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SPECTRAL SYNTHESIS IN L2(G)

BY

JEAN LUDWIG (Metz), CARINE MOLITOR-BRAUN (Luxembourg)
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Abstract. For locally compact, second countable, type I groups G, we characterize all
closed (two-sided) translation invariant subspaces of L2(G). We establish a similar result
for K-biinvariant L2-functions (K a fixed maximal compact subgroup) in the context of
semisimple Lie groups.

1. Introduction. Questions of spectral analysis and spectral synthe-
sis were at the origin of harmonic analysis. All started with the use and
study of Fourier series. Very vaguely one may say that spectral analysis
consists in determining the “elementary components” of a mathematical
object, and spectral synthesis means “reconstructing that object from its
elementary components”. After all kinds of investigations on Fourier series
and Fourier transforms, these theories found their final formulation for the
algebra L1(G), where G is a locally compact abelian group, in the first half

of the 20th century: Let Ĝ be the dual group of G (the set of unitary charac-
ters with the topology of uniform convergence on compacta). For any closed
ideal I in L1(G) one defines the hull of I by

h(I) := {χ ∈ Ĝ | f̂(χ) = 0, ∀f ∈ I},

where f̂(χ) :=
	
G f(x)χ(x) dx is the Fourier transform of f on G. For a

closed subset E of Ĝ, one defines the kernel of E by

k(E) := {f ∈ L1(G) | f̂(χ) = 0, ∀χ ∈ E}.
One says that E is a set of spectral synthesis if I := k(E) is the only

closed ideal whose hull equals E, which means that I is uniquely determined
by its hull E. This is generally not the case and positive results about this
difficult question are rare; exceptions are for instance E = ∅, the empty set,
or E = {χ}, a singleton. The so-called Wiener theorem (named like this as
it is linked to Wiener’s famous Tauberian theorem) says that the empty set
is a set of spectral synthesis, or equivalently, that if I is an ideal of L1(G)
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such that h(I) = ∅, then I is dense in L1(G). For arbitrary locally compact
abelian groups, this result was first proved independently by Godement [5]

and Segal [9] in 1947. Moreover, singletons {χ}, χ ∈ Ĝ, are also sets of
spectral synthesis (see, for instance, [6]). If the group G is not abelian, the
questions become even more complicated: In the definition of the hull and the
kernel, the characters have to be replaced by the classes of unitary irreducible
representations and Wiener’s theorem is not necessarily true anymore. For
instance, it is true for connected, simply connected, nilpotent Lie groups,
whereas in the class of connected, simply connected, exponential solvable Lie
groups, there are some groups which satisfy Wiener’s theorem and others
which do not. Needless to say, more general questions of spectral synthesis
are often out of reach.

These problems become much easier if we replace the group algebra
L1(G) by the Hilbert space L2(G). In fact, it is well known that the Fourier
series of a function in L2(T), T = R/2πZ, converges in the L2-norm to the
function itself. This is a first result on spectral synthesis in the L2-context.
On the other hand, the almost everywhere convergence of the Fourier se-
ries to the given function f is a much harder problem, which was solved
by Carleson [1] in 1966. In order to formulate a general statement about
spectral synthesis in the L2-context, let us make some remarks: As L2(G)
is not an algebra for convolution (except if G is compact), ideals have to
be replaced by closed translation invariant subspaces. For locally compact
abelian groups, a closed subspace V of L2(G) is (two-sided) translation in-
variant if, for all s ∈ G and all f ∈ V , sf, fs ∈ V where sf(x) := f(s−1x)
and fs(x) := f(xs) for almost all x ∈ G. This is equivalent to the fact that
f ∗g, g ∗f ∈ V for all f ∈ V and all g ∈ L1(G) (resp. g ∈ Cc(G), the space of
continuous functions with compact support, which is dense in L1(G)). The
general question of spectral synthesis in L2(G) can then be formulated as
follows: Determine completely all closed, translation invariant subspaces of
L2(G). Can they be uniquely characterized by their “hull”?

For G = R or G locally compact abelian, we have the following result:
The closed translation invariant subspaces of L2(G) coincide with the sub-
sets of the form

V = {f ∈ L2(G) | FPf(χ) = 0 for almost all χ ∈ E},
where FP denotes the Fourier–Plancherel transform and E is an arbitrary
measurable subset of Ĝ. A nice proof of this result for G = R may be
found in [8], and for arbitrary abelian locally compact groups one may for
instance look in [6]. But what about the non-abelian case? In a short note
[10], Sutherland proves an abstract result in the context of von Neumann
algebras, which may be considered as a result on L2-spectral synthesis, but
which is not as explicit as the previous abelian result. The foundation of
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a result of this type certainly lies in the correspondence between L2(G)
and L2(Ĝ) given by Plancherel’s theorem, but it seems to be nevertheless
worthwhile to work out the details explicitly and to strive for a formulation
similar to the one in the abelian situation. Hence the aim of the present paper
is to prove, for locally compact non-abelian groups, a result very similar
to the one stated previously for G abelian, by methods as elementary as
possible and relying mainly on the Plancherel theorem for second countable
type I locally compact groups.

Certain assumptions have to be made on the group G (G second count-

able, type I), in order to ensure the existence of a Plancherel measure on Ĝ
and the correctness of Plancherel’s theorem. We will even be able to work
in the non-unimodular case, thanks to the generalized Plancherel theorem
due to Duflo and Moore [3]. As the Fourier–Plancherel transform of an
L2-function is again an L2-function, and hence defined only almost every-
where, some care has to be taken to define the support of such a function,
respectively the support supp

Ĝ
V of a subspace V of L2(G) in Ĝ. We then

prove the following result, similar to the one in the abelian case: The closed
translation invariant subspaces of L2(G) coincide with the subsets of L2(G)
of the form

V[E] := {f ∈ L2(G) | FPf(π) = 0 for almost all π ∈ E},

where E is an arbitrary measurable subset of Ĝ, where [E] denotes the
equivalence class of E if we identify sets that differ only by a set of measure
zero, and where FP denotes again the Fourier–Plancherel transform given
by Plancherel’s theorem. Moreover, Ĝ = supp

Ĝ
V ∪ E ∪ N , where N is a

subset of measure zero and where the measurable sets supp
Ĝ
V and E may

be chosen to be disjoint. The proof is elementary, except for the use of the
Plancherel theorem and for the necessity of some result on Fourier algebras.

Finally, we prove a corresponding result for K-biinvariant L2-functions
(K a fixed maximal compact subgroup) in the context of semisimple Lie
groups. This proof is an easy adaptation of Rudin’s proof for G = R [8].

2. Preliminaries. Let us first recall some results on convolution for
non-unimodular groups. Let ∆ denote the modular function of the group G.
We define left translation of L2-functions by

(λ(x)φ)(y) := φ(x−1y), φ ∈ L2(G) for all x ∈ G and almost all y ∈ G,

and right translation by

(ρ(x)φ)(y) := ∆(x)1/2φ(yx),

φ ∈ L2(G) for all x ∈ G and almost all y ∈ G.
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From the definitions,

‖λ(x)φ‖2 = ‖ρ(x)φ‖2 = ‖φ‖2.

The corresponding actions of L1(G) on L2(G) (left and right regular repre-
sentations) are then given by

λ(f)φ = f ∗ φ and ρ(f)φ = φ ∗̃ f, f ∈ L1(G), φ ∈ L2(G),

where f ∗ φ is the usual convolution product defined by

f ∗ φ(x) =
�

G

f(y)φ(y−1x) dy

and φ ∗̃ f is given by

φ ∗̃ f(x) =
�

G

f(y)∆(y)1/2φ(xy) dy.

One checks that for f, k ∈ L1(G), φ ∈ L2(G),

f ∗ φ, φ ∗̃ f ∈ L2(G) and φ ∗̃ (f ∗ k) = (φ ∗̃ k) ∗̃ f.

This reflects the fact that ρ(f ∗ k) = ρ(f) ◦ ρ(k). One also has

f ∗ (φ ∗̃ k) = (f ∗ φ) ∗̃ k,

which means that λ(f) ◦ ρ(k) = ρ(k) ◦ λ(f), i.e. right and left regular repre-
sentations commute. The preceding formulas will in particular be used for
f, k ∈ Cc(G) (the space of continuous functions with compact support).

The group von Neumann algebra VNλ(G) of the left regular repre-
sentation is defined as the double commutant of λ(Cc(G)): VNλ(G) :=
(λ(Cc(G)))′′. See [2] for more details on von Neumann algebras and for the
definition of type I groups.

The most general version of Plancherel’s theorem for locally compact,
second countable, type I groups G was first given by Duflo and Moore [3]. It

says: There exists a positive measure µ on Ĝ, a measurable field of unitary
irreducible representations of G:

Ĝ 3 ξ 7→ (πξ,Hξ)

(where ξ = [πξ], i.e. ξ is the equivalence class of πξ, and where Hξ denotes
the representation space of πξ) and a measurable field of positive operators

Ĝ 3 ξ 7→ Kξ on Hξ, such that Kξ is semi-invariant with weight ∆ for every

ξ and such that if f ∈ L1(G)∩L2(G), then the operator f̂(ξ) = FPf(ξ) :=

πξ(f)K
1/2
ξ (“L2-Fourier transform”, or Fourier–Plancherel transform, as op-

posed to the “L1-Fourier transform” defined by Ff(ξ) := πξ(f)) extends to
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a Hilbert–Schmidt operator and

‖f‖22 =
�⊕

Ĝ

Tr
(
K

1/2
ξ πξ(f)∗πξ(f)K

1/2
ξ

)
dµ(ξ) =

�⊕

Ĝ

‖πξ(f)K
1/2
ξ ‖

2
HS dµ(ξ)

=
�⊕

Ĝ

‖f̂(ξ)‖2HS dµ(ξ),

as Kξ is self-adjoint. Moreover, the map

L1(G) ∩ L2(G)→ L2(Ĝ) :=
�⊕

Ĝ

HS(Hξ) dµ(ξ), f 7→ (f̂(ξ))
ξ∈Ĝ,

may be extended uniquely to an isometry between L2(G) and L2(Ĝ). In the
above statement, “semi-invariant with weight ∆” means that

πξ(x)Kξπξ(x
−1) = ∆(x)Kξ for all x ∈ G.

Note that K
1/2
ξ is then semi-invariant with weight ∆1/2 (thanks to the

uniqueness of the positive square root).

We will write (φ̂(ξ))
ξ∈Ĝ for the image of any L2-function φ under the

previous isometry between L2(G) and L2(Ĝ). Observe that this operator

field is only defined almost everywhere on Ĝ. Moreover, if

〈ψ, φ〉2 :=
�

G

ψ(x)φ(x) dx

denotes the scalar product in L2(G), then

〈ψ, φ〉2 =
�⊕

Ĝ

Tr(ψ̂(ξ)∗φ̂(ξ)) dµ(ξ).

Remark 2.1. It follows from the Plancherel theorem that for any mea-
surable subset S of Ĝ with non-zero Plancherel measure, the orthogonal
projection PS defined by

PS(ζ)(ξ) := 1S(ξ)ζ(ξ), ξ ∈ Ĝ, ζ ∈ L2(Ĝ),

is also non-zero.

If the group is type I and unimodular, the Kξ’s are the identity operator
and “L1-” and “L2-Fourier transforms” coincide. In that case, the Plancherel
formula and the scalar product formula are

‖φ‖22 =
�⊕

Ĝ

‖πξ(φ)‖2HS dµ(ξ),

respectively

〈ψ, φ〉2 =
�⊕

Ĝ

Tr
(
πξ(ψ)∗ ◦ πξ(φ)

)
dµ(ξ).
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One checks easily the following results:

Proposition 2.2. For f ∈ Cc(G) and φ ∈ L2(G),

(1) For almost all ξ, we have πξ(f ∗ φ)K
1/2
ξ = πξ(f)πξ(φ)K

1/2
ξ if φ ∈

L1(G) ∩ L2(G), hence (f ∗ φ) (̂πξ) = πξ(f)φ̂(πξ) if φ ∈ L2(G) is
arbitrary.

(2) For almost all ξ, we have πξ(φ ∗̃ f)K
1/2
ξ = (πξ(φ)K

1/2
ξ )πξ(f̌) if φ ∈

L1(G) ∩ L2(G), hence (φ ∗̃ f) (̂πξ) = φ̂(πξ)πξ(f̌) if φ ∈ L2(G) is
arbitrary. Here f̌(x) := f(x−1).

(3) ‖f ∗ φ‖2 ≤ ‖f‖1‖φ‖2 and ‖φ ∗̃ f‖2 ≤ ‖φ‖2‖f‖1.

We let L1(Ĝ) be the Banach space of all measurable operator fields
ϕ = (ϕ(ξ))

ξ∈Ĝ ∈ (B(Hξ))ξ∈Ĝ such that

‖ϕ‖1 :=
�

Ĝ

‖ϕ(ξ)‖1 dµ(ξ) <∞.

In this formula, for a bounded operator a on a Hilbert space H, ‖a‖1 = Tr |a|
denotes the trace class norm of a.

Proposition 2.3. The Banach space L1(Ĝ) and the Banach space A(G)
(Fourier algebra) of coefficients of the left regular representation are isomor-
phic.

Proof. This proof is based on results of [4]. As a matter of fact, every

ϕ ∈ L1(Ĝ) defines a bounded linear mapping `ϕ on C∗(G):

〈`ϕ, a〉 :=
�

Ĝ

Tr
(
ϕ(ξ)∗ ◦ πξ(a)

)
dµ(ξ), a ∈ C∗(G).

The operator norm of the functional `ϕ is then bounded by ‖ϕ‖1.
Let us show that `ϕ is contained in A(G) and that the anti-linear map-

ping L1(Ĝ)→ A(G), ϕ 7→ `ϕ, is isometric and surjective.

Let us recall that L∞(Ĝ) is the Fourier transform of VNλ(G). This
Fourier transform is the usual one defined by

F(u)(ξ) := πξ(u), u ∈ VNλ(G).

Let ϕ ∈ L1(Ĝ). Let ϕ = θ|ϕ| be the polar decomposition of ϕ, with, in

particular, |ϕ| ∈ L1(Ĝ), θ ∈ L∞(Ĝ) and θ∗θ|ϕ| = |ϕ|. Then θ∗θ
√
|ϕ| =√

|ϕ|, and
√
|ϕ| is contained in L2(Ĝ). Let f ∈ L2(G) be such that f̂ =

√
|ϕ|
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and v ∈ VNλ(G) be such that F(v) = θ. Then for a ∈ C∗(G),

cλf,v(f)(a) := 〈v(f), λ(a)f〉2 = 〈f, v∗λ(a)f〉2

=
�

Ĝ

Tr
(
K

1/2
ξ πξ(f)∗πξ(v

∗)πξ(a)πξ(f)K
1/2
ξ

)
dµ(ξ)

=
�

Ĝ

Tr
(
(πξ(f)K

1/2
ξ )∗πξ(v)∗πξ(a)πξ(f)K

1/2
ξ

)
dµ(ξ)

=
�

Ĝ

Tr
(
πξ(f)K

1/2
ξ (πξ(f)K

1/2
ξ )∗πξ(v)∗πξ(a)

)
dµ(ξ)

=
�

Ĝ

Tr
(√
|ϕ(ξ)|(

√
|ϕ(ξ)|)∗θ(ξ)∗πξ(a)

)
dµ(ξ)

=
�

Ĝ

Tr(ϕ(ξ)∗πξ(a)) dµ(ξ) = 〈lϕ, a〉.

Hence lϕ is equal to the coefficient function cλf,v(f), i.e. lϕ ∈ A(G). Now

the norm of the linear functional cλf,v(f) is equal to ‖f‖22, hence also to

‖f̂‖22 = ‖ϕ‖1. Indeed θ∗θ
√
|ϕ| =

√
|ϕ|, which tells us that v∗v(f) = f .

But then limi v
∗λ(ai)v(f) = f for an approximate identity (ai)i of norm 1

in C∗(G), and by Kaplansky’s density theorem, we can replace v by a
strongly converging net (λ(bj))j of elements bj in C∗(G) of norm ≤ 1. Hence

‖f‖22 =
∣∣∣lim
i,j
〈f, v∗λ(aibj)f〉

∣∣∣ =
∣∣∣lim
i,j
〈v(f), λ(aibj)f〉

∣∣∣
= lim

i,j
|cλf,v(f)(aibj)|

≤ ‖cλf,v(f)‖ ≤ ‖f‖
2
2.

So
‖lϕ‖ = ‖cλf,v(f)| = ‖f‖

2
2 = ‖f̂‖22 = ‖ϕ‖1

and the anti-linear map ϕ 7→ lϕ from L1(Ĝ) into A(G) is isometric and hence
injective.

Conversely, every coefficient function c of the left regular representation
can be written as

c = cλf,v(f)

where v ∈ VNλ(G) is a partial isometry satisfying f = v∗v(f) and ‖c‖ =
‖f‖22 (see [4]).

But the operator field defined by

ϕ(ξ)∗ := πξ(f)K
1/2
ξ (πξ(f)K

1/2
ξ )∗πξ(v)∗, ξ ∈ Ĝ,

is contained in L1(Ĝ), satisfies lϕ = c and ‖c‖ = ‖ϕ‖1 = ‖lϕ‖. This proves

the surjectivity of the map ϕ 7→ lϕ from L1(Ĝ) onto A(G).
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Remark 2.4. Let B(G) be the Fourier–Stieltjes algebra. As A(G) ⊂
B(G) = (C∗(G))′, the dual of C∗(G) (see [4]), an element ϕ of L1(Ĝ) such
that 〈lϕ, a〉 =

	
Ĝ

Tr(ϕ(ξ)∗πξ(a)) dµ(ξ) = 0 for all a ∈ C∗(G) has to be zero
itself. This is the key to the proof of Theorem 3.3.

3. Main theorem. Let G be a locally compact, second countable, type
I group. We shall characterize the closed translation invariant subspaces
of L2(G). Since G is second countable, L2(G) is separable. That is, L2(G)
admits a countable dense subset. The same is true for any closed subspace
of L2(G).

In order to deal efficiently with sets defined modulo subsets of measure
zero, let us introduce the following notations. We assume that Ĝ is endowed
with the Plancherel measure. For any two measurable subsets E and F of Ĝ,
we define their symmetric difference by

E 4 F := (E \ F ) ∪ (F \ E).

Let M(Ĝ) denote the set of all measurable subsets of Ĝ. We introduce an

equivalence relation ∼ on M(Ĝ) by

E ∼ F ⇔ E 4 F has measure zero.

For every measurable subset E of Ĝ, we write [E] for the equivalence class

of E and we denote by M̃(Ĝ) := M(Ĝ)/∼ the set of all such equivalence
classes.

Let V be a closed subset of L2(G). Let {φj | j ∈ N} and {φ′j | j ∈ N} be
two countable dense subsets of V . For every j ∈ N choose a representative
ϕj of φ̂j and a representative ϕ′j of φ̂′j . Fix j ∈ N. From φ′j = limk→∞ φjk in

L2(G) and
�

Ĝ

‖ϕ′j(ξ)− ϕjk(ξ)‖2HS dµ(ξ) = ‖φ′j − φjk‖
2
2 → 0 as k →∞,

it follows that

{ξ ∈ Ĝ | ϕ′j(ξ) 6= 0} ⊆
⋃
i∈N
{ξ ∈ Ĝ | ϕi(ξ) 6= 0} mod µ-zero,

that is, modulo a set of measure zero. Therefore,⋃
j∈N
{ξ ∈ Ĝ | ϕ′j(ξ) 6= 0} ⊆

⋃
i∈N
{ξ ∈ Ĝ | ϕ̂i(ξ) 6= 0} mod µ-zero.

Similarly we can prove the converse. This allows us to make the following
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Definition 3.1. Let V be a closed subspace of L2(G) and define the

support of V in Ĝ as

supp
Ĝ
V =

⋃
i∈N
{ξ ∈ Ĝ | ϕi(ξ) 6= 0} mod µ-zero,

where {φi | i ∈ N} is any countable dense subset of V and where for any

i ∈ N, ϕi is a representative of φ̂i.

Definition 3.2. Let V be a closed subspace of L2(G). We say that V
is (two-sided) translation invariant if and only if λ(x)φ, ρ(x)φ ∈ V for all
x ∈ G, if φ ∈ V . This is equivalent to saying that λ(f)φ = f ∗ φ ∈ V and
ρ(f)φ = φ ∗̃ f ∈ V for all f ∈ Cc(G), if φ ∈ V .

We then have the following result:

Theorem 3.3. Let G be a locally compact, second countable, type I group
and let V be a closed (two-sided) translation invariant subspace of L2(G).

Then there exists a measurable subset E of Ĝ such that

V = V[E] := {φ ∈ L2(G) | φ̂(ξ) = FPφ(ξ) = 0 for almost every ξ ∈ E}.
Moreover, if V denotes the collection of all translation invariant closed sub-
spaces of L2(G), then the map

M̃(Ĝ)→ V, [E] 7→ V[E],

is a bijection.

Proof. It is obvious that V[E] is a closed translation invariant subspace

of L2(G).

To prove injectivity, let us assume that E and F are measurable subsets
of Ĝ such that [E] 6= [F ]. Then at least one of the two measurable sets E \F
and F \ E has non-zero measure. Let us assume that µ(E \ F ) 6= 0. By
Plancherel’s theorem, this means that

�⊕
E\F

‖f̂(ξ)‖2HS dµ(ξ) 6= 0

for some f ∈ L2(G) ∩ L1(G). Then for ϑ := f̂ ∈ L2(Ĝ) the operator field
ψ := 1E\Fϑ is different from 0, and using Plancherel, there exists ζ ∈ L2(G)

such that ζ̂ = ψ. By construction, ζ /∈ V[E] and ζ ∈ V[F ]. This proves the
injectivity of the map [E] 7→ V[E].

To prove surjectivity, let V be a closed translation invariant subspace
of L2(G). As L2(G) is separable, there exists a countable dense subset
{φk | k ∈ N} of V . Let

supp
Ĝ
V =

⋃
k∈N
{ξ ∈ Ĝ | φ̂k(ξ) 6= 0} =:

⋃
k∈N

Sk,
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defined modulo a set of measure zero. Let Fk := {ξ ∈ Ĝ | φ̂k(ξ) = 0}.
We note that the sets Sk and Fk are measurable. For all k ∈ N we have
Ĝ = Sk ∪ Fk ∪Nk, where Nk is a set of measure zero and Sk ∩ Fk = ∅. Let
E :=

⋂
k∈N Fk. Then Ĝ = supp

Ĝ
V ∪ E ∪ N , where N is a set of measure

zero and where supp
Ĝ
V and E are chosen to be disjoint. Let

V[E] := {φ ∈ L2(G) | φ̂(ξ) = 0 for almost all ξ ∈ E}.

By construction, φk ∈ V[E] for all k, and hence V ⊂ V[E] as V[E] is a closed

subspace of L2(G). Let us assume that V ( V[E]. Then there exists 0 6= ψ ∈
V ⊥ ∩ V[E]. For any φ ∈ V we have

0 = 〈ψ, φ〉2 =
�⊕

Ĝ

Tr(ψ̂(ξ)∗φ̂(ξ)) dµ(ξ).

As V is right invariant, we may replace φ by φ ∗̃ f̌ for f ∈ Cc(G) arbitrary.
We obtain �⊕

Ĝ

Tr
(
ψ̂(ξ)∗φ̂(ξ)πξ(f)

)
dµ(ξ) = 0.

Let now a ∈ C∗(G) be arbitrary. One has∣∣Tr
(
ψ̂(ξ)∗φ̂(ξ)(πξ(f − a))

)∣∣
≤ ‖ψ̂(ξ)∗‖HS · ‖φ̂(ξ)‖HS · sup

ξ∈Ĝ
‖πξ(f)− πξ(a)‖op

= ‖ψ̂(ξ)‖HS · ‖φ̂(ξ)‖HS · ‖f − a‖C∗(G).

Hence∣∣∣ �⊕
Ĝ

Tr
(
ψ̂(ξ)∗φ̂(ξ)πξ(a)

)
dµ(ξ)

∣∣∣
=
∣∣∣ �⊕
Ĝ

Tr
(
ψ̂(ξ)∗φ̂(ξ)(πξ(f)− πξ(a))

)
dµ(ξ)

∣∣∣
≤ ‖f − a‖C∗(G) ·

�⊕

Ĝ

‖ψ̂(ξ)‖HS · ‖φ̂(ξ)‖HS dµ(ξ)

≤ ‖f − a‖C∗(G) ·
( �⊕
Ĝ

‖ψ̂(ξ)‖2HS dµ(ξ)
)1/2( �⊕

Ĝ

‖φ̂(ξ)‖2HS dµ(ξ)
)1/2

= ‖f − a‖C∗(G) · ‖ψ‖2 · ‖φ‖2.

As Cc(G) is dense in L1(G) and hence in C∗(G), this implies that
�⊕

Ĝ

Tr
(
ψ̂(ξ)∗φ̂(ξ)πξ(a)

)
dµ(ξ) = 0
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for all a ∈ C∗(G). On the other hand, as
�⊕

Ĝ

Tr |ψ̂(ξ)∗φ̂(ξ)| dµ(ξ) ≤
�⊕

Ĝ

‖ψ̂(ξ)‖HS · ‖φ̂(ξ)‖HS dµ(ξ)

≤
( �⊕
Ĝ

‖ψ̂(ξ)‖2HS dµ(ξ)
)1/2
·
( �⊕
Ĝ

‖φ̂(ξ)‖2HS dµ(ξ)
)1/2

= ‖ψ‖2 · ‖φ‖2 <∞

by [7, formula (2.13)], we deduce that ψ̂(ξ)∗φ̂(ξ) ∈ L1(Ĝ). We may now

use the fact that L1(Ĝ) is isomorphic to the space A(G) of coefficients of
the representation λ (see Proposition 2.3 and Remark 2.4) to conclude that

ψ̂(ξ)∗φ̂(ξ) = 0 for almost all ξ ∈ Ĝ.

As V is left invariant, we may now replace φ by f ∗ φ for f ∈ L1(G)

arbitrary. We obtain ψ̂(ξ)∗πξ(f)φ̂(ξ) = 0 for ξ ∈ Ĝ \N(f, φ), where N(f, φ)

is a set of measure zero. We know that Ĝ = supp
Ĝ
V ∪ E ∪ N , where N

is of measure zero and where supp
Ĝ
V and E are chosen to be disjoint.

Moreover, ψ̂(ξ) = 0 if ξ ∈ E (up to a set of measure zero). Let now
{fj | j ∈ N} ⊂ Cc(G) be a countable dense subset of L1(G) (such a dense
subset exists because G is second countable). Let N(φ) :=

⋃
j∈NN(fj , φ),

which is again of measure zero. We have ψ̂(ξ)∗πξ(fj)φ̂(ξ) = 0 for all j and all

ξ ∈ Ĝ\N(φ). In particular, consider the countable dense subset {φk | k ∈ N}
of V and set N ′ :=

⋃
kN(φk), which is again of measure zero. We get

ψ̂(ξ)∗πξ(fj)φ̂k(ξ) = 0 for all j, k if ξ ∈ Ĝ \N ′. Recall that ψ̂(ξ) = 0 if ξ ∈ E.

Let now ξ ∈ supp
Ĝ
V \N ′. Take any φ ∈ V such that φ̂(ξ) 6= 0 (for instance

φ = φk for some k) and let vξ ∈ Hξ be such that φ̂(ξ)vξ 6= 0. Then, by irre-

ducibility of πξ, the set {πξ(fj)φ̂(ξ)vξ | j ∈ N} generates a dense subspace

of Hξ. This implies that ψ̂(ξ) = 0. As Ĝ = supp
Ĝ
V ∪ E ∪ N where N is

of measure zero, we have proven that ψ̂(ξ) = 0 almost everywhere. So, by
Plancherel’s theorem, ψ = 0 in L2(G), which is a contradiction. This proves
that V = V[E] and that [E] 7→ V[E] is a surjection.

Corollary 3.4. Let G be a locally compact, second countable, type I
group. Let V be a closed (two-sided) translation invariant subspace of L2(G)

such that supp
Ĝ
V = Ĝ. Then V = L2(G).

4. Easy proof for semisimple Lie groups. Let G be a connected,
non-compact, semisimple Lie group with finite centre and let K be a fixed
maximal compact subgroup of G. Let g be the Lie algebra of G and g =
k + s be a Cartan decomposition of g. The Lie algebra of K is k. We fix a
maximal abelian subspace a of s. Let g = g0 ⊕

⊕
α∈Σ gα be the root space
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decomposition of g. Here g0 = m⊕a where m is the centralizer of a in k, and
Σ ⊆ a∗ is the root system of (g, a). Let W be the Weyl group associated
to Σ. We choose a set Σ+ of positive roots. Let n =

⊕
α∈Σ+ gα. Then n is

a nilpotent subalgebra of g. The element ρ ∈ a∗ is defined by

ρ(H) = 1
2

∑
α∈Σ+

mαα(H)

where mα = dim(gα). Let A be the analytic subgroup of G with Lie alge-
bra a. Then A is a closed subgroup of G and the exponential map is an
isomorphism from a onto A. Let N be the analytic subgroup of G with Lie
algebra n, and let M be the centralizer of A in K. Any element x ∈ G
has a unique (Iwasawa) decomposition x = k(x)eH(x)n(x) where k(x) ∈ K,
H(x) ∈ a and n(x) ∈ N .

For λ ∈ a∗C, the elementary spherical function φλ on G is given by

φλ(x) =
�

K

e−(iλ+ρ)H(x−1k) dk.

It has the following properties:

(1) It is K-biinvariant, i.e., φλ(k1xk2) = φλ(x) for all k1, k2 ∈ K and
x ∈ G. It is also W -invariant in λ ∈ a∗C, i.e., φw·λ(x) = φλ(x) for all
w ∈W and x ∈ G.

(2) The function φλ(x) is C∞ in x and holomorphic in λ.
(3) It is a joint eigenfunction for all G-invariant differential operators on

G/K. In particular, for the Laplacian ∆ on G/K,

∆φλ = −(〈λ, λ〉+ ‖ρ‖2)φλ.
Also we have, for all λ ∈ a∗C and x, y ∈ G,

(4.1)
�

K

φλ(xky) dk = φλ(x)φλ(y).

For a K-biinvariant function f on G its spherical Fourier transform is
defined by

Ff(λ) = f̂(λ) =
�

G

f(x)φλ(x) dx

for suitable λ ∈ a∗C. Then we have the following inversion formula:

f(x) =
�

a∗

f̂(λ)φλ(x)|c(λ)|−2 dλ

where |c(λ)|−2 is the Harish-Chandra c-function.

The set of all square integrable K-biinvariant functions is denoted by
L2(G//K). For a function f ∈ L2(G//K), the left translation of f by an
element x ∈ G is defined by τxf(y) = f(x−1y) for all y ∈ G. Observe
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that τxf is not a K-biinvariant function. Define the projection of τxf on
L2(G//K) by

(τxf)K(y) =
�

K

τxf(ky) dk =
�

K

f(x−1ky) dk.

Then for f ∈L2(G//K), the left translated projection (τxf)K is in L2(G//K).
Let S be a subspace of L2(G//K). We say that S is (left) translation invari-
ant in L2(G//K) if (τxS)K ⊆ S for all x ∈ G. We characterize such closed
translation invariant subspaces of L2(G//K) (cf. [8, 9.16]):

Lemma 4.1. For f ∈ C∞c (G//K), we have ̂(τxf)K(λ) = φλ(x)f̂(λ) for
all λ ∈ a∗C.

Proof. We have

̂(τxf)K(λ) =
�

G

(τxf)K(y)φλ(y) dy =
�

G

�

K

f(x−1ky)φλ(y−1) dk dy

=
�

G

�

K

f(z)φλ(k−1xz) dk dz.

Since φλ(k1xk2) = φλ(x) for all x ∈ G and k1, k2 ∈ K, we have

̂(τxf)K(λ) =
�

G

f(z)φλ(xz) dz =
�

G

�

K

f(kz)φλ(xz) dz dk

=
�

G

�

K

f(z)φλ(xk−1z) dz dk = φλ(x)f̂(λ) (by (4.1)).

Theorem 4.2. Let S be a closed, (left) translation invariant subspace of
L2(G//K). Then there exists a measurable set E ⊆ a∗ such that

S = {f ∈ L2(G//K) | f̂(λ) = 0 almost everywhere on E}.

Proof. By Lemma 4.1, {f ∈ L2(G//K) | f̂(λ) = 0 almost everywhere
on E} is a closed, left translation invariant subspace of L2(G//K).

Let now S be an arbitrary closed, left translation invariant subspace
of L2(G//K). The image of L2(G//K) under the spherical transform is

L2(a∗, |c(λ)|−2dλ)W . Let Ŝ be the image of S under the spherical trans-
form. Also let

P : L2(a∗, |c(λ)|−2dλ)W → Ŝ

be the orthogonal projection. Then for all f, g ∈ L2(a∗, |c(λ)|−2dλ)W we
have f −Pf ⊥ Pg. Since S is a translation invariant subspace of L2(G//K),
it follows from Lemma 4.1 that f − Pf ⊥ φλ(x)Pg for all x ∈ G. That is,

�

R

(f − Pf)(λ)Pg(λ)φλ(x)|c(λ)|−2 dλ = 0.
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So F−1
(
(f − Pf)Pg

)
(x) = 0 for all x ∈ G. By Plancherel’s theorem,

‖(f − Pf)Pg‖L2(a∗,|c(λ)|−2 dλ) = ‖F−1((f − Pf)Pg)‖L2(G//K).

This implies that (f−Pf)(λ)Pg(λ) = 0 a.e. on a∗. That is, f ·Pg = Pf ·Pg
a.e. Interchanging f and g we get g · Pf = Pg · Pf a.e. Therefore, f · Pg =
g · Pf a.e. on a∗. Let

g(λ) = e−λ
2

and φ(λ) = Pg(λ)/g(λ) on a∗.

For almost every λ, we have

Pf(λ) = φ(λ)f(λ).

Also, for f ∈ L2(a∗, |c(λ)|−2dλ)W , we have

φ2(λ)f(λ) = φ(λ)Pf(λ) = P 2f(λ) = Pf(λ) = φ(λ)f(λ).

This shows that φ2(λ) = φ(λ). That is, φ(λ) = 1 or 0 almost everywhere.

Let E = {λ ∈ a∗ | φ(λ) = 0}. Then

Ŝ = {f ∈ L2(a∗, |c(λ)|−2dλ)W | f(λ) = Pf(λ) = φ(λ)f(λ)}
= {f ∈ L2(a∗, |c(λ)|−2dλ)W | f(λ) = 0 almost everywhere on E}.

Hence

S = {α ∈ L2(G//K) | α̂(λ) = 0 almost everywhere on E}.
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