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UNIVERSAL CONTAINER FOR PACKING RECTANGLES

BY

JANUSZ JANUSZEWSKI (Bydgoszcz)

Abstract. The aim of the paper is to find a rectangle with the least area into which
each sequence of rectangles of sides not greater than 1 with total area 1 can be packed.

Introduction. Let R be a rectangle and let (Rn) be a finite or infinite
sequence of rectangles. We say that (Rn) can be packed into R if there
exist rigid motions σi such that the sets σiRi, where i = 1, 2, . . . , have
pairwise disjoint interiors and are subsets of R. A packing is translative if
all the motions are translations. By parallel translative packing we mean a
translative packing in which each side of Ri is parallel to a side of R for
i = 1, 2, . . .
There are many questions concerning packing sequences of squares, rect-

angles or convex bodies (see for example [1], [2], [5]). By universal container
we mean a rectangle into which each sequence of rectangles of sides no longer
than 1 with total area 1 can be packed. The aim of the paper is to find a
least universal container, i.e. a universal container with the least area (cf.
[4]). Some theorems and conjectures concerning least universal containers for
parallel translative packing, translative packing and for the usual packing
are given.

1. Parallel translative packing. By a × b we mean a rectangle such
that one of its sides, of length a, is parallel to the first coordinate axis and
the other side has length b. The area of C will be denoted by |C|.
Lemma. A rectangle of side lengths 1 and 2 is a universal container for

parallel translative packing.

Proof. Let R be a rectangle of side lengths 1 and 2. Moreover let (Rn)
be a sequence of rectangles of side lengths not greater than 1, whose total
area is equal to 1, and let each side of Ri be parallel to a side of R for
i = 1, 2, . . . We can assume that Ri is of the form wi × hi for i = 1, 2, . . . ,
where h1 ≥ h2 ≥ . . . and that R = {(x, y); 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}.
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The method of packing (Rn) into R is similar to the method from [3].
First we will assign to each Ri two numbers ai and di, then the motion σi
is defined by the condition

σiRi = {(x, y); ai ≤ x ≤ ai + wi, di ≤ y ≤ di + hi}.
The numbers ai, di are determined as follows. We begin with d1 = 0 and
a1 = 0. Assume that i > 1. Put Sj = {(x, y); 0 ≤ x ≤ 2, y = dj} and
R′j = {(x, y); aj ≤ x ≤ aj +wj , dj ≤ y < dj +hj} for j = 1, . . . , i− 1. If the
intersection of

⋃

j<iR
′
j with Si−1 is empty or if it is a segment of length not

greater than 2−wi, we put di = di−1. In the opposite case, we put di = 1−hi
provided di−1 = 0, and di = di−1 − hi if di−1 6= 0. If

⋃

j<iR
′
j ∩ Si = ∅, then

ai = 0. Otherwise this intersection is a segment [0, si]. In this case we put
ai = si. Let n1 be the smallest integer such that dn1 > 0. We stop the
packing process if az > 2− wz (see Fig. 1) or if dz < hn1 (see Fig. 2) for a
rectangle Rz with z ≥ n1.

Fig. 1

We show that if (Rn) cannot be packed into R by the method described
above, i.e. if there exists a rectangle Rz which terminates the packing pro-
cess, then

∑z
j=1 |Rj | > 1, which is a contradiction.

Denote by Rn1 , . . . , Rnm , where n1 > . . . > nm, all rectangles from
among R2, . . . , Rz with dni 6= dni−1 for i = 1, . . . ,m. Obviously, nm = z.
Observe that if dz ≥ hn1 (see Fig. 1, where m = 2), we have

n1
∑

j=1

|Rj | >
m−1
∑

i=1

anihni+1 + 2hn1 +
(

1− 2hn1 −
m
∑

i=2

hni

)

.

(For m = 1 the last sum is taken to be zero.) Moreover, if m ≥ 2, then
nk+1
∑

j=nk+1

|Rj | > (1− ank)hnk+1
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for k = 1, . . . ,m − 1. (If ank > 1, we have the obvious inequality that the
area of rectangles is greater than zero.) Consequently,

∑z
j=1 |Rj | > 1.

Assume that dz < hn1 . If m = 1, then obviously
∑z
j=1 |Rj | > 1.

Fig. 2

For m ≥ 2 (see Fig. 2, where m = 2) we have
n1
∑

j=1

|Rj | >
m−2
∑

i=1

anihni+1 + 2hn1 + anm−1

(

1− 2hn1 −
m−1
∑

i=2

hni

)

,

nm
∑

j=nm−1+1

|Rj | > (1− anm−1)
(

1− 2hn1 −
m−1
∑

i=2

hni

)

,

and
nk+1
∑

j=nk+1

|Rj | > (1− ank)hnk+1

for k = 1, . . . ,m− 2, provided m ≥ 3. Consequently, ∑zj=1 |Rj | > 1.
Theorem 1. The least universal container for parallel translative pack-

ing has side lengths 1 and 2.

Proof. For simplicity, consider only the rectangles with sides parallel to
the axes. Observe that no rectangle of type 1 × b or c × 2 is a universal
container if b < 2 and c < 1. The reason is that a square of side 1 cannot be
packed into c×1; also two rectangles 4−b4 × 2

4−b cannot be parallel translative
packed into 1× b. By the Lemma we see that 1× 2 and 2× 1 are universal
containers. Thus, to end the proof it is sufficient to show that no rectangle
a× 2a for 0 < a < 1 is a universal container. Let

ε =
−a2 + 3a− 2

2a
.
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The total area of the rectangles 1×
(

2
a − 1 + ε

)

and (a− 1 + ε)× 1 is equal
to 1. It is easy to see that these rectangles cannot be parallel translative
packed into a× 2a .

2. Translative packing. Obviously, the sides of a universal container
R for translative packing are not smaller than

√
2: consider one square of

side 1 with diagonals parallel to sides of R.

Theorem 2. The area of a least universal container for translative pack-
ing is not smaller than 2.3673 . . .

Fig. 3

Proof. Let t0 = 0.3699 . . . be the solution of the equation

(1) −80t6 + 108t4 + 8
√
2 t3 − 54t2 + 5 = 0.

Moreover, let p = 3t0+ (1− t20 −
√
2t0)(1/2− t20)−1/2 = 1.6739 . . . Consider

two squares S1(α) and S2(α) of side length
1
2

√
2 such that no side of S1(α)

is parallel to a side of S2(α) and that the angle α ∈ (0, π/4) between a side
of S1(α) and the first coordinate axis is equal to the angle between a side
of S2(α) and the second coordinate axis. Let α0 = arcsin(t0

√
2). We show

that the rectangle
√
2 × p, of area 2.3673 . . . , is the rectangle of the least

area, from among all rectangles of type q × s, where q ≥
√
2, s ≥

√
2, into

which S1(α0) and S2(α0) can be packed.

Let us explain the choice of p and t0. A simple computation shows that
S1(α) and S2(α) can be packed into a rectangle
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√
2×
(

3t+
1− t2 −

√
2t√

0.5− t2
)

,

where t = 12
√
2 sinα. It is easy to show that the second side of this rectangle

is maximal if t = 0.3699 . . . satisfies (1).
Observe that there are four possible packings of S1(α0) and S2(α0) into√
2 × p (see Fig. 3) and that there is no rectangle

√
2 × p0, where p0 < p,

into which S1(α0) and S2(α0) can be packed. To end the proof it remains
to show that if q × s, where q, s ≥

√
2, is a rectangle into which S1(α0) and

S2(α0) can be packed, then qs ≥ p
√
2.

Fig. 4

It is sufficient to consider the case when q ≥ s (see Fig. 4). Let s =
√
2+ε

for ε > 0. We can assume that ε ≤
√

p
√
2 −
√
2, because in the opposite

case qs ≥ s2 > p
√
2. It is easy to see that q ≥ p − ε tanα0. Consequently,

qs ≥ −ε2 tanα0 + ε
(

p−
√
2 tanα0

)

+ p
√
2 > p

√
2.

The author conjectures that the rectangle
√
2× 1.6739 . . . is a least uni-

versal container for translative packing.

3. Usual packing. In [4] it is shown that the rectangle
√
2× 2

√
3
3 is a

least universal container for packing squares. The “worst” packing of two
and three equal squares is presented in Fig. 5.
The author conjectures that this rectangle is also a least universal con-

tainer for packing rectangles. Unfortunately, by using the packing method
similar to that from [3] we can only prove that each rectangle a × 2a , for
1 ≤ a ≤ 2, is a universal container for the usual packing of rectangles.
Remark. In this paper we find universal containers of the shape of a

rectangle. Instead of rectangles we can consider compact convex bodies.
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Fig. 5

Denote by s the least positive number such that there exists a compact
convex set S, with area s, into which each sequence of rectangles of sides
not greater than 1 and of total area 1 can be packed. It seems that s is
equal to the area of the hexagon of vertices (0, 0), (

√
2, 0), (

√
2,
√
2/2), (1, 1),

(
√
3/3, 2

√
3/3), (0, 2

√
3/3) (see Fig. 5). The same question of finding a least

compact convex container can be posed for translative packing.
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