

Proof. Set H = (z%). Clearly H = (z)[H, G], so one way round is trivial.
Suppose H € Ch.G; for all x € G. Then H N7(G) = 7(H) € Ch, H =
(x)r(H) and H/7(H) is trivial or infinite cyclic. Then G/7(G) is torsion-free
with each of its cyclic subgroups normal. Therefore G’ < 7(G), so [H,G] <
HN7(G) € Ch.

LEMMA 7.7. Let z be an element of a group G and set H = (z%) and
T =7(H). If H € Ch.Gy and if G/Cq(T) is periodic, then G/Cq(H) € Ch.

Proof. Clearly H/T is cyclic, T € Ch is normal in G, and H = (x)T.
Also G/Cq(T) € Ch by [B, 1.F.3|, and G/Cq(H/T) is finite (in fact of order
at most 2). Further (Cq(T) N Cq(H/T))/Cq(H) embeds into the centre of
T by [B, 1.C.3], so G/Cq(H) € Ch as claimed.

LEMMA 7.8. Let G be a Ch-finitary group and L a finitely G-generated
subgroup of G. Then G /Cq(L) is periodic and [L,G] € Ch.

Proof. Set C = Cg(L) and L = (X%), where X is some finite subset.
Clearly C' = (,cx Ca(2¢), so G/C € Ch. In particular G/C is periodic.
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Also L/(CNL) € Chand CNL = (i (L), so by Polovitskii’s First Theorem
L’ € Ch. By passing to G/L’ we may assume that L < C' is abelian.

If g € G, then L/CL(g%) € Ch and G/C acts on it via conjugation on L.
Then G/C acts as a finite group on L/C(¢%) by [5, 1.F.3] and hence if
K/C' is the finite residual of G/C, then G/K is finite, K/C is a divisible
abelian Ch-group and

LKl < () CLlg®) =LNG(G)=Z say.
geqG
If x € X (recall L = (X)), then the map kC + [k, z] is a homomorphism of
K/Cinto Z,so [K,z] € Chandiscentralin G.Set D = ([K,z] : x € X) < Z.
Then D is a central (even divisible) Ch-subgroup of G. By passing to G/D we
may assume that K centralizes X. But C,(K) is normal in G, so [K, L] = (1)
and K = C.
There exists a finite set Y with G = KY. Then

G/Ca(YY) =G/ () Ca(y®) € Ch
yey
and clearly O (Y®) < CL(KY) = Z so L/Z € Ch. Let W denote the split
extension of L by G/K. Then Z < (;(W) and W/Z € Ch.F = Ch. Hence

Polovitskil’s First Theorem implies that [L,G] < W’ lies in Ch. The proof
is complete.

8. Examples of F¢gp groups

LEMMA 8.1. Let R be a finitely generated integral domain of characteris-
tic zero and let n be any positive integer. Then there exists a positive integer
m such that for almost all primes p the group GL(n,R) embeds into the
automorphism group of the divisible abelian p-group of rank mn.

Proof. Let F be the quotient field of R. By Noether’s Normalization
Lemma (e.g. [I7, p. 200, Theorem 25|), there exist integers h > 0 and k > 0
and algebraically independent elements z1,. ..,z (over Q) of R[h™!] < F
such that R is integral over

S=2zh "t z,..., 2] <F
But R is a finitely generated ring. Therefore RS = R[h™!, z1,..., 2] < F
is a finitely generated, torsion-free S-module.
Let K < F denote the quotient field of S. Then dimg RK = m < oo
and there exist elements y1, ...,y of RK and some a € S\ {0} such that
RK = @, Ky; and €, aSy; < RS < &, Sy;. Then

@ aSla 'y < RS[a™'] < @ Sl y;,

so RS[a™1] =@, Sla)y;.
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Since o € S there exists s > 0 such that ah® € Z[xy,...,x], which is
a polynomial ring over the x;’s. Hence there exist integers ri,...,r, with
B = ah®(r1,...m) # 0. Let p be any prime exceeding the integer |G|h.
Then in Zy,) = {u/v : u,v € Z & v ¢ Zp} we see that h and Sh™° =

a(ry,...,r,) are not congruent to 0 modulo p. In the p-adic integers Z,
there exist algebraically independent (over the rationals) elements z1, . .., 2
in pZ,. Also

a(ri+ 21, ..., + 26) =p a(ri, ..., m,) = %0,

which is not congruent to 0 modulo p in Z,) and hence not congruent to 0
modulo p in Z, either. Thus

a(rr + 21, Tk + 2K)
is a unit of Z, and hence S[a~!] is isomorphic to the subring
ZIh Y 4 21yl 4 2 oy 21, T 2e) T
of Zp.
Let €1, ...,e, be the standard basis of the row vector space F(™). Then

©® RS[a Ye; = D Sla Nyie;

and so GL(n, R) < GL(n, RS[a~]) embeds into GL(mn, S[a~!]) and hence
into GL(mn,Z,). The latter is isomorphic to AutD for D the divisible
abelian p-group of rank mn. The lemma follows.

COROLLARY 8.2. If I' is a finitely generated linear group of characteris-
tic 0, then I' € Fcn.

For if I' < GL(n, F'), where F' is a field of characteristic 0, let R denote
the subring of F' generated by the entries of the elements of I'. Then R is
finitely generated and Lemma 8.1 applies. Thus we have now proved that
Fcn 2 GNLc.

Note that 8.2 does not extend to any positive characteristic: if p is a
prime let I" be the wreath product of a cyclic group of order p by an infinite
cyclic group. Then I is metabelian, 2-generator and isomorphic to a linear
group of characteristic p and degree 2 (see [9, 2.16]|). However if I" € Fgp,
then I' € (F~8 N A)L¢ by Lemma 7.5 and hence I" € L¢. The latter is false
(see [9, 10.21]). Further note that Theorem 1.9 follows from Lemmas 7.2 and
8.1. Finally, we prove the following.

LEMMA 8.3. If I' is a Ch.G1-group, then I' embeds into Aut G for some
Ch-group G and in particular lies in Fop.

Proof. Now I' = A(y) for some normal Ch-subgroup A of I' and some
y € I' (we are not assuming that A is abelian). If y has finite order, then
I' € Ch and hence I' embeds into the automorphism group of the wreath
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product I'{ (x), where || = 2. Clearly here I" ! (z) € Ch. Thus assume that
y has infinite order, so now I" is the split extension of A by (y).

Set Z = C,(A). If Z # (1), then I'/Z is Ch and so I'/Z embeds into
Aut Go for Go = (I'/Z)  (x). If Gy is any Priifer group (for any prime), then
I'/A = (y) is embeddable in Aut G;. Thus I" embeds into Aut(Go x G1) and
clearly Gy x Gy is a Ch-group.

Now assume that Z = (1). Set W = I'! (z) = (x)(I} x I%), where
v + 7y is an isomorphism of I" onto [ and (v;)* = 73—; for i = 1,2.
Then A = (y1y2)A1 < W is isomorphic to I'. Set G = (x)A142 < W.
Clearly G € Ch. Also A1 A5 is normal in W and x and y1y2 commute, so A
normalizes G and we have a map of A into Aut G with kernel Ca(G). Now
y acts faithfully on A, so y1y2 acts faithfully on As, and A; centralizes As.
Hence Ox(A2) = Ay. Also if a € A\ (1), then a] 'za; = rajay’ # x. Hence
Ca(z) = (y1y2). Therefore Ca(G) = (1) and consequently I" = A embeds
into Aut G. The proof is complete.
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