EQUATIONS RELATING FACTORS IN DECOMPOSITIONS INTO FACTORS OF SOME FAMILY OF PLANE TRIANGULATIONS, AND APPLICATIONS

BY
JAN FLOREK (Wrocław)
(with an appendix by Andrzej Schinzel)

Abstract

Let \mathcal{P} be the family of all 2 -connected plane triangulations with vertices of degree three or six. Grünbaum and Motzkin proved (in dual terms) that every graph $P \in \mathcal{P}$ has a decomposition into factors P_{0}, P_{1}, P_{2} (indexed by elements of the cyclic group $Q=\{0,1,2\}$) such that every factor P_{q} consists of two induced paths of the same length $M(q)$, and $K(q)-1$ induced cycles of the same length $2 M(q)$. For $q \in Q$, we define an integer $S^{+}(q)$ such that the vector $\left(K(q), M(q), S^{+}(q)\right)$ determines the graph P (if P is simple) uniquely up to orientation-preserving isomorphism. We establish arithmetic equations that will allow calculating $\left(K(q+1), M(q+1), S^{+}(q+1)\right)$ from $\left(K(q), M(q), S^{+}(q)\right), q \in Q$. We present some applications of these equations. The set $\left\{\left(K(q), M(q), S^{+}(q)\right): q \in Q\right\}$ is called the orbit of P. If P has a one-point orbit, then there is an orientation-preserving automorphism σ such that $\sigma\left(P_{i}\right)=P_{i+1}$ for every $i \in Q$ (where $P_{3}=P_{0}$). We characterize one-point orbits of graphs in \mathcal{P}. It is known that every graph in \mathcal{P} has an even order. We prove that if P is of order $4 n+2, n \in \mathbb{N}$, then it has two disjoint induced trees of the same order, which are equitable 2-colorable and together cover all vertices of P.

1. Introduction. Let $G_{i}, i=1,2$, be a plane graph with vertex set $V\left(G_{i}\right)$, edge set $E\left(G_{i}\right)$, and face set $F\left(G_{i}\right)$. An isomorphism σ between G_{1} and G_{2} is called combinatorial if it can be extended to a bijection

$$
\sigma: V\left(G_{1}\right) \cup E\left(G_{1}\right) \cup F\left(G_{1}\right) \rightarrow V\left(G_{2}\right) \cup E\left(G_{2}\right) \cup F\left(G_{2}\right)
$$

that preserves incidence not only of vertices with edges but also of vertices and edges with faces (Diestel [3, p. 93]). Furthermore, we say that G_{1} and G_{2} are op-equivalent (equivalent up to orientation-preserving isomorphism) if σ is a combinatorial isomorphism which preserves the counterclockwise orientation. (Formally: we require that g_{1}, g_{2}, g_{3} are counterclockwise successive edges incident with a vertex v if and only if $\sigma\left(g_{1}\right), \sigma\left(g_{2}\right), \sigma\left(g_{3}\right)$ are counterclockwise successive edges incident with $\sigma(v)$.)

[^0]A factor of a graph is a subgraph whose vertex set is that of the whole graph. A graph H is said to be factorable into factors H_{1}, \ldots, H_{t} if these factors are pairwise edge-disjoint and $E(H)=E\left(H_{1}\right) \cup \cdots \cup E\left(H_{t}\right)$ (see Chartrand-Lesniak [1, p. 246]). An edge (respectively a subgraph) of H is said to be of class q if this edge (respectively any edge of this subgraph) belongs to the factor H_{q}.

Let \mathcal{P} be the family of all 2 -connected plane triangulations all of whose vertices are of degree 3 or 6 , and suppose that $P \in \mathcal{P}$. Grünbaum and Motzkin [8, Lemma 2] proved (in dual terms) that the graph P is factorable into factors P_{0}, P_{1}, P_{2} (indexed by elements of the cyclic group $Q=\{0,1,2\}$) satisfying the following condition:
(GM1) if three edges in P are counterclockwise successive edges incident with a common vertex, then these edges belong to successive factors of P.
Notice that every edge of class $q \in Q$ belongs to a maximal path with ends of degree 3 in P, or it belongs to a cycle of class q. Since P has four vertices of degree 3, there are two maximal paths of class q. More precisely,
(GM2) for $q \in Q$, there is a drawing of P (called the q-drawing) which is op-equivalent to P. The q-drawing of P consists of a maximal path of class q and length $M(q)$, and this path is surrounded by $K(q)-1$ disjoint cycles of class q and the same length $2 M(q)$. Finally, there is another maximal path of class q and length $M(q)$ (called the outer path) around the outside of the last cycle (see Example 1.1, Figs. 1 and 2).
By (GM2) we have the following result of Grünbaum and Motzkin [8, Theorem 2]:

$$
\begin{equation*}
2 K(q) M(q)+2 \quad \text { is the order of } P . \tag{1}
\end{equation*}
$$

Notice that the outer path may be added at different positions. We define (Definition 2.2) an integer $0 \leq S^{+}(q)<M(q)$ (and also $0<S^{-}(q) \leq M(q)$) that determines that position. In Theorem 2.1 we show the following relation between $S^{+}(q)$ and $S^{-}(q)$:

$$
\begin{equation*}
S^{-}(q)-S^{+}(q) \equiv K(q)(\bmod M(q)) . \tag{2}
\end{equation*}
$$

The vector $\left(K(q), M(q), S^{+}(q)\right)$, for $q \in Q$, is called the q-index-vector of P, and the set $\left\{\left(K(q), M(q), S^{+}(q)\right): q \in Q\right\}$ is called the orbit of P. The purpose of this article is to find arithmetic equations that will allow calculating the $(q+1)$-index-vector from the q-index-vector of P. In Theorem 3.1 we prove the following equality:

$$
\begin{equation*}
K(q+1)=\left|S^{+}(q), M(q)\right|, \tag{3}
\end{equation*}
$$

where $|s, m|$ is the greatest common divisor of the integers $s \geq 0$ and $m \geq 1$ $(|0, m|=m)$. Suppose $0<b \leq M(q) / d$ is an integer such that $b S^{+}(q) \equiv-d$
$(\bmod M(q))$, where $d=\left|S^{+}(q), M(q)\right|($ see Remark 3.1). In Theorem 3.2 we prove that

$$
\begin{equation*}
S^{-}(q+1)=b K(q) \tag{4}
\end{equation*}
$$

Notice that every isomorphism between two 3 -connected plane graphs is combinatorial (Diestel [3, p. 94]). Hence, if P is simple, then it is determined by any of its index-vectors uniquely up to op-equivalence. Therefore, using equations (1)-(4) we can verify whether simple graphs in \mathcal{P} are op-equivalent.

EXAMPLE 1.1. Let us consider the simple graph S_{0} of Fig. 1, and simple graphs S_{1}, S_{2} of Fig. 2. We assume that the edges g_{0}, g_{1}, g_{2} are of class $0,1,2$, respectively, and they are incident with a common vertex of degree 3 . The graph S_{0} has 0 -index-vector $(1,6,3), S_{1}$ has 1-index-vector $(3,2,0)$ and S_{2} has 2 -index-vector $(2,3,1)$. Using equations (1)-(4) we check that $\{(1,6,3),(3,2,0),(2,3,1)\}$ is their common orbit (see Example 3.1). Hence, the graph $S_{q}, q \in Q$, is the q-drawing of the graph S_{q+1} and S_{q+2}. Therefore these graphs are op-equivalent.

Fig. 1. The graph S_{0} with 0 -index-vector $(1,6,3)$

Fig. 2. The graph S_{1} with 1-index-vector $(3,2,0)$, and S_{2} with 2 -index-vector $(2,3,1)$

We are going to present some applications of equations (1)-(4). From (GM2) it follows that $X=\left\{(k, m, s) \in \mathbb{Z}^{3}: k, m \geq 1,0 \leq s<m\right\}$ is the set of all index-vectors of graphs in \mathcal{P}. In Theorem 4.1 we characterize one-point orbits of graphs in \mathcal{P}. Namely, we prove that $(k, m, s) \in X$ is a one-point orbit of a graph in \mathcal{P} if and only if $m=k z, s=k x$, where k is a positive integer and $0 \leq x<z$ are integers which satisfy the Diophantine equation $x^{2}+x+1=y z$. By a theorem of Gauss, reproved in a relevant special case by Schinzel and Sierpiński [12], the set of all integral solutions of the equation $x^{2}+x+1=3 y^{2}$ is infinite. It follows that there is an infinite family of graphs in \mathcal{P} with one-point orbit. In the Theorem of the Appendix, Schinzel has found formulas for positive integers $x, y<z$ which satisfy the equation $x^{2}+x+1=y z$.

If P has index-vector $\left(K(q), M(q), S^{+}(q)\right)$, then its mirror reflection has index-vector $\left(K(q), M(q), M(q)-S^{-}(q)\right)$. We say that P is double mirror symmetric if there exist $q_{1}, q_{2} \in Q$ such that $S^{+}\left(q_{i}\right)=M\left(q_{i}\right)-S^{-}\left(q_{i}\right)$ for $i=1,2$. In Theorem 4.2 we show that P is double mirror symmetric if and only if P has a one-point orbit of the form $\{(k, k, 0)\}$ or $\{(k, 3 k, k)\}$ for some $k \in \mathbb{N}$.

A graph G has a 2 -tree partition (see [5], [10]) if it has two disjoint induced trees which together cover all vertices of G. It is known that a 2 -connected plane graph has a Hamilton cycle if and only if its dual graph has a 2 -tree partition (see Stein [14]). Goodey [6] showed that every 2 -connected cubic plane graph whose faces are only triangles or hexagons has a Hamilton cycle. Hence, every graph in \mathcal{P} has a 2 -tree partition. In Theorem 5.1 we prove that for every 2 -tree partition of a graph in \mathcal{P} the two trees have the same order. In Theorem 5.2 we prove a similar result for the family \mathcal{H} of all 2 -connected plane triangulations all of whose vertices are of degree at most 6 . Namely, for every 2-tree partition of a graph in \mathcal{H} the orders of the two trees differ by at most 3 .

A graph G is equitable k-colorable if there exists a proper k-coloring of G such that the sizes of any two color classes differ by at most one (see Jensen and Toft [9]). It is easy to see, by condition (GM2), that every graph in \mathcal{P} is equitable 4 -colorable. One may guess that every graph in \mathcal{P} has a 2 -tree partition such that the two trees have the same order and are equitable 2 -colorable. In fact, in Theorem 6.1 we prove (using equations (1)-(3)) that this is the case if P is of order $4 n+2, n \in \mathbb{N}$.
2. Index-vector. Let \mathcal{P} be the family of all 2 -connected plane triangulations all of whose vertices are of degree 3 or 6 . Fix $P \in \mathcal{P}$. Let P be factorable into factors P_{0}, P_{1}, P_{2} (indexed by elements of the cyclic group $Q=\{0,1,2\}$) satisfying condition (GM1). We recall that a subgraph of P is
said to be of class $q \in Q$ if any edge of the subgraph belongs to the factor P_{q}. Let $M(q)$ be the length of a maximal path of class q, and $K(q)$ the distance between the two maximal paths of this class in P.

Definition 2.1. Let A be a vertex of degree 3 in the graph P, and suppose that $[A, q]$ is a maximal path of class q with an orientation $v_{0} v_{1} \ldots v_{M(q)}$ such that $A=v_{0}$ is its initial vertex and $A_{q}=v_{M(q)}$ its terminal vertex. An edge e adjacent to the path $[A, q]$ is called a left branch of the path if it is branching off from $[A, q]$ to the left (more precisely, if $v_{j} v_{j+1}, e$, $0 \leq j<M(q)$, or $e, v_{j-1} v_{j}, 0<j \leq M(q)$, are counterclockwise successive edges incident with the vertex v_{j}). Otherwise, it is called a right branch of the path. We set

$$
[A, q](e)= \begin{cases}j & \text { if } e \text { is a left branch of }[A, q], \text { incident with } v_{j} \\ 2 M(q)-j & \text { if } e \text { is a right branch of }[A, q], \text { incident with } v_{j}\end{cases}
$$

REmARK 2.1. Notice that $[A, q]=v_{0} v_{1} \ldots v_{M(q)}$ if and only if $\left[A_{q}, q\right]=$ $v_{M(q)} v_{M(q)-1} \ldots v_{0}$. An edge e is a left branch of $[A, q]$ if and only if it is a right branch of $\left[A_{q}, q\right]$. Moreover,

$$
\left|\left[A_{q}, q\right](e)-[A, q](e)\right|=M(q)
$$

Lemma 2.1. Let A, C be the ends of two different maximal paths of class q.
(1) If e, \hat{e} and f, \hat{f} are pairs of end-edges of two minimal paths of class $q+1$ so that e, f are adjacent to the path $[A, q]$ and \hat{e}, \hat{f} are adjacent to $[C, q]$, then

$$
[A, q](f)-[A, q](e) \equiv[C, q](\hat{e})-[C, q](\hat{f})(\bmod 2 M(q))
$$

(2) Moreover, if e is incident with A, and \hat{f} is incident with C, then

$$
[A, q](f)=[C, q](\hat{e})
$$

Proof. The proof is clearer when we consider the q-drawing of P. Notice that

$$
\left[A^{\prime}, q\right](f)-\left[A^{\prime}, q\right](e)=\left[C^{\prime}, q\right](\hat{e})-\left[C^{\prime}, q\right](\hat{f})
$$

for some $A^{\prime} \in\left\{A, A_{q}\right\}$ and $C^{\prime} \in\left\{C, C_{q}\right\}$. Hence, by Remark 2.1 we obtain (1). If e is incident with A, and \hat{f} is incident with C, then, by (GM1), e is a left branch of $[A, q]$ and \hat{f} is a left branch of $[C, q]$. Hence, $[A, q](e)=0$ and $[C, q](\hat{f})=0$, which yields (2).

Definition 2.2. Let A, C be the ends of two different maximal paths of class q in the graph P, and suppose $f($ or $g)$ is the first edge of $[C, q+1]$
(or $[C, q-1]$, respectively) which is adjacent to $[A, q]$. Let

$$
\begin{aligned}
& S^{+}(q)= \begin{cases}{[A, q](f)} & \text { if } f \text { is a left branch of }[A, q], \\
{[A, q](f)-M(q)} & \text { if } f \text { is a right branch of }[A, q],\end{cases} \\
& S^{-}(q)= \begin{cases}{[A, q](g)} & \text { if } g \text { is a left branch of }[A, q], \\
{[A, q](g)-M(q)} & \text { if } g \text { is a right branch of }[A, q],\end{cases}
\end{aligned}
$$

Notice that by Remark 2.1 and Lemma 2.1 (2) the definitions of $S^{+}(q)$ and $S^{-}(q)$ do not depend on the choice of ends of two different maximal paths of class q. The following theorem shows that $S^{+}(q)$ is determined by $S^{-}(q)$ and vice versa.

Theorem 2.1.

$$
S^{-}(q)-S^{+}(q) \equiv K(q)(\bmod M(q)) .
$$

Proof. The proof is clearer if one considers the q-drawing of P. Let A, C be the ends of two different maximal paths of class q in P, and suppose f (or g) is the first edge of $[C, q+1]$ (or $[C, q-1]$) which is adjacent to $[A, q]$, say at a vertex E (or F, respectively). If V is the last common vertex of $[C, q+1]$ with a segment $C F$ of $[C, q-1]$, then

$$
[A, q](g)-[A, q](f) \equiv|V E| \equiv K(q)(\bmod 2 M(q))
$$

Hence,

$$
S^{-}(q)-S^{+}(q) \equiv[A, q](g)-[A, q](f) \equiv K(q)(\bmod M(q)),
$$

which completes the proof.
3. Billiards and structure of plane triangulations in \mathcal{P}. Let \mathcal{P} be the family of all of 2-connected plane triangulations all of whose vertices are of degree 3 or 6 . Fix $P \in \mathcal{P}$ and $q \in Q$ (where $Q=\{0,1,2\}$ is the cyclic group). Let ($\left.K(q), M(q), S^{+}(q)\right)$ be the q-index-vector of P.

If $0<\theta<1$, then a θ-billiard sequence is a sequence $F(j) \in[0,1), j \in \mathbb{N}$, which satisfies the following conditions (see [4): $F(1)=0$ and

$$
F(j)+F(j+1)= \begin{cases}\theta \text { or } 1+\theta & \text { for } j \text { odd } \\ 0 \text { or } 1 & \text { for } j \text { even. }\end{cases}
$$

We consider a billiard table rectangle with perimeter of length 1 with the bottom left vertex labeled v_{0}, and the others, in the clockwise direction, v_{1}, v_{2} and v_{3}. The distance from v_{0} to v_{1} is $\theta / 2$. We describe the position of points on the perimeter by their distance along the perimeter measured in the clockwise direction from v_{0}, so that v_{1} is at position $\theta / 2, v_{2}$ at $1 / 2$ and v_{3} at $(\theta+1) / 2$. If a billiard ball is pushed from position $F(1)=0$ at the angle of $\pi / 4$, then it will rebound against the sides of the rectangle consecutively at $F(2), F(3), \ldots$.

The following lemma comes from [4, Theorem 3.3(2) and Example 3.1].
Lemma 3.1. If $0<s / m<1$ is a fraction, $d=|s, m|$ and $F(j), j \in \mathbb{N}$, is the s / m-billiard sequence, then:
(1) $\{2 m F(1), 2 m F(2), \ldots, 2 m F(m / d)\}=\{0,2 d, 4 d, \ldots, 2 m-2 d\}$.
(2) $2 m F(m / d)= \begin{cases}s & \text { for } s / d \text { even, } \\ m & \text { for } m / d \text { even, } \\ s+m & \text { for } s / d \text { and } m / d \text { both odd, }\end{cases}$ and $2 m F(j) \notin\{s, m, s+m\}$ for $1 \leq j<m / d$.
(3) If a, b are natural numbers, $a m-b s=d$ and $b \leq m / d$, then

$$
2 m F(b)= \begin{cases}s+d & \text { for a even } \\ m-d & \text { for } b \text { even } \\ s+m+d & \text { for } a \text { and } b \neq 1 \text { both odd } \\ 0 & \text { for } a=b=1\end{cases}
$$

REmARK 3.1. The sequence of all reduced fractions in the interval $[0,1]$ with denominators not exceeding n, listed in order of size, is called the Farey sequence of order n ($0 / 1$ is the smallest and $1 / 1$ the greatest fraction of any Farey sequence). Let $0 \leq s / m<1$ be a fraction, $d=|s, m|$, and suppose that $s^{\prime} / m^{\prime}=s / m$ is a fraction in lowest terms. Then $s^{\prime} / m^{\prime}<a / b$ are consecutive fractions in the Farey sequence of order m^{\prime} if and only if $a m-b s=d$ and $b \leq m / d$ (see Schmidt [13]).

The following theorem shows that the structure of the graph P is closely related to $S^{+}(q) / M(q)$-billiard sequences.

Theorem 3.1. Let A be a vertex of degree 3 in P, and suppose that e_{1}, \ldots, e_{n} is a sequence of all consecutive edges of $[A, q+1]$ which are adjacent to $[A, q]$.
(1) If $n>1$, then

$$
[A, q]\left(e_{j}\right)=2 M(q) F(j) \quad \text { for } 1 \leq j \leq n
$$

where $F(j), j \in \mathbb{N}$, is the $S^{+}(q) / M(q)$-billiard sequence.
(2) $n=M(q) /\left|S^{+}(q), M(q)\right|$.
(3) $K(q+1)=\left|S^{+}(q), M(q)\right|$.
(4) $K(q+1) M(q+1)=K(q) M(q)$.

Proof. Since $2 K(q) M(q)+2$ is the order of P, condition (4) holds.
If $n=1$, then $S^{+}(q)=0, M(q+1)=K(q)$ and, by $(4), K(q+1)=M(q)$. Hence, conditions (2) and (3) are satisfied.

Let $n>1$. Let C be a vertex of degree $3, C \neq A, C \neq A_{q}$, and suppose that f is the first edge of the path $[C, q+1]$ which is adjacent to $[A, q]$. Without loss of generality we can assume, by Remark 2.1, that f is a left branch
of $[A, q]$. Hence, $[A, q](f)=S^{+}(q)$. Suppose that $\hat{e}_{1}, \ldots, \hat{e}_{n}$ is a sequence of all consecutive edges of $[A, q+1]$ which are adjacent to $[C, q]$. Note that the edges $\hat{e}_{2 j-1}, \hat{e}_{2 j}$ are incident with the same vertex of $[C, q]$ and that they are on the opposite sides of this path. Hence,

$$
[C, q]\left(\hat{e}_{2 j-1}\right)+[C, q]\left(\hat{e}_{2 j}\right)=2 M(q)
$$

By Lemma 2.1(1),

$$
[A, q]\left(e_{j}\right)+[C, q]\left(\hat{e}_{j}\right) \equiv[A, q](f) \equiv S^{+}(q)(\bmod 2 M(q)) \quad \text { for } 1 \leq j \leq n
$$

Hence,

$$
[A, q]\left(e_{2 j-1}\right)+[A, q]\left(e_{2 j}\right) \equiv 2 S^{+}(q)(\bmod 2 M(q)), \quad 2 \leq 2 j \leq n .
$$

Since $0 \leq[A, q]\left(e_{2 j-1}\right)+[A, q]\left(e_{2 j}\right)<4 M(q)$ and $0<S^{+}(q)<M(q)$ we get

$$
\begin{equation*}
[A, q]\left(e_{2 j-1}\right)+[A, q]\left(e_{2 j}\right)=2 S^{+}(q) \text { or } 2 M(q)+2 S^{+}(q), \quad 2 \leq 2 j \leq n \tag{i}
\end{equation*}
$$ By analogy, the edges $e_{2 j}, e_{2 j+1}$ are incident with the same vertex of $[A, q]$, and therefore they are on the opposite sides of this path. Hence,

$$
\begin{equation*}
[A, q]\left(e_{2 j}\right)+[A, q]\left(e_{2 j+1}\right)=2 M(q), \quad 2 \leq 2 j \leq n-1 \tag{ii}
\end{equation*}
$$

From (i) and (ii) we obtain (1).
By definition of A_{q}, C and C_{q}, we have

$$
\begin{aligned}
& A_{q+1}=A_{q} \text { and } j=n \Leftrightarrow[A, q]\left(e_{j}\right)=M(q) \\
& A_{q+1}=C \text { and } j=n \Leftrightarrow[C, q]\left(\hat{e}_{j}\right)=0 \Leftrightarrow[A, q]\left(e_{j}\right)=S^{+}(q) \\
& A_{q+1}=C_{q} \text { and } j=n \Leftrightarrow[C, q]\left(\hat{e}_{j}\right)=M(q) \Leftrightarrow[A, q]\left(e_{j}\right)=M(q)+S^{+}(q) .
\end{aligned}
$$

Accordingly,

$$
\begin{align*}
& {[A, q]\left(e_{n}\right) \in\left\{M(q), S^{+}(q), M(q)+S^{+}(q)\right\},} \tag{iii}\\
& {[A, q]\left(e_{j}\right) \notin\left\{M(q), S^{+}(q), M(q)+S^{+}(q)\right\} \quad \text { for } j<n .}
\end{align*}
$$

By (1) and Lemma 3.1(2), condition (iii) leads to $n=M(q) /\left|S^{+}(q), M(q)\right|$.
Since $n=M(q) /\left|S^{+}(q), M(q)\right|$ condition (4) shows that

$$
M(q+1)=n K(q)=\frac{M(q) K(q)}{\left|S^{+}(q), M(q)\right|}=\frac{M(q+1) K(q+1)}{\left|S^{+}(q), M(q)\right|} .
$$

Thus $K(q+1)=\left|S^{+}(q), M(q)\right|$ and condition (3) holds.
By analogy, we obtain the following corollary:
Corollary 3.1. Let A be a vertex of degree 3 in P, and suppose that e_{1}, \ldots, e_{n} is a sequence of all consecutive edges of $[A, q-1]$ which are adjacent to $[A, q]$.
(1) If $n>1$, then

$$
[A, q]\left(e_{j}\right)=2 M(q) F(j) \quad \text { for } 1 \leq j \leq n
$$

where $F(j), j \in \mathbb{N}$, is the $S^{-}(q) / M(q)$-billiard sequence.
(2) $n=M(q) /\left|S^{-}(q), M(q)\right|$.
(3) $K(q-1)=\left|S^{-}(q), M(q)\right|$.

Theorem 3.2. Let A be a vertex of degree 3 in P, and suppose that a, b are natural numbers such that $a M(q)-b S^{+}(q)=d$ and $b \leq M(q) / d$, where $d=\left|S^{+}(q), M(q)\right|$. Then:
(1) $S^{-}(q+1)=b K(q)$.
(2) $S^{+}(q+1) \equiv b K(q)-K(q+1)(\bmod M(q+1))$.

Proof. It suffices to prove (1), because (2) follows from (1) and Theorem 2.1. Suppose that e_{1}, \ldots, e_{n} is a sequence of all consecutive edges of $[A, q+1]$ which are adjacent to $[A, q]$ at vertices $A=E_{1}, \ldots, E_{n}$, respectively.

If $n=1$, then A is the only common vertex of $[A, q+1]$ and $[A, q]$. Hence, $S^{+}(q)=0$ and $S^{-}(q+1)=M(q+1)=K(q)$. Then $a=b=1$, and condition (1) holds.

Let $n>1$. Let C be a vertex of degree $3, C \neq A, C \neq A_{q}$, and suppose that f is the first edge of $[C, q+1]$ which is adjacent to $[A, q]$. Without loss of generality we can assume, by Remark [2.1, that f is a left branch of $[A, q]$. Hence, $[A, q](f)=S^{+}(q)$. Suppose that $\hat{e}_{1}, \ldots, \hat{e}_{n}$ is a sequence of all consecutive edges of $[A, q+1]$ which are adjacent to $[C, q]$ at vertices $\hat{E}_{1}, \ldots, \hat{E}_{n}$, respectively. Note that $E_{j}=E_{j+1}$ for j even, $\hat{E}_{j}=\hat{E}_{j+1}$ for j odd, and the segment $E_{j} \hat{E}_{j}$ of $[A, q+1]$ has length $\left|E_{j} \hat{E}_{j}\right|=K(q)$. Hence, the segments $A E_{b}$ and $A \hat{E}_{b}$ of $[A, q+1]$ have lengths:

$$
\begin{cases}\left|A E_{b}\right|=b K(q) & \text { for } b \text { even, } \tag{i}\\ \left|A \hat{E}_{b}\right|=b K(q) & \text { for } b \text { odd. }\end{cases}
$$

By Remark 2.1 and Lemma 2.1(1), we have

$$
\begin{aligned}
& {\left[A_{q}, q\right]\left(e_{j}\right)-\left[A_{q}, q\right]\left(e_{i}\right) \equiv[A, q]\left(e_{j}\right)-[A, q]\left(e_{i}\right) \equiv[C, q]\left(\hat{e}_{i}\right)-[C, q]\left(\hat{e}_{j}\right)} \\
& \equiv\left[C_{q}, q\right]\left(\hat{e}_{i}\right)-\left[C_{q}, q\right]\left(\hat{e}_{j}\right)(\bmod 2 M(q)) \quad \text { for } 1 \leq i, j \leq n .
\end{aligned}
$$

From Theorem 3.1 2 (2) it follows that $n=M(q) / d$. Hence, by Theorem 3.1(1) and Lemma 3.1(1), we obtain

$$
\begin{align*}
& {\left[A_{q}, q\right]\left(e_{j}\right)-\left[A_{q}, q\right]\left(e_{i}\right) \equiv[C, q]\left(\hat{e}_{i}\right)-[C, q]\left(\hat{e}_{j}\right)} \tag{ii}\\
& \quad \equiv\left[C_{q}, q\right]\left(\hat{e}_{i}\right)-\left[C_{q}, q\right]\left(\hat{e}_{j}\right) \equiv 0(\bmod 2 d) \quad \text { for } 1 \leq i, j \leq n .
\end{align*}
$$

By Lemma 3.1(3) we get

$$
[A, q]\left(e_{b}\right)= \begin{cases}S^{+}(q)+d & \text { for } a \text { even } \\ M(q)-d & \text { for } b \text { even } \\ S^{+}(q)+M(q)+d & \text { for } a \text { and } b \neq 1 \text { both odd. }\end{cases}
$$

Since $[A, q](f)=S^{+}(q)$, Lemma 2.1 (1) shows that

$$
[C, q]\left(\hat{e}_{b}\right) \equiv[A, q](f)-[A, q]\left(e_{b}\right) \equiv S^{+}(q)-[A, q]\left(e_{b}\right)(\bmod 2 M(q)) .
$$

Accordingly, by Remark 2.1, we obtain

$$
\begin{cases}{[C, q]\left(\hat{e}_{b}\right)=2 M(q)-d} & \text { for } a \text { even } \tag{iii}\\ {\left[A_{q}, q\right]\left(e_{b}\right)=2 M(q)-d} & \text { for } b \text { even, } \\ {\left[C_{q}, q\right]\left(\hat{e}_{b}\right)=2 M(q)-d} & \text { for } a \text { and } b \neq 1 \text { both odd. }\end{cases}
$$

Hence, for b even (resp. b odd and $b \neq 1$), e_{b} (resp. \hat{e}_{b}) is a right branch of $\left[A_{q}, q\right]$ (resp. $[C, q]$ or $\left[C_{q}, q\right]$). For b even (resp. b odd and $b \neq 1$), suppose that g is the first arc of the directed path $\left[A_{q}, q\right]$ (resp. $[C, q]$ or $\left[C_{q}, q\right]$) which is adjacent to the directed path $[A, q+1]$. By (ii)-(iii), E_{b} (resp. \hat{E}_{b}) is the common head of the $\operatorname{arcs} g$ and e_{b} (resp. \hat{e}_{b}). Hence, g is a left branch of $[A, q+1]$. Thus, by (i),

$$
S^{-}(q+1)=[A, q+1](g)=\left|A E_{b}\right|\left(\operatorname{resp} .\left|A \hat{E}_{b}\right|\right)=b K(q)
$$

and condition (1) holds.
Example 3.1. Let $\left\{a_{j}\right\}$ be the Fibonacci sequence:

$$
a_{1}=a_{2}=1 \quad \text { and } \quad a_{j+2}=a_{j}+a_{j+1} \quad \text { for } j \in \mathbb{N}
$$

We will check that

$$
\left\{\left(1, a_{2 n+1} a_{2 n+2}, a_{2 n} a_{2 n+2}\right),\left(a_{2 n+2}, a_{2 n+1}, 0\right),\left(a_{2 n+1}, a_{2 n+2}, a_{2 n}\right)\right\}
$$

is the orbit of a graph in \mathcal{P}. Notice that for $n=1$ we obtain the orbit

$$
\{(1,6,3),(3,2,0),(2,3,1)\}
$$

Proof. Since a_{j} / a_{j+1} is the j th convergent to $(\sqrt{5}-1) / 2, j \in \mathbb{N}$, we have the following conditions (see Schmidt [13, Lemmas 3C, 3D]):

$$
\begin{align*}
a_{j+1}^{2}-a_{j} a_{j+2} & =(-1)^{j} \tag{1}\\
a_{j+3} a_{j}-a_{j+2} a_{j+1} & =(-1)^{j+1} \tag{2}
\end{align*}
$$

If $\left(K(1), M(1), S^{+}(1)\right)=\left(1, a_{2 n+1} a_{2 n+2}, a_{2 n} a_{2 n+2}\right)$ then, by (1), for $j=$ $2 n-1$,

$$
a_{2 n-1} M(1)-a_{2 n} S^{+}(1)=a_{2 n+2}
$$

Hence, by Theorem 3.1(3-4) we have

$$
K(2)=a_{2 n+2}, \quad M(2)=a_{2 n+1}
$$

and, by Theorem 3.2(2),

$$
S^{+}(2) \equiv a_{2 n} K(1)-K(2)=a_{2 n}-a_{2 n+2}=-a_{2 n+1} \equiv 0\left(\bmod a_{2 n+1}\right)
$$

If $\left(K(2), M(2), S^{+}(2)\right)=\left(a_{2 n+2}, a_{2 n+1}, 0\right)$, then $M(2)-S^{+}(2)=a_{2 n+1}$. Hence, by Theorem 3.1(3-4) we obtain

$$
K(3)=a_{2 n+1}, \quad M(3)=a_{2 n+2}
$$

and, by Theorem 3.2(2),

$$
S^{+}(3) \equiv K(2)-K(3)=a_{2 n+2}-a_{2 n+1}=a_{2 n}\left(\bmod a_{2 n+2}\right)
$$

If $\left(K(3), M(3), S^{+}(3)\right)=\left(a_{2 n+1}, a_{2 n+2}, a_{2 n}\right)$, then, by (2), for $j=2 n-1$,

$$
a_{2 n-1} M(3)-a_{2 n+1} S^{+}(3)=1
$$

Hence, by Theorem 3.1(3-4) we have

$$
K(1)=1, \quad M(1)=a_{2 n+1} a_{2 n+2}
$$

and, by Theorem 3.2 (2) and (1), for $j=2 n$,

$$
S^{+}(1) \equiv a_{2 n+1} K(3)-K(1)=a_{2 n+1}^{2}-1=a_{2 n} a_{2 n+2}\left(\bmod a_{2 n+1} a_{2 n+2}\right)
$$

and the proof is complete.
4. One-point orbits of plane triangulations in \mathcal{P}. We recall that $X=\left\{(k, m, s) \in \mathbb{Z}^{3}: k, m \geq 1,0 \leq s<m\right\}$ is the set of all index-vectors of graphs in \mathcal{P}. In the following theorem we characterize one-point orbits.

TheOrem 4.1. $\{(k, m, s)\} \in X$ is a one-point orbit of a graph in \mathcal{P} if and only if $m=k z, s=k x$, where $0 \leq x<z$ are integers such that z is a divisor of $x^{2}+x+1$.

Proof. Let (k, m, s) be an index-vector of a graph in \mathcal{P}. It is easy to prove that the following conditions are equivalent $((\mathrm{ii}) \Leftrightarrow$ (iii) follows from Theorems 3.1 (3-4) and 3.2(2)):
(i) $\{(k, m, s)\}$ is a one-point orbit,
(ii) $(k, m, s)=\left(K(q), M(q), S^{+}(q)\right)=\left(K(q+1), M(q+1), S^{+}(q+1)\right)$,
(iii) $k=|s, m|$ and $s=b k-k$, where b is an integer such that $0<b$ $\leq m / k$ and $b s \equiv-k(\bmod m)$,
(iv) $m=k z, s=k x=b k-k$, where $z \geq 1, x \geq 0$ and $0<b \leq z$ are integers such that $b x \equiv-1(\bmod z)$,
(v) $m=k z, s=k x$, where $0 \leq x<z$ are integers such that z is a divisor of $x^{2}+x+1$.

REmARK 4.1. Notice that if $\{(k, m, s)\}$ is a one-point orbit of a graph $G \in \mathcal{P}$, then, by Theorem 2.1, $\{(k, m, m-s-k)\}$ is a one-point orbit of the mirror reflection of G. Hence, by Theorem 4.1, z is a divisor of $x^{2}+x+1$ if and only if z is a divisor of $(z-x-1)^{2}+(z-x-1)+1$, which is confirmed by the following equivalence:

$$
x^{2}+x+1=y z \Leftrightarrow(z-x-1)^{2}+(z-x-1)+1=(z-2 x-1+y) z
$$

EXAMPLE 4.1. Notice that $(y, z, x)=(1,1,0),(1,3,1),(1,7,2)$ and $(1,13,3)$ are all integral solutions of the Diophantine equation

$$
x^{2}+x+1=y z \quad \text { for } 0 \leq x \leq 3 \text { and } x<z
$$

Hence, by Theorem 4.1, $\{(k, k, 0)\}$, for $k \in \mathbb{N},\{(1,3,1)\},\{(1,7,2)\}$ and $\{(1,13,3)\}$ are all one-point orbits with $s \leq 3$. Notice that K^{4} (tetrahedron)
has one-point orbit $\{(1,1,0)\}$. Let G_{0}, G_{1}, G_{2} and G_{3} be graphs in \mathcal{P} with one-point orbits

$$
\{(4,4,0)\}, \quad\{(1,3,1)\}, \quad\{(1,7,2)\}, \quad\{(1,13,3)\},
$$

respectively. Consider a solid regular tetrahedron with closed 3 -faces f_{1}, f_{2}, f_{4}, f_{4}. We leave it to the reader to verify that $G_{j}, j=0,1,2,3$, can be embedded in the sphere of the solid regular tetrahedron in such a way that all four induced plane graphs $G_{j}\left[V_{j} \cap f_{1}\right], \ldots, G_{j}\left[V_{j} \cap f_{4}\right]$ are op-equivalent to the plane graph Q_{j} shown in Fig. 3.

graph Q_{1}

graph Q_{2}

graph Q_{3}

Fig. 3
We conjecture that each graph $G \in \mathcal{P}$ with one-point orbit and vertex set V can be embedded in the sphere of the solid regular tetrahedron in such a way that all four induced plane graphs $G\left[V \cap f_{1}\right], \ldots, G\left[V \cap f_{4}\right]$ are op-equivalent.

Theorem 4.2. $G \in \mathcal{P}$ is double mirror symmetric if and only if G has a one-point orbit of the form $\{(k, k, 0)\}$ or $\{(k, 3 k, k)\}$ for some $k \in \mathbb{N}$.

Proof. Let $G \in \mathcal{P}$ and suppose that $\left\{\left(K(q), M(q), S^{+}(q)\right): q \in Q\right\}$ is the orbit of G. First we prove that if $S^{+}(q)+S^{-}(q)=M(q)$ for $q=1,2$, then G has a one-point orbit of the form $\{(k, 2 s+k, s)\}$. If $S^{+}(q)+S^{-}(q)$ $=M(q)$ for $q=1,2$, then by Theorem 3.1 (3) and Corollary 3.1 (3) we conclude that $K(0)=K(1)=K(2)=k$. Hence, $M(0)=M(1)=M(2)=m$, by Theorem 3.1(4). Suppose that a_{q}, b_{q} for $q \in Q$ are integers such that $a_{q} m-b_{q} S^{+}(q)=k$ and $1 \leq b_{q} \leq m / k$. By Theorem 3.2(1-2), we de-
duce that $S^{+}(q+1)=b_{q} k-k$ and $S^{-}(q+1)=b_{q} k$. Since $S^{+}(q+1)+$ $S^{-}(q+1)=m$ for $q=0$, 1 , we see that $b_{0}=b_{1}, S^{+}(1)=S^{+}(2)=s$, and $s+(s+k)=m$. Since $\left(K(1), M(q), S^{+}(1)\right)=\left(K(2), M(2), S^{+}(2)\right)=$ $(k, 2 s+k, s)$, we have $\left(K(0), M(0), S^{+}(0)\right)=(k, 2 s+k, s)$. This completes the proof of the claimed implication. The opposite implication follows from Theorem 2.1 .

It is easy to see that the following conditions are equivalent $(\mathrm{i}) \Leftrightarrow$ (ii) follows from Theorem 4.1):
(i) $\{(k, 2 s+k, s)\}$ is a one-point orbit of G,
(ii) $m=2 s+k=k z, s=k x$, where $0 \leq x<z$ are integers such that z is a divisor of $x^{2}+x+1$,
(iii) $m=k(2 x+1), s=k x$, where integers $x \geq 0$ and $y>0$ are solutions of the equation $x^{2}+x+1=y(2 x+1)$.
Let D be the determinant of the quadratic equation $x^{2}+x(1-2 y)+1-y=0$. Since $D=4 y^{2}-3$ is the square of an integer, it follows that $y=1$. Hence, $x=0$ or $x=1$, which completes the proof.
5. 2-tree partitions with trees of the same order. Suppose that G is a 2 -connected plane triangulation which has a 2 -tree partition, that is, G has two disjoint induced trees S, T which together cover all vertices of G. Denote by f_{i}^{S} and f_{i}^{T} the number of vertices of degree i contained in S and T, respectively. Tutte [15] proved the following identity, which is the dual version of the well-known Grinberg theorem [7:

$$
\begin{equation*}
\sum_{i}(i-2) f_{i}^{S}=\sum_{i}(i-2) f_{i}^{T} \tag{1}
\end{equation*}
$$

Let us denote by f_{i} the number of vertices of degree i of the graph G. Euler's equation becomes

$$
\begin{equation*}
\sum_{i}(6-i) f_{i}=12 \tag{2}
\end{equation*}
$$

Recall that \mathcal{P} (resp. \mathcal{H}) is the family of all 2 -connected plane triangulations all of whose vertices are of degree 3 or 6 (at most 6 , respectively).

Theorem 5.1. If $G \in \mathcal{P}$, then for every 2 -tree partition of G the trees have the same number of vertices of degree 6 , and the same number of vertices of degree 3 in G.

Proof. Let S and T be two disjoint induced trees which together cover all vertices of G. By (1) we have $4 f_{6}^{S}+f_{3}^{S}=4 f_{6}^{T}+f_{3}^{T}$. Hence, $f_{3}^{S} \equiv f_{3}^{T}$ $(\bmod 4)$. In view of $f_{3}^{S}+f_{3}^{T}=4$ we have two cases: $f_{3}^{S}=4$ or $f_{3}^{S}=2=f_{3}^{T}$. In the first case, $4 f_{6}^{S}+4=4 f_{6}^{T}$. Accordingly, f_{6} is odd. Hence, we have a contradiction, because the order of G is even. In the second case we have $f_{3}^{S}=f_{3}^{T}$ and we obtain $f_{6}^{S}=f_{6}^{T}$.

Theorem 5.2. If $G \in \mathcal{H}$, then for every 2 -tree partition of G the orders of the trees differ by at most 3 .

Proof. Let S and T be two disjoint induced trees which together cover all vertices of G. By (1) and (2) we obtain

$$
\begin{aligned}
\left|\sum_{i=3}^{6} f_{i}^{T}-\sum_{i=3}^{6} f_{i}^{S}\right| & =\left|\sum_{i=3}^{5}\left(f_{i}^{T}-f_{i}^{S}\right)-\sum_{i=3}^{5} \frac{i-2}{4}\left(f_{i}^{T}-f_{i}^{S}\right)\right| \\
& =\left|\frac{1}{4} \sum_{i=3}^{5}(6-i)\left(f_{i}^{T}-f_{i}^{S}\right)\right| \leq \frac{1}{4} \sum_{i=3}^{5}(6-i) f_{i}=3
\end{aligned}
$$

which completes the proof.
6. 2-tree partitions with trees which are equitable 2 -colorable. Let \mathcal{P} be the family of all 2 -connected plane triangulations all of whose vertices are of degree 3 or 6 . We recall that a graph $P \in \mathcal{P}$ is factorable into factors P_{0}, P_{1}, P_{2} (indexed by elements of the cyclic group $Q=\{0,1,2\}$) satisfying condition (GM1). We will give an example of a graph in \mathcal{P} which has a 2 -tree partition, but the trees are not equitable 2-colorable. In Theorem 6.1 we will prove that if $P \in \mathcal{P}$ has order $4 n+2, n \in \mathbb{N}$, then it has a 2 -tree partition such that the two trees are equitable 2 -colorable.

Example 6.1. Let $G \in \mathcal{P}$ be the graph of Fig. 4. Notice that G contains two disjoint induced trees whose vertices together span all of G. However, the induced trees are not equitable 2-colorable.

Fig. 4. An induced tree (thick) is not equitable 2-colorable.

A k-caterpillar, $k \geq 1$, is a tree T which contains a path T_{0} such that $T-V\left(T_{0}\right)$ is a family of independent paths of the same order k. The path T_{0} is referred to as the spine of T (see Chartrand and Lesniak [1]). Paths and k-caterpillars, for k even, are called even caterpillars. Notice that even caterpillars are equitable 2 -colorable.

Goodey [6] constructed a Hamiltonian cycle in every 2-connected cubic plane graph whose faces are only triangles or hexagons. Suppose that $H \in \mathcal{P}$ has a unique cycle of class q for some $q \in Q$. In Lemma 6.1 we use a dual version of Goodey's construction to partition the vertex set of H into two subsets so that each induces an even caterpillar.

Lemma 6.1. Suppose that $H \in \mathcal{P}$ has a unique cycle of class q, say γ_{1}, for some $q \in Q$. Then H contains two disjoint, induced even caterpillars T and $S\left(T\right.$ is a $(2 d-2)$-caterpillar, where $d=\left|S^{+}(q)+1, M(q)\right|$, and S is a path) whose vertices together span all of H. Moreover,
(1) $T \cap \gamma_{1}$ is a family of independent paths in H with the same order $2 d-1$, and $S \cap \gamma_{1}$ is an independent set of vertices.

Proof. Let $\gamma=v_{0} v_{1} \ldots v_{M(q)}$ and γ^{\prime} be two maximal paths of class q, and suppose that $\gamma_{1}=t_{0} t_{1} \ldots t_{2 M(q)-1}$ is the clockwise oriented cycle of class q in H. Without loss of generality we can assume that the vertices t_{0}, t_{1} are adjacent to v_{1} (see Fig. 6).

Suppose that $S^{+}(q)<M(q)-1$. In the graph $H-V(\gamma)$ we identify successive vertices and edges of the path $t_{0} t_{1} \ldots t_{M(q)}$ with successive vertices and edges of the path $t_{0} t_{2 M(q)-1} t_{2 M(q)-2} \ldots t_{M(q)}$. After the identification we obtain a path $\delta=w_{0} w_{1} \ldots w_{M(q)}$ and a graph $H_{\gamma} \in \mathcal{P}$ (see Fig. 5). We can assume that δ and γ^{\prime} are two maximal paths of the same class q in H_{γ}. Since $K(q)=2,\left(K_{\gamma}(q), M_{\gamma}(q), S_{\gamma}^{+}(q)\right)=\left(1, M(q), S^{+}(q)\right)$ is the q-index-vector of the graph H_{γ}. Let e_{1}, \ldots, e_{n} be a sequence of all consecutive edges of the path $\left[w_{0}, q-1\right]$ which are adjacent to the path δ (see Fig. 5).

Fig. 5. A $\left[w_{0}, q-1\right]$ path (thick) in the graph $H_{\gamma} ; I=\{0,4\}$ (see Lemma 6.1].
Since $S_{\gamma}^{-}(q)=S_{\gamma}^{+}(q)+1=S^{+}(q)+1<M(q)$, we have $n>1$. By Lemma 3.1. (1) and Corollary 3.1($1-2$), we obtain

$$
\begin{equation*}
\left\{\left[w_{0}, q\right]\left(e_{1}\right),\left[w_{0}, q\right]\left(e_{2}\right), \ldots,\left[w_{0}, q\right]\left(e_{n}\right)\right\}=\{0,2 d, 4 d, \ldots, 2 M(q)-2 d\} \tag{2}
\end{equation*}
$$

where $d=\left|S_{\gamma}^{-}(q), M_{\gamma}(q)\right|=\left|S^{+}(q)+1, M(q)\right|$. Let

$$
I=\left\{0 \leq i \leq M(q): w_{i} \in V\left(\left[w_{0}, q-1\right]\right)\right\}
$$

We can consider $V_{0}=V\left(\left[w_{0}, q-1\right]\right) \cap V\left(\gamma^{\prime}\right)$ as a set of vertices in H. It is not difficult to see that the set

$$
V_{1}=V_{0} \cup \bigcup_{i \in I}\left\{v_{i}, t_{i}\right\} \cup \bigcup_{i \in I \backslash\{0, M(q)\}}\left\{t_{2 M(q)-i}\right\}
$$

induces a path T_{0} in H (see Fig. 6). Accordingly, by (2), the set

$$
\begin{aligned}
V_{2}= & V_{1} \cup \\
& \cup \bigcup_{i \in I}\left\{t_{i+1}, t_{i+2}, \ldots, t_{i+2 d-2}\right\} \\
& \cup \bigcup_{i \in I \backslash\{0, M(q)\}}\left\{t_{2 M(q)-i+1}, t_{2 M(q)-i+2}, \ldots, t_{2 M(q)-i+2 d-2}\right\}
\end{aligned}
$$

induces a $(2 d-2)$-caterpillar T in H with spine T_{0} (see Fig. 6). Notice that $V(H)-V_{2}$ induces a path S in H, and condition (1) holds.

Fig. 6. A 2-caterpillar T (thick) in the graph H (see Lemma 6.1; $J=\{3,7,11\}$ (see Theorem 6.1.

If $S^{+}(q)=M(q)-1$, then there exists a vertex $u \neq v_{0}$ of degree 3 which is adjacent to $t_{2 M(q)-1}$ and t_{0}. Then the set $W=\left\{u, v_{0}, t_{0}, t_{1}, \ldots, t_{2 M(q)-2}\right\}$ induces a $(2 M(q)-2)$-caterpillar T with spine $u t_{0} v_{0}$, and $V(H)-W$ induces a path S satisfying condition (1).

Theorem 6.1. Let $P \in \mathcal{P}$. If P has order $4 n+2, n \in \mathbb{N}$, then P contains two disjoint, induced even caterpillars whose vertices together span all of P.

Proof. Let $P \in \mathcal{P}$ have order $4 n+2, n \in \mathbb{N}$. Let $\left(K(q), M(q), S^{+}(q)\right)$ be the q-index-vector of $P, q \in Q$. First we prove that $K(q)$ is even for some
$q \in Q$. We know that $2 K(q) M(q)+2=4 n+2$ for every $q \in Q$. Suppose that $K(q)$ is odd for some $q \in Q$. Hence, $M(q)$ is even. By Theorem 2.1, $S^{-}(q)-S^{+}(q) \equiv K(q)(\bmod M(q))$, whence $S^{+}(q)$ or $S^{-}(q)$ is even. By Theorem 3.1 3) and Corollary 3.1 $(3), K(q \pm 1)=\left|S^{ \pm}(q), M(q)\right|$, whence $K(q+1)$ or $K(q-1)$ is even.

Let now $K(q)=k$ be even, and suppose that $\gamma_{0}, \gamma^{\prime}$ are maximal paths of class q, and $\gamma_{1}, \ldots, \gamma_{k-1}$ are clockwise oriented cycles of class q in P such that vertices of γ_{j} are adjacent to vertices of $\gamma_{j-1}, 1 \leq j<k$. We will prove that P contains two disjoint, induced even caterpillars T_{k} and S_{k} whose vertices together span all of P, and the following condition is satisfied:

$$
\left\{\begin{array}{l}
\left\{T_{k} \cap \gamma_{j}: j \text { odd, } 1 \leq j<k\right\} \cup\left\{S_{k} \cap \gamma_{j}: j \text { even, } 1<j<k\right\} \tag{3}\\
\text { is a family of independent paths in } P \text { with the same odd order, } \\
\text { and }\left\{T_{k} \cap \gamma_{j}: j \text { even, } 1<j<k\right\} \cup\left\{S_{k} \cap \gamma_{j}: j \text { odd, } 1 \leq j<k\right\} \\
\text { is an independent set of vertices in } \mathrm{P} .
\end{array}\right.
$$

We proceed by induction on the even number $K(q)=k$. By Lemma 6.1, we can assume that $k \geq 4$. Let
$\gamma_{k-3}=x_{0} x_{1} \ldots x_{M(q)-1}, \quad \gamma_{k-2}=y_{0} y_{1} \ldots y_{2 M(q)-1}, \quad \gamma_{k-1}=z_{0} z_{1} \ldots z_{2 M(q)-1}$.
Without loss of generality we can assume that y_{0}, y_{1} are adjacent to x_{1}, and z_{0}, z_{1} are adjacent to y_{0} (see Fig. 7). In the graph $P-V\left(\gamma_{k-2}\right)$ we

Fig. 7. A 2-caterpillar T (thick) in the graph P (see Theorem 6.1)
identify successive vertices and edges of the cycle γ_{k-1} with successive vertices and edges of the cycle γ_{k-3}. After the identification we obtain a cycle $\delta=t_{0} t_{1} \cdots t_{2 M(q)-1}$ and a graph $H \in \mathcal{P}$ (see Fig. 6). We can assume that $\gamma_{0}, \gamma^{\prime}$ (or γ_{j}, for $1 \leq j<k-3$, and δ) are maximal paths (or cycles, respectively) of class q in H. By induction H contains two disjoint, induced even caterpillars T_{k-2} and S_{k-2} whose vertices together span all of H, and condition (3) holds (for k replaced with $k-2$, and P replaced with H). Let

$$
\begin{aligned}
& I=\left\{0 \leq i<2 M(q): t_{i} \in V\left(T_{k-2}\right)\right\}, \\
& J=\left\{0 \leq i<2 M(q): t_{i} \in V\left(S_{k-2}\right)\right\} .
\end{aligned}
$$

We can consider $V_{T}=V\left(T_{k-2}\right) \backslash V(\delta)$ and $V_{S}=V\left(S_{k-2}\right) \backslash V(\delta)$ as sets of vertices in the graph P. Hence, the sets

$$
\begin{aligned}
& V_{T} \cup\left\{x_{i}: i \in I\right\} \cup\left\{z_{i}: i \in I\right\} \cup\left\{y_{i}: i \in J\right\}, \\
& V_{S} \cup\left\{x_{i}: i \in J\right\} \cup\left\{z_{i}: i \in J\right\} \cup\left\{y_{i}: i \in I\right\}
\end{aligned}
$$

induce (respectively) two disjoint even caterpillars T_{k} and S_{k} whose vertices together span all of P, and condition (3) holds.
7. Orbits of non-simple plane triangulations in \mathcal{P}. In the following theorem we characterize orbits of plane triangulations in \mathcal{P} which are not simple.

Theorem 7.1. $G \in \mathcal{P}$ is not simple if and only if G has an orbit of the form

$$
\{(n, 1,0),(1, n, n-1),(1, n, 0)\} \quad \text { for some integer } n>1 \text {. }
$$

Proof. Let $G \in \mathcal{P}$. It is easy to prove that the following conditions are equivalent $((i v) \Leftrightarrow$ (v) follows from Theorems 3.1 (3-4) and 3.2(2)):
(i) G is not simple,
(ii) G has a cycle of class q and length 2 for some $q \in Q$,
(iii) $G \neq K_{4}$ and it has two edges of class q with ends of degree 3 for some $q \in Q$,
(iv) G has an index-vector of the form $(n, 1,0)$ for some $n>1$,
(v) G has an orbit of the form $\{(n, 1,0),(1, n, n-1),(1, n, 0)\}$ for some $n>1$.

This completes the proof.

Appendix: On the Diophantine equation $x^{2}+x+1=y z$ (by A. Schinzel). Let us adopt the notation introduced in the classical book
[11, pp. 5-6]:

$$
\begin{array}{llll}
A_{-1}=1, & A_{0}=b_{0}, & A_{\nu}=b_{\nu} A_{\nu-1}+A_{\nu-2} & (\nu \geq 1), \\
B_{-1}=0, & B_{0}=1, & B_{\nu}=b_{\nu} B_{\nu-1}+B_{\nu-2} & (\nu \geq 1),
\end{array}
$$

where $b_{\nu}(\nu \geq 0)$ is an arbitrary sequence of integers.
We shall prove
Theorem. For every even $k \geq 0$ and all positive integers b_{0}, \ldots, b_{k}, the positive integers

$$
\begin{aligned}
& x=A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}, \\
& y=A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2}, \\
& z=A_{k}^{2}+A_{k} B_{k}+B_{k}^{2}
\end{aligned}
$$

satisfy the equation $x^{2}+x+1=y z$ and the inequality $y<z$.
Proof. We have (see [11, p. 16, formula (30)])

$$
A_{\lambda} B_{\lambda-1}-A_{\lambda-1} B_{\lambda}=(-1)^{\lambda-1}
$$

which for k even gives

$$
A_{k} B_{k-1}-A_{k-1} B_{k}=-1,
$$

hence

$$
\begin{aligned}
x^{2}+ & x+1-y z=A_{k-1}^{2} A_{k}^{2}+2 A_{k-1} A_{k} B_{k-1} B_{k}+2 A_{k-1} A_{k}^{2} B_{k-1} \\
& +B_{k-1}^{2} B_{k}^{2}+2 A_{k} B_{k-1}^{2} B_{k}+A_{k}^{2} B_{k-1}^{2}+A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}+1 \\
& -A_{k-1}^{2} A_{k}^{2}-A_{k-1}^{2} A_{k} B_{k}-A_{k-1}^{2} B_{k}^{2}-A_{k-1} A_{k}^{2} B_{k-1}-A_{k-1} A_{k} B_{k-1} B_{k} \\
& -A_{k-1} B_{k-1} B_{k}^{2}-A_{k}^{2} B_{k-1}^{2}-A_{k} B_{k-1}^{2} B_{k}-B_{k-1}^{2} B_{k}^{2} \\
= & A_{k-1} A_{k} B_{k-1} B_{k}+A_{k-1} A_{k}^{2} B_{k-1}+A_{k} B_{k-1}^{2} B_{k} \\
& +A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}+1 \\
& -A_{k-1}^{2} A_{k} B_{k}-A_{k-1}^{2} B_{k}^{2}-A_{k-1} B_{k-1} B_{k}^{2} \\
= & \left(A_{k-1} B_{k}+A_{k-1} A_{k}+B_{k-1} B_{k}\right)\left(A_{k} B_{k-1}-A_{k-1} B_{k}\right) \\
& +A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}+1 \\
= & -A_{k-1} B_{k}+A_{k} B_{k-1}+1=0 .
\end{aligned}
$$

Moreover, since b_{i} are positive integers, we have

$$
0<A_{k-1}<A_{k}, \quad 0 \leq B_{k-1} \leq B_{k}, \quad \text { hence } y<z .
$$

Using [11, Chapter II, Theorem 13] and [2, Theorem 131] one can prove that all solutions of the equation $x^{2}+x+1=y z$ in positive integers x, y, z satisfying the condition $y<z$ can be obtained from the formula given in the Theorem for some integer b_{0} and some positive integers $b_{i}(i=1, \ldots, k)$.

Acknowledgments. We thank Professor Andrzej Schinzel for his kind permission to include his note as an appendix to our paper.

REFERENCES

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, New York, 2005.
[2] L. E. Dickson, Modern Elementary Theory of Numbers, Univ. Press, Chicago, 1939.
[3] R. Diestel, Graph Theory, Springer, Berlin, 2005.
[4] J. Florek, Billiard and Diophantine approximation, Acta Arith. 134 (2008), 317-327.
[5] J. Florek, On Barnette's conjecture, Discrete Math. 310 (2010), 1531-1535.
[6] P. R. Goodey, A class of Hamiltonian polytopes, J. Graph Theory 1 (1977), 181-185.
[7] E. J. Grinberg, Plane homogeneous graphs of degree three without Hamiltonian circits, in: Latvian Math. Yearbook 4, Izdat. "Zinatne", 1968, 51-58 (in Russian).
[8] B. Grünbaum and T. S. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963), 744-751.
[9] T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.
[10] X. Lu, A note on Barnette's conjecture, Discrete Math. 311 (2011), 2711-2715.
[11] O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., reprint Chelsea, New York, 1950.
[12] A. Schinzel et W. Sierpiński, Sur l'équation $x^{2}+x+1=3 y^{2}$, Colloq. Math. 4 (1956), 71-73.
[13] W. M. Schmidt, Diophantine Approximation, Springer, New York, 1980.
[14] S. K. Stein, B-sets and planar maps, Pacific J. Math. 37 (1971), 217-224.
[15] W. T. Tutte, Graph Theory, Encyclopedia Math. Appl. 21, Addison-Wesley, 1984.

Jan Florek
Institute of Mathematics and Cybernetics
University of Economics
Komandorska 118/120
53-345 Wrocław, Poland
E-mail: jan.florek@ue.wroc.pl

Andrzej Schinzel
Institute of Mathematics
Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland E-mail: schinzel@impan.pl

[^0]: 2010 Mathematics Subject Classification: Primary 05C10, 05C70, 05C75, 05C05, 05C15, 05C45, 11D09.
 Key words and phrases: plane triangulation, decomposition into factors, billiards, induced tree, 2-equitable coloring, Hamilton cycle, Diophantine equation.

