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ON THE DIOPHANTINE EQUATION x2 + 2α13β = yn

BY

FLORIAN LUCA (Morelia) and ALAIN TOGBÉ (Westville, I )

Abstract. We find all the solutions of the Diophantine equation

x2 + 2α13β = yn

in positive integers x, y, α, β, n ≥ 3 with x and y coprime.

1. Introduction. The history of the Diophantine equation

(1.1) x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3,

in integer solutions x, y, n once C is given is very rich. In 1850, Lebesgue [13]
proved that the above equation has no solutions when C = 1. In 1965, Chao
Ko [10] proved that the only positive integer solution of the above equation
with C = −1 is (x, y, n) = (3, 2, 3). J. H. E. Cohn [9] solved the above
equation for several values of the parameter C in the range 1 ≤ C ≤ 100.
A couple of the remaining values of C in the above range were covered
by Mignotte and de Weger in [17], and the remaining ones in the recent
paper [8]. In [19], all solutions of the above equation with C = B2, yn

replaced by 2yn and B ∈ {3, 4, . . . , 501} were found.
Recently, several authors have become interested in the case when only

the prime factors of C are specified. For example, the case when C = pk

with a fixed prime number p was dealt with in [3] and [12] for p = 2, in [4],
[5] and [14] for p = 3, and in [1] for p = 5 and k odd. Partial results for
a general prime p appear in [6] and [11]. All the positive integer solutions
(x, y, n) with x and y coprime were found when C = 2a3b, 2a5b and 5a13b

in [15], [16] and [2], respectively. The case when C = 2α3β5γ7δ was dealt
with in [18].

In this note, we study the equation

(1.2) x2 + 2α13β = yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3, α, β ≥ 0.

We prove the following result.

2000 Mathematics Subject Classification: 11D61, 11Y50.
Key words and phrases: exponential equations, Diophantine equation.

DOI: 10.4064/cm116-1-7 [139] c© Instytut Matematyczny PAN, 2009



140 F. LUCA AND A. TOGBÉ

Theorem 1.1. The only solutions of equation (1.2) are:

n = 3, (x, y, α, β)∈{(5, 3, 1, 0), (1, 3, 1, 1), (11, 5, 2, 0), (25, 9, 3, 1),

(70, 17, 0, 1), (47, 17, 4, 2), (57, 17, 7, 1), (207, 35, 1, 1),

(181, 105, 9, 3), (6183, 337, 8, 2), (15735, 881, 25, 1),

(18719, 705, 7, 1), (27045, 901, 2, 2)};
n = 4, (x, y, α, β) = (7, 3, 5, 0);

n = 6, (x, y, α, β) = (25, 3, 3, 1);

n = 7, (x, y, α, β) = (43, 3, 1, 2).

For the proof, we apply the method used in [2] to deal with the case
when C = 5a13b. Namely, in Sections 2 and 3 we treat the cases n = 3 and
n = 4, respectively, by reducing the problem of finding all integer solutions
of equation (1.2) with those values of n to computing all {2, 13}-integral
points on several elliptic curves. Recall that for a finite set S of primes, an
S-integer is a rational number a/b, with a and b > 0 coprime integers, where
all the prime factors of b belong to S. In the last section, we may assume
that n ≥ 5 is a prime. Here, we use the theory of primitive divisors for Lucas
sequences to deduce that only the case n = 7 is possible. In this last case, we
reduce again the problem to the computation of all {2, 13}-integral points
on a few elliptic curves. All the computations have been performed with the
software MAGMA.

2. The case n = 3

Lemma 2.1. When n = 3, the only solutions to equation (1.2) are

(x, y, α, β) ∈ {(5, 3, 1, 0), (1, 3, 1, 1), (11, 5, 2, 0), (25, 9, 3, 1),(2.1)

(70, 17, 0, 1), (47, 17, 4, 2), (57, 17, 7, 1), (207, 35, 1, 1),

(181, 105, 9, 3), (6183, 337, 8, 2), (15735, 881, 25, 1),

(18719, 705, 7, 1), (27045, 901, 2, 2)}.

In particular , for n = 6, the only solution is (x, y, α, β) = (25, 3, 3, 1).

Proof. We rewrite equation (1.2) as

(2.2)
(
x

z3

)2

+A =
(
y

z2

)3

,

where A is sixth power free and defined implicitly by 2α13β = Az6 with
some integer z. One can see that A = 2α113β1 with α1, β1 ∈ {0, 1, 2, 3, 4, 5}.
We thus get the equation

(2.3) V 2 = U3 − 2α113β1
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with U = y/z2, V = x/z3 and α1, β1 ∈ {0, 1, 2, 3, 4, 5}. We need to determine
all the {2, 13}-integral points on the above 36 elliptic curves. To do that, we
use MAGMA. Here are a few remarks about the computations:

(1) We discard the solutions with U ≤ 0 or V = 0 because they lead to
x ≤ 0 or y = 0, which we do not consider.

(2) We do not consider the solutions having the numerators of U and V
not coprime.

(3) If U and V are integers, then z = 1, therefore α1 = α and β1 = β.
(4) If U and V are rational numbers which are not integers, then z is

determined by the denominators of U and V . The numerators of
these rational numbers give x and y. Thus, α and β are computed
from the formula 2α13β = Az6.

MAGMA showed that all solutions to equation (2.3) subject to the above
restrictions are:

(U, V, α1, β1) = (17, 70, 0, 1), (3, 5, 1, 0), (3, 1, 1, 1), (705/4, 18719/8, 1, 1),
(17/4, 57/8, 1, 1), (881/256, 15735/4096, 1, 1), (5, 11, 2, 0),
(901, 27045, 2, 2), (337/4, 6183/8, 2, 2), (9, 25, 3, 1),
(105/4, 181/8, 3, 3), (17, 47, 4, 2).

In turn, they lead to the solutions (x, y, α, β) listed in (2.1).
For n = 6, the equation

(2.4) x2 + 2α13β = y6

can be rewritten as

(2.5) x2 + 2α13β = (y2)3.

We look at the list of solutions of equation (2.1) and observe that the only so-
lution whose second component is a perfect square is (25, 9, 3, 1). Therefore,
the only solution (x, y, α, β) to equation (2.4) is (25, 3, 3, 1). This concludes
the proof for the case n = 3.

3. The case when n = 4

Lemma 3.1. When n = 4, the only solution to equation (1.2) is

(3.1) (x, y, α, β) = (7, 3, 5, 0).

Proof. Here, we rewrite equation (1.2) as

(3.2)
(
x

z2

)2

+A =
(
y

z

)4

,

where A is fourth power free and defined implicitly by 2α13β = Az4 with
some integer z. One can see that A = 2α113β1 with α1, β1 ∈ {0, 1, 2, 3}.
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Hence, we have reduced the problem to determining all the {2, 13}-integral
points (U, V ) on the totality of the 16 elliptic curves

(3.3) V 2 = U4 − 2α113β1

with U = y/z, V = x/z2 and α1, β1 ∈ {0, 1, 2, 3}. Using MAGMA we find
that the only convenient solutions are

(U, V, α1, β1) = (1, 0, 0, 0), (3/2, 7/4, 1, 0).

With the conditions on x and y and the definition of U and V , one can see
that the only acceptable solution is (x, y, α, β) = (7, 3, 5, 0). This concludes
the proof for the case n = 4.

From now on, we may assume that n 6= 3, 4, 6. If (x, y, α, β, n) is a so-
lution of the Diophantine equation (1.2) and d is any proper divisor of n,
then (x, yd, α, β, n/d) is also a solution of the same equation. Since n ≥ 5,
it follows that it suffices to look at the solutions n for which p |n for some
odd prime p ≥ 5. In this case, we may replace n by p, and thus assume for
the rest of the paper that n ≥ 5 is prime.

4. The case n ≥ 5 prime

Lemma 4.1. The Diophantine equation (1.2) has no solution with n ≥ 5
prime except for n = 7 when the only solution is (x, y, α, β) = (43, 3, 1, 2).

Proof. We rewrite the Diophantine equation (1.2) as x2 + dz2 = yn,
where d = 1, 2, 13, 26 according to the parities of the exponents α and β.
Here, z = 2a13b for some nonnegative integers a and b. Let K = Q[i

√
d]. We

factor the above equation in K getting

(4.1) (x+ i
√
d z)(x− i

√
d z) = yn.

Note that y is odd. Indeed, if y is even, then since x and y are coprime, we
see that both x and dz2 are odd. But in this case, x2 ≡ 1 (mod 4) and dz2

is a power of 13, so it is also congruent to 1 modulo 4. Thus, x2 + dz2 ≡ 2
(mod 4), which is impossible. Hence, y is odd. A standard argument applied
to the factorization (4.1) shows that the ideals generated by x+ i

√
d z and

x− i
√
d z in the ring OK of algebraic integers of K are coprime. By unique

factorization for ideals, the ideal (x + i
√
d z)OK is an nth power of some

ideal in OK. A short calculation shows that the class number of K belongs
to {1, 2, 6}. In particular, it is coprime to n. Thus, again by a standard
argument, it follows that x + i

√
d z is associated to an nth power in OK.

Since the group of units of K is of order 2 or 4 (hence, coprime to n), it
follows that we may assume that the equation

(4.2) x+ i
√
d z = γn
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holds with some algebraic integer γ ∈ OK. Finally, since the discriminant of
K is −4d, it follows that {1, i

√
d} is a base for OK. In conclusion, we can

write γ = u + i
√
d v. Taking complex conjugates in (4.2) and subtracting

the two relations, we get

(4.3) 2i
√
d 2a13b = γn − γn.

The right hand side of the above equation is a multiple of 2i
√
d v = γ − γ.

We deduce that v | 2a13b, and that

(4.4)
2a13b

v
=
γn − γn

γ − γ
∈ Z.

Let {Lm}m≥0 be the sequence given by

Lm =
γm − γm

γ − γ
for all m ≥ 0.

This is a Lucas sequence and it consists of integers. For a nonzero integer k,
we write P (k) for the largest prime factor of k. Equation (4.4) leads to the
conclusion that

(4.5) P (Ln) = P

(
2a13b

v

)
.

At this step, we recall that the Primitive Divisor Theorem for Lucas se-
quences ensures that if n ≥ 5 is prime, then Ln has a primitive prime factor
except for finitely many pairs (γ, γ), all of which appear in Table 1 of [7].
These exceptional Lucas numbers are called defective. A primitive prime
factor q of Ln has (among others) the properties that q - −4dv2 = (γ − γ)2

and q ≡ ±1 (mod n). More precisely, q ≡ e (mod n), where e =
(−4d

q

)
. Here

and in what follows,
(
a
q

)
stands for the Legendre symbol of a with respect

to the odd prime q.
Since K = Q[i

√
d] with d ∈ {1, 2, 13, 26}, a quick inspection of Table 1

in [7] reveals that our number Ln cannot be defective. Thus, Ln must have
a primitive divisor q. Clearly, q ∈ {2, 13} and q ≡ ±1 (mod n). Hence, the
only possibility is q = 13, and we conclude that n | 12 or n | 14. Since n ≥ 5
is prime, the only possibility is n = 7, and since 13 ≡ −1 (mod 7), we must
have

(−4d
13

)
= −1. Since d ∈ {1, 2, 13, 26}, we conclude that d = 2. Looking

now again at equation (4.3) with n = 7, we obtain the equation

(4.6) v(7u6 − 70u4v2 + 84u2v2 − 8v6) = 2a13b.

Since u and v are coprime, we have the possibilities

(4.7) v = ±2a13b, v = ±13b, v = ±2a, v = ±1.

The first two cases lead to the conclusion that P (Ln) = P (2a13b/v) ≤ 2,
which is impossible because it leads again to the conclusion that Ln has no
primitive divisors, so we look at the last two possibilities.
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Case 1: v = ±2a. In this case, the Diophantine equation (4.6) is

(4.8) 7u6 − 70u4v2 + 84u2v2 − 8v6 = ±13b.

Dividing by v6, we obtain the elliptic equations

(4.9) 7X3 − 70X2 + 84X − 8 = D1Y
2,

where

X =
u2

v2
, Y =

13b1

v3
, b1 =

⌊
b

2

⌋
, D1 = ±1,±13.

• In the case D1 = ±1 (changing X to −X when D1 = −1), we need to
find the {2}-integral points on the elliptic curve

(4.10) 7X3 + η70X2 + 84X + η8 = Y 2, η ∈ {−1, 1}.
We multiply both sides of (4.10) by 72 to obtain

(4.11) U3 + η70U2 + 588U + η392 = V 2,

where (U, V ) = (η7X, 7Y ) are {2}-integral points on the above elliptic curve.
Using MAGMA we found only (U, V ) = (7, 91), for η = 1. This gives
(X,Y ) = (1, 13); then a = 0, b = 2, u = v = 1, leading to the solution
(x, y, α, β) = (43, 3, 1, 2) of the original equation (1.2).

• When D = ±13, we multiply both sides of (4.9) by 72133 and obtain
the elliptic curves

(4.12) U3 + η910U2 + 99372U + η861224 = V 2, η ∈ {−1, 1},
with

U = η91X, V = 1183Y,

for which we again need to determine the {2}-integral points. In the same
way, using MAGMA, we find nine solutions, but only the solution (U, V )
= (91, 1183) leads to (X,Y ) = (1, 1), leading once more to the solution
(x, y, α, β) = (43, 3, 1, 2).

Case 2: v = ±1. Here, we obtain the equation

(4.13) 7u6 − 70u4 + 84u2 − 8 = 2a13b.

By the same method, we can rewrite the above equation as

(4.14) 7X3 − 70X2 + 84X − 8 = D1Y
2,

where

X = u2, Y = 2a113b1 , a1 = ba/2c, b1 = bb/2c, D1 = ±1,±2,±13,±26.

When D1 = ±1, ±13, we again get the curves (4.10) and (4.12), except that
now we need only their integral points, which have already been computed
by MAGMA.
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• When D1 = ±2, we multiply both sides of (4.14) by 72133 to get the
two elliptic curves

(4.15) U3 + η910U2 + 99372U + η861224 = V 2, η ∈ {−1, 1},

where U = η91X, V = 1183Y , and we need again their integral points.
We used MAGMA to find seven integral points but only the integral point
(U, V ) = (91, 1183) gives the solution (x, y, α, β) = (43, 3, 1, 2).

• Finally, when D1 = ±26, we multiply both sides of (4.14) by 7223133

to obtain

(4.16) U3 + η1820U2 + 397488U + η6889792 = V 2, η ∈ {−1, 1},

with U = 182X, V = 4732Y, whose integral solutions (U, V ) we need to
compute. We used MAGMA to find two integral solutions when η = −1 and
eight when η = 1. None of them leads to a solution of (1.2). This completes
the proof of the lemma and of the theorem.
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