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Abstract. It can be shown that the positive integers representable as the sum of two
squares and one power of k (k any fixed integer ≥ 2) have positive density, from which
it follows that those integers representable as the sum of two squares and (at most) two
powers of k also have positive density. The purpose of this paper is to show that there is
an infinity of positive integers not representable as the sum of two squares and two (or
fewer) powers of k, k again any fixed integer ≥ 2.

It should first be noted that the sum of one square and any fixed maxi-
mum number of powers of k is clearly insufficient to represent all sufficiently
large positive integers, while the sum of three squares and a maximum of two
(and hence a larger fixed number of) powers of k being sufficient to repre-
sent all sufficiently large (and in fact all) positive integers is easily dealt with
(given the three-square theorem), while the same result involving (in place
of three) four (and hence any fixed maximum number greater than four)
squares is immediately dealt with (given the four square theorem; then of
course no powers of k are needed)—hence the sum of two squares (and a
fixed maximum number of powers of k) being involved in this paper. The
present problem is suggested by the even better known one of representing,
as the sum of a prime and a fixed maximum number of powers of two or
powers of (fixed) k ≥ 2, positive integers (odd or even as the case may be);
here, the sum of two squares replaces the prime summand (and the problem
now concerns the representation of positive integers, both even and odd, as
parity considerations no longer effectively discriminate against either class).
This replacement of a prime summand by the sum of two squares is not
uncommon—e.g. the sum of a prime and two squares by the four-square
problem (though the historical order is reversed), or the sum of a prime and
a kth power (such as a square or a cube) by the sum of two squares and a kth
power (though k must be odd in this two-square case to represent “almost
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all” or all positive integers), or for that matter the sum of two primes (the
yet unsolved Goldbach problem of even numbers) by the sum of a prime
and two squares (for both odd and even numbers). And of course primes,
powers of k, and kth powers are among the most important and “natural” of
summands in additive problems (1) (with k = 2—giving squares or powers
of 2—being especially fundamental and interesting among values of k) and
it is important to investigate the various possible additive problems formed
by possible combinations of these summands. Here, the maximum number
of powers of k is limited to two as (will be seen) this presents enough dif-
ficulty for large classes of k; dealing with more than two powers of k (for
such classes) would be hopeless; meanwhile, one can deal with all k ≥ 2 if
this maximum is held to two.

The main purpose of this paper, as already indicated, is to show the
following proposition.

For each fixed k ≥ 2, there is an infinity of positive integers not
representable as the sum of two squares and (at most) two powers
of k.

Notation. All quantities involved are integers and usually positive in-
tegers. The pi are positive primes. The symbol ‖ is used in the standard
way, namely, rα ‖ s → rα | s but rα+1 ∤ s. The classical phrase “2 belongs to
m (mod p)” will be used in preference to its equivalent “ordp 2 = m”.

The most difficult case of k = 2 will be dealt with first.

Theorem 1. There is an infinity of distinct positive (even) integers not

representable as M2 +N2 +2a +2b nor as M2 +N2 +2a (nor as M2 +N2),
a, b ≥ 0 (2).

The following two lemmas are to be used in the proof of Theorem 1.

Lemma 1. Given any positive integer t such that t ≡ 0 (mod 36) and

t is not representable as M2 + N2 + 2a + 2b nor as M2 + N2 + 2a nor as

M2+N2, a, b ≥ 0. Then for every integral α ≥ 0, 2αt is not so representable.

Proof. By the hypothesis of the lemma, 2αt for α = 0 is not representable
as above. Now assume 2αt is not representable as above for (i.e. the lemma

(1) There are other summands of importance, of course, with which the reader no
doubt will be familiar.

(2) I usually take the (personal) viewpoint that for the purposes of additive theorems
involving ka (and kb—both for fixed k), it suffices to deal with a ≥ 1 (and b ≥ 1) since
arithmetically speaking k ∤ k0 and hence (arithmetically speaking) k0 should not really be
regarded as a power of k in this context. However, for Theorem 1, it is easily seen that
a = 0 and b = 0 must be included since otherwise Lemma 1 will be undermined. And in
this paper, a = 0 and b = 0 might as well be included, where possible, for the other results
as well since this inclusion (which is usually possible) is also usually provable and most
often in an utterly trivial way.
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is true for) an arbitrary but fixed α ≥ 0. Consider 2α+1t. If 2α+1t = M2 +
N2 + 2a + 2b with both a, b > 0, then M2 + N2 is even so that with 2 =
12 + 12, M2 + N2 = 2(M2

1 + N2
1 ) for some (integral) M1, N1, from which

2α+1t = 2(M2
1 + N2

1 ) + 2a + 2b so that 2αt = M2
1 + N2

1 + 2a−1 + 2b−1 with
a − 1, b − 1 ≥ 0, a contradiction with the above assumption for 2αt. Thus
(given that assumption) 2α+1t 6= M2 + N2 + 2a + 2b, a, b > 0. Without
loss of generality, take a ≤ b. Now suppose 2α+1t = M2 + N2 + 2a + 2b

with a = 0, b ≥ 0; then if b = 0, remembering that t ≡ 0 (mod 4) so
that 2α+1t ≡ 0 (mod 8), then M2 + N2 ≡ 6 (mod 8), an impossibility;
(next) if b ≥ 2, M2 + N2 ≡ 3 (mod 4), again an impossibility; (finally) if
b = 1, remembering that t ≡ 0 (mod 9) so that 2α+1t ≡ 0 (mod 9), then
M2 +N2 ≡ 6 (mod 9) from which 3 ‖M2 +N2, again an impossibility. Thus
2α+1t 6= M2 + N2 + 2a + 2b for a = 0, b ≥ 0, and hence, from above, for
a ≥ 0, b ≥ 0. Furthermore 2α+1t 6= M2 + N2 + 2a if a > 0, since from
what has just been shown, it follows that 2α+1t 6= M2 + N2 + 2a−1 + 2a−1,
a − 1 ≥ 0. And also 2α+1t 6= M2 + N2 + 2a, a = 0, since M2 + N2 6≡ 7
(mod 8). Thus 2α+1t 6= M2 +N2 +2a, a ≥ 0. Lastly 2α+1t 6= M2 +N2 since
otherwise 12 + 12 = 2 |M2 + N2 and so one would have 2αt = M2

1 + N2
1

for some integral M1, N1, which contradicts the above initial assumption
for 2αt. Hence (given that assumption) 2α+1t is not representable in any of
the above ways. Thus the truth of the lemma for an arbitrary α ≥ 0 implies
the truth of the lemma for α+1. And (as already stated) by the hypothesis
of the lemma, the lemma is true for α = 0. By induction on α the lemma
follows.

The following rather routine lemma will be useful later in the paper
in avoiding some lengthy numerical calculations. It will be presented here,
however, so as not to interfere with the continuity of the argument later on.

Lemma 2. Suppose 2D + 8 ≡ 2E + 2 (mod p) for some non-negative

D, E < m, where 2 belongs to m (mod p) but 2m 6≡ 1 (mod p2), p an odd

prime. Then, for 0 ≤ k, k′ ≤ p − 1, one can find a value of k, say K, and

a value of k′, say K ′, such that 2D+Km + 8 ≡ 2E+K′m + 2 (mod p2) with

(p− 1)/2 ≤ K, K ′ ≤ p− 1, so that m(p− 1)/2 ≤ D + Km, E + K ′m < mp.

Proof. For the value of D and the value of E concerned, given that
2D + 8 ≡ 2E + 2 (mod p), one can write 2D + 8 ≡ 2E + 2 ≡ R (mod p) for
some fixed R. And since 2D+km ≡ 2D (mod p) and 2E+k′m ≡ 2E (mod p),
for any 0 ≤ k, k′ ≤ p − 1, 2D+km + 8 ≡ 2E+k′m + 2 ≡ R (mod p). Then it
follows that for each k (0 ≤ k ≤ p− 1), 2D+km + 8 ≡ R + np (mod p2) with
some n such that 0 ≤ n ≤ p − 1—and it is easily shown from this that as k
assumes each integer consecutively from 0 to p − 1 (that is, once and only
once), n assumes each integer (in some order) from 0 to p− 1 once and only
once. For if one could find two different non-negative values of k, say k1, k2
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with (without loss of generality) k1 < k2 ≤ p−1, giving the same value for n,
then one would have 2D+k1m+8 ≡ 2D+k2m+8 (mod p2), in which case [with
(2, p) = 1] 2(k2−k1)m ≡ 1 (mod p2) with k2−k1 < p, which is impossible since
2 belongs to mp (mod p2) [the last being a well-known and easily proved
consequence of 2 belonging to m (mod p) while 2m 6≡ 1 (mod p2)]. And if
one could find two different non-negative values of n, say n1 < n2 ≤ p − 1,
given by the same value of k, then 2D+km + 8 ≡ R + n1p ≡ R + n2p, in
which case n1 ≡ n2 (mod p), contradicting non-negative n1 < n2 ≤ p − 1.
The above result thus proved can also be stated as there being a one-to-one
correspondence between the values of k, 0 ≤ k ≤ p − 1, and those of n,
0 ≤ n ≤ p − 1 [in 2D+km + 8 ≡ R + np (mod p2)]. And starting with k′,
n′ and 2E+k′m + 2, in place of k, n and 2D+km + 8 respectively, the same
result can be proved in the same way for the values of k′, 0 ≤ k′ ≤ p − 1,
and those of n′, 0 ≤ n′ ≤ p − 1 [in 2E+k′m + 2 ≡ R + n′p (mod p2) with
(from above) the same value of R]. Now take the (p+1)/2 consecutive values
of k′ running from (p − 1)/2 to p − 1; from the one-to-one correspondence
between k′ and n′, it follows that to these values of k′ will correspond exactly
(p + 1)/2 distinct values of n′. Assign these same (p + 1)/2 values of n′

to n; from the above one-to-one correspondence between k and n, to these
(p+1)/2 distinct values of n, there must correspond (p+1)/2 distinct values
of k ≤ p − 1, at least one of which is ≥ (p − 1)/2 on account of there being
at most (p − 1)/2 [< (p + 1)/2] non-negative values < (p − 1)/2 that k
can possibly assume. Any such k ≥ (p − 1)/2 may be chosen; call it K.
Take the value of n corresponding to K; call it N . Since n = N is one
of the same (p + 1)/2 values of n′ assigned above to n (i.e. the values of
n′ corresponding to the consecutive values of k′ running from (p − 1)/2 to
p − 1), n′ = N also corresponds to a value of k′ ≥ (p − 1)/2; call it K ′.
Thus for K, K ′, which correspond to n = n′ = N , one has 2D+Km + 8 ≡
R + Np ≡ 2E+K′m + 2 (mod p2) with K, K ′ ≥ (p − 1)/2—and as all values
of k, k′ are ≤ p − 1, it follows (since K, K ′ each assumes a value of k,
k′ respectively) that K, K ′ ≤ p − 1. Thus, with K, K ′ ≥ (p − 1)/2, both
D + Km, E + K ′m ≥ m(p − 1)/2; since D, E < m and K, K ′ ≤ p − 1, one
also has both D+Km, E+K ′m < m+(p−1)m = mp. The lemma follows.

Proof of Theorem 1. It follows from Lemma 1 that if a positive integer
t = t1 can be found simultaneously satisfying t ≡ 28 (mod 32)—in which
case t ≡ 0 (mod 4)—and t ≡ 0 (mod 32) and such that t = t1 itself is not
representable as in the hypothesis of lemma 1, then there is an infinity of
distinct positive (even) integers not so representable—which conditionally
proves Theorem 1. To prove the existence of such a number t1, again consider
t − 2a − 2b where, for the moment, without loss of generality, take a ≤ b. If
a 6= 1 or 3, then unless a = 0, b = 0 or 1, or unless a = 2, b = 2, 3 or 4, one
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has—remembering t ≡ 28 (mod 32)—t−2a −2b = 2s(4z +3) [s = 0, 2, or 3]
so that t − 2a − 2b 6= M2 + N2. One need then only consider (the principal

cases) a = 1 or 3 [each with a large number of b, namely those b such that
t − 2a − 2b ≥ 0 for t = t1; as will be seen later in the proof, t = t1 < 21417

so that it suffices to consider b ≤ 1416], and also (the special cases) a = 0,
b = 0 or 1, and also a = 2, b = 2, 3 or 4. Furthermore, if a 6= 1 or 3, then
t−2a = 2s(4z+3) [s = 0, 2 or 3] so that t−2a 6= M2+N2; if a = 1 or 3, these
cases coincide with those for t − 2a − 2b with a, b = 0 or a, b = 2 (already
included in the special cases above) so that t − 2a (≥ 0) is dealt with (i.e.
6= M2 +N2) if t−2a−2b (≥ 0) is dealt with. And t = 4(4z +3) 6= M2 +N2.
Returning then to t − 2a − 2b, to complete the proof that t = t1 is not
representable as in the hypothesis of lemma 1, it suffices to settle the above
principal and special cases set out for t − 2a − 2b, noting however that two
of these special cases, those of a = 0, b = 1 and a = 2, b = 3, are equivalent
to a = 1, b = 0 and a = 3, b = 2 respectively and hence are included in the
principal cases a = 1 or 3 if henceforth one allows a > b as well as a ≤ b,
which will in fact be allowed. (That leaves three of the above special cases
above to be dealt with later—a, b = 0, a, b = 2 and a = 2, b = 4.)

To settle these principal and special cases, first it is desirable to set out
system (1) and then system S, which will occupy a number of pages.

Now consider the following system (1) of congruences xi ≡ ai (mod mi)
[with 0 ≤ ai < mi], 1 ≤ i ≤ 139: for i = 1, 2, 3, every non-negative even

integer ≤ 1416 satisfies at least one of the corresponding congruences; the
same again is true for the congruences corresponding to 4 ≤ i ≤ 12; for
13 ≤ i ≤ 74, every positive odd integer ≤ 1416 satisfies at least one of the
corresponding congruences, while the same again is true for the congruences
corresponding to 75 ≤ i ≤ 139. All these assertions are verifiable numer-
ically in the most straightforward manner (3) and should be remembered
throughout the proof. System (1) is as follows:

For i = 1, 2, 3: 0 (mod 2), 0 (mod 3), 0 (mod 42).

For 4 ≤ i ≤ 12: 0 (mod 2), 0 (mod 10), 4 (mod 18), 3 (mod 5), 7 (mod 15),
16 (mod 30), 19 (mod 45), 34 (mod 45), 160 (mod 495).

For 13 ≤ i ≤ 40: 0 (mod 3), 9 (mod 10), 17 (mod 18), 8 (mod 11), 1 (mod 5),
9 (mod 14), 0 (mod 23), 5 (mod 58), 29 (mod 66), 33 (mod 35), 19 (mod 39), 15 (mod 82),
13 (mod 51), 49 (mod 106), 1 (mod 7), 75 (mod 130), 43 (mod 138), 25 (mod 162),
5 (mod 83), 7 (mod 178), 50 (mod 99), 145 (mod 210), 21 (mod 37), 185 (mod 226),
27 (mod 50), 49 (mod 94), 73 (mod 102), 20 (mod 155).

(3) The numerical calculations used for verification are omitted here because they are
completely straightforward and routine but would be so lengthy and tedious as to spoil
the continuity of the argument and its presentation. (They were all carried out by pen
and paper with occasional use of a pocket calculator.) There are one or two other similar
situations in the course of the paper, in which a pocket calculator was sometimes used.
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For 41 ≤ i ≤ 74: 1 (mod 13), 1 (mod 19), 1 (mod 22), 15 (mod 26), 1 (mod 29),
1 (mod 34), 1 (mod 41), 1 (mod 43), 43 (mod 51), 1 (mod 54), 21 (mod 73), 54 (mod 79),
81 (mod 91), 64 (mod 113), 104 (mod 153), 27 (mod 166), 47 (mod 198), 47 (mod 214),
203 (mod 230), 53 (mod 231), 227 (mod 239), 209 (mod 246), 231 (mod 266),
257 (mod 270), 1 (mod 411), 387 (mod 466), 385 (mod 522), 0 (mod 105), 357 (mod 378),
147 (mod 546), 189 (mod 378), 9 (mod 55), 89 (mod 114), 1 (mod 155).

For 75 ≤ i ≤ 105: 5 (mod 11), 3 (mod 5), 1 (mod 14), 12 (mod 23), 39 (mod 58),
21 (mod 66), 19 (mod 35), 32 (mod 39), 65 (mod 82), 24 (mod 51), 15 (mod 106), 3 (mod 7),
119 (mod 130), 83 (mod 138), 7 (mod 15), 137 (mod 162), 73 (mod 83), 87 (mod 178),
77 (mod 95), 68 (mod 99),5 (mod 210), 9 (mod 37), 203 (mod 226), 0 (mod 119),
1 (mod 50), 60 (mod 131), 92 (mod 135), 1 (mod 94), 57 (mod 102), 19 (mod 45),
34 (mod 45).

For 106 ≤ i ≤ 139: 3 (mod 13), 5 (mod 17), 3 (mod 19), 3 (mod 22), 1 (mod 26),
3 (mod 29), 3 (mod 34), 5 (mod 38), 3 (mod 41), 3 (mod 43), 11 (mod 50), 8 (mod 51),
3 (mod 54), 65 (mod 70), 5 (mod 78), 15 (mod 110), 78 (mod 121), 159 (mod 166),
146 (mod 175), 72 (mod 179), 73 (mod 183), 85 (mod 191), 68 (mod 251), 173 (mod 303),
145 (mod 323), 257 (mod 346), 235 (mod 350), 12 (mod 359), 3 (mod 411), 149 (mod 418),
12 (mod 419), 389 (mod 442), 375 (mod 490), 3 (mod 155).

Now for each mi (1 ≤ i ≤ 139), there is a corresponding pi ≡ 3 (mod 4)
such that 2 belongs to mi (mod pi) but such that 2mi 6≡ 1 (mod p2

i ); this
is verifiable numerically (see factor tables [1], [11] where the factorisations
demonstrate this); the pi will in fact be set out below. From the above
system (1), construct the following simultaneous congruence system:

• First, for i = 1, 2, 3 and for 13 ≤ i ≤ 40, take the congruences

t ≡ 8 + 2ai+kimi (mod p2
i ), the ki to be set out below;

• then, for 41 ≤ i ≤ 74, take (the congruences)

t ≡ 8 + 2ai (mod pi);

• then, for 4 ≤ i ≤ 12 and for 75 ≤ i ≤ 105, take

t ≡ 2 + 2ai+kimi (mod p2
i ), the ki to be set out below;

• finally, for 106 ≤ i ≤ 139, take

t ≡ 2 + 2ai (mod pi).

To this simultaneous system constructed from system (1) will now be at-
tached the following three additional simultaneous congruences [not ob-
tained from system (1)] with pi ≡ 3 (mod 4) for i = 140, 141 set out below,
as well as the pi for i = 142:

• for i = 140, take

t ≡ pi + 8 (mod p2
i );

• for i = 141, take

t ≡ pi + 20 (mod p2
i );

• last (for i = 142)—and crucially—take

t ≡ 28 (mod p5
i ).
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Taking these (142) congruences to be satisfied simultaneously (by t),
call the resulting simultaneous congruence system S. [In each of the above
systems, (1) and S, the congruences for i = 1, 2, 3, and 13 ≤ i ≤ 74, relate
to the principal case a = 3 (above) while those for 4 ≤ i ≤ 12, 75 ≤ i ≤ 139,
relate to the principal case a = 1 (above).]

The pi, 1 ≤ i ≤ 142, will now be given.

• First, p1 = 3, p2 = 7, p3 = 5419;
• then, for 4 ≤ i ≤ 12, pi = 3, 11, 19, 31, 151, 331, 631, 23311, 991 respec-

tively;
• then, for 13 ≤ i ≤ 40, pi takes on (the pi increasing with i) the

consecutive primes ≡ 3 (mod 4), beginning with pi = 7 (for i = 13)
and ending with 311 (for i = 40), with the exception of 151, 191,
239, 263, 271 [most of these pi are 2mi + 1 if mi is odd or (pi =)
mi + 1 if mi is even, the only exceptions being (those pi for) i =
17, 18, 27, 35, 37, 38, 39];

• then, for 41 ≤ i ≤ 74 (the mi increasing with i, for 41 ≤ i ≤ 67),
pi = 213−1, 219−1, 683, 2731, 1103, 43691, 13367, 431, 11119, 87211,
439, 2687, 911, 3391, 919, 499, 5347, 643, 691, 463, 479, 739, 4523, 811,
823, 467, 523, 29191, 379, 547, 119827, 3191, 571, 11471 respectively;

• then, for 75 ≤ i ≤ 105: first, for 75 ≤ i ≤ 103, pi takes on (the
pi increasing with i) the consecutive primes ≡ 3 (mod 4), beginning
with (pi =) 23 (for i = 75) and ending with 307 (for i = 103), while
for i = 104, 105, pi = 631, 23311 respectively [most of these pi are
equal to pi for smaller i (with equal values of mi of course); all such
duplications in value will be made explicit below];

• then, for 106 ≤ i ≤ 139 (with the mi for 106 ≤ i ≤ 138 increasing
with i) pi = 213 − 1, 217 − 1, 219 − 1, 683, 2731, 1103, 43691, 174763,
13367, 431, 4051, 2143, 87211, 86171, 22366891, 2971, 727, 1163, 39551,
359, 367, 383, 503, 607, 647, 347, 1051, 719, 823, 419, 839, 443, 491,
11471 respectively; indeed, for i = 106, 108 ≤ i ≤ 112, i = 114, 115,
118, 134, 139, the pi duplicate those (already listed) for 41 ≤ i ≤ 48,
i = 50, 65, 74 in the same order;

• finally, for i = 140, 141, and 142, pi = 487, 563, and 2 respectively.

Throughout the rest of the proof of Theorem 1, for each i, pi will have the
value given above. The ki in system S can be set out as follows (ki < pi for
every i for which ki is introduced):

• for i = 1, 2, 3, ki = 0;
• for 4 ≤ i ≤ 12, ki = 2, 5, 14, 0, 150, 330, 630, 23310, 990 respectively;
• for 13 ≤ i ≤ 19, ki = 0, 0, 4, 14, 0, 7, 16 respectively;
• for i = 22, 27, 40, ki = 25, 79, 310 respectively;
• for 75 ≤ i ≤ 78, ki = 6, 0, 28, 24 respectively;
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• for i = 81, 86, 89, 93, 98, 100, 101, 104, 105, ki = 1, 115, 150, 190,
238, 262, 270, 630, 23310 respectively;

• finally, (denoting i = i1 or i2 by i = [i1, i2]), for i = [20, 79], [21, 80],
[23, 82], [24, 83], [25, 84], [26, 85], [28, 87], [29, 88], [30, 90], [31, 91],
[32, 92], [33, 94], [34, 95], [35, 96], [36, 97], [37, 99], [38, 102], [39, 103],
in each bracketed pair of i, the existence of an appropriate ki for each
member of the pair will be shown.

The setting out of system S now being sufficiently complete, it must now
be shown that S has at least one positive integral solution that cannot be
represented as M2+N2+2a+2b or as M2+N2+2a, a, b ≥ 0, or as M2+N2

(i.e. as set out in Theorem 1). First, it must be shown that S has positive
integral solutions. To do this, it will first be shown that (those congruences
with) equal moduli have equal residues [equal residues (in connection with
equal moduli) will be used in this proof to mean residues in the same residue
class (for the equal moduli)]. To demonstrate this crucial property, one need
look at the various cases (in S) in turn. First, examine the equal moduli in
the congruences (mod p2

i ) in S. To begin with, for each of the bracketed pairs
of i listed above (the pi and thus the moduli p2

i being equal for both members

i of a pair) it is verifiable numerically in a straightforward manner that the
conditions in the hypothesis of Lemma 2 are satisfied [with p = pi for both i,
D = ai for the smaller i, E = ai for the larger i, and m = mi for both i,
remembering from above that 2 belongs to mi (mod pi) for both i with their
equal pi (so that the mi are of course equal); however, the ai are not equal
for both i in a bracketed pair; all ai, mi, pi are given numerically above] for
the mi, pi and the (two distinct) ai corresponding to the members of the
pair. Let k = ki for the smaller i of the pair, k′ = ki for the larger i, with
0 ≤ k, k′ ≤ p − 1. Then it follows from (the conclusion of) Lemma 2 that
for each bracketed pair of i, values for the (two) ki can be found (and then
chosen), corresponding to K and K ′ respectively in Lemma 2, in order that
the residues [in the congruences (for t in S) corresponding to the members
i of the pair], namely 8 + 2ai+kimi for the first ki and smaller i, 2 + 2ai+kimi

for the second ki and larger i, can be made congruent (mod p2
i ) [i.e. equal in

the above sense] for the equal moduli p2
i for both i of the pair. Proceeding to

the other (unbracketed) equal moduli p2
i : for i = 1, 4, one has p1 = p4 = 3,

k1 = 0, k4 = 2, m1 = m4 = 2, a1 = a4 = 0, all as given above, and indeed one
has as a result that t ≡ 8+2a1+k1m1 ≡ 2+2a4+k4m4 ≡ 0 (mod 32) [and t ≡ 0
(mod 9) also is necessary for the application of Lemma 1]. Similarly (with all
those pi, mi, ai, ki given above and using the corresponding congruences,
also given above, for t in system S) for i = 2, 13 (pi = 7); i = 5, 14
(pi = 11); i = 6, 15 (pi = 19); i = 7, 17, 76 (pi = 31); i = 8, 89 (pi = 151);
i = 10, 104 (pi = 631); i = 11, 105 (pi = 23311); i = 16, 75 (pi = 23);
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i = 18, 77 (pi = 43); i = 19, 78 (pi = 47); i = 22, 81 (pi = 71); i = 27,
86 (pi = 127); in each case, straightforward numerical calculation gives the
desired result (for the equality of the residues of the equal moduli p2

i ). Next,
one must examine the equal moduli in the congruences (mod pi) in S. As
has already been pointed out above when listing the pi in S, for i = 106,
108 ≤ i ≤ 112, i = 114, 115, 118, 134, 139, the pi duplicate those for
41 ≤ i ≤ 48, i = 50, 65, 74 and in the same order; the pi are given above
in the paragraph dealing with pi for 41 ≤ i ≤ 74. Again, in each case (for
each pair of i with [moduli] pi of equal value) using the relevant ai, mi,
pi in the corresponding congruences (all given above), a straightforward
numerical calculation shows that the residues are equal for equal moduli pi.
Hence all equal moduli in S have equal residues (the only congruence not
having modulus pi or p2

i has the modulus p5
i with pi = 2, corresponding to

i = 142; this modulus is distinct). The above crucial property has thus been
established. Next, observe that in S, pi of equal value occur to the same
power (whether it be 1 or 2) as moduli in the congruences containing them
and in S then give equal moduli that in turn give [from the above established
crucial property—while remembering, of course, that the coefficients of t in
the congruences in S are all equal (to 1)] equivalent congruences. That is,
in S, pi of equal value give equivalent congruences.

Now, starting with the congruence in system S for i = 1, one can select
this congruence and then select each congruence in S for each successive
i for which and only for which pi is not equal to the pi for all preceding

(smaller) i in S. In this way, one obtains a reduced simultaneous congruence
system, call it S′. The moduli and their congruences in S′ are those in S for
the following i: i = 1, 2, 3, 5 ≤ i ≤ 12, 16 ≤ i ≤ 74 except for i = 17; i = 93,
98, 100, 101, 107, 113, 116, 117, 119 ≤ i ≤ 138 except for i = 134; i = 140,
141, 142. Since each pi so eliminated from S (to obtain S′) is equal to a
pi (for a smaller i of course) allowed in S′, it follows from above that each
congruence eliminated from S (to obtain S′) is equivalent to a congruence
allowed in S′; it then follows that S and S′ are either both solvable or not
solvable, and if solvable have the same solutions (i.e. they are equivalent
systems). And since by the elimination process all pi in S′ are distinct, it
follows [since all moduli are distinct primes raised to powers (1, 2, or 5)]
that all moduli in S′ are distinct and relatively prime. Thus by the Chinese
Remainder Theorem, S′ and hence S (which has identical solutions) have
solutions which can be written as t = H + wP , for all integral w, where
P is the product of all the moduli in S′ and one may consider 0 < H <
P , H itself (fixed and) a solution of S′ and S (from S′, H 6= 0). Now by
straightforward calculation P < 10374 < 10426 < 21417; letting v be the
largest integer for which vP < 21417, then v ≥ 1052. Hence there are at least
(v ≥) 1052 (distinct) positive (integral) solutions of (S′ and hence) S which
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are < 21417; t = H + wP for all integral w such that 0 ≤ w ≤ v − 1 are
certainly such solutions. (See the principal cases above for the relevance of
21417.)

It will next be shown (in fact this will be the concern of virtually the rest
of the proof of Theorem 1) that at least one of these solutions t of S cannot
be represented as in Theorem 1 (4). (In what follows, t will be considered
positive though this may be mentioned occasionally as a reminder. And
obviously negative integers cannot be so represented.) Most of the remainder
of the proof concerns the principal cases for a = 1, 3; these will be settled
first. First, (in S) for (each) i = 1, 2, 3 and 13 ≤ i ≤ 40, [corresponding to
the principal case a = 3] one has t − 8 ≡ 2ai+kimi (mod p2

i ), from which
t − 8 ≡ 2ai+kimi (mod pi). Since, with 2 belonging to mi (mod pi), 2mi ≡
1 (mod pi) and hence 2mi|L| ≡ 1 (mod pi), it immediately follows from
congruence multiplication (for L ≥ 0) and from congruence division (for
L < 0, see footnote 5, second, third and especially the following sentence in
parenthesis) that t− 8 ≡ 2ai+kimi+Lmi (mod pi) for any integer L (whether
≥ 0 or < 0) for which ai + kimi + Lmi ≥ 0. But since pi ‖ 2mi − 1 (for
each i in S) it follows from a well-known result (see footnote 14 from the
third sentence onward) that 2mi|L| 6≡ 1 (mod p2

i ) if and only if pi ∤ L.
From this latter result, together with t − 8 ≡ 2ai+kimi (mod p2

i ), it follows
that if and only if pi ∤ L, t − 8 6≡ 2ai+kimi+Lmi (mod p2

i ) [for any L (≥ 0
or < 0) such that ai + kimi + Lmi ≥ 0] (5); then, if and only if pi ∤ L,

(4) Part of the proof of Theorem 1, particularly, much of the current part dealing
with the principal cases has its origins in the method used in [4], [5], [9], [10] (the method
of showing that there is an infinity of positive integers not representable as p + 2a, p
prime), the core of which is reproduced in footnote 8; indeed, compare the part of the
sixth sentence (of the paragraph of the main text in which this footnote occurs) involving
congruence multiplication to arrive at t − 8 ≡ 2ai+kmi+Lmi (mod pi) for L ≥ 0, and
especially footnote 8, to the references just given (though there is no kimi term in these
references, since this term has not been introduced in them but only added in the present
paper; footnote 8 is thus really a more precise reproduction of the core of the method
in these references, though with t − 8 and then with t − 2 in place of t). However, very
considerable modification and extension, as well as additional results and arguments not
part of that method, are needed and have been made throughout the present proof.

(5) If pi |L and L ≥ 0, then multiplying the congruence t − 8 ≡ 2ai+kimi (mod p2
i )

by 1 ≡ 2miL (mod p2
i ) gives t − 8 ≡ 2ai+kimi+Lmi (mod p2

i ) [here ai + kimi + Lmi ≥ 0].
The well-known rule for dividing congruences will now be stated for expediency—if x ≡ y
(mod m) and e ≡ f (mod m) where e |x and f | y, with (e, m) = 1 or equivalently
(f,m) = 1, then it follows x/e ≡ y/f (mod m). First (pi |L still) let L < 0, in which case
let x = t − 8, y = 2ai+kimi , e = 1, f = 2mi|L|, and m = p2

i ; (e, m) = 1; then one has
t− 8 ≡ 2ai+kimi+Lmi (mod p2

i ) for ai + kimi +Lmi ≥ 0. [The division rule with the same
x, y, e, f but with m = pi has been used above; if m = pi rather than p2

i , it does not
matter if pi |L or not.] Next, consider the cases where pi ∤ L. First take L > 0 (since pi ∤ L,
L 6= 0); then letting x = t − 8, y = 2ai+kimi+Lmi (with ai + kimi + Lmi > 0), e = t − 8,
and f = 2ai+kimi , m = p2

i , with obviously (f, m) = 1 [since for i 6= 142, (2, m) = 1],
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pi ‖ t − 8 − 2ai+kimi+Lmi , for (each) i = 1, 2, 3 and 13 ≤ i ≤ 40 (and for any
L such that ai + kimi + Lmi ≥ 0); this holds for every t satisfying S. Hence
[having pi ≡ 3 (mod 4)], for every t satisfying S, t−8−2b 6= M2 +N2 if for
some i (among those i just above) b = ai +kimi +Lmi [≡ ai (mod mi)] and
pi ∤ L, or equivalently if for some i (among those i just above) b satisfies
xi ≡ ai (mod mi) in system (1) and yet for that i, b 6≡ ai +kimi (mod mipi).
By exactly the same reasoning (including footnote 5 which applies exactly
the same way when replacing t − 8 by t − 2 throughout), for each i among
those 4 ≤ i ≤ 12 and 75 ≤ i ≤ 105 [corresponding to the principal case
a = 1], it follows that for every t satisfying S, one has pi ‖ t−2−2ai+kimi+Lmi

(for any L such that ai +kimi +Lmi ≥ 0) if and only if pi ∤ L. Hence [having
pi ≡ 3 (mod 4)] it follows, for every t satisfying S, that t−2−2b 6= M2 +N2

if for some i (among those i just above) b = ai+kimi+Lmi [≡ ai (mod mi)]
and pi ∤ L, or equivalently if for some i (among those i just above) b satisfies
xi ≡ ai (mod mi) in the system (1) and yet for that i, b 6≡ ai + kimi

(mod mipi) (6).

it would follow using the division rule that 1 ≡ 2mi|L| (mod p2
i ), a contradiction when

pi ∤ L. Hence, given e ≡ f (mod m), if L > 0, then x 6≡ y (mod m) for the latest x, y, e,
f , and m (= p2

i ). Next take L < 0; again let x = e = t− 8, but now let y = 2ai+kimi , and
f = 2ai+kimi+Lmi (i.e. reversing the previous choices of y and f) with ai+kimi+Lmi ≥ 0,
and let m = p2

i again, with obviously (f,m) = 1. Again, using the division rule it would
follow that 1 ≡ 2mi|L| (mod p2

i ), a contradiction when pi ∤ L. Hence, given now that
x ≡ y (mod m), if L ≤ 0, then e 6≡ f (mod m) for the latest x, y, e, f , m (= p2

i ). I have
chosen to present the details of this argument in a footnote rather than in the main text
to, hopefully, help the flow of the main text.

(6) Each pair of equal moduli (whether pi or p2
i ) in S which simultaneously deals with

two (usually distinct) residue classes of b, i.e. for 0 ≤ b ≤ 1416, and where one of these
residue classes is for 8+2b +M2 +N2 and the other is for 2+2b +M2+N2, genuinely does
double duty—for while each such pair indeed deals simultaneously with two residue classes
of b, one for each principal case, both its members are used in equivalent congruences in
S and hence only one member of each pair need be used in (only one congruence in) S′.
The trick of course is to ensure that such equal moduli do indeed have equal residues;
for those pairs of equal moduli p2

i , the introduction of the ki is usually necessary for this
purpose. Meanwhile, this use of equal moduli—allowing such double duty—is necessary
to keep the product of the moduli in S′ (and the distinct moduli in S) < 21417. Otherwise,
without the use of such equal moduli in S (in which case S′ would be synonymous with S
and would not even have to be introduced) many more distinct moduli (and some of these
far larger than most of those actually used here) would be needed (with the accompanying
increase in the number of congruences) and the product of the distinct moduli would then
greatly exceed 21417 (even if squares of pi were avoided, which in any case would cause
other considerable problems) in which case the proof would probably be impossible as
the existence of a solution < 21417 of S′ or S would be extremely unlikely and certainly
unprovable. And any corresponding increase of 21417 (to match this product of the distinct
moduli) would merely necessitate still considerably more (and many of them even larger)
distinct moduli, thus probably not retrieving the situation. Finally, the advantage of using
p2

i for many moduli in S (as opposed to pi) is to ensure (for as many values of b as possible)
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Next, for i = 1, 2, 3 and 13 ≤ i ≤ 40 [in system (1)], one must further
examine those b ≡ ai + kimi (mod mipi) [in which case b ≡ ai (mod mi)],
0 ≤ b ≤ 1416—since (from above) for each such b, p2

i | t − 8 − 2b for the
relevant i. It will be shown for each such b that either (and preferably)
there is, another, different value of i [among those i just above] for which
b ≡ ai (mod mi) but for which b 6≡ ai + kimi (mod mipi) [in which case,
from the reasoning above, one has, for every t satisfying S, (pi ‖ t − 8 − 2b

for this i and so) t 6= M2 + N2 + 8 + 2b for the b in question; i.e. this
b will have been dealt with for the principal case a = 3]—or if no such
additional i exists, that b ≡ ai (mod mi) for some i in system (1) such
that 41 ≤ i ≤ 74 (such b will also be dealt with below). And similarly, for
4 ≤ i ≤ 12 and 75 ≤ i ≤ 105, one must further examine those b ≡ ai + kimi

(mod mipi), 0 ≤ b ≤ 1416; again, for each such b, it will be shown that
either (and preferably) there is, another, different value of i [among those
4 ≤ i ≤ 12 and 75 ≤ i ≤ 105] for which b ≡ ai (mod mi) but for which
b 6≡ ai + kimi (mod mipi) [in which case from the reasoning above, one has,
for every t satisfying S, t 6= M2 + N2 + 2 + 2b for the b in question; i.e.
this b will have been dealt with for the principal case a = 1]—or if no such
additional i exists, that b ≡ ai (mod mi) for some i in system (1) such that
106 ≤ i ≤ 139 (such b also to be dealt with below). Those b, or any subset
thereof, which must be further examined as set out in this paragraph, will be
referred to as unresolved (values of) b ≤ 1416. And such unresolved b—i.e.
initially those non-negative b ≡ ai + kimi (mod mipi) and ≤ 1416—for
numerically specified values of i will be referred to as unresolved b ≤ 1416
for those values of i (7). (When b ≤ 1416 is omitted with unresolved b, it is
understood.) As will become apparent, the unresolved b ≤ 1416 will steadily
“thin out” as an increasing number of them are satisfactorily dealt with or
resolved for the purpose of proving the theorem. [There remain values of
b—in connection with t − 8 − 2b—which satisfy system (1) for only i such
that 41 ≤ i ≤ 74 (leading only to congruences in S not involving p2

i ), and
also values of b—in connection with t − 2 − 2b—which satisfy system (1)
for only i such that 106 ≤ i ≤ 139 (leading only to congruences in S not
involving p2

i ); these values of b will also be dealt with later in the proof.]

Now to deal with the unresolved values of b, starting with the even ones
for the principal case a = 3.

that for each b, pi ‖ t − 8 − 2b (for some i) and pi ‖ t − 2 − 2b (for some i), while enabling
the identification of those b (as few as possible) for which both these “ ‖ ” relationships
(or at least one of them) must yet be shown (for at least one value of t < 21417). And the
values of the ki needed to ensure that the members of a pair of equal moduli have equal
residues (mod p2

i ) are easily seen to be connected.

(7) It should be mentioned that judicious choices of ki often help to reduce the number
of unresolved integers. This will become apparent as the proof proceeds.



SUMS OF SQUARES AND POWERS 247

First, looking at i = 1, with x1 ≡ 0 (mod 2) in system (1) satisfied
by all non-negative even integers, the only even values of b (≤ 1416) that
are unresolved are [those unresolved for i = 1, i.e.] b ≡ 0 (mod 6) [from
b ≡ a1 + k1m1 (mod m1p1) with a1 = 0, m1 = 2, k1 = 0, p1 = 3; by part of
the same argument, p1 ‖ t− 8− 2b for b ≡ 0 (mod 2) but 6≡ 0 (mod 6)]. And
these values of b [≡ 0 (mod 6)] are just those even values satisfying [xi ≡ ai

(mod mi) for i = 2, i.e. satisfying] x2 ≡ 0 (mod 3); then the only even values
of b ≤ 1416 that are now unresolved are [those unresolved for i = 2, i.e.]
b ≡ 0 (mod 21) [from b = a2 + k2m2 (mod m2p2) with a2 = 0, m2 = 3,
k2 = 0, p2 = 7; by part of the same argument, p2 ‖ t−8−2b for b ≡ 0 (mod 6)
but 6≡ 0 (mod 21)]. And those values of b [≡ 0 (mod 21)] that are even [≡ 0
(mod 42)] are just those values of b satisfying x3 ≡ 0 (mod 42); then the
only even values of b ≤ 1416 that are now unresolved are [those unresolved
for i = 3, i.e.] b ≡ 0 (mod 227598) [from b ≡ a3 + k3m3 (mod m3p3) with
a3 = 0, m3 = 42, k3 = 0, p3 = 5419; p3 ‖ t − 8 − 2b for b ≡ 0 (mod 42) but
6≡ 0 (mod 227598)]. The only such non-negative b ≤ 1416 is b = 0, in which
case t − 8 − 2b ≡ 3 (mod 4) 6= M2 + N2. Hence, for any non-negative even

b ≤ 1416, t− 8− 2b 6= M2 + N2—for every t satisfying S. Next to deal with
the unresolved even values of b for the principal case a = 1. First, looking at
i = 4, with x4 ≡ 0 (mod 2) in system (1) satisfied by all non-negative even
integers, the only even values of b (≤ 1416) that are unresolved are [those
unresolved for i = 4, i.e.] b ≡ 4 (mod 6) [from b ≡ a4 + k4m4 (mod m4p4)
with a4 = 0, m4 = 2, k4 = 2, p4 = 3; p4 ‖ t − 2 − 2b for b ≡ 0 (mod 2) but
6≡ 4 (mod 6)]. Now for each of the following values of i, the only unresolved
even values of b (≤ 1416) are the following (determined as above using the
appropriate ai, ki, mi, pi): b ≡ 50 (mod 110), b ≡ 256 (mod 342), b ≡ 3
(mod 155), for i = 5, 6, 7 respectively [for i = 8, 9, 10, 11, 12, still using
b ≡ ai + kimi (mod mipi) of course, it is easily seen numerically that for
each i, there are no non-negative even b ≤ 1416 that are unresolved]. Since
each value of b ≡ 4 (mod 6)—from above, those b ≡ 4 (mod 6) being the
only unresolved even values of b—satisfies xi ≡ ai (mod mi) in system (1)
for at least one i such that 5 ≤ i ≤ 11 [seen by writing each ai (mod mi),
5 ≤ i ≤ 11, in terms of residue classes (mod 90) and comparing with the
residue classes (mod 90) corresponding to b ≡ 4 (mod 6)] and since there are
no unresolved even values of b ≤ 1416 for 8 ≤ i ≤ 11, the only even values of
b now unresolved are those even values of b unresolved for i = 5, 6, 7. [It is
clear from the whole argument so far that as regards all other non-negative
even b ≤ 1416, for each such b, pi ‖ t − 2 − 2b for some i, 4 ≤ i ≤ 11.] But
from above, these remaining unresolved even values of b must also satisfy
b ≡ 4 (mod 6); hence the only values of b then actually remaining unresolved
for i = 5 are those b ≡ 50 (mod 110) which simultaneously satisfy b ≡ 4
(mod 6), and thus only those b ≡ 160 (mod 330), while the only even values
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of b actually remaining unresolved for i = 7 are those b ≡ 3 (mod 155)
which simultaneously satisfy b ≡ 4 (mod 6), and thus only those b ≡ 778
(mod 930). [Those b ≡ 256 (mod 342) for i = 6 are also unresolved, a
matter which will be dealt with below; already those b ≡ 4 (mod 6) and so
are not “thinned” by the latter congruence.] The non-negative even values
of b ≤ 1416 actually remaining unresolved for i = 5, 7 are then precisely
the following: (for i = 5) b = 160, 490, 820, 1150, and (for i = 7) b = 778.
However, b = 490, 778 satisfy x6 ≡ 4 (mod 18), but those b 6≡ 256 (mod 342)
so that p6 = 19 ‖ t − 2 − 2b for those b. And b = 160, 1150 satisfy x12 ≡ 160
(mod 495), but as already asserted, those b 6≡ ai + kimi (mod mipi) for
i = 12, so that p12 = 991 ‖ t−2−2b for those b. And b = 820 satisfies xi ≡ ai

(mod mi) for i = 91, so that (from Lemma 2 applied to the bracketed pair
[31, 91], which as shown below implies that there are no unresolved values of
b ≤ 1416 of either parity for i = 91) p91 = 167 ‖ t− 2− 2b for b = 820. Thus,
the only even values of b ≤ 1416 now unresolved are those even values of b
(≤ 1416) unresolved for i = 6, i.e. (from above) those b ≡ 256 (mod 342).
Now the only values of b ≡ 4 (mod 6) satisfying x6 ≡ 4 (mod 18), namely
those b ≡ 4 (mod 18), but which do not satisfy xi ≡ ai (mod mi) for i = 5,
7 ≤ i ≤ 11, are those b ≡ 4 (mod 90) [which is seen when writing each ai

(mod mi), 5 ≤ i ≤ 11, in terms of residue classes (mod 90) as above]. Since
the smallest non-negative integer satisfying simultaneously b ≡ 4 (mod 90)
and b ≡ 256 (mod 342) is b = 1624, there is no unresolved b ≤ 1416 for
i = 6 that has not already been resolved through consideration of i = 5,
7 ≤ i ≤ 11. Hence there are no unresolved (non-negative) even values of
b ≤ 1416 remaining. [Indeed, it is clear from the argument given so far that
for each non-negative even b ≤ 1416, pi ‖ t−2−2b for some i with 4 ≤ i ≤ 12
or i = 91, where pi ≡ 3 (mod 4).] Hence for any non-negative even b ≤ 1416,
t − 2 − 2b 6= M2 + N2—for every t satisfying S.

Thus for the principal cases a = 1, 3, all non-negative even b ≤ 1416
have been dealt with—for every t satisfying S—though only for (positive)
t < 21417 will this be of value in proving Theorem 1. Next, consider the
bracketed pairs of i listed above; these have already been discussed during
the earlier use of Lemma 2 in connection with equal residues for equal moduli
in S. Indeed, one has (from Lemma 2, using the same substitutions as earlier
in its hypothesis and conclusion) that in each bracketed pair of i, both
ki (for the two values of i in the pair) may be chosen together so that
[not only are (as above) the appropriate residues (mod p2

i ) equal but also]
(pi − 1)mi/2 ≤ ai + kimi < mipi for both i in the pair. And checking the
mi and pi for each pair (of i)—for both i, the mi are equal and the pi are
equal—it follows (numerically) that (pi − 1)mi/2 > 1416 for both i in each
pair, so that ai + kimi > 1416 for both i of each pair; also since from above
ai+kimi < mipi for both i of each pair, it follows that ai+kimi−Lmipi < 0
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for L ≥ 1. Hence in each pair, for both i and the corresponding values of
b ≡ ai (mod mi), there is no non-negative b ≤ 1416 such that b ≡ ai + kimi

(mod mipi). Thus for every i in the (seventeen) bracketed pairs, there are
no (non-negative) unresolved b ≤ 1416—from which of course, it follows (for
b ≤ 1416) that in each pair, for the smaller i, pi ‖ t−8−2b, b ≡ ai (mod mi),
while for the larger i, pi ‖ t− 2− 2b, b ≡ ai (mod mi), pi ≡ 3 (mod 4). [And
while indeed, this conclusion for the bracketed pairs applies to those b of
either parity, the only even b for which it is needed is b = 820 (see above in
connection with the even values of b) satisfying the congruence for i = 91
in system (1), thus needing (this conclusion for) the bracketed pair [31, 91].
Otherwise this conclusion for the bracketed pairs will be needed only for
odd b.]

Now to deal with all positive odd b ≤ 1416 and hence ≤ 1415 for each of
the two principal cases. [It should be remembered that every positive odd
integer ≤ 1415 satisfies at least one of the congruences in (1) corresponding
to 13 ≤ i ≤ 74 (for the principal case a = 3); the same is true for the congru-
ences corresponding to 75 ≤ i ≤ 139 (for the principal case a = 1).] First,
looking at each i such that 13 ≤ i ≤ 40 (i.e. relating to t − 8 − 2b, for the
principal case a = 3) the only non-negative odd values of b ≤ 1416 that are
unresolved are those b ≤ 1415 and satisfying at least one of the congruences
b ≡ 0 (mod 21) [≡ 21 (mod 42)], b ≡ 9 (mod 110), b ≡ 89 (mod 342), b ≡ 162
(mod 253), b ≡ 1 (mod 155), b ≡ 107 (mod 602), b ≡ 368 (mod 1081),
b ≡ 908 (mod 2485), b ≡ 554 (mod 889), b ≡ 48070 (mod 48205), for i = 13,
14, 15, 16, 17, 18, 19, 22, 27, 40 respectively [as before, of course, these are
easily verified from the values of ai, ki, mi, pi inserted into b ≡ ai + kimi

(mod mipi); it is easily seen that there actually are no unresolved odd
b ≤ 1415 for i = 19, 22, 27, 40. The values of i with 13 ≤ i ≤ 40 other
than the ten values just listed have been dealt with already in the bracketed
pairs; there are, as just shown using Lemma 2, no unresolved odd values of
b ≤ 1415 for these i]. The unresolved odd values of b ≤ 1415 then are (for
i = 13) b = 21, 231, 441, 651, 861, 1071, 1281, 189, 399, 609, 819, 1029, 1239,
63, 483, 525, 1365, 777, 987 [with the remaining (fifteen) odd values of b ≡ 0
(mod 21) and ≤ 1415 to be listed and dealt with later]; (for i = 14) b = 9,
119, 229, 339, 449, 559, 669, 779, 889, 999, 1109, 1219, 1329; (for i = 15)
b = 89, 431, 773, 1115; (for i = 16) b = 415, 921; (for i = 17) b = 1, 311, 621,
931, 1241; (for i = 18) b = 107, 709, 1311. However, b = 9, 339, 669, 999,
1329, 921, 621, 1311 satisfy [xi ≡ ai (mod mi) for i = 13, i.e.] (b =) x13 ≡ 0
(mod 3) but for these b, b 6≡ 0 (mod 21) so that (for these b) p13 = 7 ‖ t−8−2b.
And b = 89, 709, 189, 399, 609, 819, 1029, 1239 satisfy x14 ≡ 9 (mod 10) but
6≡ 9 (mod 110) so that p14 = 11 ‖ t− 8− 2b for these b. And b = 107 satisfies
x15 ≡ 17 (mod 18) but 6≡ 89 (mod 342) so that p15 = 19 ‖ t−8−2b for this b.
And b = 63, 525, 987 satisfy x16 ≡ 8 (mod 11) but 6≡ 162 (mod 253) so that
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p16 = 23 ‖ t − 8 − 2b for these b. And b = 431, 21, 231, 441, 651, 861, 1071,
1281 satisfy x17 ≡ 1 (mod 5) but 6≡ 1 (mod 155) so that p17 = 31 ‖ t−8−2b

for these b. And b = 779, 1115, 415, 1241 satisfy x18 ≡ 9 (mod 14) but 6≡ 107
(mod 602) so that p18 = 43 ‖ t − 8 − 2b for these b. And b = 483 satisfies
x19 ≡ 0 (mod 23) but 6≡ 368 (mod 1081) so that p19 = 47 ‖ t − 8 − 2b for
this b. And b = 931 satisfies x25 ≡ 13 (mod 51) so that (from the above
conclusion for the bracketed pairs applied to [25, 84]) p25 = 103 ‖ t − 8 − 2b

for b = 931. And b = 1109 satisfies x26 ≡ 49 (mod 106) so that (remem-
bering the bracketed pair [26, 85]) p26 = 107 ‖ t − 8 − 2b for b = 1109. And
b = 449, 1219, 1 satisfy x27 ≡ 1 (mod 7) but 6≡ 554 (mod 889) so that
p27 = 127 ‖ t − 8 − 2b for these b. And b = 777 satisfies x37 ≡ 27 (mod 50)
so that (remembering the bracketed pair [37, 99]) p37 = 251 ‖ t − 8 − 2b for
b = 777. And b = 1365 satisfies x38 ≡ 49 (mod 94) so that (remember-
ing the bracketed pair [38, 102]) p38 = 283 ‖ t − 8 − 2b for b = 1365. And
b = 889 satisfies x39 ≡ 73 (mod 102) so that (remembering the bracketed
pair [39, 103]) p39 = 307 ‖ t − 8 − 2b for b = 889. Next, b = 119, 229, 559
satisfy x72 ≡ 9 (mod 55) so that from the argument (8) in footnote 8 applied
to the corresponding congruence in S, p72 = 3191 | t−8−2b for these b. Also,
b = 773 satisfies x73 ≡ 89 (mod 114), so that one has similarly from the cor-
responding congruence in S, p73 = 571 | t−8−2b for this b. And also, b = 311
satisfies x74 ≡ 1 (mod 155), so that from the corresponding congruence in S,
p74 = 11471 | t−8−2b for this b. The remaining fifteen odd values referred to
above of b ≡ 0 (mod 21) and ≤ 1415 will now be dealt with. First, b = 105,
1197 satisfy x41 ≡ 1 (mod 13) so that (from the argument in footnote 8 ap-
plied to the corresponding congruence in S) p41 = 213−1 | t−8−2b for these
b. Next, b = 1407 satisfies x42 ≡ 1 (mod 19) so that p42 = 219−1 | t−8−2b for
this b. Next, b = 903 satisfies x43 ≡ 1 (mod 22) so that p43 = 683 | t−8−2b for
this b. Next, b = 273 satisfies x46 ≡ 1 (mod 34) so that p46 = 43691 | t−8−2b

for this b. Next, b = 315, 735, 945, 1155 satisfy x68 ≡ 0 (mod 105) so that
p68 = 29191 | t − 8 − 2b for these b. Next b = 357, 1113 satisfy x69 ≡ 357
(mod 378) so that p69 = 379 | t−8−2b for these b. Next, b = 147, 693 satisfy
x70 ≡ 147 (mod 546) so that p70 = 547 | t−8−2b for these b. Finally, b = 567,
1323 satisfy x71 ≡ 189 (mod 378) so that p71 = 119827 | t−8−2b for these b.

(8) For any i such that 41 ≤ i ≤ 74, from system S above, t−8 ≡ 2ai (mod pi). Since
[with 2 belonging to mi (mod pi)] 2mi ≡ 1 (mod pi), it follows that 2Lmi ≡ 1 (mod pi) for
L ≥ 0. Thus by congruence multiplication one has, for every t satisfying S, t−8 ≡ 2ai+Lmi

(mod pi) [ai < mi < pi, L ≥ 0]. Hence, if b = ai + Lmi [i.e. b satisfies xi ≡ ai (mod mi)
in system (1)] for some i, 41 ≤ i ≤ 74, then, for every t satisfying S, pi | t − 8 − 2b (for
that i). Similarly, it can been shown that if b satisfies xi ≡ ai (mod mi) in system (1)
for some i, 106 ≤ i ≤ 139, then, for every t satisfying S, pi | t − 2 − 2b for that i. [It is
clear that 2 belonging to mi (mod pi) is a sufficient but not a necessary condition in this
argument. All that is actually needed is that 2mi ≡ 1 (mod pi).] Again, I have chosen to
present this argument in a footnote, so as to help the flow of the main text.
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Thus, to sum up, for every t satisfying S, it has been shown that for each
odd b ≤ 1415 which satisfies xi ≡ ai (mod mi) for some i with 13 ≤ i ≤ 40,
pi ‖ t−8−2b for that i (in S), pi ≡ 3 (mod 4)—with the following exceptions:
b = 119, 229, 559 [(satisfying xi ≡ ai (mod mi)) for i = 72], b = 773 [for
i = 73], b = 311 [for i = 74], b = 105, 1197, 903, 1407, 273, 315, 735,
945, 1155, 147, 693, 567, 1323, 357, 1113 [each (of these last fifteen values)
satisfying system (1) for at least one of i = 41, 42, 43, 46, 68, 69, 70, 71 as
set out above] making a total of twenty distinct exceptions, each of which
is still an unresolved b (corresponding to t− 8− 2b)—and for each of which
[from (the argument in) footnote 8 (applied to the appropriate congruence
in S)] for every t satisfying S, pi | t − 8 − 2b for some i in S, 41 ≤ i ≤ 74,
where for each of these twenty values of b, i is as just set out.

Next, looking at each i such that 75 ≤ i ≤ 105 (i.e. relating to t− 2− 2b,
for the principal case a = 1), the only non-negative odd values of b ≤ 1416
that are unresolved are those b ≤ 1415 and satisfying at least one of the
congruences b ≡ 71 (mod 253), b ≡ 3 (mod 155), b ≡ 393 (mod 602)
for i = 75, 76, 77 respectively [using b ≡ ai + kimi (mod mipi) for each
i of course, these congruences are easily verified numerically, while using
b ≡ ai + kimi (mod mipi) for i = 78, 81, 86, 89, 93, 98, 100, 101, 104, 105,
it is easily verified numerically from these ten congruences that there are
actually no unresolved non-negative odd b ≤ 1415 for these ten values of
i; the other values of i with 75 ≤ i ≤ 105 have already been dealt with in
the bracketed pairs—there are, as already shown, no unresolved odd values
of b ≤ 1415 for these bracketed i.] The unresolved odd values of b ≤ 1415,
then, are (for i = 75) b = 71, 577, 1083; (for i = 76) b = 3, 313, 623, 933,
1243; (for i = 77) b = 393, 995. However, b = 71 satisfies x77 ≡ 1 (mod 14)
but b 6≡ 393 (mod 602) so that p77 = 43 ‖ t−2−2b for this b. And b = 577, 3
satisfy x86 ≡ 3 (mod 7) but b 6≡ ai +kimi (mod mipi) for i = 86, i.e. b 6≡ 808
(mod 889), so that p86 = 127 ‖ t−2−2b for these b. And b = 1083, 393 satisfy
x76 ≡ 3 (mod 5) but b 6≡ 3 (mod 155) so that p76 = 31 ‖ t − 2 − 2b for these
b. And b = 313, 995 satisfy x75 ≡ 5 (mod 11) but b 6≡ 71 (mod 253) so that
p75 = 23 ‖ t−2−2b for these b. And b = 623 satisfies x90 ≡ 137 (mod 162) (so
that, from the above conclusion for the bracketed pairs applied to [30, 90])
p90 = 163 ‖ t − 2 − 2b for this b. Finally, b = 933, 1243 satisfy (for i = 139)
xi ≡ 3 (mod 155) so that (from the argument in footnote 8 applied to the
corresponding congruence in S) p139 = 11471 | t − 2 − 2b for these b.

Thus, to sum up, for every t satisfying S, it has been shown that for each
odd b ≤ 1415 which satisfies xi ≡ ai (mod mi) for some i with 75 ≤ i ≤ 105,
pi ‖ t−2−2b for that i (in S), pi ≡ 3 (mod 4), with the following exceptions:
b = 933, 1243 [satisfying system (1) for i = 139] making a total of two
distinct exceptions, each of which is still an unresolved b (corresponding to
t−2−2b) and for each of which—from (the argument in) footnote 8 (applied
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to the corresponding congruence in S)—for every t satisfying S, pi | t−2−2b

for i = 139 in S.

There are also exactly seventy odd values of b ≤ 1415 (in connection with
t−8−2b, the principal case a = 3), each of which satisfies xi ≡ ai (mod mi)
only for (at least) one i with 41 ≤ i ≤ 74 (thus, among the congruences in S
concerning a = 3, leading only to (at least) one congruence whose modulus
is pi and not p2

i )—these b may be determined by straightforward use of
xi ≡ ai (mod mi), 13 ≤ i ≤ 40 to verify their existence and number (i.e.
finding all odd b ≤ 1415 satisfying at least one of these congruences and then
those that do not satisfy any of them) (9). And these seventy odd values of
b will also be referred to as unresolved (corresponding to t − 8 − 2b)—since
they have not yet been satisfactorily dealt with for the purpose of proving
this theorem. However, for each of these (seventy) values of b as well, again
from footnote 8 it follows that for every t satisfying S, pi | t − 8 − 2b for
some i, 41 ≤ i ≤ 74 in S, [pi ≡ 3 (mod 4)], where b ≡ ai (mod mi) for
that i. Together with the twenty unresolved values of b (corresponding to
t − 8 − 2b) already given in the first summing up—and to which footnote 8
also applies—there are as yet a total of ninety unresolved b corresponding
to t − 8 − 2b. And there are also exactly 160 odd values of b ≤ 1415 (in
connection with t− 2− 2b, the principal case a = 1), each of which satisfies
xi ≡ ai (mod mi) only for (at least) one i such that 106 ≤ i ≤ 139 (thus,
among the congruences in S concerning a = 1, leading only to (at least) one
congruence whose modulus is pi and not p2

i )—these b may be determined
by straightforward use of the xi ≡ ai (mod mi), 75 ≤ i ≤ 105, to verify their
existence and number (see footnote 9 which would apply here as well, with
the corresponding changes in the values of i). These 160 odd values of b will
also be referred to as unresolved (corresponding to t− 2− 2b)—again, since
they have not yet been satisfactorily dealt with for the purpose of proving
this theorem. However, for each of these (160) values of b as well, [again
from footnote 8] for any t satisfying S, pi | t − 2 − 2b for some i such that
106 ≤ i ≤ 139 in S, [pi ≡ 3 (mod 4)], where b ≡ ai (mod mi) for that i.
Together with the two unresolved values of b (for t − 2 − 2b) already given
in the second summing up—and to which footnote 8 also applies—there are

(9) This numerical work can be done in conjunction with the verification (referred
to) in footnote 3—since one is identifying the odd integers taken on by system (1) for
each 13 ≤ i ≤ 74, which itself is part of the lengthy verification referred to in footnote 3.
(One might also cross-check the odd integers already found as above to satisfy system
(1) only for (at least) one i with 41 ≤ i ≤ 74 against those satisfying system (1) for at
least one i, 13 ≤ i ≤ 40—the two mutually exclusive sets together should take on all
positive odd integers ≤ 1416). The whole process, including the verification referred to in
footnote 3, involves a lengthy list of consecutive positive odd numbers—even without the
cross-checking.
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as yet 162 unresolved values of b corresponding to t − 2 − 2b. And while
some of the unresolved b for t − 8 − 2b are also unresolved b for t − 2 − 2b,
in the present situation, each of these values of b must be counted twice (as
will become apparent from the rest of the argument below; see footnote 13
especially). Hence, altogether there are as yet (90 + 162 =) 252 unresolved
values of b.

Now take t = H + wP , H and P already defined in setting out what
are the demonstrated solutions (to S′ and hence) to S. And from above,
for t < 21417, w can be taken consecutively from 0 through all integers to
v − 1 with fixed v ≥ 1052; however, it suffices here to take 0 ≤ w ≤ 345,
giving t = H + wP (< 21417) for consecutive integers 0 ≤ w ≤ 345; it is
these (346) values of t, (positive) solutions < 21417 to S, which will now
be of greatest significance. First, to deal with the (90) remaining unresolved
values of b corresponding to t−8−2b. Given any (remaining unresolved value
of) b corresponding to t− 8− 2b, it follows from above that for the given b,
pi |H+wP−8−2b for some i, 41 ≤ i ≤ 74, and for all w, where (with pi being
one of the above (10) assigned in S to 41 ≤ i ≤ 74) pi ≥ 379 > 346. Then,
if for the given b, p2

i |H + wP − 8 − 2b for some w such that 0 ≤ w ≤ 345,
say w0, then since (again remembering that pi is one of the above assigned
to 41 ≤ i ≤ 74) pi ‖P , p2

i |H + wP − 8 − 2b for the given b only if w ≡ w0

(mod pi) and, since pi > 346 (while 0 ≤ w0 ≤ 345), only if w = w0 [since for
any other w ≡ w0 (mod pi) one has either w ≥ w0 + pi > w0 + 346 > 345,
or w ≤ w0 − pi < w0 − 346 < 0]. Hence, for the given b, pi ‖H +wP − 8− 2b

for all 0 ≤ w ≤ 345 except for w0; in other words, for the given b there is
(at most (11)) one value of w—among the (346) values 0 ≤ w ≤ 345—for
which it is possible that H + wP − 8 − 2b = M2 + N2. Since this argument
indeed applies to any given (remaining unresolved value of) b corresponding
to t− 8− 2b, there are (at most) 90 values of w, 0 ≤ w ≤ 345, for which it is
possible that H+wP−8−2b = M2+N2—with the (90) remaining unresolved
values of b and hence (since for all other non-negative values of b ≤ 1416, it
has been shown above that H + wP − 8 − 2b 6= M2 + N2 for any w and a

(10) If a given b satisfies xi ≡ ai (mod mi), 41 ≤ i ≤ 74, for more than one i, then
there will be more than one pi (among the above assigned pi) for which pi |H+wP −8−2b

and which may thus be used for that value of b. The argument here needs (any) one such
pi to be used; for example, the pi used may be the (one) pi assigned above to the smallest
i (41 ≤ i ≤ 74) for which (that value of) b ≡ ai (mod mi), the other pi then becoming
unnecessary to use and can be ignored here for that value of b—as the argument in the text
will make clear. This comment, with 106 ≤ i ≤ 139 in place of 41 ≤ i ≤ 74, will also apply
to (the same argument for) any given (remaining unresolved value of) b corresponding to
t − 2 − 2b.

(11) Since pi ≥ 379 > 346, it obviously may be that there is no value of w, 0 ≤ w ≤ 345,
for which this is possible for the given b; in fact, the larger the pi (for the given b) actually
is, the greater the likelihood of there being no such w, 0 ≤ w ≤ 345.
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fortiori for 0 ≤ w ≤ 345) with b such that 0 ≤ b ≤ 1416. Then, by the same
argument applied to the 162 remaining unresolved values of b corresponding
to t− 2− 2b (with 106 ≤ i ≤ 139 in place of 41 ≤ i ≤ 74 and 347 in place of
379 [but both > 346]), there are (at most (12)) 162 values of w, 0 ≤ w ≤ 345,
for which it is possible that H + wP − 2 − 2b = M2 + N2—with the (162)
remaining unresolved values of b and hence (since for all other non-negative
values of b ≤ 1416, it has been shown that H + wP − 2 − 2b 6= M2 + N2

for any w and a fortiori for 0 ≤ w ≤ 345) with b such that 0 ≤ b ≤ 1416.
Thus, there are (at least) 346 − (90 + 162) = 94 (distinct) values (13) of w,
0 ≤ w ≤ 345, for each of which both H + wP − 8 − 2b 6= M2 + N2 and

H + wP − 2 − 2b 6= M2 + N2—with b such that 0 ≤ b ≤ 1416. The above
principal cases of a = 1, 3 can thus be finally settled—remembering that for
each of these [(at least) 94 distinct] positive values of w, t = H+wP < 21417;
any of these values of t can then be taken to settle the principal cases.

There are still three special cases to be dealt with (referred to at the
beginning of this proof; as has been pointed out there as well, the other
[two] special cases—a = 0, b = 1 and a = 2, b = 3—are covered by the
principal cases). From i = 140 (with the corresponding congruence) in S,
pi = 487 ‖ t − 23, 487 ≡ 3 (mod 4), so that t 6= M2 + N2 + 23 and thus
t 6= M2 +N2 +22 +22 for any t (and a fortiori any t < 21417). From i = 141
in S, pi = 563 ‖ t− 20, 563 ≡ 3 (mod 4), so that t 6= M2 + N2 + 20 and thus
t 6= M2 + N2 + 22 + 24 for any t. Finally, from i = 2 in S, t ≡ 9 (mod 49)
so that t− 2 ≡ 7 (mod 72), and since 7 ‖ t− 2, t 6= M2 + N2 + 2 from which
t 6= M2 +N2 +20 +20 for any t. Thus the three special cases are disposed of
for any t—most significantly for any of the [(at least) 94] positive values of
t above settling the principal cases. Then (see the beginning of this proof)
each of these values of t is not representable as in the hypothesis of Lemma 1.

Given any of these values of t, say t1; then applying Lemma 1 to t = t1
[also noting of course, from i = 1, 4 in S, (t1 =) t ≡ 0 (mod 9), and from
i = 142 in S, (t1 =) t ≡ 0 (mod 4)], the proof is complete and Theorem 1
follows.

Comment. It should be noted that there seems to be no way of using
fewer than two principal cases in the proof of Theorem 1. If one tries, for
example, to use 30 (mod 32), then there are still two unavoidable principal

(12) The previous footnote applies here as well (with 347 in place of 379) for any given
(unresolved value of) b.

(13) If a value of b is an unresolved value for both t − 8 − 2b and t − 2 − 2b, then
one—and a different—value of w0 may be involved in each case—thus the possibility of
having to eliminate (i.e. subtract from 346) two values of w altogether for that b. Thus
any such b, as pointed out above, has to be and has been counted twice (in calculating the
total number [252] of unresolved values) to give an upper bound to the number of values
of w to be subtracted from 346.
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cases corresponding to a = 0 and a = 2. Failure to address a = 0 would
undermine the use of Lemma 1 (as mentioned in footnote 1). Use of e.g. 24
(mod 32) would require three principal cases, while use of e.g. 0 (mod 32)
or 16 (mod 32) would no longer limit the number of principal cases at all.
Nor would changing the modulus 32 help. As for non-representability (as
in Theorem 1) of odd integers (see later in the paper) it is possible to use
only one principal case—but then there seems to be no equivalent to or
suitable modification of Lemma 1, so that only a finite number of non-
representable (odd) integers can be proved (as far as I can see, by present
methods anyway).

Theorem 2. For any fixed positive k ≡ 2 (mod 8) and k ≥ 10, there is

an infinity of positive (even) integers not representable as M2 +N2+ka +kb

or as M2 + N2 + ka (or as M2 + N2), a, b ≥ 0.

Proof. Let k1 = k + 1 ≡ 3 (mod 4). It will now be shown that k3
12

n

cannot be represented as above (for the k in question) for n sufficiently
large (≥ 8). Let K = k3

12
n − ka − kb ≥ 0 (since if K < 0, certainly K 6=

M2 + N2); then a, b < logk(k
3
12

n) = 3 logk k1 + n logk 2, and for k ≥ 10,
n ≥ 8, one has 3 logk k1 + n logk 2 ≤ 3 log10 11 + n log10 2 < n − 2, so that
a, b < n− 2, from which a, b ≤ n− 3. Without loss of generality, take a ≥ b.
Now K = 2b(k3

12
n−b − 2a−bqa − qb) with k = 2q, q ≡ 1 (mod 4) [so that

qa ≡ qb ≡ 1 (mod 4)]. First, if a = b, it follows, remembering that n− b ≥ 3,
that K = 2b+1I with I = k3

12
n−b−1−qb ≡ 3 (mod 4), so that K 6= M2 +N2.

Next, let a ≥ b + 2; one has n − b > a − b ≥ 2, in which case K = 2bJ with
J ≡ 3 (mod 4), so that again K 6= M2 + N2. Finally, if a = b + 1, from
above one has K = k3

12
n − kb(k + 1) and since k1 ‖ k + 1 while (k1, k) = 1,

it follows that k1 ‖K so that again K 6= M2 + N2. Thus K 6= M2 + N2

with a ≥ b (and thus K 6= M2 + N2). Now let K = k3
12

n − ka ≥ 0; one has
a ≤ logk(k

3
12

n) and then, arguing as above, one again has that for k ≥ 10
and n ≥ 8, a < n− 2. Now K = 2a(k3

12
n−a − qa) with n−a > 2 and k = 2q,

q ≡ 1 (mod 4). Then K = 2aH with H ≡ 3 (mod 4) so that K 6= M2 + N2.
And finally, with k1 ≡ 3 (mod 4), k3

12
n itself 6= M2 + N2.

Now, for the purpose of proving Theorem 3, the following lemma is
needed.

Lemma 3. Take any fixed positive k ≡ 5 (mod 8). Then for each suc-

cessive n ≥ 1, there exists a (prime) pn | k
∏n−1

i=1
pi + 1 with

∏n−1
i=1 pi taken as

1 if n = 1, where pn ≡ 3 (mod 4) and pn 6= pi, i < n.

Proof. k + 1 ≡ 6 (mod 8) so that there is indeed a p1 | k + 1 with p1 ≡ 3
(mod 4); p1 6= pi, i < 1 since pi for i < 1 does not exist here. The lemma is
thus proven for n = 1. Now assume the lemma holds for each m such that

1 ≤ m ≤ n, n ≥ 1, n arbitrary but fixed. Let D = k
∏n

i=1
pi + 1/k

∏n−1

i=1
pi + 1,
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n ≥ 1. Let E = D/pn. D is immediately seen to be (positive) integral. Now

since pαn
n ‖ k

∏n−1

i=1
pi + 1 where (from the above assumption of the lemma

for n) αn ≥ 1, then pαn+1
n ‖ k

∏n
i=1

pi + 1 (14). Hence pn ‖D (so that E is
positive integral) and one thus has pn ∤ E. And when n ≥ 2, from the above
assumption of the lemma for each m, 1 ≤ m ≤ n, one has for each m with

1 ≤ m ≤ n − 1, pm | k
∏m−1

i=1
pi + 1 | k

∏n−1

i=1
pi + 1, so that pαm

m ‖ k
∏n−1

i=1
pi + 1

(αm ≥ 1); then remembering (from the above assumption of the lemma
for n) that pm 6= pn, it follows (from the first result in footnote 14) that
(for each m with 1 ≤ m ≤ n− 1) pαm

m ‖ k
∏n

i=1
pi + 1. Hence, for each m with

1 ≤ m ≤ n − 1, pm ∤ D and thus pm ∤ E for n ≥ 2; the same also can be
considered to hold (in a vacuous sense) for n = 1, the pm for m ≤ n − 1
(= 0) being non-existent. Since D ≡ 1 (mod 4) [because its numerator and
denominator are each ≡ 6 (mod 8)] and since (from the above assumption
of the lemma for n) pn ≡ 3 (mod 4), one has E ≡ 3 (mod 4) [so that E > 1].
And having shown that pm ∤ E for each m with 1 ≤ m ≤ n, it follows that
there exists a pn+1 |E (> 1) such that pn+1 6= pm, 1 ≤ m ≤ n and such
that pn+1 ≡ 3 (mod 4); also (since pn+1 |E) one has pn+1 | k

∏n
i=1

pi + 1. The
lemma thus holds for n + 1 (and the induction is complete).

Comment. This routine lemma could very easily be deduced from the
well-known result usually attributed to Bang, except for the necessity of
pn ≡ 3 (mod 4). Some of the steps in the proof of the lemma could in fact
be used and may have been used to prove a special case of Bang’s result.
However, even if that is so, using his result would not significantly simplify
an already straightforward proof (which the present way is also more self-
contained). Because of the requirement pn ≡ 3 (mod 4), some of the steps
that could be or may have been used in proving Bang’s result would have
to be used again here explicitly anyway (and with a few added as well) to
ensure pn ≡ 3 (mod 4).

Theorem 3. For each fixed (positive) k ≡ 5 (mod 8), there is an infinity

of positive even integers neither representable as M2 + N2 + ka + kb nor as

M2 + N2 + ka (nor as M2 + N2), a, b ≥ 0.

(14) Use is made in this proof of a well-known (and easily proved) result—that (for
p any odd prime) if pα ‖ kf + 1, α ≥ 1, and if d = ef with pβ ‖ e, β ≥ 0 and 2 ∤ e,
then pα+β ‖ kd + 1. For the two applications in the (proof of the) present lemma, β = 1
and β = 0. This result is closely related to the following well-known and easily proved
result—if pα ‖ kf − 1, α ≥ 1, and if d = ef with pβ ‖ e, β ≥ 0, then pα+β ‖ kd − 1. It is
indeed possible to use the latter result in Theorem 1. However, one of the consequences of
this result—namely that if p ‖ 2f − 1, then p ‖ 2ef − 1 if p ∤ e, while p2 | 2ef − 1 if p | e—is
even more easily proved on its own and is all that is actually needed in Theorem 1—and
also easily leads to the well-known result [that 2 belongs to mp (mod p2) if 2 belongs to
m (mod p) and if p ‖ 2m − 1] used in Lemma 2.
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Proof. Let t ≡ 0 (mod 8) [which will apply to all t throughout the proof].
For any such t, t − ka ≡ 3 (mod 4) [ 6= M2 + N2] for a ≥ 0. And for any
such t and for a, b ≥ 0 with a, b having the same parity, t − ka − kb ≡ 6
(mod 8) 6= M2+N2. Now let a, b (≥ 0) be of opposite parity, taking (without
loss of generality) a > b, so that a − b is (positive and) odd (and will be so
throughout the rest of the proof). From Lemma 3, for each successive n ≥ 1,
there exists a pn ≡ 3 (mod 4) such that

pn | k
∏n−1

i=1
pi + 1 where pn 6= pi, i < n(1)

and where if n = 1,
∏n−1

i=1 pi is then to be taken as 1 as in Lemma 3. Now
first [in (1)] assume (the first of two alternatives) that for each successive

n ≥ 1, p2
n ∤ k

∏n−1

i=1
pi + 1, so that here, for each successive n ≥ 1,

pn ‖ k
∏n−1

i=1
pi + 1.(2)

Then take t = 24
∏n

i=1 p2
i , n ≥ 2. Also assume, for the moment, that such

t < k
∏n

i=1
pi . For any n ≥ 2, consider t − ka − kb = t − kb(ka−b + 1) ≥ 0;

then a, b <
∏n

i=1 pi and so a − b <
∏n

i=1 pi. Then for each a − b <
∏n

i=1 pi,
there is some r, 1 ≤ r ≤ n, such that pr ∤ a − b in which case, for the
smallest such r—from (1) with that r in place of n (but still allowing r = n
when applicable) and from the fact that

∏r−1
i=1 pi | a − b (the quotient being

odd, including when r = 1 in which case
∏r−1

i=1 pi is of course [as above, for
n = 1] taken as 1)—one has pr | k

a−b + 1; while for that (same smallest)
r—from (2) with r in place of n (but still allowing r = n when applicable)
and from pr ∤ a − b while

∏r−1
i=1 pi | a − b and from (the first result referred

to in) footnote 14, with p = pr, α = 1, f =
∏r−1

i=1 pi, d = a − b, and β = 0
[since if β 6= 0, pr | e | a − b]—one has pr ‖ ka−b + 1. Then with (pr, k) = 1,
one has pr ‖ ka + kb so that, with p2

r | t above, pr ‖ t − ka − kb and thus
t− ka − kb 6= M2 +N2 for a, b (of opposite parity and hence from above for
a, b) ≥ 0. Now it remains to prove the above assumption that t < k

∏n
i=1

pi

for n ≥ 2. If k ≥ 5 and Q ≥ 4, then 24Q2 < 5Q ≤ kQ (as is easily proved by
induction on Q); letting Q =

∏n
i=1 pi, one then has t < k

∏n
i=1

pi for n ≥ 2,
since k ≥ 5 and Q =

∏n
i=1 pi ≥ 3(7) > 4 for n ≥ 2 (15).

(15) One may in fact, for each successive n ≥ 2, take the simultaneous system

t ≡ 0
(

mod 8

n
∏

i=1

p2
i

)

, t ≡ 27 (mod 81), t < k
∏

n

i=1
pi .

It can then be shown in the same way that for each n, the set of solutions to the system

satisfying Theorem 3 [still, of course, under the assumption that pn ‖ k
∏n−1

i=1
pi + 1 for

each successive n ≥ 1]; as n increases, the number of integers in each corresponding
set (of solutions to the above system for n) increases with enormous rapidity though
the “density” of the set decreases, since the modulus involved increases with n (so that
the integers satisfying Theorem 3 still do not have “positive density”). There can be some
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Next assume [in (1)] the other alternative—that there exists some g ≥ 1

such that pn ‖ k
∏n−1

i=1
pi + 1 for each successive positive n < g, but for n = g,

p2
g | k

∏g−1

i=1
pi + 1,(3)

where if g = 1,
∏g−1

i=1 pi is taken to be 1.
Then take the simultaneous congruence system (call it S)

t ≡ 0
(

mod 8

g−1
∏

i=1

p2
i

)

, t ≡ pg (mod p2
g)

From the Chinese Remainder Theorem, there is an infinity (in fact an A.P.)
of positive integers t satisfying S. Then for each (odd) a− b, either pr ∤ a− b
for some r, 1 ≤ r ≤ g, and the smallest such r < g, in which case, for that
(smallest) r, pr ‖ t−ka−kb by the relevant part of the same argument as used
for the first alternative in (1); or pr ∤ a − b for some r ≤ g and the smallest

such r = g, in which case from (3), p2
g | k

∏g−1

i=1
pi + 1|ka−b + 1|ka + kb so that,

with pg ‖ t in S above, one has pg ‖ t − ka − kb ; or finally
∏g

i=1 pi | a − b, in
which case [remembering (3) and the first result referred to in footnote 14]

one now has p3
g | k

∏g
i=1

pi + 1 | ka−b + 1 | ka + kb so that, with pg ‖ t in S, it

again follows that pg ‖ t − ka − kb. Thus t − ka − kb 6= M2 + N2 for (a, b
of opposite parity and hence for) a, b ≥ 0. Finally, if t = 24

∏n
i=1 p2

i , n ≥ 2
[corresponding to (2), the first alternative in (1)], either 3 ‖ t or 33 ‖ t so that
t 6= M2 + N2; while if t satisfies system S [corresponding to (3), the other
alternative in (1)], pg ‖ t, so that again t 6= M2 + N2.

Thus corresponding to either alternative in (1), the theorem follows.

It remains to consider the other values of k (> 1) not already dealt with in
the previous theorems. One can show that for each of these values of k, there
is an infinity (and even a positive density of integers) not representable (16)
as M2 +N2 +ka +kb or as M2 +N2 +ka or as M2 +N2. And since M2 +N2

may be odd or even with virtually equal frequency, the question of parity,
i.e. representing just odd integers or representing just even integers has only
very secondary importance. Still, in this section, some distinction will be
made, even for values of k in earlier theorems. And, as already said, the
existence of “positive density” will be investigated for all values of k not

“overlap” between sets for successive n, though this is easily dealt with. I have an aesthetic
preference in the present proof to use just t = 24

∏n

i=1
p2

i as above and thus relegating
the system in this footnote to passing mention and not actually using it in the proof of
Theorem 3. But I do feel a mention is called for.

(16) For brevity, the relevant integers will be said to be not representable “as above”
(for a, b ≥ 0 or for a, b ≥ 1 as the case may be). When the integers not so representable
are expressed explicitly in terms of k, these integers are of course understood not to be so
representable for that k (as in the case of Theorems 2 and 3).
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covered by the previous theorems; furthermore, it will be brought up for
some of the values of k in earlier theorems. The proofs are, for most part,
just indicated.

• If k ≡ 0 or 4 (mod 8), take t ≡ 3 (mod 4). From the relevant residues—
those of t, ka, kb (mod 4)—it follows that each such t cannot be rep-
resented as above (for a, b ≥ 1). Also, if k ≡ 0 (mod 8), from the
relevant residues (mod 8), it follows that all t ≡ 6 (mod 8) cannot be
represented as above (a, b ≥ 1).

• If k ≡ 1 (mod 8), take t ≡ 24 (mod 72) [which ≡ 0 (mod 8) of course].
From the relevant residues (mod 8) and from 3 ‖ t, it follows that every
such t cannot be represented as above (a, b ≥ 0).

• If k ≡ 3, 6 or 7 (mod 8), take t ≡ 2k+k3 (mod k4). Then k ‖ t−ka−kb

if a, b ≥ 1, unless a = b = 1, in which case k3 ‖ t−ka−kb. Also k ‖ t−ka

if a ≥ 1. And k ‖ t. [Note that if k ≡ 6 (mod 8), then k = 2(4L + 3).]
Thus, all such t cannot be represented as above (a, b ≥ 1) for the k in
question. Consider further k ≡ 6 (mod 8); then t ≡ 2k + k3 (mod k4)
implies t ≡ 0 (mod 4). Take (without loss of generality) a ≥ b; then
if a ≥ 2, b = 0, one has t − ka − kb ≡ 3 (mod 4) while if a = 0,
t − ka ≡ 3 (mod 4). Thus if k ≡ 6 (mod 8), t cannot be represented
as above if a, b ≥ 0 unless a = 0 or 1, b = 0. It is then easily shown
that if k ≡ 6 (mod 8), “almost all” t ≡ 2k + k3 (mod k4) cannot be
represented as above if a, b ≥ 0. (Here and in what follows, it would be
straightforward to replace each “almost all” in the constructed A.P.
by all the integers in an A.P. with a larger common difference [or
modulus, in congruence terms]).

Collecting all results arrived at so far, it is thus the case that for each
k ≥ 2, there is an infinity of positive integers not representable as above [for
a, b ≥ 0 unless k ≡ 3 (mod 4), in which case for a, b ≥ 1]—the primary goal
of this paper—[and a “positive density” of such non-representable integers
for k = 0, 1, 3, 4, 6 or 7 (mod 8)].

Now consider k ≡ 0 or 4 (mod 8) [k ≡ 0 (mod 4)], in which case k ≡ 4I
(mod 64), I assuming every non-negative integer ≤ 15. Then using residues
(mod 64), it can be shown straightforwardly that if k ≡ M (mod 64), then
“almost all” t ≡ M ′ (mod 64) cannot be represented as above (a, b ≥ 0) if
for M = 0, 4, 12, 16, 32, 36 or 48, M ′ = 60; if for M = 8, M ′ = 56; if for
M = 20, 28 or 52, M ′ = 12; if for M = 24 or 56, M ′ = 48; if for M = 40,
M ′ = 24; if for M = 44, M ′ = 28; if for M = 60, M ′ = 44—[the “almost all”
comes from one or more of the cases (depending on M) a = b = 0, a = b = 1,
a = 2, b = 1 (equivalent to a = 1, b = 2)]. These results (17), together with

(17) To be sure, for k ≡ 0 (mod 8), the even integers t ≡ 6 (mod 8) cannot be
represented as above (a, b ≥ 1), as already pointed out. However, for the even integers t
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some previous ones in this paper, show that for each k ≥ 2, there is an in-
finity of even integers not representable as above for either a, b ≥ 0 if k 6≡ 3
(mod 4), or if k ≡ 3 (mod 4), for a, b ≥ 1 [and for k = 0, 1, 3, 4, 6 or 7 (mod 8)
a “positive density” of even integers not representable as above—and more
will be said later about the “positive density” of even integers not repre-
sentable as above for some special cases of k ≡ 2 or 5 (mod 8)]. And for each
k ≡ 0, 3, 4 or 7 (mod 8), it has been shown that there is an infinity (and also
a “positive density”) of odd integers not representable as above (a, b ≥ 1).
And for each k ≡ 6 (mod 8), taking t ≡ 2k + k3 (mod k4/16) and simulta-
neously t ≡ 7 (mod 8), it can be shown straightforwardly that “almost all”
such (odd) t cannot be represented as above for a, b ≥ 0 [in a manner similar
to that for k ≡ 6 (mod 8) above—remembering that k4/16 = (k/2)4 where
k/2 ≡ 3 (mod 4), and that k/2 ‖ t − ka − kb for a, b ≥ 1, unless a = b = 1
in which case (k/2)3 ‖ t − ka − kb, and also remembering that k/2 ‖ t − ka,
a ≥ 1, and that k/2 ‖ t. Also using residues (mod 8), one can deal with a or
b = 0]; thus there is an infinity (and also a “positive density”) of odd integers
not representable as above (a, b ≥ 0). And if k ≡ 1 (mod 8) and also ≡ 1
(mod 16), then using the relevant residues (mod 16), it can be shown very
straightforwardly that “almost all” t ≡ 13 (mod 16) cannot be represented
as above (a, b ≥ 0), i.e. there is also an infinity (and “positive density”) of
odd integers not representable as above [for k ≡ 1 (mod 16)].

Next, consider those k ≡ 1 (mod 8) and also ≡ 9 (mod 16). While there
is a large subset of such k for each of which it is possible to show an infinity
of odd integers not representable as above (though some of these k are more
easily dealt with than others—see “more accessible” values of k, below),
there still remains an infinity of k ≡ 9 (mod 16) for each of which it is not
possible at present to show an infinity of odd numbers not representable as
above.

Next, consider k ≡ 2 or 5 (mod 8). Apart from “more accessible” values
of k (to be elucidated below) for which it is straightforward to show an
infinity of positive odd integers not representable as above—while it still
seems most likely that for each (“less accessible” and hence each) value of
k ≡ 2 or 5 (mod 8) there is an infinity of odd integers not representable as
above (indeed there are some suggestive heuristic arguments), actual proofs
again seem out of reach at present for at least most “less accessible” k.

However, as regards the especially interesting case of k = 2, the follow-
ing might be worth noting. It is indeed possible to generate lengthy finite
sequences of positive odd integers not representable as above (a, b ≥ 0). If

just shown not to be representable as above for k ≡ 0 (mod 8), a, b ≥ 1 may be replaced
by a, b ≥ 0, not a significant extension, but one that might just as well be made since
k ≡ 4 (mod 8) can be handled along with k ≡ 0 (mod 8) and cannot be handled—as
regards even integers not representable as above—in a simpler way.
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one considers the (positive) integers t ≡ 15 (mod 16), the only way (apart
from a small number of exceptional values of a and b easily dealt with) that
t might be represented as M2 + N2 + 2a + 2b (taking a ≤ b without loss of
generality) is if a = 1 [whereas for t ≡ 28 (mod 32) in Theorem 1 above,
one has to deal with both a = 1 and a = 3 simultaneously—the so-called
principal cases (see above)]. Thus, generating finite blocks of integers for
which t ≡ 15 (mod 16) is not representable as above is far easier than for
t ≡ 28 (mod 32) [which has been done in Theorem 1 above]. However, in
dealing with odd integers, there is probably no equivalent to Lemma 1 above,
and without that, generating an infinity of odd integers not representable
as above seems completely out of reach at present.

Among “more accessible” values of k ≡ 2 or 5 (mod 8) and k ≡ 9
(mod 16)—as far as an infinity of odd integers not representable as above—
are those k for which there is a prime P ≡ 3 (mod 4) such that P | k, and
also those k (whether or not there is such a prime P | k) for which there is a
prime P ≡ 3 (mod 4) such that P 2 | k − 1; while for k ≡ 9 (mod 16), those
values of k for which there is a prime P ≡ 3 (mod 4) such that P 2 | k + 1
are also “more accessible” (so that for k ≡ 9 (mod 16), those k for which
there is a prime P ≡ 3 (mod 4) such that P 2 | k2 − 1 are among those
“more accessible”). And for all these “more accessible” values of k, it is
straightforward enough to show that there is not only an infinity but also a
“positive density” of odd integers not representable as above.

It might be added that while it has already been shown that for each
k ≡ 2 (mod 8) there is an infinity of even integers not representable as above,
in fact for each of the same “more accessible” values (already given in the
previous paragraph) of k ≡ 2 (mod 8) pertaining to non-representable odd

integers, it can also be shown that the even integers not representable as
above have “positive density”. And for k ≡ 5 (mod 8), while for every such k
it has been shown that there is an infinity of even integers not representable
as above, the “more accessible” values of k—as far as non-representable even
integers are concerned—are those for which there is a prime P ≡ 3 (mod 4)
such that P | k and also those k for which there is a prime P ≡ 3 (mod 4)
such that P 2 | k2 − 1; for each of these “more accessible” values of k, the
even integers not representable as above can in fact be shown—and in a
straightforward enough manner—to have “positive density”. And for each
of those k to which (3) for some g ≥ 1 applies in the latter part of the
proof of Theorem 3, it is shown (in that proof) that the even integers not
representable as above have “positive density” [though those k to which (3)
for g = 1 applies are already handled by the “more accessible” values of k
just given for k ≡ 5 (mod 8)].

Positive integers not representable as the sum of two squares and (at
most) one power of k will now be further discussed.



262 R. C. CROCKER

The results above for the non-representability of positive integers show,
of course, a fortiori that—first, for each k ≥ 2, there is an infinity (and for
some of these k, a “positive density”) of positive integers not representable
as M2 + N2 + ka or as M2 + N2; second, for each k ≥ 2, there is an infinity
(and for some of these k a “positive density”) of positive even integers not
so representable; third, that for each k ≡ 0, 3, 4, 6 or 7 (mod 8) and for
each k ≡ 1 (mod 16), there is an infinity (and also a “positive density”)
of positive odd integers not so representable. Furthermore, that for each
k ≡ 1 (mod 8) [which of course includes k ≡ 1 (mod 16) just above] there
is an infinity (and also a “positive density”) of positive odd integers not so
representable follows by letting b = 0 in the first [t ≡ 24 (mod 72)] of the
above results for k ≡ 1 (mod 8). Finally, that for each k ≡ 2 or 5 (mod 8)
there is an infinity (and for some of these k, a “positive density”) of positive
odd integers not so representable follows by letting b = 0 in Theorems 1, 2
and 3 respectively. Thus for each k ≥ 2, one has an infinity (and for some
of these k, a “positive density”) of positive odd integers not representable
as M2 + N2 + ka or as M2 + N2.

However, in light of considerations of independence of proof and, in some
cases, simplicity of proof, or the existence of a “positive density”, or even
the existence of a greater “positive density” than would be obtainable from
above, or (least significantly) allowing for all k ≥ 2 the inclusion of a = 0,
the following will be listed and can be proved straightforwardly along lines
used above (concerning non-representability as the sum of two squares and
two [or fewer] powers of k) for k ≡ 0, 1, 3, 4, 6 or 7 (mod 8) or for “more
accessible” k ≡ 2 or 5 (mod 8).

For each k ≥ 2, there are the following infinite classes, or class, of integers
t not representable as M2 + N2 + ka, a ≥ 0, or as M2 + N2.

• If k ≡ 0, 2, 4 or 6 (mod 8), i.e. if k is even, “almost all” integers t ≡ 6
(mod 8); if k ≡ 2 or 6 (mod 8), “almost all” integers t ≡ 3 (mod 4),
while if k ≡ 0 or 4 (mod 8), all t ≡ 7 (mod 8).

• If k ≡ 1 (mod 8), all t ≡ 24 (mod 72) and all t ≡ 23 (mod 24).
• If k ≡ 3 or 7 (mod 8), “almost all” t ≡ 2k + 2k2 (mod 8k2) [t then

being even] and “almost all” t ≡ 2k+k2 (mod 8k2) [t then being odd].
• If k ≡ 5 (mod 8), all t ≡ 24 (mod 72).

All these classes of t have “positive density” of course.

• Finally, if k ≡ 5 (mod 8), the infinity of odd positive integers t − kb

for any fixed b (such that t − kb > 0; included are each of the infinite
classes t− 1, t− k) where the odd integers t satisfy Theorem 3 above.
While for the “more accessible” (as defined earlier) k ≡ 5 (mod 8) and
for those k ≡ 5 (mod 8) to which (3) for g > 1 applies in the latter
part of the proof of Theorem 3 [those k ≡ 5 (mod 8) to which (3)
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for g = 1 applies are already dealt with by those “more accessible”
values of k] the non-representable odd t can be shown to have “positive
density”, there is an infinity of k ≡ 5 (mod 8) [e.g. 5, 13, 29, 61] for
which “positive density” of non-representable odd integers is an open
question. Indeed, it is only for the non-representability of odd integers
for each k from this infinite subset of k ≡ 5 (mod 8) that there are
any values of k for which the existence of “positive density” of t is
unknown and indeed suspect.

Briefest note on other additive problems. It might be worth noting
that there is an infinity of positive integers not representable as the sum of
two squares and two fourth powers, namely, those integers 23(16a), for all
a ≥ 0. Furthermore, these integers are not representable as the sum of a
square and six fourth powers.

The proofs parallel and are almost identical to the well-known proof that
the integers 79 · 16a, a ≥ 0, are not the sum of fifteen fourth powers and
hence they need not be written out here.

It may be worthwhile to distinguish additive problems (those involving
representations of all integers, or predesignated subsets of them, by sums)
by the number of different types of summands involved in the problem in
question. First, there are those problems involving just one kind of sum-
mand—where the summands are all primes or all squares or all cubes etc.
Among these problems are the Goldbach problems involving only prime
summands, the Waring problem (including the case of squares of course),
and the Waring–Goldbach problem. Then there are those problems involving
two types of summand—such as the “almost” Goldbach problem, or (those
integers representable by) the sum of a prime and a kth power (k ≥ 2), or
the sum of two squares and a kth power, or the sum of a prime and two
squares, or the sum of a prime and two powers of k (k ≥ 2), or the prob-
lems dealt with in the present paper. Obviously there are problems involving
three or more types of summand such as (those integers representable as)
the sum of a prime, a square and a cube or the sum of a prime, a square,
and a biquadrate (18). It seems clear that the problems involving just one
kind of summand are generally regarded to be of the greatest interest, while
those involving just two kinds come next, and those involving three kinds
next etc. [The only exception might be the problem of representing integers
z2
1 + z3

2 + · · · + zk
k−1, k ≥ 4, where the summands have an obvious relation

to each other through the powers 2, 3, . . . , k being consecutive.]

Postscript. As pointed out at the beginning of this article, the main
problem treated here is suggested by that of representing (positive) integers

(18) In the context of this classification two summands are considered different types,
even if one is a proper subset of the other, such as squares and biquadrates.
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(odd or even as the case may be) as the sum of a prime and a fixed maximum
number of powers of (fixed) k ≥ 2, the replacement of a prime summand by
the sum of two squares being not uncommon. In particular, Theorem 1 of the
present paper corresponds to an analogous result concerning odd integers
not representable as the sum of a prime and two (or fewer) powers of 2; the
latter result has been arrived at in a paper of mine on which I would like to
close by making a few comments.

1. It has been shown in [3] that there is an infinity of distinct positive
odd integers not representable as p + 2a + 2b (nor as p + 2a). I would like
to refute the claim made by P. X. Gallagher at the end of his paper [6]
that according to De Polignac [7], Euler had shown this result concerning
p + 2a + 2b by using a different method—indeed, Gallagher’s claim in [6] is
totally inaccurate. I have read De Polignac’s article [7]—he makes no men-
tion of Euler ever having solved, or even having considered, this problem. In
fact, neither Euler, to the best of my knowledge, nor De Polignac ever refers
in any way to the problem of the representation of positive odd numbers as
p + 2a + 2b. Furthermore, De Polignac does not even credit Euler with hav-
ing solved—and neither Euler nor De Polignac ever did solve—the much less
difficult (though still non-trivial) problem of proving that there is an infinity
of positive odd numbers not representable as p + 2a (a result first proved in
[4] and then by a different method in [2]). All that Euler managed to do, ac-
cording to De Polignac, was to find just one number (959) not representable
as p + 2a, thus in effect (to De Polignac’s obvious chagrin!) disproving De
Polignac’s conjecture that every odd number ≥ 3 is representable as p + 2a.

2. [3] gives a link between the size of the factors of infinitely many Fer-
mat numbers and the number—call it N(x)—of positive odd integers ≤ x
representable as p + 2a + 2b. If one can establish, for all sufficiently large x
(or even for every x in a set consisting of an infinity, no matter how “thin”,
of the integers 22n

− 1) a sufficiently strong—stronger than at present but
possibly attainable—lower bound for N(x), then lower bounds for the small-
est factors of infinitely many Fermat numbers can be arrived at—through
[3]—which are far better than any known at present.

3. In light of the well-known history of results showing the unreliabil-
ity of numerical evidence suggesting the contrary to these results, it might
be interesting to search for the smallest (non-trivial) positive odd integer
not representable as the sum of a prime and (at most) two powers of 2.
Regardless of the numerical choices that can be made in [3], the positive
odd integers not so representable which are generated by the method of [3]
are in fact enormous; if there are smaller ones, trial and error (using a fast
computer) would probably be the way to carry out the suggested search.
Perhaps such a number (or if it cannot be found, a lower bound for it)
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would be large enough to again emphasize how unreliable and misleading
numerical evidence can be (or in the present instance could have been) con-
cerning number-theoretic results (after all, if positive integers up to e.g. 1015

are representable as the sum of a prime and [at most] two powers of 2, one
could certainly be misled into suspecting the contrary to what has in fact
been proven in [3]).

4. I used the nomenclature “overlapping” congruence system where terms
like “superabundant” (congruence system) or “covering” system are fre-
quently used. I did so because of the way the term in Hungarian in [5] was
originally translated for me by a professional translator. Personally, I prefer
the term “all-inclusive” although I have never seen this term actually used
for such systems. For the purpose of showing that there is an infinity of (pos-
itive) odd integers not representable as p + 2a, the one such “overlapping”
(or “all-inclusive”) congruence system used for this purpose in [9] and [10]
is 0 (mod 2), 0 (mod 3), 1 (mod 4), 3 (mod 8), 7 (mod 12), 23 (mod 24)
[this system is based on the one in [4] with the same moduli]; it has as few
congruences as any system used for the above problem for p + 2a can have.

5. In the numerical “overlapping” system (1) on page 106 of [3], I noticed
long ago that the congruence 37 (mod 120) is redundant in that the previous
congruences [in system (1)] 13 (mod 48) and 37 (mod 48) absorb it com-
pletely. Thus either the modulus 120 can be omitted completely or one can
replace the final congruence [in system (1)] 229 (mod 360) by 229 (mod 120)
or equivalently 109 (mod 120); in either case the number of congruences in
(1) can be reduced by one. I have also found a third possibility—replacing
37 (mod 120) by 73 (mod 120) at the same time replacing 229 (mod 360)
by—and strengthening it to—49 (mod 180) while keeping the other two
congruences (mod 180) already in (1); the two congruences (mod 144) can
then be eliminated, reducing the number of congruences in (1) by two. The
modulus 180 can be used three times since there are three distinct primes pi

such that 2 belongs to 180 (mod pi). Of course in a system of twenty-eight
congruences, a reduction to twenty-seven or twenty-six is really insignifi-
cant and in constructing (1) originally, I made no attempt to find the very
shortest such system. Indeed, in contrast to many “overlapping” congruence
systems, the number of congruences in (1) must be comparatively large due
to the condition that (22n

− 1, pi) = 1 (see page 105 of [3]), a condition
originally (to the best of my knowledge) introduced—in connection with
“overlapping” congruence systems—in [3]. This condition prevents certain
small moduli (most significantly 2, 4, 8) being used in (1), thus considerably
increasing the number of (moduli and) congruences needed there.

6. When at the very beginning of [3] I point out that it has been shown
by different methods that there is an infinity of positive odd integers not
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representable as p+2a, there are, to the best of my knowledge, just two such
genuinely different methods, the first in [5] and the second in [2]. The first
of these methods is also found in [4] (which actually was written earlier),
quoted more often than [5], presumably because it is in English rather than
Hungarian; however it does have a lacuna (filled in in [5]) and is also pre-
sented in a very condensed form—hence my preference for [5] over [4]. And,
as should be completely obvious in the course of reading [3], it is this method
in [5] slightly modified as in [9] that I have discussed on page 103 and at the
very top of page 104 in [3]—with due acknowledgement there of [5] and [9],
[9] being referred to as [4] in [3]—and to which I have referred when saying
“the method used in [4]. . . ” (on page 103 of [3]) and “the method of [4]”
(on page 104 of [3]—see second footnote there). I should point out here that
[9] has been more recently reproduced in [10].

7. For the reason expressed in footnote 2 in the present paper, Theorem I
in [3] deals with positive odd integers not representable as p+2a+2b (even if
1 is counted as a prime), a, b > 0. Just for absolute completeness I shall men-
tion the following. These same integers constructed to prove Theorem I in
[3] are also not representable as p+2a, a > 0 [of course non-representability
as p+2a +2b, a, b ≥ 1, implies non-representability as p+2a, a ≥ 2, but the
latter result in slightly stronger form (non-representability as p + 2a, a ≥ 1)
is actually used in [3]—as I explicitly made clear there, giving appropriate
references—as one of the significant ingredients of the proof of Theorem I].
It follows that Theorem I holds with a or b also allowed to be 0. Indeed, the
case of a = b = 0 is immediately seen to be equivalent to non-representability
as p + 2a, a = 1 (as suggested by footnote 4 of [3]), while a > 0, b = 0 can
be trivially shown to demand representability as p + 2a, p = 3, a ≥ 1 (con-
tradicting the above)—so that the integers constructed to prove Theorem I
in [3] are not representable as p + 2a + 2b, a, b ≥ 0. And being odd and > 3,
they are also not representable as p + 2a, a = 0. Also they are composite,
this fact being made obvious in the course of the proof of Theorem I (of [3])
itself (however, since being a prime does not in itself represent a sum, I did
not feel the need to explicitly state their compositeness). Thus the integers
generated to prove Theorem I of [3] cannot be represented as p+2a +2b, nor
as p + 2a (nor as p), a, b ≥ 0. Hence, no matter what the reader’s viewpoint
regarding footnote 2 in the present paper or anything else in that direction,
every possibility is dealt with.

8. In the second line of footnote 1 on page 104 of [3], page reference [4,
p. 413] should read [4, p. 414].

9. The article [2] occurs (as noted in the reference) on pages 316, 344.
The continuation of page 316 on page 344 is just that; it is not an erratum or
postscript. Since I was not sent a proof to read before publication, I did not
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know in advance that the editors were planning to do this rather unusual
page separation and hence could not object. Finally, there is a reference
at the beginning of [2] to “existing proofs of this theorem”; both proofs
(referred to as [4] and [5] in the present article) use the same method—see
comment 6 above.
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