
COLLOQU IUM MATHEMAT ICUM
VOL. 92 2002 NO. 2

ON DITTMAR’S APPROACH

TO THE BELTRAMI EQUATION

BY

EWA LIGOCKA (Warszawa)

Abstract. We recall an old result of B. Dittmar. This result permits us to obtain an
existence theorem for the Beltrami equation and some other results as a direct consequence
of Moser’s classical estimates for elliptic operators.

1. Introduction. Over twenty years ago Dittmar [4] found a simple
proof of the existence of homeomorphic solutions of the Beltrami equation
(in C):

∂ϕ

∂z
= µ

∂ϕ

∂z
, µ ∈ C30 (C), sup

z∈C

|µ(z)| =: ‖µ‖∞ ≤ k < 1.

This result of Dittmar was completely forgotten. All proofs of the solv-
ability of the Beltrami equation, published recently, were based on the clas-
sical method, invented by Bojarski ([2], [3], see also [9]). This method uses
the Beurling–Ahlfors transform.
The aim of the present note is to recall Dittmar’s result and extend his

method to obtain a complete alternative proof of the existence of homeomor-
phic solutions of the Beltrami equation in the general case of µ ∈ L∞(C),
‖µ‖∞ ≤ k < 1.
This proof will use only Moser’s estimates ([11], [12], see also [8], Ch. 9)

for strongly elliptic homogeneous differential equations of the second order.
Finally we shall use this approach to get new proofs of some basic facts

from the theory of quasiregular functions.

2. The Beltrami equation. We start by recalling Dittmar’s proof:
Let µ ∈ C30 (C), ‖µ‖∞ = supz∈C |µ(z)| ≤ k < 1 and µ = µ1 + iµ2. Set

E = |1 + µ|2, F = 2µ2, G = |1− µ|
2 and W = 1− |µ|2.

Dittmar introduces a second order differential operator

∆µ =
∂

∂y

(
E

W

∂

∂y
−
F

W

∂

∂x

)
+

∂

∂x

(
G

W

∂

∂x
−
F

W

∂

∂y

)
(z = x+ iy).
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The operator ∆µ is strongly elliptic on R
2, since

1− k

1 + k
(ξ21 + ξ

2
2) ≤

G

W
ξ21 +

E

W
ξ22 −

2F

W
ξ1ξ2 ≤

1 + k

1− k
(ξ21 + ξ

2
2).

Assume now that suppµ ⊂⊂ B(0, R0). Let H be the real Hilbert space
of functions ϕ ∈ W 12 (C) for which

T
∂B(0,R0)

ϕdσ = 0, equipped with the

scalar product 〈ϕ, ψ〉 =
T
C
∇µ(ϕ, ψ) dV , where

∇µ(ϕ, ψ) =
E

W

∂ϕ

∂y
·
∂ψ

∂y
+
G

W

∂ϕ

∂x
·
∂ψ

∂x
−
F

W

(
∂ϕ

∂x
·
∂ψ

∂y
+
∂ϕ

∂y
·
∂ψ

∂x

)
.

One can define two functions:

J =
1

16W

[
2F

(
∂E

∂x
−
∂G

∂x
− 2

∂F

∂y

)
+

(
2
∂F

∂x
−
∂E

∂y
+
∂G

∂y

)
(G− E − 4)

]
,

I =
1

16W

[
2F

(
∂G

∂y
−
∂E

∂y
− 2

∂F

∂x

)
+

(
2
∂F

∂y
+
∂F

∂x
−
∂G

∂y

)
(E −G− 4)

]
.

Dittmar observed that if u satisfies the equation

(∗) ∆µu = −

(
∂J

∂y
+
∂I

∂x

)
,

then the differential form

ω =

(
F

W

∂u

∂x
−
E

W

∂u

∂y
− J

)
dx+

(
G

W

∂u

∂x
−
F

W

∂u

∂y
+ I

)
dy

is closed and therefore the function v(z) =
Tz
z0
ω is well defined, and the

function Ψ(z) = u(z)+ iv(z) satisfies the inhomogeneous Beltrami equation
∂Ψ/∂z = µ∂Ψ/∂z + ∂µ/∂z. Hence the form ω1 = e

Ψdz + µeΨdz is d-closed.
The function Φ(z) =

Tz
z0
ω1 is well defined and satisfies the Beltrami equation

∂Φ/∂z = µ∂Φ/∂z. Moreover Φ is a local homeomorphism of class C2, since
∂Φ/∂z = eΨ 6= 0.
To solve the equation (∗) Dittmar takes the following linear continuous

functional on H:

L(f) =
\
C

f

(
∂J

∂y
+
∂I

∂x

)
dV.

By the Riesz representation theorem there exists u ∈ H such that L(f) =
〈u, f〉 for every f ∈ H and thus u satisfies (∗). Since ∆µ is strongly elliptic
and µ ∈ C30 (C), we have u ∈ C2(C). One can now define v, Ψ and Φ as
above. Observe that u and v are inW 12 (C) and that Ψ and Φ are holomorphic
outside B(0, R0). Since Ψ ∈ W

2
1 (C), it is holomorphic also at ∞. Let c =

limz→∞ Ψ(z). Hence limz→∞ Φ′(z) = ec 6= 0. The mapping Φ extends to a

local homeomorphism Ĉ → Ĉ and hence it is a homeomorphism of Ĉ onto
Ĉ by the monodromy theorem, Φ(∞) =∞.
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At this point Dittmar’s original proof ends. For the general case he just
gives a reference to the Lehto–Virtanen book [10]. We shall, however, pro-
ceed further and write Φ = f + ig. Since Φ satisfies the Beltrami equation
and is of class C2, the functions f and g satisfy the µ-Cauchy–Riemann
equations

∂g

∂x
=

F

W

∂f

∂x
−
E

W

∂f

∂y
,

∂g

∂y
=

G

W

∂f

∂x
−
F

W

∂f

∂y
.

This implies that ∆µf = 0 and ∆µg = 0 on C.

Forty years ago J. Moser ([11], [12]) proved the following theorem:

Let Ω be a domain in R
n, Ω1 ⊂⊂ Ω, and suppose the differential oper-

ator P has the form P =
∑n
i,j=1(∂/∂xj)(aij(x)∂/∂xi) where the aij(x) are

bounded measurable functions on Ω and there exist constants C1 > 0 and
C2 > 0 such that C1‖ξ‖

2 ≤
∑n
i,j=1 aijξiξj ≤ C2‖ξ‖

2 for each x ∈ Ω and
ξ ∈ R

n. Then there exist 1 > α > 0 and M > 0 depending only on C1, C2,
and dist(Ω1, ∂Ω) such that if u satisfies the equation Pu = 0, u ∈ W

1
2 (Ω)

and ‖u‖L2(Ω) ≤ 1, then u ∈ Λα(Ω1) and ‖u‖Λα(Ω) ≤ M where Λα denotes
the usual Hölder (Lipschitz) space. (For the proof of Moser’s theorem see
[11], [12] and also [8], Ch. 9, §5.)

The operator∆µ satisfies the assumptions of Moser’s theorem and the so-
lution Φ of the Beltrami equation constructed above belongs to Λα(B(0, R))
for some α > 0 for each R > 0; the α and the Hölder norm of Φ depend only
on k, R and ‖Φ‖L2(B(0,2R)) (see also Remark 2 below).

Now we can proceed in a standard way. Let µ be a function from L∞(C)
with ‖µ‖∞ ≤ k < 1. Assume that suppµ ⊂⊂ B(0, R). Then there exists a
sequence µn ∈ C

∞

0 (C), suppµ ⊂⊂ B(0, R), ‖µn‖∞ ≤ ‖µ‖, such that µn → µ
on C a.e.

Let Φn be a sequence of homeomorphic solutions of the Beltrami equation
with µn, normalized so that Φn(∞) = ∞, Φn(0) = 0 and Φn(1) = 1. Note
that all Φn are holomorphic outside B(0, R).

By Moser’s theorem the sequence Φn is equicontinuous on C and there-
fore we can take a subsequence with Φnk → Φ almost uniformly on C. It is
easy to show that Φ is a homeomorphic solution of the equation ∂Φ/∂z =
µ∂Φ/∂z. (It suffices to choose an almost uniformly convergent subsequence
of Φ−1nk .) Finally let µ be any function from L∞(C) with ‖µ‖∞ ≤ k < 1.

Put µ1 = µχB(0,1), µ2 = µ − µ1 and µ
∗

2(z) = 1/µ2(1/z) . Let Ψ
∗ be a

homeomorphic solution of the µ∗2-Beltrami equation. Put Ψ = 1/Ψ
∗(1/z).

The complex dilatation of Ψ is equal to µ2. Take now the homeomorphism
F with complex dilatation

(µ1 ◦ Ψ
−1) exp

(
2i arg

∂Ψ

∂z
◦ Ψ−1

)
.
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The mapping Φ = F ◦ Ψ has the complex dilatation µ1 + µ2 = µ, since
µ1 · µ2 = 0.

This ends the whole proof.

Remark 1. The proof of Moser’s theorem is not very complicated and
uses only the imbeddingW 12 (Ω) →֒ Lp(Ω) where p = n/(n−2) if n > 2 and
p is any number from (1,∞) for n = 2. (This is a special case of the Sobolev
imbedding theorem.)

Remark 2. In the case P = ∆µ the Hölder exponent α can be taken
equal to (or sometimes greater than) 1/K, whereK = (1+‖µ‖∞)/(1−‖µ‖α).

The simple proof of this estimate due to Buff can be found in [5]. This
proof uses only the Grötsch inequalities (see [1]). However we prefer to use
Moser’s theorem for the following ideological reason: We want to point out
that the theory of the Beltrami equation and quasiregular functions on the
plane can be viewed as a part of the classical theory of strongly elliptic
differential operators of second order.

3. Further results. In this section we study non-homeomorphic so-
lutions of the Beltrami equation. In order to avoid pathologies, we shall
always assume that the solutions of the Beltrami equation, and of the other
differential equations we consider, are always in W 12 (·, loc).

Let us start with the following.

Proposition 1. (a) Let U be a domain in C and let µ ∈ L∞(U) with
‖µ‖∞ ≤ k < 1. If Ψ satisfies the Beltrami equation ∂Ψ/∂z = µ∂Ψ/∂z,
Ψ ∈W 12 (U, loc), then ∆µu = ∆µv = 0 for u = ReΨ and v = ImΨ .

(b) If U is a simply connected domain, µ is as above, u ∈ W 12 (U, loc)
and ∆µu = 0, then there exists Ψ ∈ W

1
2 (U, loc) such that ∂Ψ/∂z = µ∂Ψ/∂z

and u = ReΨ .

Proof. (a) Let U1 ⊂⊂ U2 ⊂⊂ U . There exists a sequence µn ∈ C
∞

0 (C),
‖µn‖∞ ≤ ‖µ‖, suppµn ⊂ U2 such that µn(z)→ µ(z) on U1 a.e.

Let Φ,Φ1, Φ2, . . . , Φn, . . . denote the normalized homeomorphic solutions
of the Beltrami equation for µ, µ1, µ2, . . . , µn, . . . respectively. We can as-
sume that Φn → Φ almost umiformly on C. (We put µ = 0 outside U .)
The function h = Ψ ◦ Φ−1 is holomorphic on Φ(U). The sequence of func-
tions Ψn = h ◦ Φn tends to Ψ uniformly on U1. Thus un = ReΨn → u and
vn = ImΨn → v. Since un and vn are smooth, ∆µnun = ∆µnvn = 0. We
have ∆µnun → ∆µu and ∆µnvn → ∆µv in the distribution space D

′(U1) .
Hence ∆µu = ∆µv = 0.
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(b) Let u ∈W 12 (U, loc) with ∆µu = 0. The differential form ω = ω1dx+
ω2dy with L

2(U, loc) coefficients

ω1 =
F

W

∂u

∂x
−
E

W

∂u

∂y
, ω2 =

G

W

∂u

∂x
−
F

W

∂u

∂y

is d-closed. Let U1 ⊂⊂ U be a simply connected domain with smooth bound-
ary. The distributions ∂ω1/∂x, ∂ω1/∂y, ∂ω2/∂x, ∂ω2/∂y belong toW

−1
2 (U2).

The Laplace operator ∆ is an isomorphism between W̊ 12 (U2) and W
−1
2 (U2).

There exists f ∈ W̊ 12 (U2) for which ∆f = ∂ω1/∂x+ ∂ω2/∂y. The form

ω′ =

(
ω1 −

∂f

∂x

)
dx+

(
ω2 −

∂f

∂y

)
dy

is a d-closed form with harmonic coefficients. Since U1 is simply connected,
there exists v0 ∈ C

∞(U1) with dv0 = ω
′.

Put v = v0 + f . Then Ψ = u+ iv satisfies the Beltrami equation on U2.
Hence u is locally the real part of a solution of the Beltrami equation. Since
U is simply connected, u is also globally the real part of such a solution. In
what follows, we call functions u for which ∆µu = 0 µ-harmonic functions;
solutions of the Beltrami equation which belong toW 12 (·, loc) µ-quasiregular
functions; and homeomorphic solutions to the Beltrami equation which are
equal to ∞ at ∞, 0 at 0, and 1 at 1 normalized µ-quasiconformal maps.
Our proof of the existence of homeomorphic solutions together with Re-

mark 2 and Proposition 1 yields immediately the following.

Theorem 1. If Ψ is a µ-quasiregular function on an open set U in C,
then Ψ belongs to the Hölder space Λα(U, loc) where α ≥ 1/K with K =
(1+ ‖µ‖∞)/(1−‖µ‖∞). If u is a µ-harmonic function on U , then u belongs
to Λα(U, loc), α ≥ 1/K.

Let us now consider the Dirichlet problem for µ-harmonic functions.

Theorem 2. Let D be a domain in C bounded by a finite number of

Jordan curves and let ϕ be a continuous function on ∂D. For each µ ∈
L∞(D) with ‖µ‖∞ ≤ k < 1, there exists u ∈ C(D) such that ∆µu = 0 on D
and u = ϕ on ∂D.

Proof. By putting µ = 0 on C \D we can assume that µ ∈ L∞(C). Let
Φµ be a normalized µ-quasiconformal map. By the Koebe theorem [6] there
exists a conformal map h from Φµ(D) onto a domain D1 whose boundary
consists of a finite number of circles. Put Φ = h ◦ Φµ. By the Carathéodory
theorem Φ extends to a homeomorphism between D and D1. Let ϕ1 =
ϕ ◦ Φ−1 on ∂D1. We now solve the usual Dirichlet problem and obtain u1
on D1 with ∆u1 = 0 on D1 and u1 = ϕ1 on ∂D1.
It is obvious that u1 ◦ Φ is continuous on D and u = u1 ◦ ϕ = ϕ on

∂D. The harmonic function u1 is locally the real part of a holomorphic
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function. Let V ⊂ Φ(D), u1 = Re g on V . Thus u = Re g ◦ Φ
−1. Since g ◦ Φ

is µ-quasiregular, u is µ-harmonic on Φ−1(V ). Such sets cover all of D and
u is µ-harmonic on the whole D.

Remark 3. In Theorem 2 it suffices to assume that D is a bounded
domain whose boundary consists of a finite number of locally connected
components with non-zero capacities.

Theorem 3. Let U be an open subset of C. Suppose that µ ∈ L∞(U)∩
Λm+α(U, loc) with ‖µ‖∞ ≤ k < 1, m ≥ 1. Then every µ-harmonic function
u and every µ-quasiregular function Ψ belong to Λ1+m+α(U, loc).

Proof. Let B(a,R) ⊂⊂ U . Let ϕ = ϕ1+ iϕ2 be a C
∞ diffeomorphism of

the circle C(a,R) onto itself. Let G = u1+ iv1 be a solution of the Dirichlet
problem ∆µu1 = ∆µv1 = 0 on B(a,R), u1 = ϕ1 and v1 = ϕ2 on ∂B(a,R) =

C(a,R). We have G ∈ Λ1+m+α(B(a,R)) by Schauder’s estimates ([8], Ch.
III, §2).
Put µ = 0 on C \ U and let Φµ be a normalized µ-quasiconformal

map. Denote by h the Riemann map from Φµ(B(a,R)) onto B(0, 1) and

put Φ = h◦Φµ. As above Φ extends to a homeomorphism from B(a,R) onto

B(0, 1). The map ϕ ◦Φ−1 maps homeomorphically C(0, 1) onto C(a,R). By
the Rado theorem (see e.g. [13]) the harmonic extension F of ϕ ◦ Φ−1 is
a diffeomorphism of B(0, 1) onto B(a,R). We have G = F ◦ Φ. Since G ∈
Λ1+m+α(B(a,R)) the mappings Φ and Φµ belong to Λ1+m+α(B(a,R), loc).
If u is µ-harmonic on B(a,R), then u = w ◦ Φµ where w is harmonic on
Φ(B(a,R)), hence u ∈ Λ1+m+α(B(a,R), loc). Since (a,R) can be chosen ar-
bitrarily, we have u ∈ Λ1+m+α(U, loc). Then Proposition 1 shows that each
µ-quasiregular map Ψ also belongs to Λ1+m+α(U, loc).

Finally let us return to the inhomogeneous equation ∆µu = −(∂J/∂y +
∂I/∂x) considered in Section 2.
If we consider the Dirichlet problem for this equation, we get the follow-

ing

Theorem 4. Let D be a simply connected domain bounded by a Jordan
curve of class Λ2+α. Suppose that µ ∈ Λ2+α(D) and ‖µ‖∞ ≤ k < 1. Let ϕ be
a function of class Λ2+α on ∂D. Then there exists a µ-quasiregular function
Ψ ∈ Λ2+α(D) which is a local homeomorphism such that |∂Ψ/∂z| = eϕ

on ∂D.

Proof. Repeat the first part of Dittmar’s proof using Schauder esti-
mates [8].

Remark 4. The simple example of fn(z) = z
n/n on B(0, 1) shows that

the condition |∂f/∂z| = eϕ on ∂D does not determine a µ-quasiregular
function uniquely.
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However if we assume additionally that f is a local homeomorphism on
D, then the correspondence f ↔ |∂f/∂z| |∂D is one-to-one.

Remark 5. Let U be an open set in C and µ ∈ L∞(U), ‖µ‖∞ ≤ k < 1.
Assume that U1 is an open subset of U such that µ ∈ C

∞(U1). Then each µ-
harmonic or µ-quasiregular function is of class C∞ on U1. If µ is real-analytic
on U , then each µ-harmonic or µ-quasiregular function must be real-analytic
on U1. This is a direct consequence of the ellipticity of the operators ∆µ and
∂/∂z − µ∂/∂z and Theorems 8.6.1 and 8.3.1 from Hörmander’s book [7].
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