COLLOQUIUM MATHEMATICUM

UNIVERSAL CONTAINER FOR PACKING RECTANGLES

BY
JANUSZ JANUSZEWSKI (Bydgoszcz)

Abstract

The aim of the paper is to find a rectangle with the least area into which each sequence of rectangles of sides not greater than 1 with total area 1 can be packed.

Introduction. Let R be a rectangle and let $\left(R_{n}\right)$ be a finite or infinite sequence of rectangles. We say that $\left(R_{n}\right)$ can be packed into R if there exist rigid motions σ_{i} such that the sets $\sigma_{i} R_{i}$, where $i=1,2, \ldots$, have pairwise disjoint interiors and are subsets of R. A packing is translative if all the motions are translations. By parallel translative packing we mean a translative packing in which each side of R_{i} is parallel to a side of R for $i=1,2, \ldots$

There are many questions concerning packing sequences of squares, rectangles or convex bodies (see for example [1], [2], [5]). By universal container we mean a rectangle into which each sequence of rectangles of sides no longer than 1 with total area 1 can be packed. The aim of the paper is to find a least universal container, i.e. a universal container with the least area (cf. [4]). Some theorems and conjectures concerning least universal containers for parallel translative packing, translative packing and for the usual packing are given.

1. Parallel translative packing. By $a \times b$ we mean a rectangle such that one of its sides, of length a, is parallel to the first coordinate axis and the other side has length b. The area of C will be denoted by $|C|$.

Lemma. A rectangle of side lengths 1 and 2 is a universal container for parallel translative packing.

Proof. Let R be a rectangle of side lengths 1 and 2 . Moreover let $\left(R_{n}\right)$ be a sequence of rectangles of side lengths not greater than 1 , whose total area is equal to 1 , and let each side of R_{i} be parallel to a side of R for $i=1,2, \ldots$ We can assume that R_{i} is of the form $w_{i} \times h_{i}$ for $i=1,2, \ldots$, where $h_{1} \geq h_{2} \geq \ldots$ and that $R=\{(x, y) ; 0 \leq x \leq 2,0 \leq y \leq 1\}$.

[^0]The method of packing $\left(R_{n}\right)$ into R is similar to the method from [3]. First we will assign to each R_{i} two numbers a_{i} and d_{i}, then the motion σ_{i} is defined by the condition

$$
\sigma_{i} R_{i}=\left\{(x, y) ; a_{i} \leq x \leq a_{i}+w_{i}, d_{i} \leq y \leq d_{i}+h_{i}\right\}
$$

The numbers a_{i}, d_{i} are determined as follows. We begin with $d_{1}=0$ and $a_{1}=0$. Assume that $i>1$. Put $S_{j}=\left\{(x, y) ; 0 \leq x \leq 2, y=d_{j}\right\}$ and $R_{j}^{\prime}=\left\{(x, y) ; a_{j} \leq x \leq a_{j}+w_{j}, d_{j} \leq y<d_{j}+h_{j}\right\}$ for $j=1, \ldots, i-1$. If the intersection of $\bigcup_{j<i} R_{j}^{\prime}$ with S_{i-1} is empty or if it is a segment of length not greater than $2-w_{i}$, we put $d_{i}=d_{i-1}$. In the opposite case, we put $d_{i}=1-h_{i}$ provided $d_{i-1}=0$, and $d_{i}=d_{i-1}-h_{i}$ if $d_{i-1} \neq 0$. If $\bigcup_{j<i} R_{j}^{\prime} \cap S_{i}=\emptyset$, then $a_{i}=0$. Otherwise this intersection is a segment $\left[0, s_{i}\right]$. In this case we put $a_{i}=s_{i}$. Let n_{1} be the smallest integer such that $d_{n_{1}}>0$. We stop the packing process if $a_{z}>2-w_{z}$ (see Fig. 1) or if $d_{z}<h_{n_{1}}$ (see Fig. 2) for a rectangle R_{z} with $z \geq n_{1}$.

Fig. 1
We show that if (R_{n}) cannot be packed into R by the method described above, i.e. if there exists a rectangle R_{z} which terminates the packing process, then $\sum_{j=1}^{z}\left|R_{j}\right|>1$, which is a contradiction.

Denote by $R_{n_{1}}, \ldots, R_{n_{m}}$, where $n_{1}>\ldots>n_{m}$, all rectangles from among R_{2}, \ldots, R_{z} with $d_{n_{i}} \neq d_{n_{i}-1}$ for $i=1, \ldots, m$. Obviously, $n_{m}=z$.

Observe that if $d_{z} \geq h_{n_{1}}$ (see Fig. 1, where $m=2$), we have

$$
\sum_{j=1}^{n_{1}}\left|R_{j}\right|>\sum_{i=1}^{m-1} a_{n_{i}} h_{n_{i+1}}+2 h_{n_{1}}+\left(1-2 h_{n_{1}}-\sum_{i=2}^{m} h_{n_{i}}\right)
$$

(For $m=1$ the last sum is taken to be zero.) Moreover, if $m \geq 2$, then

$$
\sum_{j=n_{k}+1}^{n_{k+1}}\left|R_{j}\right|>\left(1-a_{n_{k}}\right) h_{n_{k+1}}
$$

for $k=1, \ldots, m-1$. (If $a_{n_{k}}>1$, we have the obvious inequality that the area of rectangles is greater than zero.) Consequently, $\sum_{j=1}^{z}\left|R_{j}\right|>1$.

Assume that $d_{z}<h_{n_{1}}$. If $m=1$, then obviously $\sum_{j=1}^{z}\left|R_{j}\right|>1$.

Fig. 2
For $m \geq 2$ (see Fig. 2, where $m=2$) we have

$$
\begin{aligned}
\sum_{j=1}^{n_{1}}\left|R_{j}\right| & >\sum_{i=1}^{m-2} a_{n_{i}} h_{n_{i+1}}+2 h_{n_{1}}+a_{n_{m-1}}\left(1-2 h_{n_{1}}-\sum_{i=2}^{m-1} h_{n_{i}}\right), \\
\sum_{j=n_{m-1}+1}^{n_{m}}\left|R_{j}\right| & >\left(1-a_{n_{m-1}}\right)\left(1-2 h_{n_{1}}-\sum_{i=2}^{m-1} h_{n_{i}}\right)
\end{aligned}
$$

and

$$
\sum_{j=n_{k}+1}^{n_{k+1}}\left|R_{j}\right|>\left(1-a_{n_{k}}\right) h_{n_{k+1}}
$$

for $k=1, \ldots, m-2$, provided $m \geq 3$. Consequently, $\sum_{j=1}^{z}\left|R_{j}\right|>1$.
Theorem 1. The least universal container for parallel translative packing has side lengths 1 and 2.

Proof. For simplicity, consider only the rectangles with sides parallel to the axes. Observe that no rectangle of type $1 \times b$ or $c \times 2$ is a universal container if $b<2$ and $c<1$. The reason is that a square of side 1 cannot be packed into $c \times 1$; also two rectangles $\frac{4-b}{4} \times \frac{2}{4-b}$ cannot be parallel translative packed into $1 \times b$. By the Lemma we see that 1×2 and 2×1 are universal containers. Thus, to end the proof it is sufficient to show that no rectangle $a \times \frac{2}{a}$ for $0<a<1$ is a universal container. Let

$$
\varepsilon=\frac{-a^{2}+3 a-2}{2 a}
$$

The total area of the rectangles $1 \times\left(\frac{2}{a}-1+\varepsilon\right)$ and $(a-1+\varepsilon) \times 1$ is equal to 1 . It is easy to see that these rectangles cannot be parallel translative packed into $a \times \frac{2}{a}$.
2. Translative packing. Obviously, the sides of a universal container R for translative packing are not smaller than $\sqrt{2}$: consider one square of side 1 with diagonals parallel to sides of R.

THEOREM 2. The area of a least universal container for translative packing is not smaller than 2.3673...

Fig. 3
Proof. Let $t_{0}=0.3699 \ldots$ be the solution of the equation

$$
\begin{equation*}
-80 t^{6}+108 t^{4}+8 \sqrt{2} t^{3}-54 t^{2}+5=0 \tag{1}
\end{equation*}
$$

Moreover, let $p=3 t_{0}+\left(1-t_{0}^{2}-\sqrt{2} t_{0}\right)\left(1 / 2-t_{0}^{2}\right)^{-1 / 2}=1.6739 \ldots$ Consider two squares $S_{1}(\alpha)$ and $S_{2}(\alpha)$ of side length $\frac{1}{2} \sqrt{2}$ such that no side of $S_{1}(\alpha)$ is parallel to a side of $S_{2}(\alpha)$ and that the angle $\alpha \in(0, \pi / 4)$ between a side of $S_{1}(\alpha)$ and the first coordinate axis is equal to the angle between a side of $S_{2}(\alpha)$ and the second coordinate axis. Let $\alpha_{0}=\arcsin \left(t_{0} \sqrt{2}\right)$. We show that the rectangle $\sqrt{2} \times p$, of area $2.3673 \ldots$, is the rectangle of the least area, from among all rectangles of type $q \times s$, where $q \geq \sqrt{2}, s \geq \sqrt{2}$, into which $S_{1}\left(\alpha_{0}\right)$ and $S_{2}\left(\alpha_{0}\right)$ can be packed.

Let us explain the choice of p and t_{0}. A simple computation shows that $S_{1}(\alpha)$ and $S_{2}(\alpha)$ can be packed into a rectangle

$$
\sqrt{2} \times\left(3 t+\frac{1-t^{2}-\sqrt{2} t}{\sqrt{0.5-t^{2}}}\right)
$$

where $t=\frac{1}{2} \sqrt{2} \sin \alpha$. It is easy to show that the second side of this rectangle is maximal if $t=0.3699 \ldots$ satisfies (1).

Observe that there are four possible packings of $S_{1}\left(\alpha_{0}\right)$ and $S_{2}\left(\alpha_{0}\right)$ into $\sqrt{2} \times p$ (see Fig. 3) and that there is no rectangle $\sqrt{2} \times p_{0}$, where $p_{0}<p$, into which $S_{1}\left(\alpha_{0}\right)$ and $S_{2}\left(\alpha_{0}\right)$ can be packed. To end the proof it remains to show that if $q \times s$, where $q, s \geq \sqrt{2}$, is a rectangle into which $S_{1}\left(\alpha_{0}\right)$ and $S_{2}\left(\alpha_{0}\right)$ can be packed, then $q s \geq p \sqrt{2}$.

Fig. 4
It is sufficient to consider the case when $q \geq s$ (see Fig. 4). Let $s=\sqrt{2}+\varepsilon$ for $\varepsilon>0$. We can assume that $\varepsilon \leq \sqrt{p \sqrt{2}}-\sqrt{2}$, because in the opposite case $q s \geq s^{2}>p \sqrt{2}$. It is easy to see that $q \geq p-\varepsilon \tan \alpha_{0}$. Consequently, $q s \geq-\varepsilon^{2} \tan \alpha_{0}+\varepsilon\left(p-\sqrt{2} \tan \alpha_{0}\right)+p \sqrt{2}>p \sqrt{2}$.

The author conjectures that the rectangle $\sqrt{2} \times 1.6739 \ldots$ is a least universal container for translative packing.
3. Usual packing. In [4] it is shown that the rectangle $\sqrt{2} \times \frac{2 \sqrt{3}}{3}$ is a least universal container for packing squares. The "worst" packing of two and three equal squares is presented in Fig. 5.

The author conjectures that this rectangle is also a least universal container for packing rectangles. Unfortunately, by using the packing method similar to that from [3] we can only prove that each rectangle $a \times \frac{2}{a}$, for $1 \leq a \leq 2$, is a universal container for the usual packing of rectangles.

REMARK. In this paper we find universal containers of the shape of a rectangle. Instead of rectangles we can consider compact convex bodies.

Fig. 5

Denote by s the least positive number such that there exists a compact convex set S, with area s, into which each sequence of rectangles of sides not greater than 1 and of total area 1 can be packed. It seems that s is equal to the area of the hexagon of vertices $(0,0),(\sqrt{2}, 0),(\sqrt{2}, \sqrt{2} / 2),(1,1)$, $(\sqrt{3} / 3,2 \sqrt{3} / 3),(0,2 \sqrt{3} / 3)$ (see Fig. 5). The same question of finding a least compact convex container can be posed for translative packing.

REFERENCES

[1] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer, 1991.
[2] H. Groemer, Covering and packing by sequences of convex sets, in: Discrete Geometry and Convexity, Ann. New York Acad. Sci. 440, 1985, 262-278.
[3] J. Januszewski, Packing rectangles into the unit square, Geom. Dedicata 81 (2000), 13-18.
[4] D. Kleitman and M. Krieger, An optimal bound for two dimensional bin packing, in: 16th Annual Symp. on Foundations of Comput. Sci. (Berkeley, CA, 1975), IEEE Computer Science, Long Beach, CA, 1975, 163-168.
[5] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967), 103-110.

Institute of Mathematics and Physics
University of Technology and Agriculture
Kaliskiego 7
85-796 Bydgoszcz, Poland
E-mail: januszew@mail.atr.bydgoszcz.pl

[^0]: 2000 Mathematics Subject Classification: Primary 52C15.
 Key words and phrases: packing, rectangle.

