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CHERNIKOV-FINITARY AUTOMORPHISM GROUPS
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B. A. F. WEHRFRITZ (London)

Abstract. If X is a property or a class of groups, an automorphism φ of a group
G is X-finitary if there is a normal subgroup N of G centralized by φ such that G/N is
an X-group. Groups of such automorphisms for G a module over some ring have been
very extensively studied over many years. However, for groups in general almost nothing
seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general
case for X the class of finite groups. Here we look further at the finite case but our
main results concern the cases where X is either the class of polycyclic-by-finite groups
or the class of Chernikov groups. The latter presents a new perspective on some work of
Ya. D. Polovitskĭı in the 1960s, which seems to have been at least partially overlooked in
recent years. Our polycyclic cases present a different view of work of S. Franciosi, F. de
Giovanni and M. J. Tomkinson from 1990. We describe the polycyclic cases in terms of
matrix groups over the integers, and the Chernikov case in terms of matrix groups over
the complex numbers.

1. Introduction. Let X be a class of groups. Say that an automorphism
γ of a group G is X-finitary if there is a normal subgroup N of G such that
[N, γ] = 〈1〉 and G/N is an X-group. We are only interested here in the
cases of X being either the class F of all finite groups, or the class P of all
polycyclic groups, or the class PF of all polycyclic-by-finite groups, or the
class Ch of all Chernikov groups. In each of these cases the set FXAutG of
all X-finitary automorphisms of G is a (normal) subgroup of AutG and N
can be taken to be CG(γ)G =

⋂
g∈GCG(γ)

g. We consider here the structure
of subgroups Γ of these FXAutG. (Unless otherwise indicated, X below
denotes one of F, P, PF or Ch. Also we sometimes use the expanded terms
finite-finitary, polycyclic-finitary etc. instead of F-finitary, P-finitary etc.)

First we consider the finite-finitary case. Note that here an alternative
definition is: γ ∈ AutG is finite-finitary if and only if the index (G : CG(γ))
is finite. According to Mathematical Reviews Belyaev and Shved [1] prove
the following (I have been unable to obtain a copy of this paper and hence
have been unable to check its contents for myself): Γ ≤ FFAutG is abelian-
by-(locally finite), (locally finite)-by-abelian, locally centre-by-finite and (pe-
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riodic abelian)-by-(centre-by-(locally finite)). (These four theorems all follow
from our results below.) In the earlier paper [13] the current author consid-
ered the case where G is abelian. In this case we showed in particular that Γ
is locally finite with a normal subgroup N lying in the Fitting subgroup of
Γ such that Γ/N embeds into a direct product of finitary linear groups over
fields of prime order. Further we showed that any periodic abelian group A
always embeds into FFAutG for some abelian group G, and embeds into
FFAutG for some periodic abelian group G if and only if A has a residu-
ally finite subgroup B such that A/B is a direct product of cyclic groups.
[13] contains further results of this type.

Let FF denote the class of all groups Γ for which there exists an em-
bedding of Γ into FFAutG for some group G. If V is a vector space over
a finite field F , then FFAutV contains the finitary general linear group
FGL(V ) = FAutF V over V with equality if F has prime order, so all fini-
tary linear groups over finite fields lie in FF. All such groups are locally
finite. Also the following holds (see below):

Statement 1.1. Every abelian group lies in FF; more generally, so does
each FC-group.

Obviously such groups are not necessarily locally finite. Also there are
finitary linear groups over finite fields that are not FC-groups, for example
infinite simple such groups. It is easy to see that the class FF is closed under
the subgroup operator S and the direct product operator D. (The infinite
dihedral group is not in FF, being finitely generated but not centre-by-finite;
it is also residually finite. Thus FF is not closed under the poly, residual and
cartesian operators P, R and C. However, it is R0-closed since R0 ≤ SD.)

Every group that can be constructed from the above examples of FF-
groups and repeated use of the S and D operators is centre-by-(locally finite).
Moreover every centre-by-(locally finite) group satisfies the conclusions of the
four theorems of Belyaev and Shved quoted above. Frequently FF-groups
are centre-by-(locally finite). Below, FittG denotes the Fitting subgroup of
a group G, τ(G) its unique maximal locally-finite normal subgroup, ∆(G)
its FC-centre and ζ1(G) its centre. The rank of G is the supremum, over the
finitely generated subgroups X of G, of the minimum number of generators
of X, so rankG is a non-negative integer or infinity.

Proposition 1.2. Let G be a group and Γ a subgroup of FFAutG. Under
any one of the following five conditions Γ is at least centre-by-(locally finite):

(a) G is an FC-group; here Γ is locally finite.
(b) FittG is periodic; here Γ is locally finite.
(c) [G,Γ ] ≤ τ(G) ∩∆(G); here Γ is locally finite.
(d) τ(G) ∩∆(G) = 〈1〉; here Γ is abelian.
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(e) G is a finite extension of a torsion-free soluble group of finite rank;
here Γ is centre-by-finite.

Notice that (e) here covers all polycyclic groups. However:

Statement 1.3. Not every FF-group is centre-by-(locally finite).

Below we present a range of groups G for which FFAutG is not centre-
by-periodic. The simplest to state and prove is the wreath product of A by
a cyclic group of order 2, where A is the direct product of an infinite cyclic
group and a Prüfer p∞-group for some prime p. Requiring only a little more
proof is the split extension 〈x〉A, where A is as above and x has order 2 and
inverts A (meaning that ax = a−1 for all a in A).

Conversely:

Statement 1.4. Not every centre-by-(locally finite) group is in FF; in-
deed, nor is every locally finite group.

For example, P. Hall’s countable universal locally finite group U (see [5,
Chapter 6, especially 6.4 and 6.1]) is not, the basic reason being the following
proposition and the simplicity of U .

Proposition 1.5. Any simple group Σ in FF is isomorphic to a finitary
linear group over a field of prime order.

Obviously the case where Σ is finite is of no interest in this context.
The infinite locally-finite simple finitary linear groups have been completely
classified by J. I. Hall [4]. Thus if Σ is infinite in Proposition 1.5, then Σ is
either a finitary analogue of the alternating groups, the symplectic groups,
the special unitary groups or the orthogonal groups, or one of the finitary
analogues of the (projective) special linear groups, clearly over a locally finite
field and in fact over a finite field, though this is far from obvious.

We now turn to the polycyclic cases. It is not as straightforward as just
replacing F in the Belyaev–Shved theorem by P or PF and in some ways
the conclusions here are more elegant.

Theorem 1.6. Let Γ be a locally (soluble-by-finite) subgroup of
FPFAutG for some group G. Then Γ is locally (polycyclic-by-finite).

We abbreviate the conclusion here to Γ ∈ L(PF). The first hypothesis
on Γ we also shorten to Γ ∈ L(SF). If Γ ∈ L(PF) then clearly Γ satisfies
all four of the Belyaev–Shved conclusions with PF replacing the word finite.
(In the finite-finitary case the conclusion corresponding to that of 1.6 would
be that Γ ≤ FFAutG and Γ ∈ L(SF) together imply that Γ is locally finite,
a conclusion that is clearly false, since every abelian group is in FF.)

In 1.6 we do need some restriction on Γ beyond Γ ≤ FPFAutG, for
clearly AutG = FPFAutG whenever G ∈ PF. For example GL(2,Z) =
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FPAutZ(2) is not in L(PF); it contains non-abelian free subgroups. (Z de-
notes the integers.) However, we can draw positive conclusions about arbi-
trary subgroups Γ of FPFAutG, weaker, of course, than Γ ∈ L(PF). Denote
by LZ the class of all groups that can be embedded into someGL(n,Z), where
n is a positive integer. As usual A denotes the class of all abelian groups
and G ∩A the class of all finitely generated abelian groups.

Theorem 1.7. Let Γ ≤ FPFAutG for some group G. Then Γ is locally
in the class (G ∩A)LZ. Also Γ is locally residually finite.

Thus if Γ is finitely generated in 1.7, then Γ has a free abelian normal
subgroup of finite rank with Γ/A ∈ LZ. Analogously to the class FF we define
the classes FP and FPF. Trivially FPF ⊇ FF ∪ FP. This is not an equality.
For example, let G denote the wreath product of an infinite cyclic group by
a finite non-abelian simple group S. Then G/ζ1(G) ∼= Γ ≤ FPFAutG in the
obvious way. Now S embeds into Γ and finite FP-groups are easily seen to be
soluble, so Γ /∈ FP. Further Γ is finitely generated but not centre-by-finite, so
Γ /∈ FF. (With different terminology, the class FG∩A is extensively discussed
in [14], at least where G is abelian.)

In our final two sections we indicate how a similar analysis can be applied
to the class Ch of Chernikov groups. This involves replacing the maximal
condition on subgroups by the minimal condition. The results here are nec-
essarily weaker; for a start the automorphism group of a Chernikov group
need not be countable, unlike that of a PF-group. Also it need not have
a faithful representation of finite degree over any field. However, its outer
automorphism group does at least have a faithful representation over the
complex numbers C (e.g. [5, 3.38]) and some use can be made of this. Let
LC denote the class of all groups that can be embedded into GL(n,C) for
some positive integer n. We can at least prove the following (compare 1.7
above).

Theorem 1.8. Let Γ ≤ FChAutG for some group G. Then Γ is locally
in the class (F−S ∩A)LC. Also Γ is locally residually finite.

Here F−S∩A denotes the class of torsion-free abelian groups. Theorem 1.8
and for that matter Theorem 1.7 are really results about finitely generated
such subgroups Γ and more information about these Γ are given by Lemmas
5.2 and 7.5 below. Actually all finitely generated LC groups lie in FCh, the
latter denoting the Ch analogue of FF and FPF (and trivially all LZ groups
are in FP). More precisely, we prove the following.

Theorem 1.9. Let Γ be a finitely generated group. The following are
equivalent:

(a) Γ ∈ LC.
(b) Γ embeds into AutG for some Ch group G.
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(c) There exists a positive integer r such that for almost all primes p the
group Γ embeds into the automorphism group of the divisible abelian
p-group of rank r.

However, not every finitely generated (F−S ∩A)LC group lies in LC, the
free (soluble group of derived length at most 3) of rank 2 being such an
example, since free metabelian groups of finite rank lie in LC by a theorem
of Magnus (see [9, 2.11] and use [9, 3.6]). A similar example is the wreath
product of a cyclic group of infinite order by the free metabelian group of
rank 2 (see [9, 10.21]). Of course Theorems 1.8 and 1.9 leave unanswered
questions.

2. Belyaev and Shved type results

Lemma 2.1. Let N be a normal subgroup of a group G. If Γ = 〈γ ∈
AutG : [N, γ] = 〈1〉〉, then [G,Γ,N ] = 〈1〉.

Proof. Clearly [N,G] ≤ N and [N,Γ ] = 〈1〉, so [N,G, Γ ] = 〈1〉 =
[Γ,N,G]. Therefore [G,Γ,N ] = 〈1〉.

Lemma 2.2. Let A be an abelian normal subgroup of a group G. If
A/CA(g) is periodic for all g ∈ G, then [A,G] is periodic.

In particular this shows that the fourth Belaev and Shved property fol-
lows from the first and third (actually it also follows from the first and the
second).

Proof. We may factor by the torsion subgroup of A and assume that
A is torsion-free. Let a ∈ A and g ∈ G. There is a positive integer n with
[an, g] = 1. Then (ag)n = (an)g = an and ag and a both lie in the torsion-free
abelian group A. Hence ag = a and consequently [A,G] = 〈1〉.

From now on in this section we consider an arbitrary group G and some
subgroup Γ of FFAutG. We work throughout inside the holomorph of G
and more particularly in its subgroup ΓG. Thus ΓG denotes the normal
subgroup 〈g−1Γg : g ∈ G〉 of ΓG.

Lemma 2.3. Suppose Γ is finitely generated. Then Γ ′ is finite, Γ is
centre-by-finite, [G,Γ ] is centre-by-finite and [G,Γ, ΓG] is finite.

Proof. Now Γ =〈γ1, . . . , γm〉 is finitely generated and CG(Γ )=
⋂
iCG(γi).

Thus G has a subgroup N of finite index centralized by Γ and we can choose
N normal in G. Then CΓ (G/N) has finite index in Γ and by stability theory
embeds into the abelian group Der(G, ζ1(N)) of derivations. Therefore Γ is
at least abelian-by-finite. Set C = CG(N) and Z = C ∩ N = ζ1(N). By
Lemma 2.1 we have [G,Γ ] ≤ C.

Now (C : Z) is finite, so C is centre-by-finite and hence C ′ is finite
(Schur’s Theorem, e.g. [15, 1.18] or use [9, 4.21]). If T denotes the maximal
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periodic normal subgroup of C, then C ′ ≤ T and C/T is torsion-free abelian
with Γ centralizing its subgroup ZT/T of finite index. Therefore [C, Γ ] ≤ T
by Lemma 2.2. Also [G,Γ ] ≤ C, so [G,Γ ] is centre-by-finite.

Certainly G, N , C and C ′ are all normal in ΓG, and Z is central in
ΓC and of finite index in C. Then CΓ (C/Z) has finite index in Γ and is
finitely generated. Further CΓ (C/Z)/CΓ (C) embeds into the abelian group
Hom(C/Z,Z), which has finite exponent dividing the order of C/Z. Hence
CΓ (C) has finite index in Γ and therefore the conjugacy class cΓC is finite
for every c ∈ C. But C = XZ and Γ = 〈Y 〉 for some finite sets X and Y .
Thus

[C, Γ ] = 〈[x, y]ΓC : x ∈ X & y ∈ Y 〉

is finitely generated. But [C, Γ ] ≤ T ; consequently, [C, Γ ] is finite.
Now [C, ΓG] = [C, [G,Γ ]Γ ] ≤ [C, Γ ]C ′, since [G,Γ ] ≤ C. Therefore

[C, ΓG] is also finite and consequently so is [G,Γ, ΓG]. Clearly Γ stabilizes
the series G ≥ C ≥ [C, ΓG], so Γ ′ ≤ CΓ (G/[C, ΓG]). Also Γ/CΓ ([C, ΓG]) is
finite and

Σ = CΓ (G/[C, Γ
G]) ∩ CΓ ([C, ΓG])

embeds into Der(G, ζ1([C, Γ
G])), which is abelian of finite exponent (divid-

ing the order of [C, ΓG]). But Γ is finitely generated and abelian-by-finite,
therefore Σ, CΓ (G/[C, ΓG]) and hence Γ ′ are all finite. By the ‘converse’ of
Schur’s Theorem (e.g. [9, 4.24]), Γ is centre-by-finite.

Remark. In Lemma 2.3 let d denote the minimal number of generators
of Γ and n the index ofN inG. Following through the proof above shows that
the orders of Γ ′, Γ/ζ1(Γ ) and [G,Γ, ΓG] are all bounded by integer-valued
functions of d and n only.

Lemma 2.4. Suppose [G,Γ ] is periodic and lies in the FC-centre of G.
Then Γ is locally finite.

Proof. We may assume that Γ is finitely generated. Let N and C be as
in the proof of Lemma 2.3, so [G,Γ ] ≤ C. Let c ∈ [G,Γ ]. Then c lies in the
FC-centre of G, so cG is finite. As in the proof of Lemma 2.3 we have cΓC
finite. It follows that cΓG is finite for every c ∈ [G,Γ ]. Now G = XN and
Γ = 〈Y 〉 for some finite sets X and Y , so

[G,Γ ] = 〈[x, y]ΓG : x ∈ X & y ∈ Y 〉

is finitely generated. By hypothesis [G,Γ ] is periodic, FC and hence locally
finite. Therefore [G,Γ ] is finite. If Σ = CΓ ([G,Γ ]), then Σ is normal in Γ ,
Γ/Σ is finite, Σ stabilizes the series G ≥ [G,Γ ] ≥ 〈1〉 and Σ embeds into
the abelian group Der(G, ζ1([G,Γ ])) of finite exponent dividing the order of
[G,Γ ]. Also Γ is finitely generated. Therefore Γ is finite.
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Theorem 2.5 (Belyaev and Shved).

(a) Γ ′ is locally finite.
(b) Γ is abelian-by-(locally finite).
(c) Γ is locally centre-by-finite and [G,Γ ] is locally (centre-by-finite and

normal in G).
(d) If H is any subgroup of Γ , then [H,Γ ] is periodic and normal in Γ .
(e) Γ is (periodic abelian)-by-(centre-by-(locally finite)).

Proof. Let ∆ be a finitely generated subgroup of Γ . Then ∆′ is finite
by Lemma 2.3 and these ∆′ form a local system for Γ ′. Therefore Γ ′ is
locally finite. Further by Lemma 2.3 each [G,∆,∆G] is finite and normal in
G and these subgroups form a local system for [G,Γ, ΓG]. Thus [G,Γ, ΓG]
is periodic and lies in the FC-centre of G. Set Σ = CΓ ([G,Γ ]). Then Γ/Σ is
locally finite by Lemma 2.4. Clearly Σ stabilizes the series G ≥ [G,Γ ] ≥ 〈1〉,
so Σ is abelian and Γ is abelian-by-(locally finite). This proves (a) and (b).
Now (c) follows from Lemma 2.3 and the simple fact that [G,∆] is normal
in G for all ∆, and (d) follows from (a) since clearly [H,Γ ] ≤ Γ ′. Finally if
Σ is as in the proof of (b), then [Σ,Γ ] is periodic abelian by (d). Clearly
Σ/[Σ,Γ ] is central in Γ and Γ/Σ is locally finite. The proof is complete.

Lemma 2.6. Suppose G is an FC-group. Then Γ is locally finite.

Proof. If G is periodic the claim is immediate from Lemma 2.4. We may
assume that Γ is finitely generated. Suppose first that G is abelian. With N
and Z as in the proof of Lemma 2.3 we see that CΓ (G/N) has finite index
in Γ and embeds into Hom(G/N,Z). The latter is abelian with exponent
dividing (G : N), and Γ is finitely generated. Therefore Γ is finite. (Actually
this is part of [13, Proposition 1.1].)

Now consider the general case and set A = ζ1(G), so G/A is locally
finite (e.g. see [9, 4.32]). There exists A1 ≤ A with A1 torsion-free and A/A1

periodic. Set B =
⋂
γ∈Γ (A1)

γ . Since Γ/CΓ (A) is finite by the abelian case,
it follows that A/B is periodic and B is torsion-free, central in G and normal
in ΓG. Clearly Γ/CΓ (B) is finite since Γ/CΓ (A) is finite, and Γ/CΓ (G/B)
is finite by the periodic case (G/B is periodic). Finally CΓ (B) ∩ CΓ (G/B)
embeds into Hom(G/B,B). The latter is trivial since G/B is periodic and
B is torsion-free. Therefore Γ is finite.

Lemma 2.7. If FittG is periodic, then Γ is locally finite.

Proof. Let γ ∈ Γ . There exists N normal in G of finite index and cen-
tralized by γ. For some n > 0 we have γn centralizing G/N . If Z denotes
the centre of N then 〈γn〉 embeds into the direct product Z(G:N) of (G : N)
copies of Z (e.g. see [5, 1.C.3]) and Z ≤ FittG, so Z is periodic. Therefore
Z(G:N) is periodic, γ has finite order, Γ is periodic and consequently Γ is
locally finite.
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Lemma 2.8. Suppose H ≤ GL(n, F ) is a linear group of finite degree n
over the field F . If H is locally centre-by-finite, then H/ζ1(H) is locally
finite.

Proof. Let X ≤ Y ≤ H, where X and Y are finitely generated and hence
centre-by-finite. Then X0 ≤ Y 0 ≤ ζ1(Y ) by [10, 5.4], where X0 denotes
the connected component of X containing 1 (ditto Y 0 for Y ). Thus X0 ≤⋂
Y≥X ζ1(Y ) ≤ ζ1(H). But (X : X0) is always finite. Therefore H/ζ1(H) is

locally finite.

Lemma 2.9. If G is a finite extension of a torsion-free soluble group of
finite rank, then Γ = FFAutG is centre-by-finite.

Proof. Since Γ ≤ AutG, Γ embeds into GL(n,Q) for some integer n
and Q the field of rational numbers (see [11, 1.2]). Then Γ/ζ1(Γ ) is locally
finite by 2.5 and 2.8. But Γ/ζ1(Γ ) is also isomorphic to a linear group of
finite degree over Q by [10, 6.4 and 5.4]. Consequently, Γ/ζ1(Γ ) is finite by
[10, 9.33].

Proposition 1.2 now follows, for part (a) is given by Lemma 2.6, part (b)
by Lemma 2.7, part (c) by Lemma 2.4, part (d) by Lemma 2.3 since here by
hypothesis [G,Γ, Γ ] = 〈1〉, and part (e) by Lemma 2.9.

3. Examples: non-(centre-by-periodic) groups. Consider an ad-
ditive abelian group A = T ⊕ E, where T is periodic and E is torsion-
free. Let H = {θ ∈ Hom(E, T ) : (E : ker θ) < ∞}. Clearly H is a sub-
group of Hom(E, T ) and H.AutT ≤ H. For θ ∈ H let [θ] denote the map
t+e 7→ (t+eθ)+e of A into itself, with the obvious notation. Then [θ] ∈ AutA
(with [θ]−1 = [−θ]) and CA([θ]) ≥ T ⊕ ker θ. If also φ ∈ H, then

(t+ e)[θ][φ] = (t+ eθ + eφ) + e = (t+ e)[θ + φ].

Set ∆ = {[θ] : θ ∈ H}. Then ∆ ≤ FFAutA.
Suppose in addition that T has infinite exponent and E = 〈e〉 ⊕ E1 for

some e 6= 0 and some E1 ≤ E. Suppose t ∈ T and m > 0 with mt 6= 0.
There exists θ in H with eθ = t and E1θ = {0} and then (me)[θ] = mt+me
6= me. Since T has infinite exponent we see that C〈e〉(∆) = {0}. In particular
A/CA(∆) is not periodic.

Let G = 〈x〉(A1 × A2), where a 7→ ai is an isomorphism of A onto the
multiplicative copy Ai of A for i = 1, 2, where |x| = 2 and where ax1 = a2
and ax2 = a1 for all a in A. For a ∈ A let σa denote the inner isomorphism
of G given by conjugation by a1 (that is, g 7→ (a−1)1g(a1)). Set Σ = {σa :
a ∈ A} ≤ AutG. Clearly A1A2 ≤ CG(σa), so in fact Σ ≤ FFAutG. Any
γ in FFAutA acts on G via xγ = x and (ai)γ = (aγ)i for all a ∈ A and
i = 1, 2. Clearly CG(γ) ≥ CA(γ)1 × CA(γ)2, so γ ∈ FFAutG. In particular,
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in this way, we may regard ∆ as a subgroup of FFAutG. Set Γ = 〈∆,Σ〉 ≤
FFAutG.

Let a, b ∈ A, δ ∈ ∆ and g ∈ G. Then

xσa = a−11 xa1 = xa1a
−1
2 6= x unless a = 0,

g(σa)
δ = (a−11 (gδ−1)a1)δ = (aδ)−11 g(aδ)1 = gσaδ,

gσaσb = b−11 a−11 ga1b1 = gσa+b,

xδ = x, so δ 6= σa for all a 6= 0.

Thus Σ is ∆-isomorphic to A via a 7→ σa and Γ is the split extension of Σ
by ∆, and as such is isomorphic to the split extension of A by ∆. Finally,
A/CA(∆) is not periodic, so Σ/CΣ(∆) is not periodic and consequently Γ
is not centre-by-periodic. We have now proved the following.

Lemma 3.1. Let G be the wreath product of an abelian group A = T ×
〈e〉 × E1, where T is periodic of infinite exponent, e has infinite order and
E1 is torsion-free, by a cyclic group of order 2. Then FFAutG is not centre-
by-periodic.

Remark 3.2. The arguments above show that FFAutA can be regarded
as a subgroup of FFAutG and then we have

FFAutG ≥ (FFAutA)Σ ≥ (FFAutT )∆(FFAutE)Σ,

so the examples above can have very large finite-finitary automorphism
groups.

We return now to our additive group A = T ⊕ E = T ⊕ 〈e〉 ⊕ E1. Set
S = {t ∈ T : 2t = 0}. Clearly T/S has infinite exponent, assuming we keep
our assumption that T does. Let t ∈ T and m > 0 with mt /∈ S. Define
θ ∈ H by eθ = t and E1θ = {0}. Then

(me)[θ] = m(eθ) +me = mt+me /∈ S +me.

Thus [me, [θ]] /∈ S. Consequently, (A/S)/CA/S(∆) is not periodic.
From now on write A multiplicatively and let G = 〈x〉A, where x has

order 2 and inverts A. Now inversion is central in AutA. Thus the action of
FFAutA on A extends to G by centralizing x and clearly this action on G
is finite-finitary. Hence we may assume that ∆ ≤ FFAutG with x ∈ CG(∆).
For a ∈ A let σa denote the inner automorphism g 7→ a−1ga of G. Clearly
A ≤ CG(σa). Set Σ = {σa : a ∈ A}. Then Σ ≤ FFAutG and hence
Γ = 〈∆,Σ〉 ≤ FFAutG.

If a ∈ A, then xσa = xa2. Then the map a 7→ σa determines an iso-
morphism of A/S onto Σ. Clearly (σa)

δ = σaδ for all δ ∈ ∆. Thus A/S
and Σ are ∆-isomorphic and hence Σ/CΣ(∆) is not periodic. Therefore
Γ is not centre-by-periodic. (Also ∆ centralizes x and Σ centralizes A, so
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∆ ∩ Σ = 〈1〉 and again Γ is the split extension of Σ by ∆.) We have now
proved the following.

Lemma 3.3. Let G = 〈x〉A be the split extension of A by 〈x〉, where
A = T × 〈e〉 × E1 is as in Lemma 3.1 and x is the inversion automorphism
of A. Then FFAutG is not centre-by-periodic.

The minimal case of both Lemmas 3.1 and 3.3 is when A is the direct
product of a Prüfer p∞-group for some prime p and an infinite cyclic group.
Thus we have now confirmed statement 1.3 and the claims in the paragraph
immediately following it. In both these cases, G is a soluble group of finite
abelian total rank and Hirsch numbers 2 and 1 respectively. (A soluble group
G has finite abelian total rank ifG has finite Hirsch number and τ(G) satisfies
the minimal condition on subgroups.) Suppose G is a finite extension of a
soluble group of finite abelian total rank. If G has no Prüfer subnormal
subgroups, then G is (torsion-free)-by-finite and Γ = FFAutG is centre-by-
finite by Proposition 1.2. If G has no infinite cyclic subnormal subgroups,
then FittG is periodic and Γ is locally finite, also by Proposition 1.2. Lemma
3.3 shows that if G contains at least one Prüfer subgroup and at least one
infinite cyclic subgroup, then Γ need not be centre-by-periodic, which tidies
things up nicely.

4. Examples: centre-by-(locally finite) groups

Proof of Statement 1.1. Let Γ be any FC-group. We claim that Γ ∈ FF.
Let G = 〈x〉(Γ1 × Γ2) be the wreath product of Γ and a cyclic group of
order 2, where |x| = 2, Γ1 and Γ2 are copies of Γ , and x interchanges Γ1
and Γ2. It is easy to check that CG(γ) has finite index in G for every γ ∈ Γ1
and that Γ1∩ζ1(G) = 〈1〉. Thus Γ embeds into FFAutG via any isomorphism
of Γ to Γ1 followed by conjugation on G.

Proof of Proposition 1.5. Suppose Γ is an infinite simple subgroup of
FFAutG for some group G. Note first that Γ is locally finite (since Γ ′ always
is by 2.5). If Γ does not act faithfully on [G,Γ, ΓG], it centralizes it. But
then Γ stabilizes the series G ≥ [G,Γ ] ≥ [G,Γ, ΓG] ≥ 〈1〉 and consequently
is nilpotent. Thus Γ acts faithfully on [G,Γ, ΓG] and we may henceforth
assume that G is locally finite-normal by Lemma 2.3.

Suppose G is locally nilpotent. Since G is also locally finite-normal, it
is hypercentral. If Γ centralizes every upper central factor of G, a simple
induction on the central height of G (and the simplicity of Γ ) shows the Γ
centralizes G, which it does not. Thus we may assume that G is abelian.
Suppose Γ centralizes every elementary abelian Γ -invariant section of G.
Then since Γ is perfect simple, Γ centralizes G/Gn for every positive in-
teger n. But then Γ centralizes G/

⋂
nG

n and
⋂
nG

n. This implies that Γ



FINITARY AUTOMORPHISM GROUPS 11

is abelian, which it is not. Thus we may assume that G is an elementary
abelian p-group for some prime p and then FFAutG is the finitary linear
group FAutGF(p)(G). This settles this case.

Now consider the case where G is not locally nilpotent. Choose ∆ ≤ Γ
finite but not nilpotent. There exists N normal of finite index in G that
is centralized by ∆ and there exists H ≥ N normal in G with G/H ∼= S
(finite) simple. Set K =

⋂
(X / G : G/X ∼= S). Clearly K is normal in ΓG.

We claim that Γ acts faithfully on some section of G that is residually a
specific finite simple group. If not, [G,Γ ] ≤ K and Γ acts faithfully on K.
Clearly (K : K∩N) < (G : N). If [G,Γ ] is not contained in N we repeat the
above step, replacing G and N by K and K ∩N and, if possible, keep going.
After a finite number, r say, of steps we arrive at [G, rΓ ] ≤ N . But then ∆ is
nilpotent, which we have assumed otherwise. Thus Γ acts faithfully on some
section of G that is residually a specific finite simple group. Consequently,
we may assume that G is residually a specific finite simple group S. If S is
cyclic, then G is abelian and we are back in the previous case. Thus assume
S is a perfect finite simple group.

Let Ω = {Si : i ∈ I} be the set of all normal subgroups of G isomorphic
to S. We claim that G = 〈Si : i ∈ I〉, from which it follows that G is the
direct product of the Si. Now G is locally finite-normal. Let X < Y be
non-trivial finite normal subgroups of G. Then there exist distinct normal
subgroups H1, . . . ,Hr of G with each G/Hj isomorphic to S such that with
H =

⋂
j Hj we have X ∩H = 〈1〉. Then G/H ∼= S(r) and XH/H ∼= X is a

normal subgroup of G/H. Hence X = X1 × · · · ×Xm for some Xj
∼= S. In

the same way we have Y = Y1 × · · · × Yn with each Yj isomorphic to S. But
X is normal in Y , so each Xj is a Yk for some k = k(j). Consequently, each
Xj is normal in Y , for all such Y . Therefore each Xj is an Si and therefore
G = 〈Si : i ∈ I〉.

The normal subgroups of G are the 〈Si : i ∈ J〉 as J ranges over all
possible subsets of I. Clearly Γ embeds into Sym(Ω) via its action on G. If
N is a normal subgroup of G of finite index, then N = 〈Si : i ∈ J〉 with J
cofinite in I, the latter since G/N ∼= 〈Si : i ∈ I \ J〉. Thus Γ ≤ FSym(Ω).
Therefore Γ is a finitary alternating group, not necessarily over Ω itself; this
follows from a theorem of Wielandt [16, Satz 9.4]. The finitary alternating
groups are finitary linear, in fact over any field, via (infinite) permutation
matrices. The proof is complete.

Proof of Statement 1.4. We prove that Hall’s countable universal locally
finite group is not an FF-group. If it were it would be isomorphic to some
finitary linear group by Proposition 1.5, and hence (see [5, 6.1]) so would
every countable locally finite group. However, there are very many such
groups that are not isomorphic to finitary linear groups. For example, finitary



12 B. A. F. WEHRFRITZ

linear Baer groups are Fitting groups (see the theorem of [12]), and there
are countable locally finite Baer p-groups, p a prime, that are not Fitting
groups (see [9, Vol. 2, p. 4]).

5. The polycyclic cases

Lemma 5.1. Let K and Z be normal subgroups of a group G such that
Z ≤ K ∩ ζ1(G) and K/Z ∈ PF. Suppose G/CG(K) is finitely generated.
Then K = TZ, where T is a PF-subgroup normal in G.

Proof. There are finite sets X and Y with K = 〈X〉Z, G = 〈Y 〉CG(K)
and Y = Y −1. For each x ∈ X and y ∈ Y there exists z(x, y) ∈ Z with
xy ∈ 〈X〉z(x, y). Set S = 〈z(x, y) : x ∈ X and y ∈ Y 〉 and T = 〈X〉S. Then T
is finitely generated, T/(T ∩Z) ∈ PF and T ∩Z ≤ ζ1(T ). Therefore T ∈ PF,
e.g. by [15, 3.9]. Also G centralizes S, and Y normalizes T . Therefore G
normalizes T .

Remark. In Lemma 5.1 we can weaken the hypothesis that G/CG(K) is
finitely generated to G/CG(K/K ′) being finitely generated, which makes 5.1
much more similar to its Ch analogue, Lemma 7.3 below. (In Section 5 we
do not need the weaker hypothesis, but in Section 7 the stronger hypothesis
is definitely insufficient.) To see that this strengthening of 5.1 holds, note
that K/ζ1(K) ∈ PF, so K ′ ∈ PF (see [9, Vol. 1, p. 115]). Thus one may
pass to G/K ′ and then 5.1 in its present form applies.

Lemma 5.2. For some group G, let Γ be a finitely generated subgroup of
FPFAutG. The following hold:

(a) If G is centre-by-PF, then G′ ∈ PF and Γ ∈ LZ.
(b) [G,Γ ] is centre-by-PF.
(c) [G,Γ, ΓG] ∈ PF.
(d) Γ ∈ (G ∩A)LZ.
(e) If Γ is soluble-by-finite, then Γ ∈ PF.
(f) Γ is residually finite.

Proof. There exists a normal subgroup N of G with [N,Γ ] = 〈1〉 and
G/N ∈ PF.

(a) Here G/ζ1(G) ∈ PF. Apply Lemma 5.1 with K, Z and G replaced
by G, N ∩ ζ1(G) and ΓG respectively. Thus G = TZ for some PF-subgroup
T normal in ΓG and Z central in ΓG. Then Γ embeds into AutT and so
lies in LZ by a theorem of Merzlyakov ([6] or [11, 1.4]). Finally G′ ∈ PF (see
[9, Vol. 1, p. 115]).

(b) Set C = CG(N) and note that [G,Γ ] ≤ C by Lemma 2.1. Then
C ∩ N ≤ ζ1(C) and C/(C ∩ N) ∼= CN/N ≤ G/N , so C is centre-by-PF.
Part (b) follows.
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(c) Applying Lemma 5.1 to Z = C ∩ N ≤ C ≤ ΓC we have C = TZ
for some PF-subgroup T normal in ΓC, and Z central in ΓC. Then [C, Γ ]
equals [T, Γ ] ≤ T and so is a PF-group. Also so is C ′ by [9, Vol. 1, p. 115]
again. Consequently, since [G,Γ ] ≤ C,

[C, ΓG] = [C, [G,Γ ]Γ ] ≤ [C, Γ ]C ′

is also a PF-subgroup. Part (c) follows.
(d) Set Σ = CΓ (G/[C, Γ

G]) ∩ CΓ ([C, ΓG]). Now G = 〈X〉N for some
finite subset X. If σ ∈ Σ and x ∈ X, then [Nx, σ] = {[x, σ]} and σ 7→
([x, σ])x∈X is an embedding of Σ into A = (ζ1([C, Γ

G]))X (cf. [5, 1.C.3(a)]).
But [C, ΓG] ∈ PF and X is finite; therefore A and so Σ are finitely gen-
erated abelian groups. Now Γ/CΓ ([C, Γ

G]) ∈ LZ by Merzlyakov’s theorem
again, since [C, ΓG] ∈ PF. Also Γ stabilizes the series G ≥ C ≥ [C, ΓG], so
Γ ′ ≤ CΓ (G/[C, ΓG]) and Γ/CΓ (G/[C, ΓG]) is abelian and finitely generated.
Trivially such a group lies in LZ. Therefore Γ/Σ ∈ LZ and part (d) follows.

(e) Soluble LZ-groups are always polycyclic (a theorem of Mal’tsev, e.g.
see [15, 4.4]) and clearly (G ∩A)P = P. Therefore part (d) implies (e).

(f) Now [C, ΓG] ∈ PF, so if n is a positive integer, then [C, ΓG]/[C, ΓG]n

is finite and
⋂
n[C, Γ

G]n = 〈1〉. Hence
⋂
nCΓ (G/[C, Γ

G]n) = 〈1〉 and
CΓ ([C, Γ

G]/[C, ΓG]n) stabilizes G ≥ C ≥ [C, ΓG] ≥ [C, ΓG]n. Thus
Γ/CΓ (G/[C, Γ

G]n) is nilpotent-by-finite, is by hypothesis finitely generated,
and therefore is residually finite. Consequently, Γ is residually finite.

Clearly essentially the same proof yields the following (although (a) fol-
lows from 5.2(a), (b) from 2.1 and then (c)–(f) are immediate from (b) and
5.2(c)–(f).

Lemma 5.3. For some group G, let Γ be a finitely generated subgroup of
FPAutG. The following hold:

(a) If G is centre-by-P, then G′ ∈ P and Γ ∈ LZ.
(b) [G,Γ ] is centre-by-P.
(c) [G,Γ, ΓG] ∈ P.
(d) Γ ∈ (G ∩A)LZ.
(e) If Γ is soluble, then Γ ∈ P.
(f) Γ is residually finite.

Note that Theorem 1.6 is an immediate consequence of 5.2(e), and The-
orem 1.7 is an immediate consequence of 5.2(d) and 5.2(f).

6. Examples: polycyclic groups. We have already pointed out that
FPF ⊇ FF∪FP. If R is a ring with its additive group finitely generated (e.g.
R = Z) and ifM is any R-module, then the finitary (module) automorphism
group FAutRM lies in FP. In particular FAutZA lies in FP for every abelian
group A. A group G is X-finitary if G/CG(gG) ∈ X for every g ∈ G; that
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is, G is X-finitary if and only if InnG ≤ FXAutG (assuming X is quotient-
closed). An F-finitary group is just an FC-group and PF-finitary groups in
[2] are called PC-groups. Note that to say G is X-finitary is not the same as
saying G ∈ FX, even for X equal to F, P or PF: if G is an infinite simple
finitary linear group over a finite field, then G lies in FF ∩ FP but clearly
cannot be PF-finitary. Of course if G is X-finitary, then InnG ∈ FX. Any
F-finitary group Γ lies in FF by 1.1. The trick used in the proof of 1.1,
namely letting G be the wreath product of Γ with a cyclic group of order 2
and allowing Γ to act on G via the inner automorphisms of G induced by
one of the two direct factors of the base group isomorphic to Γ , proves the
following.

Statement 6.1. Every PF-finitary (resp. P-finitary) group lies in FPF

(resp. FP).

Thus PF-finitary L(SF)-groups are locally PF-groups by 1.6 and 6.1. In
fact much more is already known to be true. Write G ∈ L(/ PF) if G has
a local system of normal PF-subgroups of G, and similarly with P in place
of PF.

Theorem 6.2 (Franciosi, de Giovanni and Tomkinson [2]). A group G
is PF-finitary if and only if G ∈ L(/ PF); also G is P-finitary if and only
if G ∈ L(/ P).

Note that the corresponding statement for the class F is false; that is,
being an FC-group is not the same as being locally (finite normal). It is easy
to derive a proof of 6.2 from what we have done above.

Proof. Let G be PF-finitary and pick g ∈ G. Set N = CG(g
G) and

K = CG(N). Now G/N ∈ PF, so G = 〈Y 〉N for some finite subset Y of G.
Then G/CG(Y

G) is also in PF. Set Z = CK(Y
G). Then K/Z ∈ PF and

Z ≤ ζ1(G), so K = TZ by Lemma 5.1, where T is in PF and normal in G.
But g ∈ K, so 〈g〉T is in PF and is normal in G. Consequently, 〈gG〉 ≤ 〈g〉T
is also in PF and therefore G ∈ L(/ PF).

Conversely, suppose G ∈ L(/ PF) and choose g ∈ G. Then 〈gG〉 ∈ PF,
so G/CG(gG) ∈ LZ by Merzlyakov’s theorem. Thus G is PF-finitary by the
following lemma.

Lemma 6.3. If G ≤ GL(n,Z) is locally (soluble-by-finite), then G ∈ PF.

Proof. If X ≤ Y are finitely generated subgroups of G, then X0 ≤ Y 0

and are soluble, so M =
⋃
X X

0 is a locally soluble, normal subgroup of G
with G/M locally finite (see [10, Chapter 5]). Then M is soluble [10, 3.8],
so its (Zariski) closure N in G is a soluble normal subgroup of G [10, 5.9
and 5.11] and G/N is isomorphic to a (locally finite) subgroup of GL(r,Q)
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for some integer r ≥ 1 [10, 6.4]. Then G/N is finite by [10, 9.33] and N is
polycyclic by Mal’tsev’s theorem [15, 4.4].

Returning to the proof of 6.2, if G ∈ L(/ P), then clearly every PF-image
of G is locally soluble and hence polycyclic. Thus G is P-finitary by the PF
case above. If G is P-finitary, then every section of G is P-finitary and also
G ∈ L(/ PF) by the PF case. But finite P-finitary groups clearly are soluble,
so G ∈ L(/ P). All parts of 6.2 are now proved.

7. The Chernikov case. The basic properties in this case were discov-
ered by Yu. D. Polovitskĭı. In [7] (see also [9, 4.27]), he proved that if G is a
group with G/ζ1(G) ∈ Ch, then G′ ∈ Ch, and in [8] he proved that a group
G is Ch-finitary if and only if for all x ∈ G we have 〈xG〉 ∈ Ch.G1 and
G/CG(x

G) periodic. (G1 denotes the class of all cyclic groups.) The latter is
not quite in the form using the local operator that we have used in the F, P
and PF cases and Polovitskĭı’s Second Theorem can be reworked as follows
(but see the end of this section for proofs).

Statement 7.1. A group G is Ch-finitary if and only if G is a union
of normal subgroups L satisfying [L,G] ∈ Ch with G/CG(L) periodic.

Thus if G is a Ch-finitary group, then G′ ≤ τ(G), every periodic normal
subgroup of G is locally (a normal Ch-subgroup of G) and τ(G) is the union
of all the normal Ch-subgroups of G.

With FCh defined analogously to FF and FP etc., clearly FCh ⊇ FF. If
Γ is Ch-finitary then Γ ∈ FCh via the usual trick of letting G be the wreath
product of Γ by a cyclic group of order 2. As with the PF case, FCh-groups
need not by Ch-finitary and for much the same reason. If G ∈ Ch, then
FChAutG = AutG ∈ Ch.LC. Polovitskĭı’s Second Theorem suggests that
perhaps we should be working with Ch.G1 rather that Ch. However, if
G ∈ Ch.G1, then AutG lies in Ch.LC but need not be Ch-finitary; just
consider the extension G of a Prüfer p∞-group C by its automorphism x
given by ax = a1+p for all a ∈ C, when G′ is in Ch but neither G nor InnG is
Ch-finitary. HoweverCh.G1-groups always lie inFCh (see Lemma 8.3 below).

Suppose G is abelian. Then FChAutG is studied in [14], being denoted
there by F1AutZG. For example, it is shown in [14] that if G is abelian, then
FChAutG is locally residually finite [14, 101] and is an extension of a locally
residually nilpotent group by an FP-group [14, 21]. Further FPAutG is an
extension of a Fitting group by a group that is not necessarily in FCh, but is
quite close to it (see [14, 21]). Thus there is some sort of vague relationship
between the classes FP and FCh. Taking G to be a divisible abelian p-group
of rank n shows that GL(n,Zp) lies in FCh (where Zp denotes the ring of
p-adic integers) and in particular that FCh∩LC ⊇ LZ. Then [10, 2.11] shows
that any free metabelian group of finite rank (indeed of rank at most the
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cardinality of C) embeds into GL(2,Zp) and so lies in FCh; presumably this
also holds for such groups of any rank.

Lemma 7.2. Let G be a Ch-group and Γ a subgroup of AutG. If

(a) G is abelian or
(b) Γ is finitely generated,

then Γ ∈ LC.

Proof. (a) Note first that finite extensions of LC-groups are in LC (e.g.
[10, 2.3]). Here G = F ⊕ D, where F is finite and D is divisible. Then
Hom(D,F ) = {0}, Hom(F,D) is finite and

AutG = ((AutF )× (AutD))(1 + Hom(F,D)).

Also (AutF ) × (AutD) lies in LC and has finite index in AutG. Part (a)
follows.

(b) Let A denote the finite residual of G, so A is divisible abelian and
G/A is finite. There is a finite subgroup K of G such that KA = G and
such that K and Kφ are conjugate in G for every automorphism φ of G (see
[5, 3.9]). Let g∗ be the inner automorphism of G determined by the element
g ∈ G. Then AutG = NAutG(K).G∗, so if C = CAutG(K) then CA∗ has
finite index in AutG.

Now Γ is finitely generated, so Γ ∩CA∗ is too and Γ ∩CA∗ ≤ 〈X,Y 〉 for
some finite subsets X of C and Y of A∗. But A∗ is a divisible abelian normal
Ch-subgroup ofAutG, so 〈Y X〉 is finite. Hence 〈X〉 has finite index in 〈X,Y 〉.
Now 〈X〉 ≤ C and C ∩ CAutG(A) = 〈1〉 (since KA = G), so C embeds into
AutG/CAutG(A) and hence into AutA, which is an LC-group, for example
by part (a). Therefore C, 〈X〉, 〈X,Y 〉, Γ ∩ CA∗ and Γ are all in LC.

We now produce analogues of 5.1 and 5.2.

Lemma 7.3. Let K and Z be normal subgroups of a group G such that
Z ≤ K ∩ ζ1(G) and K/Z ∈ Ch. Suppose G/CG(K/K ′) is finitely generated.
Then [K,G] ∈ Ch.

Proof. By Polovitskĭı’s First Theorem K ′ ∈ Ch and K ′ is clearly normal
in G and contained in [K,G]. Thus we may pass to G/K ′ and assume that
K is abelian. Then G = 〈X〉CG(K) for some finite set X. If x ∈ X, then
kZ 7→ [k, x] is a homomorphism of K/Z into K and hence [K,x] ∈ Ch.
Let T = 〈[K,x] : x ∈ X〉 ≤ [K,G]. Then T ∈ Ch. Also x ∈ X centralizes
K/[K,x], so 〈X〉 centralizes K/T , as trivially so does CG(K). Therefore
[K,G] = T ∈ Ch.

Lemma 7.4. Let H be a Ch-group and A an H-module whose additive
group is a Ch-group. Then Der(H,A) = S × T , where S is Z-torsion-free
and T ∈ Ch. If H is divisible, then T = 〈0〉.
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Proof. Let K denote the finite residual of H. Now AutZA is residually
finite. Hence K acts trivially on A and Der(K,A) = Hom(K,A), which is
torsion-free (e.g. [3, p. 182]). If H = K, then Der(H,A) is torsion-free.

Now H/K is finite; let X be a (finite) transversal of H to K. If x ∈ X,
k ∈ K and δ ∈ Der(H,A), then

(xk)δ = (xδ)k + kδ = xδ + kδ.

Hence δ 7→ {(xδ)x∈X , δ|K} is an additive embedding ofDer(H,A) intoA(X)⊕
Hom(K,A). Thus the torsion subgroup T of Der(H,A) embeds into A(X) and
as such lies in Ch. Consequently, Der(H,A) = S ⊕ T for some torsion-free
S by [3, 21.2 and 27.5].

Lemma 7.5. For some group G, let Γ be a finitely generated subgroup of
FChAutG. The following hold:

(a) If G is centre-by-Ch, then [G,Γ ]G′ = [G,ΓG] ∈ Ch.
(b) [G,Γ ] is centre-by-Ch.
(c) [G,Γ, ΓG] ∈ Ch.
(d) Γ is residually finite.
(e) Γ ∈ (F−S ∩A)LC.
(f) Γ is (torsion-free)-by-finite.
(g) If τ(G)=〈1〉, more generally if G has no non-trivial normal Ch-sub-

groups, then Γ is finitely generated abelian.

By 6.2 a finitely generated group is PF-finitary if and only if it is PF.
Since G∩Ch = F, the Ch analogue of this, namely that a finitely generated
group isCh-finitary if and only if it is F-finitary (and hence centre-by-finite),
is immediate.

Proof. There is a normal subgroupN ofG centralized byΓ withG/N ∈Ch.
(a) Here also G/ζ1(G) ∈ Ch and therefore so does G/Z for Z = N ∩

ζ1(G). Clearly Z ≤ ζ1(ΓG). Thus [G,ΓG] ∈ Ch by 7.3, where we have taken
G for K and ΓG for G.

(b) Set C = CG(N) and note that [G,Γ ] ≤ C by 2.1. Now set Z = C∩N .
Then Z = ζ1(N) ≤ ζ1(C) and C/Z ∼= CN/N ≤ G/N ∈ Ch. Thus C is
centre-by-Ch and part (b) follows.

(c) Since C is centre-by-Ch, part (a) implies that [C, ΓC] ∈ Ch. But
[G,Γ ] ≤ C, so ΓC is normal in ΓG. Hence [C, ΓG] ≤ [C, ΓC] and part (c)
follows.

(d) LetB/N denote the finite residual ofG/N . ThenG/B andΓ/CΓ (G/B)
are finite, so CΓ (G/B) is also finitely generated. Thus we may assume that
[G,Γ ] ≤ B.

Suppose Γ = 〈γ1, . . . , γm〉. Now B/N is a divisible abelian Ch-group.
For r ≥ 1 set Br = {b ∈ B : br ∈ N}. Then each Br/N is finite. By [5,
3.9] there is a finite subgroup K/N of G/N with KB = G such that Kγ is
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conjugate to K, in particular by an element of B, for every γ in Γ . Hence
for each i there exists bi ∈ B with Kγi = b−1i Kbi. There exists s ≥ 1 with
each bi in Bs. Suppose s divides r. Then Br/N is finite and Γ normalizes
KBr. Hence Γ/CΓ (KBr) embeds into FFAut(KBr). As such it is finitely
generated and, by 2.3, centre-by-finite. Thus Γ/CG(KBr) is residually finite.
Clearly

⋂
s|r CΓ (KBr) = CΓ (G) = 〈1〉. Therefore Γ is residually finite.

(e) SetΣ = CΓ (G/[C, Γ
G])∩CΓ ([C, ΓG]). Now Γ stabilizes the seriesG ≥

C ≥ [C, ΓG], so Γ/CΓ (G/[C, ΓG]) is abelian, finitely generated and hence
an LC-group. Also Γ/CΓ ([C, ΓG]) ∈ LC by 7.2. Consequently, Γ/Σ ∈ LC.

Now N centralizes ΓC, so the map σ 7→ (gN 7→ [g, σ]) is a well-defined
embedding of Σ into Der(G/N, ζ1([C, Γ

G])). Thus the torsion subgroup T of
Σ lies inCh by 7.4. But Σ is residually finite by part (d), so T is finite. Again
by (d) there is a normal subgroup ∆ of Γ of finite index with ∆ ∩ T = 〈1〉.
Then ∆ ∩Σ is torsion-free abelian. Also ∆/(∆ ∩Σ) embeds into Γ/Σ and
hence is in LC. Further Γ/∆ is finite. Therefore Γ/(∆∩Σ) ∈ LC by [10, 2.3].

(f) Finitely generatedLC-groups are (torsion-free)-by-finite [10, 4.8]. Thus
part (f) is an easy consequence of part (e).

(g) Here [G,Γ, Γ ] = 〈1〉 by part (c), so stability theory shows that Γ is
abelian and, by hypothesis, finitely generated.

Note that Theorem 1.8 follows from parts (d) and (e) of Lemma 7.5.
Our final three lemmas of Section 7 prove both 7.1 and Polovitskĭı’s Second
Theorem.

Lemma 7.6. Let G be a group. Then 〈xG〉 ∈ Ch.G1 for all x ∈ G if and
only if [〈xG〉, G] ∈ Ch for all x ∈ G.

Proof. Set H = 〈xG〉. Clearly H = 〈x〉[H,G], so one way round is trivial.
Suppose H ∈ Ch.G1 for all x ∈ G. Then H ∩ τ(G) = τ(H) ∈ Ch, H =
〈x〉τ(H) and H/τ(H) is trivial or infinite cyclic. Then G/τ(G) is torsion-free
with each of its cyclic subgroups normal. Therefore G′ ≤ τ(G), so [H,G] ≤
H ∩ τ(G) ∈ Ch.

Lemma 7.7. Let x be an element of a group G and set H = 〈xG〉 and
T = τ(H). If H ∈ Ch.G1 and if G/CG(T ) is periodic, then G/CG(H) ∈ Ch.

Proof. Clearly H/T is cyclic, T ∈ Ch is normal in G, and H = 〈x〉T .
Also G/CG(T ) ∈ Ch by [5, 1.F.3], and G/CG(H/T ) is finite (in fact of order
at most 2). Further (CG(T ) ∩ CG(H/T ))/CG(H) embeds into the centre of
T by [5, 1.C.3], so G/CG(H) ∈ Ch as claimed.

Lemma 7.8. Let G be a Ch-finitary group and L a finitely G-generated
subgroup of G. Then G/CG(L) is periodic and [L,G] ∈ Ch.

Proof. Set C = CG(L) and L = 〈XG〉, where X is some finite subset.
Clearly C =

⋂
x∈X CG(x

G), so G/C ∈ Ch. In particular G/C is periodic.
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Also L/(C ∩L) ∈ Ch and C ∩L = ζ1(L), so by Polovitskĭı’s First Theorem
L′ ∈ Ch. By passing to G/L′ we may assume that L ≤ C is abelian.

If g ∈ G, then L/CL(gG) ∈ Ch and G/C acts on it via conjugation on L.
Then G/C acts as a finite group on L/CL(g

G) by [5, 1.F.3] and hence if
K/C is the finite residual of G/C, then G/K is finite, K/C is a divisible
abelian Ch-group and

[L,K] ≤
⋂
g∈G

CL(g
G) = L ∩ ζ1(G) = Z say.

If x ∈ X (recall L = 〈XG〉), then the map kC 7→ [k, x] is a homomorphism of
K/C intoZ, so [K,x] ∈ Ch and is central inG. SetD = 〈[K,x] : x ∈ X〉 ≤ Z.
ThenD is a central (even divisible)Ch-subgroup ofG. By passing toG/D we
may assume thatK centralizesX. But CL(K) is normal in G, so [K,L] = 〈1〉
and K = C.

There exists a finite set Y with G = KY . Then

G/CG(Y
G) = G/

⋂
y∈Y

CG(y
G) ∈ Ch

and clearly CL(Y G) ≤ CL(KY ) = Z so L/Z ∈ Ch. Let W denote the split
extension of L by G/K. Then Z ≤ ζ1(W ) and W/Z ∈ Ch.F = Ch. Hence
Polovitskĭı’s First Theorem implies that [L,G] ≤ W ′ lies in Ch. The proof
is complete.

8. Examples of FCh groups

Lemma 8.1. Let R be a finitely generated integral domain of characteris-
tic zero and let n be any positive integer. Then there exists a positive integer
m such that for almost all primes p the group GL(n,R) embeds into the
automorphism group of the divisible abelian p-group of rank mn.

Proof. Let F be the quotient field of R. By Noether’s Normalization
Lemma (e.g. [17, p. 200, Theorem 25]), there exist integers h > 0 and k ≥ 0
and algebraically independent elements x1, . . . , xk (over Q) of R[h−1] ≤ F
such that R is integral over

S = Z[h−1, x1, . . . , xk] ≤ F.
But R is a finitely generated ring. Therefore RS = R[h−1, x1, . . . , xk] ≤ F
is a finitely generated, torsion-free S-module.

Let K ≤ F denote the quotient field of S. Then dimK RK = m < ∞
and there exist elements y1, . . . , ym of RK and some α ∈ S \ {0} such that
RK =

⊕
iKyi and

⊕
i αSyi ≤ RS ≤

⊕
i Syi. Then⊕

i
αS[α−1]yi ≤ RS[α−1] ≤

⊕
i
S[α−1]yi,

so RS[α−1] =
⊕

i S[α
−1]yi.
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Since α ∈ S there exists s > 0 such that αhs ∈ Z[x1, . . . , xk], which is
a polynomial ring over the xi’s. Hence there exist integers r1, . . . , rk with
β = αhs(r1, . . . rk) 6= 0. Let p be any prime exceeding the integer |β|h.
Then in Z(p) = {u/v : u, v ∈ Z & v /∈ Zp} we see that h and βh−s =
α(r1, . . . , rk) are not congruent to 0 modulo p. In the p-adic integers Zp
there exist algebraically independent (over the rationals) elements z1, . . . , zk
in pZp. Also

α(r1 + z1, . . . , rk + zk) ≡p α(r1, . . . , rk) = h−sβ,

which is not congruent to 0 modulo p in Z(p) and hence not congruent to 0
modulo p in Zp either. Thus

α(r1 + z1, . . . , rk + zk)

is a unit of Zp and hence S[α−1] is isomorphic to the subring

Z[h−1, r1 + z1, . . . , rk + zk, α(r1 + z1, . . . , rk + zk)
−1]

of Zp.
Let e1, . . . , en be the standard basis of the row vector space F (n). Then⊕

j
RS[α−1]ej =

⊕
i,j
S[α−1]yiej

and so GL(n,R) ≤ GL(n,RS[α−1]) embeds into GL(mn,S[α−1]) and hence
into GL(mn,Zp). The latter is isomorphic to AutD for D the divisible
abelian p-group of rank mn. The lemma follows.

Corollary 8.2. If Γ is a finitely generated linear group of characteris-
tic 0, then Γ ∈ FCh.

For if Γ ≤ GL(n, F ), where F is a field of characteristic 0, let R denote
the subring of F generated by the entries of the elements of Γ . Then R is
finitely generated and Lemma 8.1 applies. Thus we have now proved that
FCh ⊇ G ∩ LC.

Note that 8.2 does not extend to any positive characteristic: if p is a
prime let Γ be the wreath product of a cyclic group of order p by an infinite
cyclic group. Then Γ is metabelian, 2-generator and isomorphic to a linear
group of characteristic p and degree 2 (see [9, 2.16]). However if Γ ∈ FCh,
then Γ ∈ (F−S ∩A)LC by Lemma 7.5 and hence Γ ∈ LC. The latter is false
(see [9, 10.21]). Further note that Theorem 1.9 follows from Lemmas 7.2 and
8.1. Finally, we prove the following.

Lemma 8.3. If Γ is a Ch.G1-group, then Γ embeds into AutG for some
Ch-group G and in particular lies in FCh.

Proof. Now Γ = A〈y〉 for some normal Ch-subgroup A of Γ and some
y ∈ Γ (we are not assuming that A is abelian). If y has finite order, then
Γ ∈ Ch and hence Γ embeds into the automorphism group of the wreath
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product Γ o 〈x〉, where |x| = 2. Clearly here Γ o 〈x〉 ∈ Ch. Thus assume that
y has infinite order, so now Γ is the split extension of A by 〈y〉.

Set Z = C〈y〉(A). If Z 6= 〈1〉, then Γ/Z is Ch and so Γ/Z embeds into
AutG0 for G0 = (Γ/Z) o 〈x〉. If G1 is any Prüfer group (for any prime), then
Γ/A ∼= 〈y〉 is embeddable in AutG1. Thus Γ embeds into Aut(G0×G1) and
clearly G0 ×G1 is a Ch-group.

Now assume that Z = 〈1〉. Set W = Γ o 〈x〉 = 〈x〉(Γ1 × Γ2), where
γ 7→ γi is an isomorphism of Γ onto Γi and (γi)

x = γ3−i for i = 1, 2.
Then ∆ = 〈y1y2〉A1 ≤ W is isomorphic to Γ . Set G = 〈x〉A1A2 ≤ W .
Clearly G ∈ Ch. Also A1A2 is normal in W and x and y1y2 commute, so ∆
normalizes G and we have a map of ∆ into AutG with kernel C∆(G). Now
y acts faithfully on A, so y1y2 acts faithfully on A2, and A1 centralizes A2.
Hence C∆(A2) = A1. Also if a ∈ A \ 〈1〉, then a−11 xa1 = xa1a

−1
2 6= x. Hence

C∆(x) = 〈y1y2〉. Therefore C∆(G) = 〈1〉 and consequently Γ ∼= ∆ embeds
into AutG. The proof is complete.
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[8] Ya. D. Polovickii [Ya. D. Polovitskĭı], Groups with extremal classes of conjugate
elements, Sibirsk. Mat. Zh. 5 (1964), 891–895 (in Russian).

[9] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, 2 vols.,
Springer, Berlin, 1972.

[10] B. A. F. Wehrfritz, Infinite Linear Groups, Springer, Berlin, 1973.
[11] B. A. F. Wehrfritz, On the holomorphs of soluble groups of finite rank, J. Pure Appl.

Algebra 4 (1974), 55–69.
[12] B. A. F. Wehrfritz, Nilpotence in finitary linear groups, Michigan Math. J. 40 (1993),

419–432.
[13] B. A. F. Wehrfritz, Finite-finitary groups of automorphisms, J. Algebra Appl. 1

(2002), 375–389.
[14] B. A. F. Wehrfritz, Finitary and Artinian-finitary groups over the integers Z, Ukrain.

Mat. Zh. 54 (2002), 753–763 (in Russian); English transl.: Ukrain. Math. J. 54
(2002), 924–936.

http://dx.doi.org/10.4007/annals.2006.163.445
http://dx.doi.org/10.1007/BF02321896
http://dx.doi.org/10.1016/0022-4049(74)90030-9
http://dx.doi.org/10.1307/mmj/1029004828
http://dx.doi.org/10.1142/S0219498802000318
http://dx.doi.org/10.1023/A:1021756002353


22 B. A. F. WEHRFRITZ

[15] B. A. F. Wehrfritz, Group and Ring Theoretic Properties of Polycyclic Groups,
Springer, London, 2009.

[16] H. Wielandt, Unendliche Permutationsgruppen, Mathematisches Institut der Uni-
versität, Tübingen, 1960.

[17] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, Van Nostrand, Princeton,
NJ, 1960.

B. A. F. Wehrfritz
School of Mathematical Sciences
Queen Mary University of London
London E1 4NS, England
E-mail: b.a.f.wehrfritz@qmul.ac.uk

Received 17 October 2013 (6046)


	1 Introduction
	2 Belyaev and Shved type results
	3 Examples: non-(centre-by-periodic) groups
	4 Examples: centre-by-(locally finite) groups
	5 The polycyclic cases
	6 Examples: polycyclic groups
	7 The Chernikov case
	8 Examples of FCh groups
	REFERENCES

