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VERY SLOWLY VARYING FUNCTIONS. II

BY

N. H. BINGHAM and A. J. OSTASZEWSKI (London)

Abstract. This paper is a sequel to papers by Ash, Erdős and Rubel, on very slowly
varying functions, and by Bingham and Ostaszewski, on foundations of regular variation.
We show that generalizations of the Ash–Erdős–Rubel approach—imposing growth re-
strictions on the function h, rather than regularity conditions such as measurability or
the Baire property—lead naturally to the main result of regular variation, the Uniform
Convergence Theorem.

1. Introduction. We work with the Karamata theory of regular and
slow variation; see [BGT] for a monograph account. Here the main result is
the Uniform Convergence Theorem (UCT) which asserts that the defining
pointwise convergence for slow variation in fact holds uniformly on compact
sets if the function h in question is either (Lebesgue) measurable, or has the
Baire property, but not in general (see Theorem 3 below). The outstanding
foundational question of the theory—raised and left open in [BG1], [BG2],
[BGT]—is what common generalization of measurability and the Baire prop-
erty suffices. This question is answered in [BOst1], where we obtain sets of
conditions on h, each necessary and sufficient for UCT (see Theorem UCT
below). In [BOst2] this motivates a unified approach to the Karamata the-
ory of the two cases by regarding each as a subfamily of a single family of
functions, one that is defined by combinatorial properties shared by both.
An alternative unification (see [BOst3]) derives the measure and category
forms of their shared infinite combinatorics from a single topological result,
the Category Embedding Theorem, by specialization to two topologies—the
Euclidean topology and the density topology.

A very few papers in regular variation are able to make progress without
imposing regularity conditions. Foremost among these are the Ash–Erdős–
Rubel paper [AER], where a growth condition is used instead, and the work
of Heiberg [Hei] and Seneta [Sen1], [Sen2], where side-conditions involving
the limsup are imposed instead. Informed by the viewpoint of [BOst1], we
generalize the results of these papers.
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In Section 2 we apply the Theorem UCT of [BOst1] to derive a new,
simple, necessary and sufficient condition on a function h so that it obeys
the UCT and obtain a “second Heiberg–Seneta theorem” (see Theorem 1).
In Section 3 we show how the simple conditions may be usefully relaxed and
give a “generalized Heiberg–Seneta theorem” (Theorem 2). We use this in
Section 4 to show why the example of [AER] does not satisfy the UCT (see
Theorem 3). We close in Section 5 with some complements.

2. Main result. We begin by defining the key notions of the theory of
regular variation. Then we recall the definitions and two theorem of [BOst1]
which we will need here. The theory is concerned with the consequences of
a relationship of the form

(RV) f(λx)/f(x)→ g(λ) (x→∞) ∀λ > 0,

for functions defined on R+. The limit function g must satisfy the Cauchy
functional equation

(CFE) g(λµ) = g(λ)g(µ) ∀λ, µ > 0.

Subject to a mild regularity condition, (CFE) forces g to be a power:

(%) g(λ) = λ% ∀% > 0.

Then f is said to be regularly varying with index %, written f ∈ R%.
The case % = 0 is basic. A function f is called slowly varying if f ∈ R0,

i.e. if

(SV) f(λx)/f(x)→ 1 (x→∞) ∀λ > 0.

Slowly varying functions are often written ` (for lente, or langsam). The
basic theorem of the subject is the Uniform Convergence Theorem (UCT),
which states that under appropriate assumptions, if (SV) holds, then the
convergence is uniform on compact sets of λ values in (0,∞). Necessary and
sufficient assumptions for UCT have only recently been given (in [BOst1])
and are quoted below for convenience. While regular variation is usually used
in the multiplicative formulation above, for proofs in the subject it is usually
more convenient to use an additive formulation. If we write h(x) := log f(ex)
(or log `(ex) as the case may be), the relation above becomes

(SV+) h(x+ u)− h(x)→ 0 (x→∞) ∀u ∈ R.
Here the functions are defined on R, whereas in the multiplicative notation
functions are defined on R+. We find it helpful to use the notation hx(u) =
h(x+ u)− h(x).

Definitions

(i) The ε-level set (of hx) is defined to be the set

Hε(x) = {t : |h(t+ x)− h(x)| < ε}.
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(ii) For x = {xn : n ∈ ω} an arbitrary sequence tending to infinity, the
x-stabilized ε-level set (of h) is defined to be the set

T εk (x) =
∞⋂
n=k

Hε(xn) for k ∈ ω.

Here ω denotes the set of natural numbers 0, 1, 2, . . . . Note that

(1) T ε0 (x) ⊆ T ε1 (x) ⊆ T ε2 (x) ⊆ · · · and T εk (x) ⊆ T ηk (x) whenever ε < η.

If h is slowly varying, then R =
⋃
k∈ω T

ε
k (x).

(iii) The basic No Trumps combinatorial principle (there are several),
denoted NT({Tk : k ∈ ω}), refers to a family of subsets of reals
{Tk : k ∈ ω} and means the following. For every bounded sequence
{um : m ∈ ω} of reals there are k ∈ ω, t ∈ R and an infinite set
M ⊆ ω such that

t+ um ∈ Tk for all m in M.

In words: the translate of some subsequence of {um} is contained
in some Tk. We will also say that {Tk : k ∈ ω} traps sequences by
translation.

We now quote from [BOst1].

Theorem (UCT). For h slowly varying , the following are equivalent.

(i) The UCT holds for h.
(ii) The principle 1-NTh holds: for every ε > 0 and every sequence x

tending to infinity , the stabilized ε-level sets {T εk (x) : k ∈ ω} of h
trap bounded sequences by translation. In loose notation:

(∀ε > 0)(∀x) NT({T εk (x) : k ∈ ω}).
(iii) For every ε > 0 and for every sequence x tending to infinity, the

stabilized ε-level sets {T εk (x) : k ∈ ω} of h contain all the bounded
sequences.

The property in (iii) is called the full-inclusion or F -analogue of 1-NTh.
For the proof see [BOst1], where it is also shown that either of the conditions
(ii) or (iii) holds for measurable h, and also for h with the Baire property.
We will also need the following result from [BOst1].

Theorem (Equivalence Theorem). For h a slowly varying function the
following are equivalent.

(i) The family {T εn(x) : n ∈ ω} traps bounded sequences for any se-
quence x tending to infinity , and any positive ε.

(ii) Whenever {un} is a bounded sequence, and {xn} tends to infinity,

(2) lim
n→∞

(h(un + xn)− h(xn)) = 0.
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(iii) For any sequence x tending to infinity , and any positive ε, the
family {T εn(x) : n ∈ ω} ultimately contains almost all of any bounded
sequence {un}. That is, for any bounded sequence {un} there is k
such that

(3) {um : m > k} ⊆ T εn(x) for all n > k.

(iv) The UCT holds for h.

Definition. We say that h satisfies the Heiberg–Lipschitz condition if
there are two positive functions ϕ, g defined on R+ such that:

(i) g(x) is decreasing to 0 as x→∞;
(ii) ϕ(t)→∞ as t→∞;

(iii) for all x, t > 0, there is x(t) between x and x+ t such that

(4) |h(t+ x)− h(x)| = ϕ(t)g(x(t)).

The final condition is modelled after the mean-value theorem. Note that
the assumptions imply that for all x, t > 0,

ϕ(t)g(x+ t) ≤ |h(t+ x)− h(x)| ≤ ϕ(t)g(x).

This is the information which makes the proof of our main theorem (The-
orem 1 below) transparent; we show later how to relax these assumptions
to obtain a more useful formulation of the basic paradigm. When studying
slowly varying functions h in the context of the Uniform Convergence Theo-
rem (UCT) it helps to paraphrase the concepts by reference to the notation
introduced earlier:

hx(u) = h(u+ x)− h(x).

Regarding x as a parameter and hx(u) as an “approximately-additive” func-
tion of u, slow variation is just pointwise convergence to zero of the family
{hx} as x→∞ (at all single points u). Thus UCT is the qualified assertion
that pointwise convergence of the family {hx} implies uniform convergence
over compact sets of u. In this language, the simple Heiberg–Lipschitz condi-
tion (4) “factorizes out of hx its dependence on x” locally. The original (i.e.
First—see Section 5 below) Heiberg–Seneta Theorem factorizes out “depen-
dence on x at infinity”, studying in essence an appropriate application of
L’Hospital’s Rule. Our Generalized Heiberg–Seneta Theorem 2 of Section 3
is then the “direct comparison” analogue.

Remark. The preceding definition subsumes the case of any increas-
ing, differentiable concave function h(x) satisfying the celebrated “Inada
conditions” of Economic Theory, introduced in [Inada]. This class includes
log x and the power functions x% with 0 < % < 1. Indeed, for h satisfy-
ing the Heiberg–Lipschitz condition, we have, for t > 0, for some x∗ with



VERY SLOWLY VARYING FUNCTIONS. II 109

x < x∗ < x+ t,

0 < h(x+ t)− h(x) = h′(x∗)t.

Thus with g(x) = h′(x) and x(t) = x∗ the conditions are met since g(x) is
decreasing to 0 as x→∞.

Observation. If h satisfies the Heiberg–Lipschitz condition, then h is
slowly varying.

For,

lim
x→∞

|h(t+ x)− h(x)| ≤ lim
x→∞

ϕ(t)g(x) = 0.

Our main result follows (for details of the First Heiberg–Seneta Theorem
see the closing discussion in Section 5). This new theorem thus complements
[Hei], [Sen1], [Sen2] (cf. [BGT, Theorem 1.4.3, pp. 18–19]).

Theorem 1 (Second Heiberg–Seneta Theorem). For h satisfying the
Heiberg–Lipschitz condition the following are equivalent.

(i) UCT holds for h.
(ii) The family {ϕ−1((0, n)) : n ∈ ω} traps sequences by translation.

(iii) The family {ϕ−1((0, n)) : n ∈ ω} contains almost all terms of every
bounded sequence.

(iv) The family {ϕ−1((0, n)) : n ∈ ω} contains every bounded sequence.

Proof. We will show first (a) that (ii) implies (i), and then (b) that (i)
implies (ii).

Clearly (iv)⇒(iii) and (iii)⇒(ii). The proof will thus be complete when
in (c) we explain how to adapt the notation used in the proof of (b) so that
it reads as a proof of (i)⇒(iv).

(a) Proof that (ii)⇒(i). Let x = {xn} be any sequence tending to infinity,
let u = {um} be any bounded sequence and suppose that the condition of
the Equivalence Theorem, namely limn→∞ |h(un + xn) − h(xn)| = 0, fails.
Thus we suppose that for some ε > 0 and for n = 1, 2, . . . we have

(5) |h(xn + un)− h(xn)| > 2ε.

Working by analogy with ε-level sets, define the reduced level sets by

H−n = {t : ϕ(t) < ε/g(xn)}.
Thus

H−n ⊆ {y : |h(xn + y)− h(xn)| < ε} = Hε(xn).

Observe next that

H−n − um = {y : (∃t)[y = t− um & t ∈ H−n ]}
= {y : (∃t)[t = um + y & ϕ(t) < ε/g(xn)]}
= {y : ϕ(um + y) < ε/g(xn)}.
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Since {ϕ−1((0, n)) : n ∈ ω} is sequence trapping, there are N, y and infinite
M such that

{um + y : m ∈M} ⊆ ϕ−1((0, N)), i.e. {ϕ(um + y) : m ∈M} ⊆ (0, N).

But, for some k large enough, we have ε/g(xk) > N. Hence, for this y, we
have, for n ≥ k,

{ϕ(um + y) : m ∈M} ⊆ (0, N) ⊆ (0, ε/g(xn)).

Thus by definition of Hn, for all m ∈M,

y ∈
∞⋂
n=k

H−n − um.

We now claim that, for any n ≥ k with n ∈M,

(6) |h(xn + un)− h(xn + un + y)| ≥ ε.
Indeed, otherwise, for any such n,

(7) |h(xn + un)− h(xn + un + y)| < ε.

But referring to x = xn and t = un+y in clause (iii) of the Heiberg–Lipschitz
condition we have, since y ∈ H−n − un,

|h(un + y + xn)− h(xn)| ≤ ϕ(un + y)g(xn) < ε,

and this combined with (7) yields

|h(xn + un)− h(xn)| < 2ε,

a contradiction to our standing assumption (5).
Define vn = xn + un (which tends to infinity). Then (6) yields

|h(vn + y)− h(vn)| ≥ ε
for infinitely many n, which contradicts the fact that h is slowly varying.

(b) Proof that (i)⇒(ii). Let x = {xn} be any sequence tending to infinity
and let u = {um} be any positive bounded sequence (otherwise pass to a
subsequence). Assume for some b > 0 that for all m ∈ ω we have

0 ≤ um ≤ b.
Again working by analogy with ε-level sets, define the expanded level sets
by

H+
n = {t : ϕ(t) < ε/g(xn + t)}.

Thus
Hε(xn) = {y : |h(xn + y)− h(xn)| < ε} ⊆ H+

n ,

since, for t ∈ Hε(xn),

ϕ(t)g(xn + t) ≤ |h(t+ xn)− h(xn)| < ε.
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Now if UCT holds, then by the Theorem UCT of [BOst1], {T εk (x) : k ∈ ω}
traps sequences, so for some y, infinite M and k ∈ ω, we have

{y + um : m ∈M} ⊆ T εk (x) =
∞⋂
n=k

Hε(xn) ⊆ Hε(xk)

⊆ H+
k = {t : ϕ(t) < ε/g(xk + t)},

i.e.
{y + um : m ∈M} ⊂ {t : ϕ(t) < ε/g(xk + t)}.

Thus, for m ∈M,

ϕ(y + um) < ε/g(xk + y + um) ≤ ε/g(xk + y + b).

Choose an integer N such that ϕ(t) > ε/g(xk + y + b) for all t > N .
Then

{y + um : m ∈M} ⊂ ϕ−1(0, N),

as required.

(c) Modification to (b). Given the Theorem UCT of [BOst1] we may
clearly adapt the proof just given in (b) to show that (i) implies (iv) by
putting y = 0 and M = ω.

3. A generalization. In this section we show one possible way to move
away from the context dictated by the mean-value theorem and still have
a corresponding Second Heiberg–Seneta Theorem. Some further alternative
formulations are discussed in Section 4.

Definition. We say that h satisfies the generalized Heiberg–Lipschitz
condition if

(a) there is a function ϕ defined on R+ such that ϕ(t)→∞ as t→∞;
(b) there are functions g+, g− defined on R2

+ such that, for x, t > 0,

(8) g−(x, ϕ(t)) ≤ |h(x+ t)− h(x)| ≤ g+(x, ϕ(t)),

(c) for all ε > 0 small enough, the solution sets of g±(x, y) < ε are
bounded in y and take the form {y : y < ψ±(x, ε)} for some functions
ψ±(x, ε);

(d) limx→∞ ψ+(x, ε) =∞ for all ε > 0 small enough.

Observation. If h satisfies the generalized Heiberg–Lipschitz condition,
then h is slowly varying.

Indeed, given t, ε > 0 there exists X > 0, by condition (d), such that
ψ+(x, ε) > φ(t) for x > X, or equivalently, from (c), such that g+(x, ϕ(t)) <
ε for x ≥ X. In this case we conclude, for x > X, that

|h(x+ t)− h(x)| < ε.

Note that the observation relies only on the right-hand inequality in (8).
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Theorem 2 (Generalized Heiberg–Seneta Theorem). For h satisfying
the generalized Heiberg–Lipschitz condition the following are equivalent.

(i) UCT holds for h.
(ii) The family {ϕ−1((0, n)) : n ∈ ω} traps sequences by translation.
(iii) The family {ϕ−1((0, n)) : n ∈ ω} contains almost all terms of every

bounded sequence.
(iv) The family {ϕ−1((0, n)) : n ∈ ω} contains every bounded sequence.

Proof. We follow the proof structure of the Second Heiberg–Seneta The-
orem.

(a) Proof of UCT from (ii). As before, suppose for some ε > 0 and for
n = 1, 2, . . . that

(9) |h(xn + un)− h(xn)| ≥ 2ε.

As expected, put H−n = {t : g+(xn, ϕ(t)) < ε}. Thus

H−n = {y : |h(y + xn)− h(xn)| < ε} ⊆ Hε(xn),

since

|h(y + xn)− h(xn)| ≤ g+(xn, ϕ(y)) < ε.

As before,

H−n − um = {y : g+(xn, ϕ(um + y)) < ε} ⊆ {y : ϕ(y + um) < ψ+(xn, ε)}.
Since {ϕ−1((0, n)) : n ∈ ω} is sequence trapping, there are N, y and infinite
M such that

{um + y : m ∈M} ⊆ ϕ−1((0, N)), i.e. {ϕ(um + y) : m ∈M} ⊆ (0, N).

Since limx→∞ ψ+(x, ε) =∞, for some k large enough we have ψ+(xn, ε) > N
for all n ≥ k. Hence, for this y and n ≥ k,

{ϕ(um + y) : m ∈M} ⊆ (0, N) ⊆ (0, ψ+(xn, ε)).

Thus by definition of H−n , for all m ∈M,

y ∈
∞⋂
n=k

H−n − um.

We now claim that, for any n ≥ k with n ∈M,

(10) |h(xn + un)− h(xn + un + y)| ≥ ε.
Indeed, otherwise for any such n,

(11) |h(xn + un)− h(xn + un + y)| < ε.

But referring to x = xn and t = un + y in clause (b) of the generalized
Heiberg–Lipschitz condition we have, since y ∈ H−n − un,

|h(un + y + xn)− h(xn)| ≤ g+(xn, ϕ(y + un)) < ε,
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and this combined with (11) yields

|h(xn + un)− h(xn)| < 2ε,

a contradiction to our standing assumption (9).
Define vn = xn + un (which tends to infinity); then (10) yields

|h(vn + y)− h(vn)| ≥ ε
for infinitely many n, which contradicts the assumption that h is slowly
varying.

(b) Proof that UCT implies (ii). As expected put H+
n = {t : g−(xn, ϕ(t))

< ε}. Thus

Hε(xn) = {y : |h(y + xn)− h(xn)| < ε} ⊆ H+
n ,

since, for y ∈ Hε(xn),

g−(xn, ϕ(y)) ≤ |h(y + xn)− h(xn)| < ε.

Now if UCT holds then, by the No Trumps Theorem of [BOst1, Sec-
tion 3], {T εk (x) : k ∈ ω} traps sequences, so for some y, infinite M, and k we
have, as before,

{y + um : m ∈M} ⊆ T εk (x) ⊆ Hε(xk) ⊆ H+
k = {t : g−(xk, ϕ(t)) < ε} ,

i.e.
{y + um : m ∈M} ⊂ {t : ϕ(t) < ψ−(xk, ε)}.

Thus, for m ∈M,
ϕ(y + um) < ψ−(xk, ε).

Choose an integer N such that ϕ(t) > ψ−(xk, ε) for all t > N . Then
{y + um : m ∈M} ⊆ ϕ−1(0, N), as required.

(c) Modifications to (b). Now if UCT holds then, by part (iii) of the
Theorem UCT of [BOst1] (see Section 1 above), {T εk (x) : k ∈ ω} contains
all sequences, so the proof in (b) may be re-read with y = 0 and M = ω.

4. An application. We now take the view that R is a vector space
over the field Q. For the purposes of the next result, we need to assume the
existence of a (Hamel) basis in this vector space. Its existence is ensured by
the Axiom of Choice (AC); as is well-known, (AC) implies that every vector
space has a basis. We note in passing that the converse is also true; see [Bl].

Fix a Hamel basis H which includes 1. Let n(t) be the cardinality of the
smallest subset of H which spans t (over Q). We now use the Generalized
Heiberg–Seneta Theorem to explain why the following slowly varying func-
tion, introduced in [AER], does not obey UCT. Whilst our proof is slightly
longer than that in [BGT, pp. 10–11], we feel that it casts rather more light
on what is happening.



114 N. H. BINGHAM AND A. J. OSTASZEWSKI

Theorem 3. The slowly varying function h(x) = log(x+n(x)) does not
satisfy UCT.

Proof. We begin by establishing the right inequality of (8) for all x ∈ R+

and the left inequality for all rational x ∈ R+. (The former implies that h
is slowly varying.)

Note that n(x + t) ≤ n(x) + n(t) and n(x) = n(−x). Therefore n(t) =
n(t+ x− x) ≤ n(x+ t) + n(x), hence for x ∈ Q+, as n(x) = 1,

(12) n(t)− 1 ≤ n(x+ t) ≤ n(t) + 1.

The right inequality of (8) follows from the mean-value theorem applied
to the logarithm function: for h(x) := log(x+ n(x)) and x, t > 0,

|h(t+x)−h(x)| ≤ |t+ n(x+ t)− n(x)|
x

≤ t+ |n(x+ t)− n(x)|
x

≤ t+ n(t)
x

,

as both points x+n(x) and t+x+n(x+ t) are to the right of x. (Note that
n(x+ t) < n(x) is possible.)

Note that n(x + t) ≥ 1 for t, x > 0 (as x + t 6= 0), so if x ∈ Q+, then
n(x) = 1 ≤ t+ n(x+ t), implying

x+ n(x) < x+ t+ n(x+ t).

For t > 0 and x ∈ Q+ apply the mean-value theorem again to the logarithm
function, to obtain

[t+ n(x+ t)]− 1
x+ [t+ n(x+ t)]

=
[t+ n(x+ t)]− n(x)
x+ t+ n(x+ t)

≤ h(t+ x)− h(x).

But for x, z > 0, the expression (z − 1)/(z + x) is increasing in z, so taking
z = ϕ(t) := t + n(t) − 1 > 0, that being the lowest value of t + n(x + t)
by (12), we obtain, for all t > 0 and x ∈ Q+,

ϕ(t)− 1
x+ ϕ(t)

≤ |h(t+ x)− h(x)|.

Putting

g−(x, ϕ(t)) :=
ϕ(t)− 1
x+ ϕ(t)

, g+(x, ϕ(t)) :=
ϕ(t) + 1

x
,

and noting that ϕ(t) tends to infinity, we finally have

g−(x, ϕ(t)) ≤ |h(t+ x)− h(x)| (x ∈ Q+),

|h(t+ x)− h(x)| ≤ g+(x, ϕ(t)) (x ∈ R+).

Let 0 < ε < 1. The solution set of g−(x, y) ≤ ε is bounded for each x by
the line

y = ψ−(x, ε) =
εx+ 1
1− ε

.
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With (8) established for x ∈ Q+, we may now apply the general theorem
to show that UCT fails. This we may do by restricting attention to any
sequence of rationals {xn} that tends to infinity. By the Theorem UCT in
[BOst1] all we need do is check that the family of sets Tk = {t : ϕ(t) ≤ k}
is not sequence trapping. Indeed, choose tm in [0, 1] so that n(tm) = m. By
passing to a subsequence we may, without loss of generality, assume that tm
converges. But for any y and any infinite M the subsequence ϕ(tm + y) for
m in M is unbounded, since y + tm + n(tm)− 1 ≤ ϕ(tm + y) + n(y). Hence
{tm + y : m ∈M} is not trapped by Tk for any k.

5. Complements. No Trumps. The term No Trumps in the definition
of Section 2, a combinatorial principle, is used in close analogy with earlier
combinatorial principles, in particular Jensen’s Diamond ♦ [Je] and Os-
taszewski’s Club ♣ [Ost] and its weakening in another direction: “Stick” in
[FSS]. The argument in the proof of the No Trumps Theorem is implicit in
[CsEr] and explicit in [BG1, p. 482], and [BGT, p. 9]. The intuition behind
our formulation may be gleaned from forcing arguments in [Mil1]–[Mil3].

De Haan theory. The study of functional relations of the form (RV), or
(RV+), is Karamata theory, in the terminology of [BGT, Chs. 1, 2]. Related
is the study of de Haan theory—that of relations of the form

(deH)
f(λx)− f(x)

g(x)
→ h(λ) (x→∞) ∀λ > 0

[BGT, Ch. 3]. See [BGT, §3.0] for the inter-relationships between the two
(de Haan theory both contains Karamata theory, and refines it by filling in
“gaps”). Our approach here to Karamata theory extends to de Haan theory
along similar lines.

In de Haan theory, the relevant limit function in (deH) is

h(λ) =
{

(λ% − 1)/%, % 6= 0,
log λ, % = 0.

The Ash–Erdős–Rubel results [AER] and Heiberg–Lipschitz condition
have something of a de Haan rather than a Karamata character. See e.g.
[BGT, Th. 3.1.10a,c] for illustrations of this.

Weakening quantifiers. It is both interesting and useful to see to what
extent the quantifier ∀ in (RV), (deH) may be weakened to “for some”, plus
some side-condition. The prototypical result here is the following [BGT,
Th. 1.4.3 in the Karamata case, Th. 3.2.5 in the de Haan case].

Theorem (First Heiberg–Seneta Theorem). Write

g∗(λ) := lim sup
x→∞

f(λx)/f(x),
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and assume that

lim sup
λ↓1

g∗(λ) ≤ 1.

Then for a positive function f , the following are equivalent :

(i) (RV) and (%) hold for some %.
(ii) The limit g(λ) in (RV) exists for all λ in a set of positive measure,

or a non-meagre Baire set.
(iii) g(λ) exists and is finite for all λ in a dense subset of (0,∞).
(iv) g(λ) exists and is finite for λ = λ1, λ2 with (log λ1)/(log λ2) finite

and irrational.

This question of weakening of quantifiers is treated in detail in [BG1]
(where the above is Th. 5.7). The original motivation was the study of
Frullani integrals; see [BG2, §6], [BGT, §1.6.4], [Ber, pp. 466–467].

Further generalizations. We note that the lower bound may be taken in
the form g−(x + ϕ(t))ϕ(t), provided that for all ε > 0 small enough, the
solution set of g−(x + y)y < ε is bounded for each x and takes the form
{y : y ≤ ψ−(x, ε)}. Rewriting the solution set as

S(x, ε) = {y : 0 ≤ y < G(y) = ε/g−(x+ y)},
we see that 0 ∈ S. Thus ψ−(x, ε) is well-defined iff supS(x, ε) < ∞. Ge-
ometrically, the assumption requires the graph of G(y) to cross the ray of
slope 1 from the origin once so as to be ultimately below it. The condition
is satisfied in the quoted example of [AER]. Putting ϕ(t) = t + n(t) − 1 as
before, we see that, for x ∈ Q,

ϕ(t)
x+ ϕ(t) + 2

=
t+ n(t)− 1

x+ t+ n(t) + 1
≤ |h(t+ x)− h(x)|.

Let 0 < ε < 1/2. The required solution set is thus bounded by the line

ψ−(x, ε) =
ε(x+ 2)

1− ε
,

with slope less than unity.
One can introduce other conditions relaxing the location of the term x(t)

of the simple Heiberg–Lipschitz condition (4), say by bounding |h(t + x)
− h(x)| above and below “functionally”, i.e. in terms of functions of x and
functions of t, so long as one can recover corresponding finite functions
ψ±(x, ε) with limx→∞ ψ+(x, ε) =∞.
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