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SELFINJECTIVE ALGEBRAS OF STRICTLY CANONICAL TYPE

BY

MARTA KWIECIEN and ANDRZEJ SKOWRONSKI (Torun)

Abstract. We develop the representation theory of selfinjective algebras of strictly
canonical type and prove that their Auslander—Reiten quivers admit quasi-tubes maxi-
mally saturated by simple and projective modules.

Introduction and the main result. Throughout the article, K will
denote a fixed algebraically closed field. By an algebra is meant an associa-
tive, finite-dimensional K-algebra with an identity, which we shall assume
(without loss of generality) to be basic and indecomposable. For an alge-
bra A, we denote by mod A the category of finite-dimensional (over K) right
A-modules, by ind A its full subcategory formed by the indecomposable mod-
ules, and by D : mod A — mod A°P the standard duality Homg(—, K). An
algebra A is called selfinjective if A = D(A) in mod A, that is, the projective
A-modules are injective. By a classical result due to Nakayama [30], a basic
algebra A is selfinjective if and only if A is a Frobenius algebra, that is, there
exists a nondegenerate K-bilinear form (—,—) : A x A — K satisfying the
associativity condition (ab,c) = (a,bc) for all elements a,b,c € A. More-
over, an algebra A is said to be symmetric if A and D(A) are isomorphic
as A-A-bimodules, or equivalently, there exists an associative nondegener-
ate symmetric K-bilinear form (—,—) : A x A — K. An important class of
selfinjective algebras is formed by the orbit algebras B /G, where B is the
repetitive algebra (locally finite-dimensional, without identity)

B =P (Bm ® D(B)m)
MEZ
of an algebra B, where By, = B and D(B), = D(B) for all m € Z, and the
multiplication in B is defined by
(@ms frm)m * (bms Gm)m = (@mbm, AmGm + frmbm—1)m
for am, by, € Bpn, fm,gm € D(B)m, and G is an admissible group of
automorphisms of B. For example, the identity maps B,, — Bmn+1 and
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D(B)m — D(B)my1 induce an algebra automorphism vg of B, called the

Nakayama automorphism of B, and the orbit algebra B/(I/B) is the trivial
extension T(B) = B x D(B) of B by D(B), which is a symmetric alge-
bra. We note that if B is of finite global dimension then the stable module
category mod B of mod B is equivalent, as a triangulated category, to the
derived category D’(mod B) of bounded complexes over mod B [21].

In the representation theory of selfinjective algebras a prominent role is
played by the selfinjective algebras of canonical type, which are the orbit
algebras /i/ G given by (finite-dimensional) algebras A whose derived cat-
egory DP(mod A) is equivalent, as a triangulated category, to the derived
category D’(mod C) of a canonical algebra C (in the sense of [33]) and
torsion-free admissible automorphism groups G of A. For example, the class
of representation-infinite tame selfinjective algebras of polynomial growth
coincides with the class of socle deformations of tame selfinjective algebras
of canonical type, as described in [38] (see also [9]-[11], [13]-[16], [37]). By
general theory (see [1], [3], [25], [26], [31], [37]), every selfinjective algebra of
canonical type is isomorphic to an algebra of the form B /G, where B is a
branch extension (equivalently, branch coextension) of a concealed canonical
algebra A (a tilt of a canonical algebra C'), and G is an infinite cyclic group
generated by a strictly positive automorphism of B. A selfinjective algebra
A of the form B /G, where B is a branch extension (equivalently, branch
coextension) of a canonical algebra C' and G is an infinite cyclic group gen-
erated by a strictly positive automorphism of B, is said to be a selfinjective
algebra of strictly canonical type.

An important combinatorial and homological invariant of the module
category mod A of an algebra A is its Auslander—Reiten quiver I'4. The
vertices of I'4 are the isoclasses [X] of modules X in ind A, and the number of
arrows from [X] to [Y] in I'4 is the number of linearly independent irreducible
morphisms in mod A starting at X and ending at Y. Moreover, we have the
Auslander-Reiten translations 74 = D Tr and 7, = Tr D. We shall identify
a vertex [X] of I'y with the module X. By a component of I'4 we mean a
connected component of I'y. A component C of I'4 is said to be standard
if the full subcategory of mod A formed by the indecomposable modules
of C is equivalent to the mesh category K (C) of C (the quotient category
KC/I; of the path category KC of C modulo the ideal Iz generated by the
meshes of C). Two components C and D of I'4 are said to be orthogonal if
Homy(X,Y) = 0 and Hom4 (Y, X) = 0 for modules X in C and Y in D. For
a component C of I'4, we denote by s(C) the number of simple modules in C,
by p(C) the number of projective modules in C, and by i(C) the number of
injective modules in C.

A general shape of the Auslander—Reiten quiver of a selfinjective alge-
bra of canonical type has been described (see [1], [31], [38], [39]), and its
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characteristic property is the presence of families of quasi-tubes indexed by
the projective line P;(K). We are interested in distribution of simple and
projective modules in the Auslander—Reiten quivers of selfinjective algebras
of canonical type (see [8], [12], [26], [31] for some results in this direction). It
is known that the Auslander—Reiten quiver I'4 of an arbitrary orbit algebra
A = C/G of a canonical algebra C admits a P; (K )-family of stable tubes con-
taining simple modules. On the other hand, for all orbit algebras A = B /G
of the concealed canonical algebras B constructed in [24, Theorem 3|, all
quasi-tubes of I'4 are stable tubes and do not contain simple modules. We
will show in this paper that the quasi-tubes of the Auslander—Reiten quivers
I of selfinjective algebras of strictly canonical type are maximally saturated
by simple and projective modules.

Let A be a selfinjective algebra. We denote by I'} the stable Auslander—
Reiten quiver of A, obtained from I'4 by removing the projective-injective
modules and the arrows attached to them. For a component C of I'y, we
denote by C* its stable part. It is well-known that, for any indecomposable
projective module P in mod A, there is a canonical Auslander—Reiten se-
quence in mod A of the form

0 — rad P — (rad P/soc P) ® P — P/soc P — 0.

Hence, we may recover I'y from I} if we know the positions of socle factors
P/soc P of indecomposable projective modules P in I'j. The Auslander—
Reiten translation 74 is an automorphism of the quiver I'j and 7 its inverse.
The stable Auslander—Reiten quiver I'j of a selfinjective algebra A also ad-
mits the action of the syzygy operator £24 which assigns to a module X in I'}
the kernel £24(X) of a minimal projective cover P4(X) — X of X in mod A.
The inverse §2, of 24 on I'} assigns to a module Y in I'} the cokernel £2;/(Y)
of a minimal injective envelope Y — I4(Y) of Y in mod A. The Auslander—
Reiten and syzygy operators are related by 74 = Q23N4 = Naf2% and
Ty = Q7N = N2, where Ny = DHomy(—, A) is the Nakayama
functor and ./\/g1 = Hom gor (—, A) D its inverse. In particular, 74 = 2% and
Ty = QZQ if A is symmetric. We also note that the position of a simple
module S in I'§ determines the position of its projective cover P4(S) in I'4
because §24(S5) = rad P4(S).

Recall that if A, is the infinite linear quiver 0 — 1 — 2 — --- then
ZA . is the translation quiver of the form

(i—1,0) (i,0) (i41,0) (i +2,0)

/\/\/\/\_

(i —1,1) (,1) (i+1,1)

PAYAVYEN

(i—1,2) (7,2)

NN
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with the translation 7 defined by 7(i,j) = (i — 1,5) for i € Z, j € N.
For r > 1, denote by ZA.,/(7") the translation quiver obtained from ZA
by identifying each vertex x of ZA., with 7"z and each arrow x — y in
ZA with 7"z — 7"y. Then ZA,/(7") is a translation quiver consisting
of T-periodic vertices of period r, called a stable tube of rank r. The set of
all vertices of a stable tube 7 having exactly one immediate predecessor
(equivalently, exactly one immediate successor) is called the mouth of 7. We
refer to [35, Chapter X] for more information concerning stable tubes.

Let A be a selfinjective algebra. A component C of I'4 is said to be a
quasi-tube if its stable part C* is a stable tube of I'}. By general theory (see
[27], [41]) an infinite component C of I'y is a quasi-tube if and only if C
contains an oriented cycle. Clearly, every stable tube of I'4 is a quasi-tube.
For a quasi-tube C of I'4, we denote by r(C) the rank of the stable tube C*.
Then s(C)+p(C) < 7(C)—1 (see |28, Theorem A|). Moreover, if C and D are
quasi-tubes of I'4 such that D® = 24(C?®) then s(C) = p(D), p(C) = s(D),
and r(C) = r(D).

The following main result of the paper describes the structure and homo-
logical properties of the Auslander—Reiten quivers of selfinjective algebras of
strictly canonical type.

MAIN THEOREM. Let A be a selfinjective algebra of strictly canonical
type. The Auslander—Reiten quiver I'a of A has a decomposition

I'y= \/ (Xf\/Cj;‘),
qEZ/nZL

for some positive integer n, and the following statements hold:

(i) Foreachq € Z/nZ, CA (CA(/\))AelPl(K) is a Py (K)-family of quasi-
tubes with S(C;‘()\)) —}—p(C(’;‘()\)) = T‘(C;‘()\)) —1 for each A € P1(K).

(ii) For each q € Z/nZ, X(f is a family of components containing exactly
one simple module Sy .

(iii) For each q € Z/nZ, we have HomA(Sq,C;]A( )) # 0 for all X €

Py (K), and HomA(Sp,C;‘) =0 forp+#qin Z/nZ.
(iv) For each q € Z/nZ, we have HomA(CA( )sSq+1) # 0 for all X €
P1(K), and Homa(C, Sp) =0 for p # q + 1 in Z/nZ.

(v) For cach g€ Z/nZ, 24((CAL)*)=(CL)* and 24((XA)) = (X"

The paper is organized as follows. In Section 1 we introduce the canonical
algebras and describe their canonical P (K )-family of stable tubes. Section 2
is devoted to the branch extensions and coextensions of canonical algebras,
and Section 3 to the quasi-tube enlargements of canonical algebras, playing
the fundamental role in the proof of the Main Theorem. In Section 4 we recall
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the needed facts on repetitive algebras and their orbit algebras. Section 5
contains the proof of the Main Theorem.

For background on the representation theory of algebras we refer to the
books [2], 7], [33], [35], |36], and to the survey articles [38]-[40].

1. Canonical algebras. The aim of this section is to introduce the
canonical algebras and describe their canonical family of stable tubes.

Let m > 2 be a natural number, p = (p1,...,pn) a sequence of positive
natural numbers and A = (A1,...,\,) a sequence of pairwise different ele-
ments of the projective line P;(K) = K U {oco} normalized so that A\; = oo
and Ay = 0. Consider the quiver A(p) of the form

L1 oy, (1L,2) o1 py—1 (1,p1 —1)
O -— QO =<+ * -— QO <+—— O
a1 W
as1 (21D ag, (22 a2,p271(2,p2 - 1)@24)2
0o = O - O 4 +"" <O = o - ow
O -— O =<+ * — QO <+— O
(m,1) %2 (m,?2) Fm.pm =1 (m, ppm — 1)

For m = 2, C(p,A) is defined to be the path algebra K A(p) of the quiver
A(p) over K. For m > 3, C(p,A) is defined to be the quotient algebra
KA(p)/I(p,A) of the path algebra K A(p) by the ideal I(p,A) of KA(p)
generated by the elements

Qjpj -+ Q1+ Q1 o011+ NjQ2py .. 21, ] € {3,...,m}.

Following [33], C(p, A) is said to be a canonical algebra of type (p,A), p the
weight sequence of C(p,A), and X the (normalized) parameter sequence of
C(p,A). It follows from [33, (3.7)] that, for a canonical algebra C' = C(p, A),
the Auslander—Reiten quiver I'c of C is of the form
Ic=P°uTUQ%,

where PC is a family of components containing all indecomposable projec-
tive C-modules (hence the unique simple projective C-module S(0) asso-
ciated to the vertex 0 of A(p)), Q¢ is a family of components containing
all indecomposable injective C-modules (hence the unique simple injective
C-module S(w) associated to the vertex w of A(p)), and T¢ = (T) \ep, (i)
is a canonical Py (K)-family of pairwise orthogonal standard stable tubes
separating P¢ from Q¢ and containing all simple C-modules except S(0)
and S(w). Moreover, if 7")(5 denotes the rank of the stable tube T)\C, then
rfi =p; fori€ {1,...,m}, and 7{ =1 for A € Py (K)\ {\1,..., A}

Let C = C(p,\) be a canonical algebra. We recall a description of

modules lying on the mouth of stable tubes of the canonical P;(K)-family
T = (T)rep (k) of Te:
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(a) For A = \; = oo, the mouth of 7' = 7$ consists of the simple C-
modules S(1,1),...,5(1,p; —1) at the vertices (1,1),...,(1,p1 —1)
of A(p) if p; > 2, and the nonsimple C-module E(*) of the form

0 ~—0 <« <0~ 0

1 1 jth path
K+l Kv ' «K«1 K" /1
. . . . ~<~—— mth path

with j € {3,...,m}.

(b) For A = Xy = 0, the mouth of T.U = 7,* consists of the simple C-
modules S(2,1),...,5(2,p2 —1) at the vertices (2,1),...,(2,p2—1)
of A(p) if po > 2, and the nonsimple C-module E©) of the form

0 ~ 0«cr «—0 = 0 - K

1

Kl Ke. ... <Kt gKg-,N

«—— mth path

jth path

with j € {3,...,m}.

(c) For A = X\; with j € {3,...,m}, the mouth of ’T)\C consists of the
simple C-modules S(j,1),...,5(j,p; — 1) at the vertices (j,1),...,
(j,pj — 1) of A(p) if p; > 2, and the nonsimple C-module E7) of
the form

_)\]. ‘1\
1 1 1

K~ K

jth path

0 «—0 « «0«—-0%/1
<«—— ith path

K+t K+ <K' K

fori e {3,...,m}\ {j}.
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d) For A € Pi(K A, ..y Am}, the mouth of 7€ consists of one
( A
nonsimple C-module E™ of the form

v A

K= K+t K <K+ K+ K
=5 : : T
\ ’ 1 ’ ’ 1 ’ jth path

«—— mth path
with j € {3,...,m}.
The following lemma will be useful in further considerations.

LEMMA 1.1. Let C=C(p, A) be a canonical algebra, with p=(p1,...,Pm)
and A = (A1,...,Am). Let p be an element in P1(K) \ {A1,..., A\n}. Take
P, = (P1,--,Pm, 1) and Xy = (A1, A, pt). Then the canonical algebras
C =C(p,A) and C, = C(p,,, Au) are isomorphic.

Proof. We have C = KA(p)/I(p,\), with I(p,A) =0 for m =2, C, =
KA(p,)/1(p,, Au), where the quiver A(p,,) is obtained from the quiver A(p)

Am+1,1

by adding the single arrow 0 «——— w, and I(p,,, A,) is the ideal of the path
algebra K A(p,,) generated by the elements generating I(p, A) in K A(p) and
the additional element

Am+1,1 + Qlpy -+ Q11+ Q2 p,y ... 2 1.
Then the canonical embedding of the quivers A(p) — A(p,) induces an
isomorphism C' = C), of algebras. m

2. Branch extensions and coextensions of canonical algebras.
The aim of this section is to introduce the branch extensions and coextensions
of canonical algebras, playing a fundamental role in the paper.

Let B be an algebra and X a module in mod B. The one-point extension
of B by X is the 2 x 2-matrix algebra

B[X] = Lf;B IO(} :{[Z 2”beB,>\eK,xeX}

with the usual addition of matrices and the multiplication induced from the
canonical K-B-bimodule structure xXp of X. The quiver Qp[x] of B[X]
contains the quiver Qp of B as a full convex subquiver, and there is a
single additional vertex in @p[x], which is a source. Dually, the one-point
coeztension of B by X is the 2 x 2-matrix algebra
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[X]B:[Df;) ;} :{D ZHbeB,/\eK,feD(X)}

with the usual addition of matrices and the multiplication induced from the
canonical B-K-bimodule structure of D(X) = Homg (x Xp, K). The quiver
QxiB of [X]B contains the quiver @p of B as a full convex subquiver, and
there is a single additional vertex in Q[x)p, which is a sink.

A branch is a finite connected full bounded subquiver £ = (Qr,Ir),
containing the lowest vertex 0, of the following infinite tree:

AN N AN N

N N
aN /8

.a\o/;}_ .'a\o/ﬁ.

N

with I, generated by all paths af contained in Qz. The lowest vertex 0 of
L is called the germ of L, the number of vertices of L is called the capacity
of £, and the bound quiver algebra KL = KQ/I is called the branch
algebra of L. It is known that the class of branch algebras KL of branches
L of capacity n > 1 coincides with the class of tilted algebras of the Dynkin
equioriented linear quiver type

1 2 3 n—1 n

(see [33, (4.4)] or [36, (XVI.2.2)]).

Let C = C(p,\) be a canonical algebra of type (p,A) and 7¢ =
(T)\C) AePy (K) its canonical Py (K)-family of pairwise orthogonal standard sta-
ble tubes. Let E1,..., Es be a set of pairwise different modules lying on the
mouth of the tubes of 7¢. Consider the multiple one-point extension of C,

C 0
ClEr..... B = | J
EIEB@ES le...sz

and the multiple one-point coextension of C|

Ky x---x K, 0]

[El,...,Es]C:[
D(El@"‘@Es) C
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where K1 = -+ = K, = K and the left module structure of £1 ® --- @ E
over K1 x -+ x K is given by (A1,...,As)(u1,...,us) = (Aug, ..., Asus)
for Ai,..., s € K, u1 € Ey,...,us € E,s. Observe that C[E1, ..., E;] is an
iterated one-point extension C[E1][Es]...[E], and [E1, ..., E4C is an iter-
ated one-point coextension [E1][Es]...[Es|C. Moreover, let C[Ey, ..., Es] =
KQcg,,..e)/LcE,,.. . and [B1,... ES)C = KQg, .. p)c/lE,,..B)c be
canonical bound quiver presentations of C[E1, ..., Es] and [Ey,..., E;]C.
Denote by Of, ..., 07 (respectively, 07,...,0; ) the extension vertices of
Qc|E,,..E, (respectively, coextension vertices of Q(g, . g,)c) corresponding
to the extensions (respectively, coextensions) by the modules Fj, ..., F.
Choose now branches £1 = (Qz,, Iz,),- .-, Ls = (Qr,, Irz,) with the germs
1,...,0%, respectively. The branch extension of C' (branch T -extension of
C in the sense of [36, (XV.3)]), with respect to the mouth modules E1, ..., Es
and the branches Ly, ..., Ls, is the bound quiver algebra

C[E17 £17 cry ES? ‘CS] = KQC[El,Eh...,ES,ﬁS]/IC[El,[:l,...,ES,LS]7

where the bound quiver (Qc(g, c,.....E,.c.)s [C[E: L1, Es,,]) 18 Obtained from
the bound quiver (Qc(g,,....k,), Io(k,,...,B,)) of ClE1,..., Es] by adding the
bound quivers of the branches L1,...,Ls and making the identification of
the vertices O;r with 0 for i € {1,...,s}. Dually, the branch coextension of
C (branch TC-coestension of C in the sense of [36, (XV.3)]), with respect
to the mouth modules E1, ..., Fs and the branches L1, ..., L, is the bound
quiver algebra

(B, Ly B, L6)C = KQ(py 4. B 210 By L1 B 24

where the bound quiver (Q(g, z, ... E,.c.)05 [[Ey £1,...,Es,25)c) 18 obtained from
the bound quiver (Q(g,....g,)c> [|E,,...E]c) of [E1,. .., Es]C by adding the
bound quivers of the branches L1,...,Ls and making the identification of
the vertices 0;” with 0] for i € {1,...,s}.

We now describe the bound quivers (Qe(g, z,....E,,c.] Lo[B Lo, B L8])
and (Q(g, z,,...Es,24C LBy L1, B c)0) €xPlicitly. Observe first that, by
Lemma 1.1, we may assume that the mouth modules Fi, ..., Es belong to
the tubes T/\C with A € {A1,..., Am}. Moreover, the top F = E/rad F and
the socle soc E of any module E lying on the mouth of a tube of 7€ are
one-dimensional. Hence, each extension vertex O;r is connected to Q¢ by
a single arrow fyf with source Oj and sink at the vertex x; of Q¢ corre-
sponding to the simple top S(z;) of E; for any ¢ € {1,...,s}. Similarly,
each coextension vertex 0; is connected to Q¢ by a single arrow v, with
sink 0; and source at the vertex y; of ()¢ corresponding to the simple
socle S(y;) of E; for any i € {1,...,s}. Therefore, we obtain the follow-
ing description of the bound quivers (Qc(g, ¢,,....E,,c.> lo[Ey 21, By, c0)) @0
(QEy L1, B0 LBy L1, Ba Ll)C)-
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PROPOSITION 2.1. Let C' = C(p, A) be a canonical algebra of type (p, N).
(1) The quiver Qo(g, c,,..,B,,c,) 15 obtained from the quivers Qc,Qr,,
., Qr, by identifying O;r = 07 and adding the arrows

A+
0f =0f “»a;, ic{l,... s},

7

and the ideal Io(p, 1, .. B, c.] S generated by the elements generating
the ideals Ic, Iz, , ..., Iz, and the paths of length 2

%‘Jraji,tw ied{l,...,s},
where E; is a mouth module of’Z:\? with Xj, € {\1,..., A} and o, 4,
is the unique arrow on the path aj, p, ... o, 1 with source x;.
(ii) The quiver Q[El,cl,‘..,Es,Es}C is obtained from the quivers Qc,Qr,,
., Qr, by identifying 0, = 07 and adding the arrows
yi ~— 07 =0, ie{l,..., s}
and the ideal Iip, r, .. B, .c,)c S generated by the elements generating
the ideals Ic, Iz, ..., Iz, and the paths of length 2

Y, 1€{l,..., s},
where E; is a mouth module of T/\f with Aj; € {\1,..., A} and o,
is the unique arrow on the path o, p, ... oy, 1 with sink y;.

Observe that aj, 1, = ay, p, and ay, ,, = ;1 if E; is the unique nonsim-
ple mouth module EMi) of T/\?

By the general theory (see [é, Section XV], [33, Chapter 4|), for a branch
extension C[E1,L1,...,FEs, L] (respectively, branch coextension [Ej,Lq,
..., B, £]O) of a canonical algebra C, the canonical Py (K)-family 7¢ =
(7X) aepy (k) of stable tubes of I'c is transformed into a canonical Py (K)-

family TCIELL, Es Ls] (’]')\C[Elvﬁlv"vESvﬁS})

aepy (k) of ray tubes of
I'oipy i, B L) (respectively, a canonical Py (K)-family TIEL L1, B L6]C

(T)\[El’l:l""’ES’[:S}C)AGM(K) of coray tubes of I'g, ¢, . g, rgc). In particular,

the ray tubes of TCE1L1Es.Ls] may contain projective modules but not
injective modules, while the coray tubes of TELL1-Es.LslC gy contain
injective modules but not projective modules. We will need precise infor-
mation on the number of simple and projective modules in the ray tubes
of TCELLY . Es L] (respectively, simple and injective modules in the coray
tubes of TIF1L1EsLs1C) - According to [36, Theorem XV.3.9] the class of
branch 7 “-extensions (respectively, branch 7¢-coextensions) of a canonical
algebra C' coincides with the class of 7¢-tubular extensions (respectively,
T -tubular coextensions) of C, as described below.
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Let A be an algebra and C a standard component of I'4, that is, the
full subcategory of mod A given by modules of C is equivalent to the mesh-
category K(C) of C. Assume that X is an admissible ray module of C, that
is, a module X lying on an infinite sectional path (ray)

X=X X1 Xo—>-- =X, — -
satysfying the conditions of [36, XV.2.1]. Then C looks as follows:

| ;‘O/O{jll)ﬁ
O N
N

We note that if C is a standard stable tube then the admissible ray modules
of C are exactly the modules lying on its mouth.
For a positive integer ¢, denote by H; the path algebra of the quiver

1 2 3 t—1 t
A(At): O<+——Q<+——Q <+— *** 4+—QO <+——O0 .

Recall that the Auslander—Reiten quiver 'y, of Hy is of the form
S(1)  8(2)  S(3) St—1) St =Y:=I(t)
@] (@] O O (@]
NN\ NS
N s
o ’ o ’

SN
NSNS
\/ Yo =1(2)

Y =Y, =1(1)

e

where S(1),...,5(t) and I(1),...,I(t) are the simple and indecomposable
injective Hy-modules at the vertices 1,, ..., t, respectively. If t = 0, we denote
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by Hy the zero algebra and set Y = 0. Then the one-point extension algebra

AX,t)=[Ax H)[ X Y] = [A x H, o]

XoY K

is called the t-linear extension of A at X. It follows from |36, Proposition
XV.2.7] that the component C’ of I'y(x ) containing the module X is a stan-
dard component obtained from C and 'y, by inserting an infinite rectangle
as follows:

ZAN
S(1) S(2) S(t) = Xo Xo
O

RNVZAN /gm/\@axT%

N SN NN
| \// /\/\X%\

NS SN
NSNS N D

Observe that C’ is obtained from C by inserting ¢ 4+ 1 rays, among them ¢
rays starting from the simple Hy-modules, and P = Zj; is the new projective
module, corresponding to the extension vertex of A(X,t). Clearly, for t = 0,
C’ is obtained from C by inserting only one ray starting at P = Zy;.

Dually, for an admissible coray module X of C, the one-point coextension

K 0

(X, t) A=[X@Y]|[A X H] = DIXa®Y) AxH,

is called the t-linear coextension of A at X. Then the connected component
C" of I (x,)A containing X is a standard component obtained from C by
inserting t+1 corays, among them ¢ corays ending at the simple Hy-modules,
and C” contains the new indecomposable injective module corresponding to
the coextension vertex of (X,t)A.
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Let C = C(p,A) be a canonical algebra. An algebra B is said to be
a T tubular extension (respectively, 7C-tubular coeatension) of C' if there
exist a sequence of algebras By = C, By,...,B, = B such that, for each
i € {1,...,n}, the algebra B; is a t;-linear extension B;_1(X;,t;) of B;_1
(respectively, ¢;-linear coextension (X;,t;)B;—1 of B;_1), for some t; > 0,
with respect to an admissible ray module X; (respectively, admissible coray
module X;) lying in a standard stable tube 7 or in a component of I'p, |,
obtained from a stable tube of 7¢ by rectangle insertions (respectively, rect-
angle coinsertions) created by the linear extensions (respectively, linear co-
extensions) made so far. For a tubular extension (respectively, coextension)
B of C, the canonical Py (K)-family 7¢ = (’T)\C)/\epl(K) is transformed into
a canonical P1(K)-family 77 = (T.7)cp, (k) of standard ray tubes (respec-
tively, standard coray tubes) T)\B obtained from the standard stable tubes
TAC by the corresponding iterated rectangle insertions (respectively, iterated
rectangle coinsertions).

Let B be a 7“-tubular extension of a canonical algebra C and A € P1(K).
Then every module M of the ray tube 7,5 lies on exactly one ray r(M) of 7,B.
We denote by p* (TAB ) the number of projective B-modules P in ’TAB which
are not proper predecessors of a projective module lying on the ray r(P).

Let B be a T¢-tubular coextension of a canonical algebra C' and \ €
P;(K). Then every module N of the coray tube T/\B lies on exactly one coray
¢(N) of T,B. We denote by i*(T,®) the number of injective B-modules I
in ’T)\B which are not proper successors of an injective module lying on the
coray c([I).

PROPOSITION 2.2. Let C be a canonical algebra and TC the canonical
Py (K)-family of pairwise orthogonal standard stable tubes of Ic.

(i) Let B be a TC-tubular extension of C. Then the Auslander-Reiten

quiver I'g of B is of the form
I'g=PBvTBv OB,

where PB = PC is a family of components consisting of C-modules
and containing all indecomposable projective C-modules, QP is a fa-
mily of components containing all indecomposable injective B-mod-
ules but no projective B-module, and TP is a Py(K)-family
(T)\B ) AePy(K) Of pairwise orthogonal standard ray tubes separating pB
from QB. Moreover, for each \ € P1(K), the number of rays of ’T)\B
is equal to s(T,P) + p*(T,P) + 1.

(ii) Let B be a TC-tubular coextension of C. Then the Auslander-Reiten
quiver I'g of B is of the form

I'g=PBvTBVv OB,
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where PB is a family of components containing all indecomposable
projective B-modules but no injective B-modules, QB = Q€ is a fam-
ily of components consisting of C-modules and containing all inde-
composable injective C-modules, and TB is a Py(K)-family
(’T)\B ) AePy(K) Of pairwise orthogonal standard coray tubes separating
PE from QB. Moreover, for each A € P1(K), the number of corays
of TB is equal to s(T,P) +i*(T,P) + 1.

Proof. This follows from [4, Section 2|, [6, Section 2|, [33, Section 4|, the
above discussion, and the fact that, for any stable tube T)\C of T, we have
p(TE) =0 =1i(7T) and s(T,C) + 1 is the rank r§ of T.U, hence the number
of rays (equivalently, corays) of T/\C. "

We end this section with the following consequence of [36, Theorem
XV.3.9].

PROPOSITION 2.3. Let C' be a canonical algebra and T the canonical
Py (K)-family of standard stable tubes of I'c. For an algebra A the following
equivalences hold:

(i) A is a TC-tubular extension of C if and only if A is a branch T¢-
extension of C.

(ii) A is a T -tubular coextension of C if and only if A is a branch
T -coextension of C.

3. Quasi-tube enlargements of canonical algebras. We know from
Section 2 that, for a branch extension (respectively, branch coextension) B of
a canonical algebra C, the canonical Py (K )-family 7¢ = (T)\C)AGIPH(K) of sta-
ble tubes is transformed into a canonical Py (K)-family 77 = (IZ:\B))\epl(K)
of ray tubes (respectively, coray tubes). Following [4]-[6], we describe here
canonical enlargements of branch extensions (respectively, branch coexten-
sions) B of canonical algebras C' to algebras B* such that the P; (K )-family
TP = (TP)\ep, (k) is transformed into a canonical Py(K)-family 7B =
(T)\B*) AePy (k) Of pairwise othogonal standard quasi-tubes. In general, a com-
ponent C of an Auslander—Reiten quiver Iy is called a quasi-tube if the
projective and injective modules in C coincide, and the stable part C® of C is
a stable tube.

Let A be an algebra and C a standard component of I'4. Assume that
X is an indecomposable injective module in C and source of exactly two
sectional paths

th<_Y;ffl<_"'<_Y2FY1<—X:X0—>X1—>X2H---

with ¢t > 1. The first left hand one is finite and consists of injective modules
Y1,...,Y;, and the second one is infinite. Hence C looks as follows:
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_ X1 0 0 T, X
NN

X20 2

\ O\‘?X

X3 R .
N

Let A’ = A[X] be the one-point extension of A by X. It follows from

[6, Section 2| that the component C’ of Iy containing the module X is a
standard component obtained from C by inserting an infinite rectangle as

o i o 0 X o Xa
NN N

We note that the new projective A’-module corresponding to the exten-
sion vertex of A" = A[X] is injective, and the injective A-modules Y7, ...,Y;
are not injective A’-modules.

Let B be an algebra and ()p its ordinary quiver. For a vertex i of Qp,
we denote by e; the idempotent of B corresponding to i, by Pg(i) the as-
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sociated indecomposable projective B-module e; B, and by Ip(i) the asso-
ciated indecomposable injective B-module D(Be;). Moreover, we denote by
T." B the one-point extension B[Ig(i)] of B by Ig(i), and by T; B the one-
point coextension [Pg(i)|B of B by Ppg(i). More generally, for a sequence

i1,...,1 of vertices of @p, we denote by T:HB the iterated extension

BlIp(i)][Ip+g(i2)] ... [Ip+  pgli)], and by T, . B the iterated coex-
i1 D] yeensy i1 [

tension [Pr—  g(ir)] ... [Pp-p(i2)][Pr(i1)]B.

i15ip—1 i1

Assume that B is a triangular algebra, that is, the quiver Qg of B is
acyclic. For a sink ¢ of @ g, the reflection SfB of B at i is the quotient of TZ-JFB
by the two-sided ideal generated by e; (see [23]). The quiver o} Qp of S;" B is
called the reflection of Qg at i. Observe that the sink 7 of Qg is replaced in
U;_ @ p by a source v(i). Dually, for a source j of Qp, we define the reflection
S]-_B of B at j as the quotient of Tj_B by the two-sided ideal generated by e;.
The quiver o; Qpof S i B is called the reflection of Qp at j. The source j of
@p is replaced in 0; Qp by a sink v~ (7). Clearly, for a sink 7 (respectively,
source j) of Qp, we have Sy_(i)S;rB >~ B (respectively, Sj, (j)Sj_B =~ B).

A reflection sequence of sinks of Qg is a sequence 1i1,...,%; of vertices of
Q@B such that i, is a sink of o;;l . ..O’ZQB for any s € {1,...,t}. Dually, a
reflection sequence of sources of Qg is a sequence ji, ..., j;: of vertices of Qp

such that j, is a source of o ...U;-;QB for any s € {1,...,t}.

1
THEOREM 3.1. Let C be a canonical algebra and TC the canonical Py (K)-
family of pairwise orthogonal standard stable tubes of ['c.

(i) Let B be a branch TC-coextension of C. Then there exists a reflec-
tion sequence of sinks i1,...,1; of QB such that the iterated reflec-
tion BT = S;t“ . S’;;B of B is a branch TC -extension of C' and the

Auslander—Reiten quiver I'g~ of the iterated extension B* = TZT”B
of B is of the form

I'g-=PP vl v b,

where PB" = PB is a family of components containing all indecom-
posable projective B-modules, QF" = 0B" s a family of components
containing all indecomposable injective BT -modules, and CB" is a
Py (K)-family (Cf*))\epl(}() of pairwise orthogonal standard quasi-
tubes separating PP from QB obtained from the canonical Py (K)-
family TP = (’]}\B)Aepl(K) of pairwise orthogonal standard coray
tubes of I'g by iterated infinite rectangle insertions. Moreover, for
each A € Pi(K), we have s(CZ") + p(CEZ™) = r(CP") — 1, where
r(CB") is the rank of the stable part of the quasi-tube C¥".
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(ii) Let B be a branch TC-extension of C. Then there exists a reflec-
tion sequence of sources j1,...,J: of Qp such that the iterated reflec-
tion B~ = Sj_t . Sj_lB of B is a branch T -coextension of C' and
the Auslander—Reiten quiver I'g+ of the iterated coextension B* =

T B of B is of the form

I'g-=PP vl v P,

where PP = PB™ is a family of components containing all inde-
composable projective B~ -modules, QB = QB is a family of compo-
nents containing all indecomposable injective B-modules, and CB™ is
a P1(K)-family (C/\B*))\e]pl(]() of pairwise orthogonal standard quasi-
tubes separating PP from QB", obtained from the canonical Py(K)-
family T8 = (’]:\B))\E]I»I(K) of pairwise orthogonal standard ray tubes
of I'g by iterated infinite rectangle coinsertions. Moreover, for each
X € Py(K), we have s(C2™) +p(CE") = r(CP") — 1, where r(CE") is
the rank of the stable part of the quasi-tube C/]\B*,

Proof. (i) Let B = [Ey1, L1, ..., Es, Ls]C be a branch 7%-coextension of
C with respect to mouth modules Ej, ..., E; of T¢ and branches L1, ..., Ls.
Then B is a triangular algebra, because C' and the branch algebras KL,
..., KL are triangular algebras. Applying Proposition 2.3, we conclude that
B is a tubular 7 ¢-coextension of C, and hence the Auslander-Reiten quiver
I'p of B is of the form I's = PEVTE v QB where PP is a family of compo-
nents containing all indecomposable projective B-modules but no injective
module, 0B = Q% is a family of components consisting of C-modules and
containing all indecomposable injective C-modules, and 75 = (7:\3 )AEP: (K)
is a family of pairwise orthogonal coray tubes separating P? from QF.
Moreover, for each A € Py(K), the number of corays of ’TAB is equal to
s(T,P) + i*(T,P) + 1. Further, the family of indecomposable injective B-
modules located in the family 77 coincides with the family of indecom-
posable injective B-modules I5(i) given by the vertices i of the branches
L1,...,Ls. Observe also that the quiver Qg of B is of the form

Qc
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Since the family 77 = (T)\B)/\epl(K) contains only a finite number of
injective B-modules, for all but finitely many A € Py (K), we have T,F = T/\C,
and then s(7,%) = r(T,2) — 1 holds. In fact, we have 7,7 # T.C if and only
if TC contains a module E; for some i € {1,...,s}. Let Ap be the set
of all A € Py(K) such that T)\C contains at least one module E;. For each
A € Ap, we denote by Xp()) the set of all vertices j of @p (in fact of
Qr, U+~ UQg,) such that the injective B-module Ig(j) lies in 7,P and is
not a proper successor of an injective B-module on the coray ¢(Ig(j)) of T,P
containing Ip(j). Observe that |Yp(A)| = i*(7,5). Moreover, for different
A\ € Ap, the sets Y'p(A) and Yp(u) are disjoint, because they belong to
different branches. Finally, let X5 be the union of the sets X5(\), A € Ap,
and let t = | Xp|. We will show that a reflection sequence of sinks i1, ..., 1,
satisfying the conditions of (i), is formed by properly ordered vertices of the
set Xp.

Fix A € Ag. We will show that there exists a reflection sequence of sinks
i1,...,4 of @p, formed by the elements of X'g(A), hence r = i*(’]:\B) =
| X'B(N)], such that after the iterated extension B(\) = T:%B of B, the

coray tube ’]:\B is transformed into a standard quasi-tube Cf()‘) of I'g(y)- Since
A € Ap, the stable tube TAC of I'c contains a mouth module E; involved in
the branch 7¢-coextension B of C. Let 0; = by — --- — by, be the maximal
path of the branch £; starting at its germ 0, which is also the coextension
vertex 0} of the one-point coextension [E;]C. Then the coray tube 7,7 admits
a ray

O e e O e O O O e
]B(bk) [B(bz) IB(bl) Ei
containing the indecomposable injective B-modules Ig5(by), ..., Ip(bg) at the
vertices by,...,bg. Let i1 = bg,i9 = bg_1,...,7 = b1. Observe that, for [ €
{2,...,k}, b is the sink of a unique arrow of Qp with source b;_1, and con-
sequently i1, ..., is a reflection sequence of sinks of Q5. Applying the one-
point extension T:B = Bl[Ip(i1)], we modify the standard coray tube 7,5 of
+

T+ B
I'p into a standard component 7, " of I'.+ 5, obtained from T)\B by the in-

finite rectangle insertion given by the extension B[Ig(i1)]. Moreover, the in-

decomposable injective B-module Ip(i1) is extended to the indecomposable

projective-injective T:B-module Pr+ 5(v(i1)) = Ip(i1), while the indecom-
i

posable injective B-modules Ig(i2), ..., Ip(ix) are extended to the indecom-
posable injective T;" B-modules IT+B(i2) = Ip(ia),... IT+B(ik) = Ip(ix).

+ +
For k > 2, we consider the one- po+1nt extension 7T B[IT+B(22)] T .,B

"B
Then the standard component ’Z' of Iy is modlﬁed into a standard
i1
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7/+ 2 B T+B . .
2 of I'hv g, obtained from 7, " by the infinite rec-
1,12
tangle insertion given by the extension Ti1 B[I+g(i2)]. In this extension,
i1

component 7,

the indecomposable injective TZ-TB—module I+ (i) is extended to the in-
1 -

decomposable projective-injective TZ-T i, B-module Pri  (v(ig)) = Ip+ p(iz2),

’ 1,12 i1
the indecomposable injective T;B—modules ITZB(Z‘?’)’ e ,[TitB(ik) (it k > 3)
are extended to the indecomposable injective T: i, B-modules I+ p(iz) =
’ 1512

IT+B(1'3) IT+ B(ik) = T*B(ik) and PT+ (v(i1)) is the indecompos-

able prOJectlve—anectlve T+ B module PT+ ‘ B( (71)) at the vertex v(iy).

Applying the extension procedure to all Vertlces of the sequence i1, ..., 1,

we obtain the iterated extension

T .B= Bl (@)llzs p(i2)] - - - [Lr+ 5]

T yeens i1

of B such that the standard coray tube T)\B of I'p is modified into a standard
+

T+ .

component 7, """ of I’y p, obtained from 7,? by k infinite rectangle
DY 5eees i

insertions, and the indecomposable injective B-modules Ig(i1),. .., [5(ik)

of ’Z:\B are extended to the indecomposable projective-injective T:%B—
modules

T sli1) =Prs B(V(il)),...,IT;; i) =Prs s(W(i)).

We also note that the indecomposable injective B-modules Ip(j) with j €

XM\ {i1,...,i} remain indecomposable injective 1}?...7%B—modules of
+

T B
the component 7, """* . On the other hand, if the branch £; admits a
path

bj<—aj1<—-~-<—ajqj Withajl#bj_l andje{l,...,k},

then the indecomposable injective B-modules Ig(aj,),. . .,IB(ajq]_) are ex-

tended to the indecomposable injective T:zk B-modules

IT.* . B(ajl)v"'7IT.+ ) B(ajq]-)’
Loeeorlk ‘1 k

+
which are no longer located in T i . Assume that the branch £; admits

a subquiver of the form
bj < aj1 « -+ < aj — cji — Cji2 =+ — Cjim,

and let the path passing through aj;, cji1, ..., cji, be the maximal path of
Qr, with source aj;;. Then the coray tube T/\B admits a maximal finite sec-
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tional path of the form

O—+ *++ —» O —> *** —> O —+ **+* —> O —+ *+++ — 0O

IB(cjim) Ig(cji2) Ig(cjin) Ig(aj)

and the subpath
O > O o —» *** —*» O

Ig(b;) Ig(aj1) Ig(aj2) Ig(aji)

of the unique coray c¢(Ig(b;)) of T,P passing through I5(b;). In the component

TF . B
T, of I T B the first (finite) sectional path is completed to an (infi-

,,,,,,

nite) ray by the infinite sectional path with source Ig(a;;) in the infinite rect-
angle insertion created by the one-point extension T; B[+ (b5)]
e iyt

,,,,,,,

-7iu—1

leading from Tz'f B to Ti—f,...,iuB7 where u = k 4+ 1 — j. Note that in

stu

T, Tl we have the sectional path

o > O o —> *** —*O
Ipv  (bj) Ie(aj)  Is(aj2) Is(a;)
e
because Ip(a;1), . .., Ip(aj) arestill the indecomposable injective ;7 ;= B-
modules. Therefore, the vertices cjip,...,cj1 form a reflection sequence of
sinks of @p and Q@+ 5, and we may consider the iterated extension
DY 5eens i
+ + _ 7t
chlmv---vcjllj—;1,~~-,ikB - Til,-~~,ikycjzm,~-,cjz1
Moreover, i1, ...,%g, Cjim, - - -, Cji1 is a reflection sequence of sinks of @p. In
the extension process leading from T;r BtoT™ . B the stan-
1se-52k 1552k C50lm5--+,C5l1

+
dard component 7, """* of I+ 5 is modified to a standard component
k

DY 5eees i

. B
D] 5uens Vs Cilmseees cirl . . . .
7, st of oy p» by m infinite rectangle insertions,
DY 5eens UgsCilmoe ¢
and the indecomposable injective B-modules

Ip(cjim) = Ip+  glcjm)s-- -5 IB(cjn) = Ipr plejn)
1 Kk 1 Kk

,,,,,,,,,,

are extended to the indecomposable projective-injective T: bkt AL
EARES ) "] MMy J

modules
I+ p(Cjim) = Pp+ B(V(Cjim)),
1] yeens U Cilmoees cj11 D] yeensy U Cilmos cji1
Ip+ (cju) =P (v(cjun))
SR . jll + Ji))-
Tzl AAAAA U rCilmos lelB Tzl AAAAA U rCilmos lelB
We will now define a reflection sequence of sinks i1, ..., i, of @p, consist-

ing of the common vertices of Xg(A) and Qr,, such that after the iterated
extension T:%B of B the standard coray tube T)\B of I'p is extended to
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T
a standard component 7, """ of I',+ g, by p infinite rectangle inser-
P

T seees [
tions, and the indecomposable injective B-modules Ig(i1), ..., Ip(ip) of ’Z:\B
are extended to the indecomposable projective-injective ﬂf’...vipB—modules
It B(il) =Pr+ B(V(il))a oo dpr B(ip) =Pr+ B(V(ip))-
D] yeens ip D] yeensy ip D] yeens ip D] yeens ip

Recall that the branch £; = (Qg,, Iz,) is a finite connected full bound sub-
quiver of the infinite tree

0;‘30;
OV ‘YO
s e
Oé/. NXO
e VRN
v e NN

containing the germ 0 = 0,7, with I, generated by all paths o3 contained
in Qg,. Denote by Q= the quiver obtained from @, by adding the arrow

Yi ﬂ 0, = 07 connecting Q¢ with Q, (see Proposition 2.1). By a -path
of sz we mean a subpath o P consisting of consecutive

arrows (3, and by an a-path of Qzl_ we mean a subpatho 505 ... — o050
consisting of consecutive arrows «. Denote by M g) the set of all maximal

(B-paths of in. Observe that different paths in M [(j) have no common ver-

tices. Moreover, if p is a G-path j; E..E Jr £ Jr+1 in Mg) then j1,...,J,
is a reflection sequence of sinks of (), and hence of () g, called the reflection
sequence of sinks of p.

We assign to each (-path p in Mg) a natural number d(p), called the
degree of p, as follows. The unique maximal 3-path of in

yiﬁz_ﬂi_)bl:iki’bQ:ik—l L By =i L=
passing through the germ 07 = 0;” of £; is said to be the 3-path of degree 0.
This is the unique B-path of Mg) of degree 0. We say that a (-path

B B
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in M g) is of degree 1 if its source ¢; is connected to the unique G-path of
degree 0 by an a-path b; Lo o0 ¢ forsome j € {1,...,k}.

Inductively, we define a [-path of Mg) to be of degree d(p) = d + 1 if the
source of p is also the source of an a-path of ()¢, with sink on a B-path ¢ of

M ;(31) with degree d(q) = d. Observe that we may have in M ;(92) several paths
of the same nonzero degree.

We define the required reflection sequence of sinks i1, . . ., %, of @ p related
with the branch £; as follows. We start Witl(l)the reflection sequence of sinks
(2

i1,. .., given by the unique B-path in MB of degree 0. Consider next all

(B-paths p1,...,pr in M g) of degree 1 (if such paths exist), in an arbitrary
order. For each j € {1,...,7}, let igj), e ,il(j)
sinks associated to the $-path p;. Then we complete i1, ..., to a reflection

sequence of sinks of Qp as follows:

. . (1) (1) .(2) -(2) (1) (1)
TR T S R Y S BT RREY TR S SRR M

be the reflection sequence of

Next we complete this reflection sequence of sinks by the segments of re-
flection sequences given by all B-paths in M [(;) of degree 2, in an arbitrary
order (if M g) admits paths of degree 2). Inductively, for d > 2, if a reflection
sequence of sinks given by the segments of reflection sequences of 3-paths
in M [(;) of degree at most d is defined, we complete it by the segments of

reflection sequences in M g) of degree d + 1 (if M /éi) admits paths of degree
d+1). Summing up, we obtain a reflection sequence of sinks i,...,%, of @p
given by the reflection sequence of sinks of all g-paths in M g)
number of common vertices of X'p(\) and Qr,, and the iterated extension
T;ZPB has the required property. We also note that the iterated reflection
S{:...SZB of B is of the form

. Hence p is the

[Ev, L1y Bty Lica, i, Livas - B, LJO[B;, S S L],

hence is obtained from the branch 7¢-coextension B = [Ey, L1, ..., Es, Ls]C
of C by replacing the branch 7 ©-coextension part [E;, £;]C by a branch 7°-
extension part C[F;, S;; e S;;[,i], where S;; e S;;Ei is the branch obtained
from L; by the reflections at the vertices i1,...,4,, and hence v(i1) is the
extension vertex of the one-point extension C[E;] inside S;; . SZ B.

In general, the tube T/\C may contain several mouth modules E; involved
in the branch 7%-coextension B = [E1, Ly, ..., Ey, £,]C. Applying the above
procedures to all modules E; belonging to ’TAC and the connected branches
L;, we obtain segments of independent reflection sequences of sinks, which
collected together form a reflection sequence of sinks 41,...,47p,...,% such
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that, after the iteration extension T:ZTB of B, the standard coray tube
Tt B

7B is transformed into a standard quasi-tube C,""""" of I+  , whose

i1

indecomposable projective-injective Tit'.wB—modules are the modules
Irs B0 =Pre  pWG0)es Iy plin) = Pry (i),
that is, the modules I+ z(j) = Pr+  g(v(j)) for all vertices j €
i1
TF
Y'B(A). Moreover, the quasi-tube C,"""  is obtained from the coray tube
’T/\B by r infinite rectangle insertions, corresponding to the  one-point exten-
sions leading from B to T:lr ...i, B- In particular, we conclude that all modules

number of corays of the coray tube T/\B equals the number of corays of the
B
""" " . Hence, applying Proposition 2.2(ii),
TF . B
we infer that s(Z7,%) + ¢*(7.%) 4+ 1 is the rank 7(C,""""" ) of the stable
+

T+
stable part of the quasi-tube C,"

..... ir

. Further, in the iterated transformation of the
+

DL yeens ir

T
coray tube TAB into the quasi-tube C,"
+

T . B
created, and so s(7,7) = s(C,""""" ). Finally, observe that i*(7,7) is ex-

actly the number of indecomposable projective-injective T;lr ;, B-modules
+

T
tube associated to C,"

no new simple modules are

Tz+4.4,zr
r(C) = e(TO) + Y 1L,
EiETAC
where |£;| denotes the capacity of the branch £;. Indeed, i*(7,5) =

T B
p(C,"'" ) is the number of vertices of all branches £; with E; € T

which are sinks of arrows 3, including the coextension vertices of [E;|C,
while s(Z,2) — s(TC) = s(T,) — 7(TF) + 1 is the number of vertices of all
branches £; with E; € T)\C which are sources of arrows a.

Applying the above considerations to all standard coray tubes T/\B with
A € Ap, we find a reflection sequence of sinks 41, ..., of @p such that after
the iterated extension B* = TZJ{%B of B, the standard coray tubes T/\B

of I'g, A € Ap, are transformed into standard quasi-tubes Cf* of I'g«, A € A,

while the standard stable tubes T.F = 7.V, X € P1(K)\ Ap, remain standard
stable tubes of I'g«. In particular, we have s(CZ") +p(CZ") = r(CP") -1 for
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any A € P1(K). Moreover, the iterated reflection algebra BT = S’Z e S;;B
of B is the branch 7 “-extension

St .S B=C[E,LT,...,Es L]]

Qgir Qggr
+ + +
+ 01 + 0z + 0:
71 V2 Vs
A d A d *'7

Qe

where the branches Ef, ..., L} are obtained from the branches £y, ..., Ls by
the corresponding reflections at some vertices i1, ..., %, as described above.
Finally, applying [6, Theorem 4.1], we conclude that the Auslander—Reiten
quiver I'g« of B* is of the form

I'g- =PE veP v oF,
where PB" = P8 is a family of components containing all indecomposable
projective B-modules, Q8" = 08" isa family of components containing all
indecomposable injective Bt-modules, and C?" = (Cf*) AePy(K) 18 a family
of pairwise orthogonal standard quasi-tubes separating PZ" from QF" (in
the sense of [6, (2.1)]).
The proof of (ii) is dual. =

REMARK 3.2. In the terminology of [6] the algebra B* associated (in
Theorem 3.1(i)) to a branch 7 “-coextension B of a canonical algebra C' is
a quasi-tube enlargement of C', B = B~ is a unique maximal branch co-
extension of C inside B*, with Qp a convex subquiver of Qp«, and BT =
S;t' e Sjl' B is a unique maximal branch extension of C inside B*, with Qg+
a convex subquiver of @p+. Dually, the algebra B* associated (in Theo-
rem 3.1(ii)) to a branch 7%-extension B of a canonical algebra C'is a quasi-
tube enlargement of C, B = B™ is a unique maximal branch extension of C
inside BT, with Qg a convex subquiver of Qg+, and B~ = S, ... S; B is
a unique maximal branch coextension of C' inside B*, with Q- a convex
subquiver of Q) p=.

We end this section with an example illustrating the above considerations.

EXAMPLE 3.3. Let B = KQ/I be the bound quiver algebra given by the
quiver @Q of the form
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2
v °
, o a1,3
21 a2 2
B1
0

ﬁ'y ‘Yls
170 ol8
v

190
and [ is the ideal of the path algebra K@ of () generated by the elements
a31+ Q130020001+ 220021, 045004 4004 3004 20041 + Q] 3001 2001 1 + 42 2002 1,
for a fixed p € K\ {0,1}, and

a3151, o284, as4f6, agfr, a12f13, a1gfir.

Let C = KQ¢/Ic be the bound quiver algebra, where Q¢ is the full sub-
quiver of @) given by the vertices 0, w, (1,1), (1,2), (2,1), (4,1), (4,2), (4,3),
(4,4) and I¢ is generated only by the first two generators of I, that is, the
generators of I involving only the arrows of Q¢. Then C' is a canonical al-
gebra C'(p, A) of type (p,A) with the weight sequence p = (3,2,1,4) and
the parameter sequence A = (A1, A2, A3, A\g), with A} = 00, Ay =0, A3 = 1,



72 M. KWIECIEN AND A. SKOWRONSKI

Ay = . Then B is the branch 7%-coextension B = [Ey, L1, Ea, Lo, E3, L3]C
of C, where

e E; = EW is the unique module lying on the mouth of the stable tube
T of rank 1, £1 = (Qr,, Ir,) is the branch with Q, the full subquiver
of @ given by the vertices 1, 2, 3, Iz, = 0, and 8; = 7, is the arrow
connecting Q¢ with Q,;

o Fy=5(4,1) is the simple C-module at the vertex (4,1), lying on the
mouth of the stable tube 7;? of rank 5, L9 = (Qr,,Ir,) is the branch
with @, the full subquiver of ) given by the vertices 4, 5, and Iz, = 0,
and B4 = 7, is the arrow connecting Q¢ with Qr,;

e 3 = 5(4,3) is the simple C-module at the vertex (4, 3), lying on the
mouth of the stable tube ’Z;LC of rank 5, L3 = (Qr4, Ir,) is the branch
with @z, the full subquiver of ) given by the vertices 6,7,8,...,18,19,
and I, is the ideal of K@)z, generated by the paths agf7, a12013,
a18f17, and B¢ = 73 is the arrow connecting Q¢ with Q..

Then the canonical Py (K )-family 75 = (T/\B))\Epl(K) of pairwise orthog-
onal standard coray tubes of I'p is described as follows. Since Ej lies in
7 and Ey, F3 lie in 7, ¢, we have 7,8 = 7.V (hence it is a stable tube) for
A e P (K)\ {1, u}. The coray tube ’TB is obtained from the stable tube 7;"
(of rank 1) by insertion of three corays and looks as follows:

E(l) S(3 1(3)

NAVANY
NN
NN
NN
NN,

(2)

where the corresponding vertices along the dashed lines have to be identified,
and S(2) = Sp(2), S(3) = Sp(3), I(1) = I(1), 1(2) = Ip(2), I(3) = Ip(3).
The coray tube ’];LB is obtained from the stable tube ’ZLC (of rank 5), by

insertion of 16 corays, obtained from the coray tube 7L[E2’£2]C of the branch

T %-coextension [Ey, £5]C
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E<“) [(5)

\/\z

/\/\541 S4,2)  S@.3)  S@4.4) E()
\/\/\/\/\/\/
/\/\/\/\/\/\
‘\/\/\/“Vf\/\/

by removing the arrows connecting the vertices on the two corays ending at
the vertices S(4,2) and S(4, 3), and inserting between these two corays the
translation quiver of the form

5(4 2) I( 7)

VAW ANV AN ANV AN
ANV AN ANV ANPANDZ
VAN AN AN AN

@]
2
2

o)
=

=
2

NS

OI(18) = S(18)

NN

Q
-
~
=
&
N2

e

OI(14) = S(14)

Q
~
~
i
w
Nl

/ 0s(11)  OI(12) = S(12)
NN Ny
II(8)

¢
=
3

N AN
NSNS N

O
~
~
[
o
N

N
g

Q

_ \/\/\/\/\/\/
N AN

Q
~
o
N

05(4,3)

RN

NN
%

01(9) = S(9)
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We now indicate a reflection sequence of sinks i1,...,%; of @p leading
to the quasi-tube enlargement B* = T:“B of C and the branch 7¢-

extension BT = S ... S B of C, according to the proof of Theorem 3.1(i).

(1) For the branch L1, the set M[gl) of all maximal S-paths of @z, con-
sists of one arrow (31, and hence the reflection sequence of sinks given
by Mél) reduces to i; = 1.

(2) For the branch Lo, the set Mg) consists of the path (4, 1) RN

of degree 0, and hence we have a unique reflection sequence of sinks

io = b, 13 = 4, associated to Mg).

(3) For the branch L3, the set M[gs) consists of the paths

(4,3) Po, 6 P17 P g (of degree 0);
9 2o, 10, 11 18,13 (of degree 1);

14 25, 15 (of degree 2);
16 27, 17, 18 Bro g (of degree 3).

Then as a reflection sequence of sinks associated to M ég) we may take
14 =8,15 =T, i =6, i7 = 10, 1g = 13, 19 = 15, 410 = 17, 411 = 19.
(We note that interchanging 10 with 13, or 17 with 19, gives another
(3) )

admissible sequence of sinks associated to M 3

Therefore, il = 1, ig = 5, ’i3 = 4, i4 = 8, i5 = 7, iﬁ = 6, i7 = 10, ig = 13,
19 = 15, i10 = 17, i11 = 19 is a required reflection sequence of sinks of @ p,
and so t = 11.

The iterated extension B* = T;" . B is the bound quiver algebra B* =

7417...7111

KQp~/Ip-, where Qp~ is the quiver on the page opposite and Ip- is the
ideal in the path algebra KQp~ of @ p+ generated by the elements

Q31+ Q13012011 + Q22021,

Q4 5004, 4004 3004 20041 + Q1 3001 2001 1 + L2 2002 1,

3101, au284, as4fs, agfr, a12f13, a1sfir,

Q11,301,200 101 — By(1) 0302, Qy(5)Q4,15 Cy(4)Qu(5)8455,

Buryai2011 — ay(8)B60708, u(8)Xa,35 (1) Bu(8)s

Bu(6ycs — %(6)%(7) v(8)56; %(13)%4 — ay(13)13,

a,13)515, Bu(13)P15,

Bu(15)18016 — Ay (15) 015, Bu(15)519, Qu(17)Q16, Xy (19)Q18-
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2 3
0 - @3 o
/ v(1)
(1,1) o (1,2)
10 o< 1.2 5 ou(1)
1,1 (2,1) 13
G 2,1 © as 2 ’
as,1

Q4,1
4,2 Q4,3
0 - 0 -

O~
4,1 4,2

f/T( ) (4,2) f%
Ay (5)

ov(15)

’6'17/ ‘\18 '/%(15)
/ y(w)

190 ov(19)

The iterated reflection BT = S;;l e Sle is the bound quiver algebra
Bt = KQpg+/Ig+, where Qp+ is the quiver on the next page and I+ is the
ideal in the path algebra KQp+ of Qg+ generated by the elements

a3+ o330 2001+ 0220091,
Qg 5004 4004 3004 2004 1 + ] 3001 2001 1 + Q2 2002 1,
Qu(1)X3,15 Qy(5)04,1, ()43, () Bu(g), Aw(19)018-
Therefore, Bt is the branch 7¢-extension
Bt =C[Ey, L], B2, LT, E5,L7]
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o3
1,1) 1,2
( 2, 1,2 5 ) VV(U
alyl (261) 0(1,3 [¢] I/(l)
@21 @22
ety
0o% @s,1 0w
‘w 1 014/
4,2 4,3 4,4
ol 0 - 0 - o
(4,1) (4,2) (4,3) (4,4)
& (8)
Ay (5)
v(5) 0 © v(8)
Tau(4) ﬁ’(s) Qv
v(4) o o 12 o v(7)
'%m = B2 W(@
110 o u(6)
\“”“3) /Mm
o v(13) 90
ﬁ/(ls) W(w)
14 o o v(10)
\%(15)
o v(15)
ﬁ,(m)
18 ©
ais = Bis Qy(19)
16 0 0 1(19)
‘Wm)
o
v(17)

of C, where L] = (Q ﬁf’I L1+) is the branch with @ ct the full subquiver of
Qp+ given by the vertices v(1), 3,2, and Iﬁf’ =0; L] = (QL;’I@*) is the
branch with Q ot the full subquiver of Qg+ given by the vertices v(4), v(5),
and I£; =0; L = (QL3+>I£§> is the branch with QE; the full translation

subquiver of Qg+ given by the vertices v(8), v(7), v(6), 9, v(10), 12, 11,
v(13), 14, v(15), 18, v(19), 16, v(17), and IL;j is the ideal of the path algebra

KQpt of @y generated by ay,(7)0y(8), @w(19)01s-
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The Py (K)-family CB" = (Cf*)/\epl(K) of pairwise orthogonal standard

quasi-tubes is as follows. For A € P1(K) \ {1, u}, we have CJ" = 7B = TC
(a stable tube). The coray tube 7;® of I'p is transformed into a quasi-tube

CE" of I'g+ of the form

/\/

where the corresponding vertices (marked by e) along the dashed lines have
to be identified. Observe that

s(CPY+pCP)y+1=24+1+1=4

is the rank r(CE") of the stable tube (CZ")* associated to Cf.

The coray tube ’ZLB of I'p is transformed into a quasi-tube Cf* of I'p~,
which is obtained by glueing the following translation quivers along the
dashed lines passing through vertices marked by e, ¢, *, respectively:

Pv(5)  Pv(4))

5(4,4) E“” / \ / \ 384 ,2)
\/\/\/\/
/\/\/\/\
\/\/\/\/
INSNSNN\
NN SN NS

\/\/\
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NN NN N
N AN AN AN A AN
NN AN N AN AN AN AN
N AN AN N AN AN
O\ N
AN ANV AN AN S AN
N N N N AN AN AN
AN AN AN AN AN AN
NN AN N N AN NN
A A ANV AN AN AN ANPAN
NN AN N AN AN AN AN
SN SN SN SN SN N
AN

;\/\/\/\/\/\/\/\/;
NN NN e NN
NN NN NN NS N
N N N N N AN NN
NN\ NN

NN NN NN\
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Observe that S(Cf*) =10, p(Cf*) =10 and S(Cf*) —I—p(Cf*) +1=21is the
rank T‘(Cf*) of the stable tube (Cf*)S associated to Cf*.

We now claim that the reflection By = S BT of BT at the sink 0 of
Qp+ is again a branch 7%'-coextension of a canonical algebra C;. Indeed,
B = KQp,/Ip,, where Qp, is the quiver

(1’ 1) oo (172) 61,1
o2 5 T
1,3 P21
(2701‘ @22 W 53;/04 m=PBa o, P32 ™ ov(0)
v(1)
o " v(1)
4o Qg3 Q4,4 Ba 03
4’1 4’2 4,3 47
SRASURL I N 5
v(5)0 oy (8)
Qu(4) By v °?
I/(4)O 012 ol’(7)
Bi2 Qv (6)
110 ov(6)

y’(w) ﬁl(e)

ov(13) 9 0
Bu(13) {v(10)
140 ov(10)
Xy (15)
ov(15)
Bu(15)
180
o
160 ov(19)
Qv (17)

ov(17)

and Ip, is the ideal in the path algebra K@ p, of ()p, generated by the
elements

B3.2831 + P11+ B21, By + B+ pb,

B3, Ba1a22, B320,(1), Ba10as, Qus)as, QunBu)s Qw(ig)lis-
Then the bound quiver algebra C1 = KQ¢,/Ic,, where Q¢, is the full
subquiver of @p, given by the vertices w, v(0) and v(1), and I¢, is the ideal
in KQc, generated by the elements (32031 + (1,1 + B2,1, Ba,1 + B1,1 + 2,1,
is a canonical algebra of type (P, A) with the weight sequence p = (1,1,2,1)
and the parameter sequence A = (00,0, 1, ). Moreover, Bj is the branch
T -coextension [E1, L1, Ea, Lo, E3, L3, E4, £4)C1, where
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e E; = E® is the unique module on the mouth of the stable tube 7.t
of rank 1, £1 = (Qz,, Iz,) is the branch with Q7 the full subquiver
of @p, given by the vertices (1,1), (1,2), and Iz = 0;

e E5 = EY is the unique module on the mouth of the stable tube ’ZBCl
of rank 1, Lo = (Qz,: Iz,) is the branch with Qz, given by the vertex
(2,1), and hence Iz, =0;

e E3 = S(v(1)) is the simple Cj-module lying on the mouth of the stable
tube 7—101 of rank 2, L3 = (Qz,,Iz,) is the branch with @z, the full
subquiver of @p, given by the vertices 2, 3, and Iz, = 0;

e E, = E™ is the unique module on the mouth of the stable tube 7;?1
of rank 1, L4 = (QZ4, I 24) is the branch with @7, the full subquiver of
@p, given by the vertices (4,4), (4,3), (4,2), (4,1), v(5), v(4), v(8),
v(7), v(6), 9, v(10), 12, 11, v(13), 14, v(15), 18, ©(19), 16, v(17), and
IZ4 is the ideal of KQZ4 generated by 0y (8)04,3, 051/(7)/61/(8)’ Ozl,(lg)ﬂlg.

Consider the set of vertices of Qp,: j1 = (1,1), jo = (1,2), js = (2,1),
Ja =275 =3, J6 = (4’1)» Jr = (4’2)7 Js = (4’3)7 Jo = (4’4)7 Jio = 9,
Jji1 =11, j12 = 12, 513 = 14, j14 = 16, ji15 = 18. Then ji,...,j15 is a reflec-
tion sequence of sinks of @, associated to the branch 7 “'-coextension By of
(', according to the rule presented in the proof of Theorem 3.1(i), and hence
the iterated reflection 5’;25 .. S;Bl is a branch 7% -extension BfL of (.
Moreover, the reflection S Bfr at the sink w of Q B is isomorphic to B.

Therefore, i1,...,411,0,j1,...,J15,w is a reflection sequence of sinks of
Q B, exhausting all 28 vertices of @ p, such that S S;,, ... S;-; Sy Siy, ... Sy, B
is isomorphic to B.

4. Selfinjective orbit algebras. In this section we recall the needed
background on selfinjective orbit algebras.

Let B be an algebra and €g = {e; | 1 < i < n} be a fixed set of
orthogonal primitive idempotents of B with 15 = e; + -+ + e,,. Then we
have the associated canonical set £p = {em; | m € Z, 1 < i < n} of or-
thogonal primitive idempotents of the repetitive algebra B of B such that
ema1 + -+ + emp is the identity of B,,, and I/B.(emi) = emy1, for any
m € Z, i € {1,...,n}. By an automorphism of B we mean a K-linear
algebra automorphlsm @ of B preserving the set Ep. An automorphism ¢ of
B is said to be

e positive if, for each pair (m, ) € Zx {1,...,n}, we have p(em;) = ep;
for some p > m and some j € {1,...,n};

e rigid if, for each pair (m,i) € Z x {1,...,n}, we have p(emi) = €m,;
for some j € {1,...,n};

e strictly positive if it is positive but not rigid.
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Observe that the Nakayama automorphism v is a strictly positive automor-
phisms of B. A group G of automorphisms of B is said to be admissible if it
acts freely on the set Ep and has finitely many orbits. We may identify the
algebra B with a finite K-category B whose objects are elements of £p, the
morphism spaces are defined by B(e;,e;) = e;Be; for all 4,5 € {1,...,n},
and the composition of morphisms is given by the multiplication in B. Sim-
ilarly, we consider the repetitive algebra Bof Basa K -category with the
objects the set Ep, the morphism spaces defined by

ejBe;, r=m,
E(em,i, erj) =4 D(e;Bej), r=m+1,
0, otherwise,

and the composition of morphisms given by multiplication in B and the
canonical B-B-bimodule structure of D(B) = Homg (B, K). Then an au-
tomorphism of the repetitive algebra B is just an automorphism of the
K-category B. Moreover, an admissible group of automorphisms of B is
a group G of automorphisms of the K-category B acting freely on the set
Ep of objects of B and having finitely many orbits. We refer to [32| for more
information on automorphisms of repetitive algebras (categories).

Let B be an algebra and G be an admissible group of automorphisms
of B. Following Gabriel [20] we may consider the finite orbit K-category
B/G defined as follows. The objects of B/G are the elements a = Gz of the
set £ /G of G-orbits in Ep and the morphism spaces are given by

(B/G)(a,b)

= {(fy,x) € H B(z,y) ‘g “fyx = fgygz forallge G,z €a, y € b},
(z,y)Eaxb

for all objects a, b of B/G Then we have a canonical Galois covering functor
F:B— B/G which assigns to each object z of B its G-orbit Gz, and, for
any objects x of B and a of B/G, F induces natural K-linear isomorphisms

@D By > (B/G)(Fx,a), P By.x) > (B/G)(a, Fa).

yEéB, Fy=a yEc‘fB, Fy=a
a’beg/G(B/G)(a,b) associated to the

orbit category B /G is a selfinjective algebra, denoted by B /G and called
an orbit algebra of B with respect to the admissible automorphism group
G of B. The group G also acts on the category mod B of right B-modules
(identified with contravariant functors from B to mod K with finite support)
by gM = Mog™! for any M € mod B and g € G. Further, we have the push-
down functor Fy : mod B — mod B/G such that F\(M)(a) = Doco M(x)
for a module M in mod B and an object a of B/G.

The finite-dimensional algebra €D
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The following theorem is a consequence of |20, Lemma 3.5, Theorem 3.6].

THEOREM 4.1. Let B be an algebra and G a torsion-free admissible group
of K-linear automorphisms of B. Then

(i) The push-down functor Fy : mod B — mod B/G induces an injection
from the set of G-orbits of isomorphism classes of indecomposable
modules in mod B into the set of isomorphism classes of indecom-
posable modules in mod B/G

(ii) The push-down functor Fy : mod B — mod B/G preserves the Aus-
lander—Reiten sequences.

In general, the push-down functor Fy : mod B — mod B /G associated
to a Galois covering F : B — B/G is not dense (see [18], [19]). Following
[18], a repetitive category B is said to be locally support-finite if for any
object z of B, the full subcategory of B given by the supports supp M of all
indecomposable modules M in modB with M(z) # 0 is finite. Here, by the
support of a module M in mod B we mean the full subcategory of B given
by all objects z with M (z) # 0.

The following consequence of [19, Proposition 2.5] (see also [18, Theo-
rem|) will be essentially applied in the next section.

THEOREM 4.2. Let B be an algebra with locally support-finite repetitive
category B, and G be a torsion-free admissible group of automorphisms of B.
Then the push-down functor F) : mod B — mod B/G is dense. In particu-
lar, Fy induces an isomorphism of the orbit translation quiver I'5/G of the
Auslander—Reiten quiver I's of B, with respect to the action of G, and the

Auslander—Reiten quiver FB/G of E/G

We end this section with information on isomorphisms of repetitive cat-
egories (algebras) of algebras.

Let B be a triangular algebra, identified with the full subcategory of
B given by the objects eg, k € {1,...,n}. Then for any sink i (respec-
tively, source j) of @Qp, the full subcategory of B given by the objects €0,k >
ke {1,...,n} \ {i}, and e1; = vp(ep;) (respectively, the objects e,
Ee{l,...,n}\{j}, and e_1; = 1/5(607]-)) is the reflection S;"B of B at i

(respectively, the reflection Sj_B of B at j), and we have an isomorphism

of K-categories (algebras) B S;™ B (respectively, B = S; B). In fact, we
have the following general theorem (see [23]).

THEOREM 4.3. Let B and B’ be triangular algebras. The following state-
ments are equivalent.

(i) B~ B.
(i) B = Sit e SZB for a reflection sequence of sinks i1, ...,i, of Qp.
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(iil) B’ = S ... S8, B for a reflection sequence of sources ji,...,Js

For an algebra B, we denote by mod B the stable category of mod B.
Recall that the objects of mod B are the modules in mod B without nonzero
projective direct summands, and, for any two objects M and N in mod B ,
the space Homgz(M,N) of morphisms from M to N is the quotient
Hom 3 (M, N)/Pg(M, N), where Ps(M, N) is the subspace of HonElB(M,N)
consisting of all morphisms which factorize through a projective B-module.
For a morphism f € Homg(M, N), the induced morphism f + Pz(M, N) in
Hom g (M, N) is denoted by f. We note that the syzygy operators 25 and

Qg induce two mutually inverse functors {24, ng : mod B — mod B.

The following known fact (see |34, p. 56]) will be applied in Section 5.

LEMMA 4.4. Let M and N be two objects of mod B, and f : M — N
a nonzero morphism in mod B. Assume that f is a monomorphism or an
epimorphism. Then f is a nonzero morphism in mod B.

5. Selfinjective algebras of strictly canonical type. In this section
we describe the structure and properties of the Auslander—Reiten quivers of
selfinjective algebras of strictly canonical type, applying results presented in
Sections 3 and 4. The following theorem is crucial.

THEOREM 5.1. Let B be a branch extension (respectively, branch coex-
tension) of a canonical algebra C. Then there exist algebras Cy, By, B;, B

and Eq, q € 7, and a decomposition

Iy =\ (% C)

q€EZ

of the Auslander—Reiten quiver I's of B such that the following statements
hold:

(i) For each q € Z, Xy is a family of components of I'g containing
exactly one simple B-module Sq-

(ii) For each q € Z, Cy is a family (Cy(N))aep, (k) of pairwise orthogonal
standard quasi-tubes of I'y with 5(Cq(A)) +p(Cq(A)) = r(Cqe(N)) — 1
for any X € P1(K).

(iii) For each pair p,q € Z with p < q, we have Hom z(Xy, &, V Cp) =0
and Hom g(Cy, X, V Cp V Xpi1) = 0.

(iv) For each q € Z, Cy is a canonical algebra, B, is a branch coexten-
sion of Cy, B;’ is a branch extension of Cq, and By is a quasi-tube
enlargement of Cy.



84 M. KWIECIEN AND A. SKOWRONSKI

(v) For each q € Z, Cy, By, B;, By and B, are full conver subcate-
gories of B with B_ = B= B;, vp(Cq) = Cyr2, v3(By) = B o,
VB(B;_) B¢;r+2v (B )= B§+2’ (Bq) = Bg42.

(vi) There ezists a reﬂectzon sequence of SINKS 50y 11y« + s lp—1, by Gpt1,

oy p—1ipn of QB , where n is the rank of Ko(B, ) = Ko(B), such
that By = S;7  ...S; BO , By =SB, Bff =5 SjHB;,
By :7S;;Bfr, B0 =T/ . By, Bi=T;Bj, Bf = By

and By = T[:Bfr
(vil) For each q € Z, Cy4 is the canonical P1(K)-family of quasi-tubes
of I'py, obtained from the canonical Py(K)-family T, of coray
tubes ofFB; by infinite rectangle insertions, and from the canonical

17‘+17 —1

Py (K)-family Tq+ of ray tubes of FBJ by infinite rectangle inser-

tions.
(viii) For each q € Z, X, consists of indecomposable B,-modules.
(ix) For each q € Z, we have vg(Xy) = Xgr2 and vg(Cy) = Cyya.

)
L
(x) B is locally support-finite.
) For each q € 7Z, Homp(Sq,Cq(N)) # 0 for all X € Pi(K), and
Hom 3(Sy,Cq) = 0 for p # q in Z.
(xii) For each q € Z, Homp(Cyq(N), Sqr1) # 0 for all A € P1(K), and
Hom ;(Cy, Sp) =0 forp #q+1 inZ.
(xiil) For each q € Z, we have 25(Cy, 1) = C5 and Q5(X; ) = X

Proof. 1t follows from Theorem 3.1 and Section 4 that the classes of repet-
itive algebras (categories) of branch extensions and branch coextensions of
a fixed canonical algebra C' coincide. Therefore, we may assume (without
loss of generality) that B is a branch coextension of a canonical algebra C'.
Let By = B and Cy = C. Moreover, if B = C, we set BJ =C, By =C,
Co = 7 Co(\) = TC for any A € Py(K). Assume B # C. Applying
Theorem 3.1(i), we conclude that there is a reflection sequence of sinks

10,91, ...,4r—1 of Qp, for some r > 1, such that the iterated reflection
BO+ = S:r S+B of By = Bis a branch extension of Cy = C' and the
Auslander— Relten quiver I'gx of the iterated extension Bj = TJr i Bo of

B, = B has a decomposition
Iy = P% v Cliy QB

where PB0 = PBo is a family of components consisting of B, -modules
and containing all indecomposable projective By -modules, 0B = QBSF is
a family of components consisting of By -modules and Containing all inde-
composable injective Bj -modules, and C50 is a Py (K)-family (C ))\epl(K)
of pairwise orthogonal standard quasi-tubes, separating P50 from QP0, ob-
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tained from the canonical Py (K)-family 750 = (’Z:\BO )aep, (k) of pairwise
orthogonal standard coray tubes of FBS by iterated infinite rectangle inser-

tions. Moreover, for each A € P1(K), we have s(Cfa) —i—p(Cfa) = T(Cfs) —1.
Further, By is the iterated reflection B, = S .. ...5 B{f , and ap-

v(io) v(ir—1)

plying Theorem 3.1(ii), we infer that the Py (K )-family Cfo of quasi-tubes
+

of I'p: is obtained from the canonical Py (K)-family 7 B = (’TABO )aepy (k) of

pairwise orthogonal standard ray tubes of I B by suitable iterated infinite

rectangle coinsertions. We set Co = C%0 and Cy()\) = C)]\BS for A € Py (K).
Since By is a branch extension of Cyp = C (trivial if Bf = C), the
unique sink of Q¢, say i, = 0, is a sink of QBS" Then we may consider the
one-point extension B = T;:BO+ = By [I(iy)] of By by the indecomposable
injective By -module IBS’ (0) at the vertex i,, and the reflection By = S;Bar
of B(J{ at 4,. In this process, we create a new canonical algebra C; such
that the extension vertex v(i,) of T;Bar is the unique source of )¢,, while
the unique source w of Q¢ is the unique sink of Q¢,. Moreover, By is

a branch coextension of Ci, with respect to the canonical family TG =
(’T)\Cl) AeP, (k) of stable tubes of I'c,. Observe also that B is also the one-

point coextension [PB; (v(ir))]By of By by the indecomposable projective
B; -module Pp- (v(iy)) at the vertex v(i,). Hence, the Auslander-Reiten

quiver I'g of B has a decomposition
Iy =PP vTB v vTPh v ol
given by canonical decompositions
Tt = PBS v 7B v 9Bd and Ty = PB v TBr v 0By

of the Auslander—Reiten quivers of Bar and B, where PBI = pCo,
OB = Q% and A, is a family of components containing the simple Bj-
module S1 = Sz (w) at the vertex w of QBT' We note that w is the unique
common vertex of the quivers ()¢, and Q¢,. Observe that we may have
By = (1. In such a case, we set Bfr = (Cj. Assume Bfr =% (4. Then, ap-
plying Theorem 3.1(i) to the branch coextension B; of Cj, we conclude
that there exists a reflection sequence of sinks 4,41,...,4; of @ B for some

t > r+ 1, such that the iterated reflection Bf = S;tr, . ,S;:HBl_ of By is a
branch extension of €7 and the Auslander—Reiten quiver I'p: of the iterated

. y - - o
extension By =1T; ., . ; B{ of B has a decomposition

Ip: = PPV Pl v QP
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where PB1 = PB1 is a family of components consisting of B -modules
and containing all indecomposable projective B; -modules, QB = PBI s
a family of components consisting of Bf -modules and containing all inde-
composable injective By -modules, and CP1 is a Py (K )-family (Cf1 )AEP: (K)
of pairwise orthogonal standard quasi-tubes, separating P51 from QP1, ob-
tained from the canonical Py (K)-family 751 = (’T)\Bl )aep (k) of pairwise
orthogonal standard coray tubes of I" B- by iterated infinite rectangle inser-
tions. Moreover, for each A € P;(K), we have S(Cff) —I—p(Cff) = T‘(Cff) -1
Further, B is the iterated reflection B] = S;(”H) e S;(it)Bf, and apply-
ing Theorem 3.1(ii) we infer that the canonical family CP1 of quasi-tubes of
+
I'p: is obtained from the canonical Py (K )-family T8 = (’T/\B1 )aep; (k) Of
pairwise orthogonal standard ray tubes of I’ Bt by suitable iterated infinite

. . * B¥
rectangle coinsertions. We set C; = CP1 and C1(\) = C,* for A € Py(K).
We now note that ¢g,41,...,% -1, %, tr4+1, . . - , i is & reflection sequence of
sinks of Qp = @ - exhausting all vertices of Qg except the unique source w
0

of Q¢, and hence t = n — 1. Moreover, i,, = w is a unique sink of Q¢,, and a
sink of Q) 5+, because Bf is a branch extension of C;. Consider the one-point
1

extension By = T;‘Bf = BT[IBT (in)] and the reflection By = S;" By
Then B, is a branch coextension of a new canonical algebra Ca, and B,
is a one-point coextension [PB; (v(in))]B; of B, by the indecomposable
projective B, -module PB; (v(in)) at the vertex v(iy) = v(w). Hence, the

Auslander—Reiten quiver I" B, of By has a decomposition
+ + - -
g, =PPr VTP v, vTP v QP
given by canonical decompositions
+ - - —_
Dy = PP VTP v QP and Iy = PP vTP v QP

of the Auslander—Reiten quivers of Bfr and B, , where PBI = P,
QB2 = Q% and A, is a family of components containing the simple Bo-
module Sy = Sg, (v(ir)) at the vertex v(i,) = v(0) of QB;' Observe that
v(0) is the unique common vertex of C; and Cs.

Identify now B = B with the full convex subcategory of B given by the
objects eo, k € {1,...,n}. Then

° BO+ is the full convex subcategory of B given by the objects e
with k£ € {1, - ,n} \ {’io, e 7ir—1} and €1,y = I/Be(eoﬂ'o), cey €14, =
vi(€oi,_1);
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e B is the full convex subcategory of B given by the objects e ¢ with
k € {1, . ,n} \ {io, . ,’L'rfl,’L'r} and €liy = VB(eO,io)’ N W
vg(€oi,_1), €14, = V(€. );

° Bf“ is the full convex subcategory of B given by the objects eg,,
6171'0 = VB(6071'0), ey 617” = Vé(e(),ir), 617Z'T+1 = I/B(eoair+1)7 ey 6171‘”71
= vp(€0,in-1);

e B, is the full convex subcategory of B given by the objects ey =
valeow), k€ {1,...,n}.

In particular, we conclude that the Nakayama automorphism v of B induces
isomorphisms of K-categories (algebras) B, = B, and C = Cy = Cs.

We define full convex subcategories Cy, B, B;, By and By, q € Z, of

B as follows:
oForq-QpevenC—u(C’o) —ypB(B)BJF—I/(B“') B* =

q
B(Bo)7Bq:VB '(Ba).
oForq:2p+1od Cqy = ’3(01), B,

By = vy (B), By =vy(B )

Then, for each q € Z, Cy is a canonical algebra, B, is a branch coextension
of Cy, and B; is a branch extension of C;. We denote by 0, the unique sink
and by wy the unique source of the quiver Q¢, of Cj.

For each ¢ € Z, the Auslander—Reiten quiver I'g: of By has a decompo-
sition

= v (By), By = v} (B+)

I'g; =PPivcPav QP
where PPi = PBa is a family of components consisting of B, -modules and

containing all indecomposable projective B, -modules, QB = QBEIF is a fam-
ily of components consisting of B; -modules and containing all indecompos-

.. . * . B .
able injective B;—modules, and CB7 is a Py (K)-famﬂy* (C,* )AEP1£K) of pair-
wise orthogonal standard quasi-tubes, separating PPs from QP4 obtained
from the canonical Py (K )-family 75« = (T)\Bq )aep, (k) of pairwise orthogo-
nal standard coray tubes of FBq_ by iterated infinite rectangle insertions, and

+
from the canonical P;(K)-family 7- Bi — ('T/\Bq )aep, (k) of pairwise orthog-

onal standard ray tubes of FB; by iterated infinite rectangle coinsertions.
Moreover, for each A € P1(K), we have S(Cf;) +p(Cf;) = r(CB*) 1. We set
Cy = CBi and Cy(A) = Cy7 for A € Py (K). Since Homp, (€%, PPi) = 0 and
Homp: (QBa,cBa) =0, By is a full convex subcategory of B, and B can be
obtained from Bj by iterated one-point coextensions by projective modules
whose restrictions to By are modules from the additive category add(PB;)
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and iterated one-point extensions by injective modules whose restrictions to
B are modules from the additive category add(QP4) of QP4 applying [36,
Corollary 1.7] and its dual, we conclude that C; = (C4(\))ep, (k) remains a
Py (K)-family of pairwise orthogonal standard quasi-tubes of I'5.

Similarly, for each ¢ € Z, B, is a one-point extension B;Zl[l Bt 1(Oq)]

s
of B(;l by the indecomposable injective B;ﬁl—module 1 Bqtl(oq—l) at the
unique sink 0y of Q¢,_,, and a one-point coextension [PBq_ (v(0g-1))1 B,
of B, by the indecomposable projective B, -module PBq_(V(Oq,l)) at the

unique source v(0g—1) = wy of Q¢,. Moreover, the Auslander-Reiten quiver
FEQ of B, has a decomposition

+ + — —
Iy, = PBa1 v 71 v X, v T8 v @B
given by canonical decompositions

+ + — — —
Iy =PPivTPiiyv QP and Iy =PB v T8 v QB

q

q—1
+
of the Auslander—Reiten quivers of B;_l and B, , where PBi-1 = PCa-1,
QB = Q% and Ay is a family of components containing the simple Eq—

module S; = Sp+ 1(wq,l) = SBq— (04) at the vertex wy—; = 04, separating
p

+ + — - +
PBi—1 v TPa1 from 787 v 9Ba . In particular, we have Hom];q (X, PBi-1y

+ - - R
TBa-1) = 0 and Homp (TBa v @Ba X,) = 0. Since B can be obtained from
B, by iterated one-point extensions by indecomposable projective mod+ules
whose restrictions to B, are modules from the additive category add(PBq—l \%

+ + +
TBa-1) of PPa—1 v TPa-1 and iterated one-point coextensions by indecom-
posable injective modules whose restrictions to B, are modules from the
additive category add(7 P« v QBa) of T8« v QB4 | applying [36, Corollary
1.7] and its dual again, we conclude that X} remains a family of components
of I B R

For each pair of integers p < ¢, let B, , be the full subcategory of B
given by the objects e, ;, with p <m < ¢ and k € {1,...,n}. Observe that
the module category mod B, ; is the full subcategory of mod B consisting
of modules with supports contained in B, ,. Moreover, every module from
mod B belongs to a full subcategory mod B,, .

Observe now that By is the iterated extension Bpi = TZ‘g“ i, B of
B = B . Then it follows from the above discussion that the Auslander—
Reiten quiver I'p,, of By has a decomposition

FBo,l = pBo VCyVAXVCV Xy v T8 v QB;
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where By = vg(By), TP =va(TP0) and QP2 = v5(QP0 ). Similarly, the
Auslander—Reiten quiver FB—1,0 of B_j has a decomp081t10n

FB—I,O = PB:l VC_1VXyVCV AV T8 v QB;

where B~ = V;;(B;) C_1=v, (Cl) and Xy = v, (Xg) Combining, we con-
clude that the Auslander— Relten quiver I'g_, ; of B 1,1 has a decomposition

F37171 :’PB:l\/Cfl\/Xo\/Co\/Xl \/C1VX2\/TB2_ \/QB;.

Repeating these considerations, we deduce that, for any positive integer p,
the Auslander—Reiten quiver I B_pp of B_,, has a decomposition

Ip ,, = PErvC_,V ( \/ (X Vv Cq)> V X1 VTP v QP
—p<q<p
Since mod B is the union of the full subcategories mod B_,,,, p > 1, we
conclude that the Auslander—Reiten quiver I'g of B has a required decom-
position
Iy=\/(XVC,)
qEZ
and the statements (i)-(ix) hold. Observe also that, for a fixed object
x = eqy, of B, the full subcategory of B given by the supports supp M of

all indecomposable modules from mod B with M (x) # 0, is contained in the
full subcategory By_1441. Therefore, B is a locally support-finite category,
and so (x) also holds.

We now prove the statements (xi) and (xii). Fix ¢ € Z. For each \ €
Py (K), the quasi-tube C4(\) contains the unique nonsimple indecomposable
Cq-module Eé)‘) lying on the mouth of the stable tube ’Z:\Cq of I'c,,, having the
simple socle isomorphic to S; = S¢,(0,) and the simple top isomorphic to

Sq+1 = Sc, (wq). Therefore, we have HomB(Sq,E(/\)) Homc, (Sq,E ) #0
and Hom (E( )  Sgt1) = Homcq(EéA), Sq+1) # 0. Hence, Homg(Sy, Cy(N))
# 0 and HomB(C (A), Sg+1) # 0 for any A € P1(K). Moreover, since I'p: =
PBa v, v QB;, C, separates PB¢ from QB‘;r, S, lies in PBa | S 1y lies
in QB4 | we conclude that Hom 4(S441,C4) = 0 and Homz(Cy, Sy) = 0. Fi-
nally, the support of any indecomposable B-module from the family C, is con-
tained in the full convex subcategory B . Hence, we obtain Hom (S, Cy) = 0
and Hom 4(Cq, Sp) = 0 for any p € Z different from ¢ and g + 1, respectively.
Thus the statements (xi) and (xii) hold.

It remains to prove (xiii). The syzygy operators {25 and Qg are mutually

inverse equivalences of the stable category mod B of B. Applying (iii), for
each q € Z, we have Hom (X7, X, V C;) = 0 and Hompg(Cg,Cp vV &y ) =0
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for any p € Z with p < g. We first show that 2(C7,,) = C; for any ¢ € Z.
Fix A € P1(K). We have three cases to consider, depending on the structure
of the quasi-tube Cyy1(N).

Assume first that Cy41(\) is a stable tube of rank 1. Then, in the above

notation, Cy41(A) is a stable tube ’T)\CC’+1 of rank 1 of the Auslander—Reiten

quiver I¢,,, of the canonical algebra Cy11. Then the unique module Eg;)H

lying on the mouth of 'T/\Oq+1 = Cg+1(A) is an indecomposable Cyj-module

having a one-dimensional space at each vertex of Q¢,,, (see Section 1),
one-dimensional socle Sc,,,(04+1) given by the unique sink 0411 of Qc,,,
and one-dimensional top Sc,,(wg+1) given by the unique source wyy1 of
Qc,,,- Further, the quiver Q¢, of the canonical algebra C; has a unique
source at the vertex wy, = 0441 and a unique sink at the vertex 0, such that
v5(04) = wgt1, the indecomposable projective-injective B-module Py (0g1)
at Og4+1 has a 2-dimensional vector space at the common vertex wy; = 0g41
of Q¢, and Q¢ ., a one-dimensional vector space at the remaining ver-

tices of Q¢, and Qc,,,, and the zero space at the vertices of Q5 which are

N

not vertices of Q¢, and Q¢ Then the syzygy module “QB(ECqH) is an

q+1°
indecomposable Cj,-module having a one-dimensional vector space at each
vertex of ¢, , one-dimensional socle S¢, (04) at the unique sink 04 of Q¢, and

one-dimensional top S¢, (wq) at the unique source wy of Q¢,. Moreover, since

Cor1(N) = T)\C"“ is a stable tube of rank 1 (hence without simple and projec-
tive modules), we conclude that £25(Cy41())) is a stable tube of rank 1 in I'g,

and consequently £25(Cq41())) is a stable tube Tgcq of rank 1 in I'¢, for some
0 € P1(K). Clearly, in that case Tgcq = Cy(0), and 25(Cy11(N)) = Cq(0).

Assume now that Cy41(\) is a quasi-tube enlargement of a stable tube
T)\C‘”l of rank 1 in I¢,,,, with 7(C4r1())) > 2 (equivalently, Cyr1(N) #

T/\Cq“). Then the branch coextension B, of Cyi1 inside B contains the

one-point coextension [E(C?;)H]CHI of Cygy1 by the unique module Eg;)+1

lying on the mouth of ’];\Cq“. According to Theorem 3.1 (and its proof),

the quasi-tube Cy41(\) contains the indecomposable projective-injective B-
module I 5(7) = Pp(vg(7)), where z is the coextension vertex of [E(C);)H]Cqﬂ'
Moreover, z is the sink of an arrow with source 0441 = wg on the path of Q¢,
from the source wy to the sink 0, corresponding to the parameter A. Hence,
the simple B-module Sg(x) = Sc,(x) lies in the stable tube ’Z:\Cq of I'c,,
and consequently Sz () lies in the quasi-tube Cy(x) = qu. Finally, observe
that Py(vps(x))/Sg(x) lies in Cyq1(N), and 24 (Pp(vg(x))/Sg(x)) = Sp(x).
This shows that 25(C5,1(N)) = Co(N).
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Assume that Cy41()) is a quasi-tube enlargement of a stable tube ’Z;\C”‘+1

of I'c,,, of rank at least 2. Then the tube T/\C‘”l, and hence Cyy1(A), contains
a simple module Sz(y) = Sc,,,(y) at a vertex y which is the source of an
arrow with sink Og41 on the path from wgy1 to 0g41 in Q¢,,, corresponding
to the parameter A. Then y is the extension vertex of the one-point exten-

sion Cq[Eg; )] of Cy by the unique nonsimple module lying on the mouth
of the stable tube ’Zj\cq of I'c,, and Cq[E(C); ) | is a full convex subcategory
of the quasi-tube enlargement By of Cy inside B. Applying Theorem 3.1

(and its proof) again, we conclude that the quasi-tube C,(\) = qu con-
tains the indecomposable projective module Pj(y) = Ppg: (y), and hence
also its radical rad Py(y). Since rad Py(y) = £25(S3(y)), we conclude that
25(C51 (V) = GV

Summing up, we proved that 25(C;.1) = C; for any ¢ € Z. In order to
prove that QB(X; '11) = X, for ¢ € Z, we need a characterization of inde-
composable nonprojective modules from a family A}, in the stable category
mod B. Fix p € Z. Recall that &), consists of indecomposable Ep—modules,
where B, is simultaneously the one-point extension B, = B;_I[I B, (0p—1)]
of the branch extension B;{_l of the canonical algebra C),_1 by the inde-

composable injective Bptl—module IB;l(Op,l) at the unique sink 0,_1 of
Qc,_,, and the one-point coextension B, = [PB; (wp)]B,, of the branch co-

extension B, of the canonical algebra C), by the indecomposable projective
B, -module PB; (wp) at the unique source w, = v5(0,—1) of Qc,. Further,
the Auslander—Reiten quiver I” B, has a decomposition

Iy, = PR v TP v X, v TE v QB
given by decompositions

r

+ + + — — —
g = PPV TPy QFt and Ty = PP v TP v QP
-

By
of the Auslander—Reiten quivers of B;{_l and B, . The P;(K)-family T8

+ +
of ray tubes of I'y+ X separates PBr-1 from QPr-1, the indecomposable pro-
Al

. . .. + + .
jective B]:l—modules lie in PBr-1 v T Bpfl, and hence, for each indecom-

posable module X in QBzil, there exists an epimorphism U — X with

U from the additive category add(7P»-1) of TPr-1, because a projective

cover epimorphism Pp+ 1(X ) — X of X in mod B;r_l factors through a
Al

module U from add(7P»-1). Dually, the Py (K)-family 75 of ray tubes of

r By separates PP» from QPr | the indecomposable injective B, -modules
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lie in 78 v QPr | and hence, for each indecomposable module Y in P5r |
there exists a monomorphism Y — V with V a module from the additive
category add(7Br ) of TBr | because an injective envelope monomorphism
YV — Ip- (Y) of Y in mod B, factors through a module V' from add(75r).

Observe also that A}, contains exactly one projective and exactly one in-
jective B -module, namely the indecomposable projective-injective B-mod-
ule Ppy(wp) = Pg (wp) = Iy, (0p—1) = I5(0p—1), where w, = vp(0p-1).
Moreover, the simple B-module S,_1 = Sz(0,-1) = Sc,_,(0p—1) lies in
X,—1, and the simple B-module S,11 = S3(wp) = Sc, (wp) lies in X,41. Since
B, = Bt g + 1(Op_l)] and I+ 1(0p—1) lies in QBptl the restriction of every

module M in X), to B _, belongs to the additive category add(Q - 1) of

+
oBr-1. In particular, every module M from &), contains an indecomposable
Bt . = _
submodule X from Q7r-1. Dually, since B, = [PB,,‘ (wp)] B, and Py (wp)
lies in PPr | the restriction of every module N in Xp to B, belongs to the
additive category add(PP») of PBr. As a consequence, every module N
from A}, has an indecomposable quotient module Y from PBr | Therefore,

we conclude that an indecomposable module Z from mod B belongs to X, if
and only if there exists a sequence of homomorphisms in mod B of the form

vsxLhzsy by

where e and ¢ are epimorphisms, f and h are monomorphisms, U is a module
from add(TBzil), X a module from QP 1Y a module from PB_, and
V a module from add(75r). We also note that all modules of T -1 are
indecomposable nonprojective B-modules contained in Cp—1 = = B 1, and
all modules of 7P» are indecomposable nonprojective B-modules contained
in C, = CP.

Hence, applying (iii), we infer that the modules X and Y, occurring in
the above sequence, belong to Xj,. Further, applying Lemma 4.4, we con-
clude that the homomorphisms e, f, g, h induce nonzero morphisms e, f,

g, h in the stable category mod B. Moreover, Hom 4 (U, X) # 0 implies that
Hom 4 (L, X) # 0 for some indecomposable direct summand L of U, and
Hom (Y, V) # 0 implies that Hom z(Y, W) # 0 for some indecomposable
direct summand W of V. Therefore, we established the following charac-
terization of modules from A: an indecomposable nonprojective module Z

from mod B belongs to X, if and only if there exists a sequence of nonzero
morphisms in mod B of the form
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L—-X—-7Z—-Y—->W

where L is in Cj_4, X is indecomposable not in szl, Y is indecomposable
not in C;, and W is in C,. Clearly, X and Y then also belong to 7.
Fix now ¢ € Z, and take an indecomposable module M in X/, ,. Then

there exists a sequence of nonzero morphisms in mod B of the form
N—-M—-M-—-M"—R

such that N is in Cj, M’ is indecomposable not in C;, M" is indecomposable
not in €7, and R is in Cg 4. Applying the selfequivalence functor (25

mod B — mod B to the above sequence, we obtain a sequence of nonzero
morphisms in mod B of the form

Qs(N) = Qs(M') — 25(M) — 25(M") — 25(R).
Since 25(Cy) = C,;_1 and 25(C;,;) = Cj, we conclude that 25(N) lies
in C5_y, QB(M’) 1s 1ndecomposable not in C;_y, 25(M") is indecompos-

able not in CJ, and §25(R) lies in Cj. This implies that 25(M) lies in & .

Therefore, Q ( X)) =& =

PROPOSITION 5.2. Let B be a branch extension (respectively, branch co-
extension) of a canonical algebra C. Then there exists a strictly positive
automorphism ¢z of B such that following statements hold:

(i) g =vp or goQB =vp.

(ii) Ewery torsion-free admissible group G of automorphisms ofE s an
infinite cyclic group generated by a strictly positive automorphism
fcp% for some s > 1 and some rigid automorphism f of B.

Proof. We may assume (without loss of generality) that B is a branch
coextension of C. We identify B and C' with the corresponding full convex
subcategories By = B and Cp of B. In the notation of Theorem 5.1, there
exists a reflection sequence of sinks ig,%1,...,4—1,% of @p such that the
iterated reflection B = SJr S+S+B is again a branch coextension of a
canonical algebra C. Further the 1terated Nakayama shifts Co), = v, (Cg)

and Copy1 = 1V, (C’l) p > 0, form a complete family of full convex canomcal
subcategories of B. Clearly, the iterated Nakayama shifts B, = ypé (By ) and
Byp+1 =7y
egories of B which are branch coextensions of canonical algebras inside B.
We also have Cgt2 = v5(Cy) and B, = vz(B,) for any g € Z. Moreover,
B_ = B0 = B for any ¢ € Z. We have two posmble cases: By 2 B or
Bo = By . If By 2 By, we take 5 = vp. In the case By = B, we de-
note by ¢ the canonical automorphism of B such that ¢ 3(By) = By and
()023 = VB'

(By ), p >0, then form a complete family of full convex subcat-
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Let G be a torsion-free admissible group of automorphisms of B. Then
every element g € G acts on the family C,, ¢ € Z, of full convex canonical
subcategories of B. For g € G, let my be the integer such that g(Cp) = Ciy,.
Observe that mj, = —m, for h = g~'. Suppose m, = 0 for some g € G.
Then g acts on the finite set of objects of Cj, and hence a power g" of ¢ fixes
an object of Cp. Since G is torsion-free and acts freely on the objects of B,
we get g = 1. Choose now an element g € G such that mg is positive and
minimal. Let h € G and mjy, = tmy +1 with ¢ € Z and 0 <1 < m,. Then
a=hg '€ G, mg =1, and hence [ = 0, a = 1. Therefore, G is an infinite
cyclic group generated by g. The automorphism g also acts on the family
B, , q € Z, and g(Cy) = Cqymq forces g(B; ) = B, If By 2 By, then
myg is even, say mgy = 2s for some s > 1, and we define f = gygs = g(p]_;.
If By = B, we take s = mgy and f = ggol_;. Observe that f(Cy) = C
and f(B;) = B, for any ¢ € Z, and hence f is a rigid automorphism of B.
Consequently, G is an infinite cyclic group generated by g = fgoSB for some

s > 1 and some rigid automorphism f of B. u

We are now in a position to prove the theorem describing the structure
and homological properties of the Auslander—Reiten quivers of selfinjective
algebras of strictly canonical type.

THEOREM 5.3. Let A be a selfinjective algebra of strictly canonical type.
The Auslander—Reiten quiver I'4 of A has a decomposition

Iy = \/ (X;‘ V C:;l)
qEZL/nZL
for some positive integer n, and the following statements hold:

(i) For each q € Z/nZ, th = (C{;‘(A))/\epl(K) is a P1(K)-family of
quasi-tubes with s(C;H(A)) + p(C(N)) = r(CLH(N)) — 1 for each X €
Py (K).
(ii) For each q € Z/nZ, XqA 1s a family of components containing exactly
one simple module Sy .
(iii) For each q € Z/nZ, HomA(Sq,C;‘()\)) # 0 for all X\ € Py(K), and
HomA(Sp,C;JA) =0 forp # q in Z/nZ.
(iv) For each q € Z/nZ, HomA(C(;‘()\), Sg+1) # 0 for all A € P1(K), and
Hom(C{', Sp) =0 for p # q+ 1 in Z/nZ.
(v) For each q € Z/nZ, 24((CL1)%) = (C)° and 24((X2,)%) =
A\s
(A5)°-
Proof. We may assume that A = B /G, where B is a branch coextension
of a canonical algebra C, with respect to the canonical Py (K )-family 7¢ of
stable tubes of I'4, and G is an infinite cyclic group generated by a strictly
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positive automorphism g = f goSB for some positive integer s and some rigid
automorphism f of B. We use the notation introduced in the proof of The-
orem 5.1. Let n = 2s if o5 = vp, and n = s iigp% = vp. Then for the
full convex subcategories Cy, B, B;, By and By, q € Z, from Theorem
5.1, Wejlave gﬁ(Cb) = Cyins 9(By ) = B p, g(B;‘) = B(;_n, 9(By) = Byip,
and g(Bq) = Bg4n for all ¢ € Z. Consider now the induced actions of G on

mod B and I’ %. For the decomposition

I'p= \/ (X vV Cy)
qEZ
of I'y established in Theorem 5.1, we then have g(X,) = Xy, and g(Cq) =
Cq4n for all ¢ € Z. The push-down functor F) : mod B — mod B/G =mod A
associated to the Galois covering F : B — B /G = A is exact and pre-
serves Auslander—Reiten sequences, simple modules, and projective modules.
Moreover, by Theorem 5.1(x), B is a locally support-finite category. Apply-
ing Theorem 4.2, we conclude that F induces an isomorphism of the orbit
translation quiver I'5/G of I's, with respect to the action of G, and the
Auslander-Reiten quiver I'y of A = B /G. Therefore, I'4 has a decomposi-
tion
ri= \/ (xtved
qEZ/nZL

with Z/nZ={0,1,...,n — 1} and X' = F\(X,), C;' = F\(C,) for q € Z/nZ.
Further, C(’;‘ = (C;‘()\)))\epl(K), where C;‘()\) = F)\(C4(N)), A € Pi(K), are
quasi-tubes such that s(C;‘()\)) +p(C;]4()\)) = T(Cf()\)) — 1, because F) pre-
serves the simple and projective modules and ranks of the stable tubes of FE.
Similarly, X;‘ = F)\(X,) is a family of components of I’y containing a unique
simple A-module S; = F)\(S;). This shows the statements (i) and (ii).

Since the push-down functor F) is dense, we also have a Galois covering
Fy : mod B — mod A of module categories. In particular, for any indecom-

posable modules M and N in mod B, the functor induces isomorphisms of
K-vector spaces

@HOHIB(QM, N) = HOIH(F/\(M), F)\(N))7
reZ
@D Hom (M, 9N) = Hom(Fx(M), Fx(N)).
reZ

Hence, the statements (iii) and (iv) follow from the statements (xi) and (xii)
of Theorem 5.1. Finally, since F), is exact and preserves the indecomposable
modules and projective covers (see [17]), for any nonprojective indecompos-
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able module M in mod B, we have F\(25(M)) = 24F\(M). Hence, the
statement (v) follows from the statement (xiii) of Theorem 5.1. =

We end this section with two examples illustrating possible situations.

EXAMPLE 5.4. Let B be a canonical algebra C' = C(p, A) with a weight
sequence p = (p1,...,pm) and a parameter sequence A = (A1,...,\p),
m > 2, A\; = 00, A2 = 0. Then C is the bound quiver algebra K A(p)/I(p, ),
where A(p) is the quiver

LY o, (1,2 appy 1 (Lp1=1)
O ~——— 0 =<"'" =0 o

1,1 W
(2,1) (2,2) —

2 1)
as,1 asz,2 Qg po—1(2: P2 g,
Do = 5 < O e e <o “2p2 o «2e o,
O «—— O «— *** =<4+— 0O +— O
(m,1) ¥m.2 (m,2) ¥m.pm =1 (m, pp — 1)

and I(p,A) =0 for m = 2, while I(p, A) is the ideal of K A(p, A) generated
by the elements a;jp, ... aj1+a1p, - 11+ Njazp, ...az1, § € {3,...,m},
for m > 3. Moreover, the Auslander—Reiten quiver I'c has a decomposition
Iy =PCVvTCv QY where T¢ = (ﬂC)AGPI(K) is a [Py (K)-family of pairwise
orthogonal standard stable tubes, described in Section 1. We use the notation
introduced in Theorem 5.1. Hence B = By = Bj = BSL = C = (Cp is a trivial
quasi-tube enlargement of C. Further, the algebra By = T, By = C[I¢(0)]
is the bound quiver algebra KQg, /1 B,+ Where Qp, is the quiver

(1,1) (1,p1 — 1)

S U ik /51,1\
ai,1 W
(2,1) (2,2 = 1) W/ Bo1
O<+— O LR -+ O= O - [e)
0 az1 2.5 ,w v(0)
\_/

Ot— - — 0 3

(m, 1) (m,pm — 1) m,1

and Ig is the ideal of the path algebra KQp of Qp, generated by the
elements

Br101,pys B2102p,, B1a102p, .21 — P210np, ... Q11
if m = 2, and the elements
Qjpi -Gl + Q1py o011+ Aoy, .. az1,  JE{3,...,m},
Big+ P11+ AjBe1,  je{3,...,m},
ﬂj,laj,pj, je{l,...,m},  Boioip ... — Py, ... a1,
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for m > 3. The reflection B = Sar Bf = Sar C' is the bound quiver algebra
KQ BT /1 B where Q) B- is the quiver obtained from @, by removing the
vertex 0 and the arrows a1, 271,..., 0,1, and IBf is the ideal of KQB;
generated by (1101, (if p1 > 2) and fa2 109, (if p2 > 2) for m = 2, and
by the elements

Bi1+ P+ AjBey, JE{3,...,m},

ﬁj,laj,pj with p; > 2, j€ {1,...,m},
for m > 3. Moreover, B is a branch coextension of the canonical algebra
Cy = KQc¢,/Ic,, where Q¢, is the subquiver of ®p, given by the vertices
w, v(0), and the arrows B11, B21,...,0m1, Io, = 0 for m = 2, and I¢, is
generated by 51+ Bi11 + Ajf21, j € {3,...,m}, for m > 3. Observe that

(1 is isomorphic to the path algebra of the Kronecker quiver given by the
arrows (31,1 and (32 1. Moreover, the vertices

(L,1),...,(L,p1 —1),(2,1),...,(2,p2 — 1),...,(m,1),...,(m,pm — 1)

form a reflection sequence of sinks of @ ;. Then the quasi-tube enlargement

BT of C associated to this reflection sequence of sinks is the bound quiver
algebra KQp: /Ip:, where Qp: is the quiver

(1,1) (1,2) (1 &= 1) v(1,1) 1.
021123 . Ot +++ <—oO%t2i=lov(l,p1 —1)

.. .
Q1,py 1,1
Gl a2 0 2 P:B\ N u(O YD S

<«— 022" - 0owv(2,p2 — 1)
RCTRSY P2/ W a2
Am \/ o)

.
Oelmiloe ... ch e Ourm—ly
(m, 1) (m,2) (m Pm — u(m 1) v(m, pm — 1)

and Ipr is generated by I¢,, and the paths
Biap;ai1Bia,  JE€{L,...,m},
aj.. i feaeip o1y, TE{2,. . p1— 1}
a;r ce a;7161,1aj,pj e Oy T e {2, N 1}, jE {2, ey m}
Moreover, the associated iterated reflection algebra Bf is a branch exten-
sion of the canonical algebra C and the bound quiver algebra K@ BF [ g+,
where Q) BF is the full convex subquiver of Qg given by the vertices
w, V<0)7 l/(l, 1)7 e 7V<17p1 - 1)7
v(2,1),...,v(2,p2 —1),...,v(m,1),...,v(m,pm — 1),

and [Bf is generated by af ;61,1 and aj 821, for m = 2, and by the elements
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ﬁj,l +ﬁ1,1 +)\j62,17 ] c {37"'7m}7 O‘;,lﬁj,lv ] c {17"'>m}7

for m > 3. Observe also that the extension By = T j Bfr is the algebra Ecl)p
opposite to By, while the reflection By = S} Bf" = v3(B;) = v3(Co) is the
canonical algebra isomorphic to C.

Assume p; > 2 for some j € {1,...,m}. Then Cy();) = ’Z}S is a stable
tube of rank p; of the form

(A5) X
E Sc (J, Sc (J, Sc(Jgaj —-1)

\/\ .

/
NSNS N
NN N /

with p; — 1 = 7(Co(A;)) — 1 simple modules lying on its mouth. Applying
Theorem 3.1 to the branch coextension B; of C7, we conclude that the

quasi-tube Ci()\;) = Cff contains p; — 1 projective modules but no simple
modules, and is of the form

Ppx (v ( 1) Pp: (V(J, 2)) PB;(IC/)(jmjfl))
@ NSNS NN,
NN AN

VNSNS N
NN N N L

Therefore, if the weight sequence p = (p1,...,pm) is different from
(1,...,1), then By 2 By, ¢z = v, and
e for even q € Z, C; = (Cy(N))rep, (k) is a P1(K)-family of stable tubes
of I'g containing simple B-modules but no projective Bg—modules7
e forodd g € Z, Cy = (Cq ()\)))\e]pl(K) is a Py (K)-family of quasi-tubes of
I'y, containing projective B-modules but no simple B-modules.
For the weight sequence p = (p1,...,pm) = (1,...,1), each C; =
(Cq(M))aep, (k) 1s a P1(K)-family of stable tubes of I'g of rank 1, and hence
all simple B-modules and indecomposable projective B-modules are located
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in the families &;, ¢ € Z. In fact, each &} then consists of one component,
which is of the form

Pyt1
O
. ’ . < \ . ’ L
NN NN
Sq
and Py 1 = Pj(Sg+1) is the projective cover of the simple B-module Sg+1 €

Xy+1. We note that in this degenerate case, that is, for the Kronecker algebra
B = C, we have pp # v and chB =vg.

EXAMPLE 5.5. Let B = KQp/Ip, where Qp is the quiver

RN
%/\ 2

047

@)

Q 5
o11 012

and Ip is the ideal of the path algebra K Q) g of () g generated by the elements
o101, B1€1, Y1n2, Y20, Y321 + e + B2 1. Denote by C the bound quiver
algebra C' = KQc¢/I¢, where Q¢ is the full subquiver of @ given by the ver-
tices 5, 6, 7, 8,9, 10, and I¢ is the ideal in the path algebra K Q¢ of Q¢ gen-
erated by 37271 +a2a1+F231. Then C' is the canonical algebra C'(p, A) with
the weight sequence p = (2,2, 3) and the parameter sequence A = (00,0, 1).
Moreover, B is a branch coextension B = [Ey, L1, Ea, Lo, E3, L3, Ey, L4]C
with By = E(™®) ¢ TC By = FO ¢ 7€, B3 = EW € TC, By = S(8) € TC,
L1 the branch given by the vertex 1, Lo the branch given by the vertex 2, L3
the branch given by the vertices 3,4, 11 and arrows 71, g, and L4 the branch
given by the vertex 12. Then 1, 2, 3, 4, 12 is a reflection sequence of sinks of
@B, and the iterated extension Bj = 1+ 234, 128 is the bound quiver algebra
KQp; /1 Bz, Where Qg is the quiver
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R Aava
/\w/\

047

V(3) I/
"71
012 v(12)

and Ip; is the ideal of KQp: generated by the elements o1, 181, 1172,
Y20, ¥37271 + az2an + B2, ajag, B B2, Vi, 130", 00 — yiazaanzn, o' 1.
Moreover, the iterated reflection BO+ = SESIS;S;STB& of By = B is
the bound quiver algebra K@ Bt /1 By where @) Bt is the full subquiver of
QB given by the vertices 5, 6, 7, 8, 9, 10, v(1), v(2), v(3), v(4), v(12), and
I+ is the ideal of KQB(T generated by the elements v3v2y1 + asay + (201,

ofl‘oag, B3 B2, viv3, 730", 0" 71, which is the branch extension C[E1, L}, Eq, L3,
Es, L3, Ey, L], with £7 the branch given by the vertex v(1), £5 the branch
given by the vertex v(2), £3 the branch given by the vertices v(3), v(4), 11
and arrows 75, 6°, and £} the branch given by the vertex v(12). Observe
also that the reflection B; = S; Bar is isomorphic to B, = B. Therefore,
we have a canonical strictly positive automorphism ¢ 5 of B, with ('02]3 =vg

and (,OB, 7& VB’ such that @B(eo,l) = 6076, (PB’<60:2) = 60’7, (pB(€073) = 60,8,
vplens) = eoo, wplens) = eoo, wpleos) = e11 = vgleon), ¢pleor) =
e12 = vp(eo2), ppleos) = e13 = vglens), pplens) = erta = vpleoa),
©vpleo0) = e15 = vg(eos), vp(eo12) = eo,11. Moreover, we also have a rigid
automorphism f of B induced by the automorphism h of the quiver Qg of
order 2 such that h(1) =2, h(2) =1, h(3) =3, h(4) =4, h(5) =5, h(6) =
h(7) = 6, h(8) = 8, h(9) = 9, h(10) = 10, A(11) = 11, h(12) = 12, and

h(oy) = &, h(&1) = o1, h(an) = Bi, h(B1) = a1, h(az) = B2, h(B2) = a,
hggl) —6 Y1, h(y2) = 72, h(y3) = 3, h(m) = m, h(n2) = n2, (o) = o,
h =

Consider the orbit algebras A = B/(p p) and A" = B/(fe 3)- Then A

and A" are the bound quiver algebras A = KQ/I and A’ = KQ/I', where
@ is the quiver
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\%
N,

04>04>O

d 11

and [ is the ideal of K@) generated by the elements

Y3Y2y1 + ean + o1, arae, B1f2, 1173, 071, V20,
aga1 P21 — Befrazar, 17372 — 00,
and I’ is the ideal of K@ generated by the elements

Y3Y2y1 + oo + P, a1 B2, Biow, y17v3, 071, Y20,
apaiago — B2515281, 1173772 — 0.

We note that A is a symmetric algebra and A’ is not symmetric. Ac-
cording to Theorem 5.3, the Auslander—Reiten quivers I'4 and I'4 have
decompositions

Iy=X4vCc4 and Iy =x4ved

where C4 = (C*(X))rep, (k) (vespectively, cA = (YA Naep, (k) 1s a P (K)-
family of quasi-tubes of I'4 (respectively, I'y/) containing all simple modules
and indecomposable projective modules, except the simple module S(5) and
the projective module P(5) at the vertex 5, which are located in X4 (re-
spectively, X A/).
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