
COLLOQU IUM MATHEMAT ICUM
VOL. 116 2009 NO. 1

WHAT IS THE INVERSE OF
REPEATED SQUARE AND MULTIPLY ALGORITHM?

BY

H. GOPALKRISHNA GADIYAR (Chennai),
K. M. SANGEETA MAINI (Chennai), R. PADMA (Chennai)

and MARIO ROMSY (Neubiberg)

Abstract. It is well known that the repeated square and multiply algorithm is an
efficient way of modular exponentiation. The obvious question to ask is if this algorithm
has an inverse which would calculate the discrete logarithm and what is its time compexity.
The technical hitch is in fixing the right sign of the square root and this is the heart of the
discrete logarithm problem over finite fields of characteristic not equal to 2. In this paper
a couple of probabilistic algorithms to compute the discrete logarithm over finite fields
and their time complexity are given by bypassing this difficulty. One of the algorithms
was inspired by the famous 3x + 1 problem.

1. Introduction. Let p be an odd prime number and let a be a primitive
root. Then any b ∈ (Z/pZ)∗ can be expressed as

(1) b ≡ an mod p

for a unique integer n with 1 ≤ n ≤ p− 1. n is called the index or discrete
logarithm of b to base a modulo p. The discrete logarithm problem over prime
fields is to find n given a and b modulo p. When p is sufficiently large and
random, the discrete logarithm problem is believed to be computationally
difficult and hence is the basis of the security of many cryptographic algo-
rithms like the Diffie–Hellman key exchange protocol, El Gamal Cryptosys-
tem, El Gamal signature scheme etc. The well known algorithms to compute
the discrete logarithm problem are the baby step – giant step method, Pol-
lard’s rho method, Pohlig–Hellman method and the index calculus method
[7], [8], [10], [14], [17]. Among these algorithms the first two are square root
algorithms. The Pohlig–Hellman method works efficiently for those primes
p for which all the prime factors of p − 1 are small, since it reduces the
problem to a number of discrete logarithm problems in (smaller) groups of
prime order. So in practice one first applies the Pohlig–Hellman reduction
and then for example the Pollard rho method. The index calculus method is
a subexponential time algorithm. All these algorithms find n modulo p− 1.

2000 Mathematics Subject Classification: 11Y16, 68Q25, 68W40.
Key words and phrases: discrete logarithm, Legendre symbol, 3x + 1 problem.

DOI: 10.4064/cm116-1-1 [1] c© Instytut Matematyczny PAN, 2009

2 H. GOPALKRISHNA GADIYAR ET AL.

There is an analysis of the discrete logarithm problem using p-adic meth-
ods in [4] which links the problem to connections, cocycles and crystalline
cohomology. In [13], a straightforward formula for solving the discrete log-
arithm problem in certain cases is obtained using the Fermat quotient and
its generalizations. For an extensive bibliography on this problem look at
the website http://www.cs.uwaterloo.ca/˜shallit/bib/dlog.bib.

So far, there have been no known polynomial time algorithm to compute
the discrete logarithm for a random prime p. There are lower bounds ob-
tained by [9] and [16] for “generic” discrete logarithm problems. Shoup [16]
proved that any “generic” algorithm to calculate the discrete logarithm must
perform Ω(p1/2) group operations, where p is the largest prime dividing the
order of the group.

We know that the modular exponentiation an mod p (= b) in (1) is
performed efficiently using the repeated square and multiply algorithm. In
this paper we ask the question of what is the inverse of this algorithm and
how much time it takes. As an answer to this question we give a couple of
probabilistic algorithms that compute the discrete logarithm.

The Legendre symbol of b determines the least significant bit (l.s.b.) of
n which is the index of b to base a in (1). When the l.s.b. of n is 0, the next
least significant bit of n is obtained by extracting the “correct” square root.
The r least significant bits can be unambiguously and efficiently determined
if p− 1 = 2rs, where s is odd and r ≥ 1 [11]. The ambiguity starts from the
(r + 1)th least significant bit onwards.

In this paper we give two probabilistic algorithms which bypass this
ambiguity and compute the discrete logarithm over prime fields. The first
algorithm can be thought of as a randomized inverse of the repeated square
and multiply algorithm. The second algorithm was inspired by the famous
3x+ 1 problem. The algorithms are immediately extendable to other finite
fields (including finite fields of characteristic 2 with a slight modification).
In Section 2 we explain how the properties of the Legendre symbol can
be used to determine the r least significant bits of the index n and also
give a time estimate for computing square roots modulo p. In Section 3 we
present our main algorithm and give numerical examples over a prime field.
A modification of the algorithm for finite fields of characteristic 2 is also
given along with a couple of examples. This algorithm is extendable to the
elliptic curve discrete logarithm problem. In Section 4 we state the 3x + 1
problem and a variant of the algorithm given in Section 3 is presented with
an example. In Section 5 we analyze the time complexity of the algorithms.

2. The Legendre symbol and square roots. The Legendre sym-
bol

(
x
p

)
, for any integer x, is defined as follows. If p |x, then

(
x
p

)
= 0, and

REPEATED SQUARE AND MULTIPLY ALGORITHM 3

for x with (x, p) = 1,

(2)
(
x

p

)
=
{

1 if x(p−1)/2 ≡ 1 mod p,
−1 if x(p−1)/2 ≡ −1 mod p.

The definition (2) of the Legendre symbol can be restated as follows.
(

x
p

)
is

equal 1 if x is a quadratic residue (that is, a square) modulo p, and is equal
to −1 if x is a quadratic nonresidue (that is, a nonsquare) modulo p. Since
a is a primitive root,

(3)
(
a

p

)
≡ a(p−1)/2 ≡ −1 mod p.

Using the property of the Legendre symbol

(4)
(
xy

p

)
=
(
x

p

)(
y

p

)
,

one has

(5)
(
b

p

)
=
(
an

p

)
=
(
a

p

)n

= (−1)n.

Thus the Legendre symbol of b determines whether n is odd or even. In other
words, the Legendre symbol of b determines the l.s.b. of n. Let us write n
in its binary representation

(6) n = n0 + 2n1 + 22n2 + · · ·+ 2knk,

where each ni is 0 or 1. If n is even (or odd), then n0 = 0 (or 1). The next
bit n1 is determined by dividing n (or n−1) by 2 and checking whether n/2
(or (n− 1)/2) is even or odd. In terms of a and b modulo p, this amounts
to finding the “correct” square root of b (or b/a) modulo p.

Let us assume that b is a quadratic residue modulo p. Then the square
roots of b are b1/2 and −b1/2 and hence from (3), the index of the square
roots to base a are n/2 and (p− 1)/2 + n/2 modulo p− 1. If p ≡ 1 mod 4,
then the l.s.b. of (p− 1)/2 is 0. Hence the l.s.b. of n/2 equals the l.s.b.
of (p− 1)/2 + n/2. In other words, the Legendre symbol of b1/2 or −b1/2

will determine the value of the bit n1 unambiguously. More generally, if
p − 1 = 2rs, where s is odd and r ≥ 1, then the r least significant bits of
n can be unambiguously determined. See for example [11]. The difficulty
arises from the (r + 1)th least significant bit onwards.

Let us explain this with the case of r = 1. In this case p ≡ 3 mod 4.
Hence the l.s.b. of (p− 1)/2 is 1. Now, if the l.s.b. of n/2 is 1, then the l.s.b.
of (p− 1)/2 + n/2 is 0 and vice versa. Thus it is not possible to determine
the correct value of the bit n1.

Note that the Legendre symbol can be calculated in polynomial time
(O(log2 p)) [8]. If p ≡ 3 mod 4, then r = 1, and in this case the square roots
of a quadratic residue x are x(s+1)/2 mod p and −x(s+1)/2 mod p. Hence
the square root can be calculated in polynomial time (O(log3 p)). If p ≡ 1

4 H. GOPALKRISHNA GADIYAR ET AL.

mod 4, then there is a polynomial time algorithm (O(log4 p)) to compute
a square root of a quadratic residue, provided we could find a quadratic
nonresidue modulo p ([8], [1]). Since a is a primitive root, it is a quadratic
nonresidue and hence the square roots of a quadratic residue x modulo p
can be calculated deterministically in polynomial time.

3. The repeated square and multiply algorithm and its inverse.
In this section we give our main algorithm. In Section 3.1 we explain how
modular exponentiation is done using the repeated square and multiply
algorithm and describe the difficulty in trying to invert the process. In Sec-
tion 3.2 we give our main algorithm for computing the discrete logarithm.
Section 3.3 explains the algorithm and Section 3.4 gives two examples. In
Section 3.5 we generalize the algorithm to all finite fields including finite
fields of characteristic 2. This section also contains examples of computing
discrete logarithm over finite fields of characteristic 2. Finally, Section 3.6
contains a note on the elliptic curve discrete logarithm problem over binary
fields.

3.1. Modular exponentiation and its inverse. The repeated square and
multiply algorithm is used to compute modular exponentiation in polyno-
mial time. Let us quickly recall how we compute b given a, n and p as in (1)
using this algorithm. If n has the binary representation as in (6), then let
a0 = a, b0 = 1 and inductively compute aj = a2

j−1 mod p and bj = bj−1aj

mod p if nj = 1, and bj = bj−1 if nj = 0, for j = 1 to k. Then bk is the value
of an mod p. That is,

(7) b ≡ an ≡ (a2k
mod p)nk · · · (a21

mod p)n1(a20
mod p)n0 mod p.

It is clear that the inverse of this algorithm is to divide and repeatedly ex-
tract square root. Division is done when the bit ni is 1, just as multiplication
is done in the repeated square and multiply algorithm when ni is 1. Note
that knowing the bits ni is equivalent to knowing the value of n. Also, if
the “correct” square root can be taken every time, it will fix the correct
value of the bit ni and hence n can be calculated in polynomial time. But
the difficulty is in fixing the correct square root. In fact, deciding which is
the “correct” square root is a much harder problem and allowing even a
weak oracle for finding the “correct” square root would make the discrete
logarithm problem “easy” [2].

We know from Section 2 that the r least significant bits ni can be unam-
biguously determined in polynomial time by dividing by a if the Legendre
symbol is −1 and extract any square root or by just extracting any square
root if the Legendre symbol is 1. From the (r+ 1)th least significant bit on-
wards, we do not know which is the right bit. Now we give our probabilistic
algorithm which bypasses this problem.

REPEATED SQUARE AND MULTIPLY ALGORITHM 5

3.2. Algorithm to compute the discrete logarithm

Input: a, b, p, where an ≡ b mod p.
Output: n.

Step 1. Choose an integer B and create Table I consisting of the pairs
(akj mod p, kj) where j ≤ B. Here {kj} is any subsequence of integers.
For example, kj = j or kj = 2j .
Step 2. Initialize i← 1, l← 1, b[1]← b, m1[1]← n, c1[1]← b, c2[1]← b
and m2[1] ← n. Table II will consist of (b[i],m1[i]) and Table III will
consist of (c1[l], c2[l],m2[l]). Also initialize k ← 0, m← n.

Step 3. (i) If
(

b
p

)
= −1 then goto Step 4.

(ii) If
(

b
p

)
= 1 then goto Step 6.

Step 4. (i) b← b/a mod p and m← m− 1.
(ii) Goto Step 5.
(iii) If Step 5 does not solve for n, i← i+ 1,

store b[i]← b and m1[i]← m in Table II.
(iv) Goto Step 6.

Step 5. (i) If b ≡ akj mod p for any j ≤ B in Table I, Solve(m, kj , k).
(ii) If b ≡ b[j] mod p for any j in Table II, Solve(m,m1[j], k).
(iii) If b ≡ c1[j] or c2[j] mod p for any j in Table III,

Solve(m,m2[j], k).

Step 6. (i) b← b1/2 mod p and m← (m/2), k ← k + 1. Goto Step 5.
(ii) If Step 5 does not solve for n, b← p−b mod p, Goto Step 5.
(iii) If Step 5 does not solve for n, l← l + 1,

store c1[l]← b, c2[l]← p− b and m2[l]← m in Table III.
(iv) b← c1[l] or c2[l] randomly.
(v) Goto Step 3.

Solve()
Solve(x, y, t): Solve the linear congruence:

(8) 2tx ≡ 2ty mod p− 1.

Return n

3.3. Explanation of the algorithm. Table I consists of B precomputed
powers of a and the corresponding discrete logarithms. Table II consists of
intermediate values of b and the corresponding values of m as a function of
n when the Legendre symbol is −1. Table III consists of the intermediate
values of b which are square roots and the corresponding values of m as a
function of n when the Legendre symbol is 1. The current value of b in the
loop equals am mod p up to some signs and/or roots of unity or order 2k.
Since m is replaced by m − 1 or m/2, m is always a linear function of n.

6 H. GOPALKRISHNA GADIYAR ET AL.

The algorithm is probabilistic as we select one of the square roots randomly
in Step 6.

The final step is to solve a linear congruence modulo p − 1, if the new
value of b matches any of the integers in Table I, II or III. If b matches
a value in Table I, then x will be a linear function of n, and y will be a
constant. In other cases, both x and y will be linear functions of n. Note
that a linear congruence can be solved in polynomial time.

When b coincides with a value in Table I, the value of n can be uniquely
obtained by solving the linear congruence.

When b coincides with a value in Table II or III, then the corresponding
value of n can be found modulo

(p−1
d

)
, for a divisor d of p− 1. Hence there

will be d solutions modulo p − 1 and we have to choose the correct value
of n modulo p − 1 by trial and error. If d is too large, then one can start
the algorithm again from somewhere in the middle of the tree where we can
choose the other square root.

k counts the number of times we take square roots modulo p. Note that
while solving the linear congruence, we multiply both sides by 2k, so that the
denominator of m gets cleared (as 2 is not invertible modulo p−1). This also
takes care of the fact that in Table III, though we store two square roots, the
exponent m is taken to be m/2, as whether we take m/2 or m/2+(p− 1)/2,
in Solve(), multiplication by 2k would remove this ambiguity.

3.4. Examples. In this section we explain the algorithm in Section 3.2
with a small prime. Let p = 103. Then a = 5 is a primitive root of p.

Example 1. This is an example of collision with an element in Table I.
Let b = 84. Let B = 7 and kj = 2j−1 mod p for j = 1, . . . 7.

Table I

j 0 1 2 3 4 5 6

52j

mod 103 5 25 7 49 32 97 36

Discrete logarithm calculation for b = 84

b (b
103

) b
a

mod 103 b1/2, −b1/2 mod 103 random sqrt m

84 −1 58 – – n− 1

58 1 – 26, 77 77 (n− 1)/2

77 −1 36 – – (n− 1)/2− 1

Since 36 ≡ 526
mod 103 and k = 1 as we have taken square root only once,

after multiplying both sides by 2 we get the congruence

REPEATED SQUARE AND MULTIPLY ALGORITHM 7

(9) n− 3 ≡ 27 mod 102

and thus n ≡ 29 mod 102.
Note that the binary digits of 29 are given by (11101). Comparing these

bits and the second column of the above table, we find that we have wrongly
chosen the square root 77 in the second row, yet we are lucky to find the
discrete logarithm at the third step itself, while if we had taken the cor-
rect path, it would have taken us 6 steps. There is a trading off between
extraction of square roots and the precomputation of powers of a.

Note that Table II in the algorithm corresponds to the third and sixth
columns of the above table, and Table III corresponds to the fourth and
sixth columns.

Example 2. This example gives a collision in Table II or III.

Discrete logarithm calculation for b = 99

b (b
103

) b/a mod 103 b1/2, −b1/2 mod 103 random sqrt m

99 −1 61 – – n− 1

61 1 – 24, 79 24 (n− 1)/2

24 −1 46 – – (n− 3)/2

46 1 – 47, 56 56 (n− 3)/4

56 1 – 46, 57 – (n− 3)/8

Note that 46 in the fourth column matches the 46 in the third column.
Equating the corresponding values of m, and multiplying both sides by 23

gives

(10) n− 3 ≡ 4(n− 3) mod 102.

Solving the linear congruence gives n ≡ 3 mod 34. Hence there are three
possible values for n mod 102, namely, 3, 37 and 71. One can easily check
that 37 is the correct value of n.

3.5. Discrete logarithm over finite fields. It is clear that the algorithm
given in Section 3.2 is, just as it is, extendable to finite fields of characteristic
p ≥ 3, as the analogue of Legendre symbol and efficient computation of
square roots exist in these fields [1].

When the characteristic of the finite field is 2, every element in the field is
a square and every element has exactly one square root. [3] gives an efficient
algorithm for computing square roots over finite fields of characteristic 2.
Note that if we choose a normal basis, then the square root operation reduces
to a mere cyclic shift [8]. Hence, our algorithm in Section 3.2 can be modified
in this case as follows. Step 3 should randomly decide whether the l.s.b. of
m is 1 or 0. That is,

8 H. GOPALKRISHNA GADIYAR ET AL.

Step 3. (o) Randomly choose a bit 0 or 1.
(i) If the bit is 1 then goto Step 4.

(ii) If the bit is 0 then goto Step 6.

In Step 6, as there is only one square root, we need not perform (ii) and
Table III will consist of only c1[l] and the corresponding value of m. Also
Step (iv) should be skipped.

To be precise, the randomness in our algorithm for p > 3 in the selection
of the square root in (iv) of Step 6 has been shifted to Step 3 where we
randomly fix the l.s.b. of m for characteristic 2 fields.

We give two toy examples below.
Let us consider the finite field F27 with the primitive polynomial f(x) =

x7 + x + 1. Thus, x is the generator of the multiplicative group F ∗
27 of the

finite field F27 .

Example 1. Let us create Table I with B = 7 and kj = 2j for j =
0, . . . , 6. Let

b = x4 + x3 + x2 + 1.

Table I

j 0 1 2 3 4 5 6

x2j

mod f(x) x x2 x4 x(x + 1) x2(x2 + 1) x(x3 + x + 1) x(x3 + 1)

Discrete logarithm calculation for b = x4 + x3 + x2 + 1

b random bit b/x mod f(x) b1/2 mod f(x) m

x4 + x3 + x2 + 1 0 – x5 + x + 1 n/2

x5 + x + 1 1 x4(x2 + 1) – n/2− 1

x4(x2 + 1) 1 x3(x2 + 1) – n/2− 2

x3(x2 + 1) 1 x2(x2 + 1) – n/2− 3

From Table I, x2(x2 + 1) ≡ x24
mod f(x). Hence,

(11)
n

2
− 3 ≡ 24 mod 127,

which gives n ≡ 38 mod 127.

Example 2. Let

b = x6 + x5 + x3 + x+ 1.

REPEATED SQUARE AND MULTIPLY ALGORITHM 9

Discrete logarithm calculation for b = x6 + x5 + x3 + x + 1

b
random

bit
b/x mod f(x) b1/2 mod f(x) m

x6 +x5 +x3 +x+1 0 – x6 +x5 +x4 +x2 +x+1 n/2

x6 +x5 +x4 +x2 +x+1 1 x6 +x5 +x4 +x3 +x – n/2−1

x6 +x5 +x4 +x3 +x 1 x5 +x4 +x3 +x2 +1 – n/2−2

x5 +x4 +x3 +x2 +1 0 – x6 +x5 +x3 +x+1 (n/2−2)/2

The value of the original b and the square root in the fourth row are the
same. Equating the corresponding values of m, we get

(12) n ≡ 1
2

(
n

2
− 2
)

mod 127.

Solving this linear congruence gives n ≡ 41 mod 127.

3.6. Elliptic curve discrete logarithm over binary fields. A natural ques-
tion to ask now is if our algorithm can be extended to elliptic curves as
well. Since there is no analogue of the Legendre symbol, it is not possible to
extend this algorithm to all elliptic curves. Note that in any group of odd
order (written multiplicatively) every element has exactly one square root.
So if we can calculate this square root efficiently, the modified algorithm of
this section can be applied. When the elliptic curve is defined over finite
fields of characteristic 2, there is an efficient algorithm for point-halving [5],
[15] if the cardinality of the curve is odd. Hence in this case we can general-
ize the algorithm given in Section 3.5 to compute the discrete logarithm on
such elliptic curves.

4. The 3x + 1 problem and the discrete logarithm problem. In
this section we give a variant of the main algorithm given in Section 3.2.
This was inspired by the famous 3x+1 problem. The 3x+1 problem, which
was posed by L. Collatz, states that if

T (x) =
{

3x+ 1 if x ≡ 1 mod 2,
x/2 if x ≡ 0 mod 2,

(13)

then for any positive integer x there exists an integer k > 0 with T k(x) = 1.
This problem remains open since 1937. For an annotated bibliography of
this problem, see [6].

Note that if x is odd, the function T converts it into an even integer, while
if x is even, it divides x by 2. The iteration will terminate once T k(x) = 2l

for some integers k and l.
In the algorithm we gave in Section 3.2, if the Legendre symbol is −1

(that is, the index of b is odd), we divided b by a so that the index of the

10 H. GOPALKRISHNA GADIYAR ET AL.

new value of b becomes even and if the Legendre symbol is 1 (that is, the
index of b is even), we calculated the square roots of b so that the index is
halved.

Now it is clear how we are going to modify the algorithm in Section 3.2.
We will assume for the sake of simplicity that (3, p−1) = 1. If the Legendre
symbol is −1, then compute b3a mod p. That is, in Step 4(i), we do

(14) b← b3a mod p and m← 3m+ 1

and the rest of the algorithm goes as before.

4.1. Example. We explain our algorithm with an example, again with a
small prime. Let us take p = 101. Then a = 2 is a primitive root of 101. Let
b = 72. Let B = 7 and kj = 2j for j = 0, . . . , 6.

Table I

j 0 1 2 3 4 5 6

22j

mod 101 2 4 16 54 88 68 79

Discrete logarithm calculation for b = 72

b (b
101

) b3a mod 101 b1/2, −b1/2 mod 101 random sqrt m

72 −1 5 – – 3n + 1

5 1 – 45, 56 56 (3n + 1)/2

56 1 – 37, 64 37 (3n + 1)/4

37 1 – 21, 80 80 (3n + 1)/8

80 1 – 22, 79 – (3n + 1)/16

Since 79 ≡ 226
mod 101, and k = 4, we have

(15) 3n+ 1 ≡ 1024 ≡ 24 mod 100.

The solution of this linear congruence is given by n ≡ 41 mod 100.

5. Time complexity of the algorithms. Let us first look at the algo-
rithm in Section 3.5 over finite fields of characteristic 2. Here we randomly
choose to do division or extract square root. Let % : N → {0, 1} be the
random decision function. Starting with r0 = b = an, we have for i ∈ N ,

ri =
{√

ri−1 if %(i) = 0,
ri−1/a if %(i) = 1.

(16)

Let Table I consist ofB∈N precomputed values and label them r−B, . . . , r−1.
Since we need to keep track of the exponents we store pairs of the form
(ak, k), hence write (r−B, k−B), . . . , (r−1, k−1), where {kj} is the chosen sub-
sequence of integers (as in Section 3.2). So starting with (r0,m0), m0 = n,

REPEATED SQUARE AND MULTIPLY ALGORITHM 11

we calculate a random walk by

(ri,mi) =
{

(√ri−1,mi−1/2) if %(i) = 0,
(ri−1/a,mi−1 − 1) if %(i) = 1.

(17)

Then we look for a collision ri = rj for i 6= j. Since n is unknown, the mi

are linear functions in n.
Note that in the algorithm given in Section 3.2, the random function will

decide which square root will be taken. Since we store both square roots,
we add a control bit bi in each step where bi = 1 means a square root was
taken (bi = 0 means a division). In step i, when we look for collisions of
ri with some previous element, we test ri = rj if bj = 0 and ri = ±rj if
bj = 1. (Note that if rj is one square root then −rj is the other and that
the associated linear functions are the same.) Hence in this case, we have

(ri,mi, bi)

=


(min(√ri−1, p−

√
ri−1),mi−1/2, 1) if

(ri−1

p

)
= 1 and %(i) = 0,

(max(√ri−1, p−
√
ri−1),mi−1/2, 1) if

(ri−1

p

)
= 1 and %(i) = 1,

(ri−1/a,mi−1 − 1, 0) if
(ri−1

p

)
= −1.

Compared with the algorithm given in Section 4, only the iteration function
is changed.

We first recall both algorithms of Pollard in order to compare our al-
gorithms with them. Here we give the versions from [12] to calculate the
discrete logarithm mod p (it is clear how to modify them to work in a gen-
eral group).

Pollard rho method. Given a, p and b ≡ an (mod p) one starts with
x0 = 1 and calculates the sequence

xi =


bxi−1 mod p if 0 < xi−1 <

1
3p,

x2
i−1 mod p if 1

3p < xi−1 <
2
3p,

axi−1 mod p if 2
3p < xi−1 < p.

(18)

and looks for collisions xi = xj for i 6= j.

Pollard kangaroo method. Given a, p, b ≡ an (mod p) and an interval
[A,B] with n ∈ [A,B], we choose a bound N , e.g. N = d

√
B −Ae. Starting

with t0 = aB we calculate t1, . . . , tN by

ti = ti−1 ∗ af(ti−1),

where f is a function that takes random integer values of mean
√
B −A.

With w0 = b one computes a second sequence (wi)i by

wi = wi−1 ∗ af(wi−1)

until wj = tN for some j (or
∑

i f(wi) > B −A+
∑N

i f(ti), where one has
to start again).

12 H. GOPALKRISHNA GADIYAR ET AL.

The algorithms of Section 3 and 4 are kind of random walks and look
quite similar to the standard Pollard rho method. Hence the expected num-
ber of steps should be about O(

√
p) (experimental results seem to confirm

this).
Of course, the motivation of our algorithms, inverting the repeated

square and multiply algorithm, is different to Pollard’s algorithms. From
the algorithmic point of view the difference lies in the iteration functions.

To illustrate the different “jump behaviours” we adopt the scheme of [18,
Section 3] where every element from the cyclic group 〈a〉 is viewed as lying
on a circle and ai+1 is one step to the right (counterclockwise) from ai.

Figure 1 (cf. [18, Section 3, Figure 2]) illustrates the rho method (char-
acterized by random jumps within the whole group 〈a〉) and the kangaroo
method (characterized by small jumps).

Fig. 1. (a) Pollard rho and (b) Pollard kangaroo methods

The real inverse of the repeated square and multiply algorithm would
consist of tiny steps (division by a) and jumps (taking the square root, i.e.
halving the index) of decreasing size (see Figure 2(a)). Our algorithms still
consist of tiny steps and jumps, but the jumpsize will vary, depending on
the random choice of the square root. There will be a jump to the right if
and only if a wrong square root is chosen (see Figure 2(b)).

Fig. 2. (a) Real inverse of repeated square and multiply algorithm and (b) probabilistic
version

REPEATED SQUARE AND MULTIPLY ALGORITHM 13

Finally, we want to remark that our algorithms are probably slower than
both algorithms of Pollard, since taking square roots and division are (in
general) slower than squaring and multiplication. On the one hand, % being
a “random decision function” gives the walk a random pattern. On the other
hand, Floyd’s cycle detection method, which keeps the memory requirements
of the rho method constant, will not apply here as the function % depends
only on the number of steps, i.e. the sequence will not fall into a cycle
at all. One could modify our algorithms so that the decision function %
is dependent on the previous element of the sequence as it is the case in
Pollard’s algorithms. Consequently, the sequence would fall into a cycle after
the first collision and therefore Floyd’s method could be applied. Using this
modification we would not be able to check whether a collision with an
“unchosen” square root occurs.

6. Conclusion and future directions. In this paper we have asked
what is the inverse of repeated square and multiply algorithm and given a
couple of probabilistic algorithms to compute the discrete logarithm. The
algorithms are parallelizable. It is noted that the algorithm given for binary
finite fields can also be extended to elliptic curves over such fields. Analysis of
the algorithms shows that these algorithms are of square root type. Though
the algorithms do not appear to be more efficient than the already existing
ones, both the original algorithm and the 3x+1 version might be subsumed
under a general scheme, in which one uses an affine map x 7→ ax + b, with
(a, p−1) = 1 if x is odd, and x 7→ x/2 if x is even, and it would be worthwhile
to see if some interesting algebra could be uncovered.

REFERENCES

[1] E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1, Efficient Algorithms,
The MIT Press, Cambridge, MA, 1996.

[2] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bits, SIAM J. Comput. 13 (1984), 850–864.

[3] K. Fong, D. Hankerson, J. Lopez, and A. Menezes, Field inversion and point halving
revisited, IEEE Trans. Comput. 53 (2004), 1047–1059.

[4] H. Gopalkrishna Gadiyar, K. M. Sangeeta Maini and R. Padma, Cryptography,
connections, cocycles and crystals: A p-adic exploration of the discrete logarithm
problem, in: Progress in Cryptology—Indocrypt 2004, Lecture Notes in Comput.
Sci. 3348, Springer, 2004, 305–314.

[5] E. Knudsen, Elliptic scalar multiplication using point halving, in: Advances in Cry-
ptology—ASIACRYPT ’99, Lecture Notes in Comput. Sci. 1716, Springer, 1999,
135–149.

[6] J. C. Lagarias, The 3x + 1 problem: An annotated bibliography, http://www.arxiv.
org/math.NT/0309224.

[7] K. S. McCurley, The discrete logarithm problem, in: Cryptology and Computational
Number Theory, Proc. Sympos. Appl. Math. 42, Amer. Math. Soc., 1990, 49–74.

14 H. GOPALKRISHNA GADIYAR ET AL.

[8] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, New York, 1996.

[9] V. I. Nechaev, On the complexity of a deterministic algorithm for a discrete log-
arithm, Mat. Zametki 55 (1994), 91–101; English transl.: Math. Notes 55 (1994),
165–172.

[10] A. M. Odlyzko, Discrete logarithms: The past and the future, Designs Codes Cryp-
togr. 19 (2000), 129–145; reprinted in: Towards a Quarter-Century of Public Key
Cryptography, N. Koblitz (ed.), Kluwer, 2000, 59–75.

[11] R. Peralta, Simultaneous security of bits in the discrete log, Advances in Crypto-
logy—EUROCRYPT ’85, Lecture Notes in Comput. Sci. 219, Springer, 1986, 62–72.

[12] J. M. Pollard, Monte Carlo methods for index computations (mod p), Math. Comp.
32 (1978), 918–924.

[13] H. Riesel, Some soluble classes of the discrete logarithm problem, BIT 28 (1988),
839–851.

[14] O. Schirokauer, D. Weber, and T. Denny, Discrete logarithms: The effectiveness of
the index calculus method, in: Algorithmic Number Theory (Talence, 1996), H. Co-
hen (ed.), Lecture Notes in Math. 1122, Springer, 1996, 337–362.

[15] R. Schroeppel, Elliptic curve point halving wins big, in: 2nd Midwest Arithmetical
Geometry in Cryptography Workshop (Urbana, IL, 2000).

[16] V. Shoup, Lower bounds for discrete logarithms and related problems, in: Advances
in Cryptology—EUROCRYPT ’97, Lecture Notes in Comput. Sci. 1233, Springer,
1997, 256–266.

[17] E. Teske, Square-root algorithms for the discrete logarithm problem (a survey), in:
Public-Key Cryptography and Computational Number Theory, de Gruyter, Berlin,
2001, 283–301.

[18] —, Computing discrete logarithms with the parallelized kangaroo method, Discrete
Appl. Math. 130 (2003), 61–82.

AU-KBC Research Centre
M. I. T. Campus of Anna University
Chromepet, Chennai 600 044, India
E-mail: gadiyar@au-kbc.org

onlykmsm@gmail.com
padma@au-kbc.org

Institut für theoretische Informatik
und Mathematik

Universität der Bundeswehr München
85577 Neubiberg, Germany

E-mail: mario.romsy@unibw.de

Received 4 July 2007 (4944)

