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Abstract. Given a finite-dimensional algebra, we present sufficient conditions on the
projective presentation of the algebra modulo its radical for a tilted algebra to be a Koszul
algebra and for the endomorphism ring of a tilting module to be a quasi-Koszul algebra.
One condition we impose is that the algebra has global dimension no greater than 2.
One of the main techniques is studying maps between the direct summands of the tilting
module. Some applications are given. We also show that a Brenner–Butler tilted algebra
is simply connected if and only if the original algebra is simply connected.

Koszul algebras and tilting theory have played important role in several
areas of mathematics, in particular, in the representation theory of algebras.
These theories were shown to be part of a larger theory in [10]. Here we
consider the question of when a tilted algebra is Koszul or quasi-Koszul.

Let Λ be a finite-dimensional algebra over an algebraically closed field k.
We denote the radical of the algebra Λ by rΛ or simply by r. It is well known
that Λ is Morita equivalent to a quotient of a finite quiver algebra by an
ideal I which is contained in the square of the ideal generated by the arrows
(see [5, III.1.9]). We assume throughout this work that the algebra Λ is of
the form kQ/I where kQ is a quiver algebra and I is a graded ideal I in the
sense that I is homogeneous with respect to the length grading on paths.

We briefly describe the paper. Section 1 contains well known facts about
both Koszul and tilting theories. In Section 2 we study the case where Γ
is a tilting of kQ/I and in Section 3 we assume I = 0. Assuming Γ is of
global dimension 2, we characterize when Γ is a Koszul algebra in terms of
the minimal projective resolution of Γ/r (see Theorem 2.7). We then obtain
some applications of that result. We introduce the concept of T -sink maps,
for T a tilting module, which is a concept related to irreducible maps. Our

2000 Mathematics Subject Classification: Primary 16S34; Secondary 16S50, 16W50.
The first author was supported by a scholarship from CAPES and grants from

FAPESP.
The second author was supported by grants from the NSF and NSA.
The third author was partially supported by grants from FAPESP and CNPq.

[197]



198 R. M. AQUINO ET AL.

main theorem in Section 2 shows that a T -sink map determines a linear
resolution for Γ/r. As an application, we consider the Brenner–Butler tilted
algebras, or BB-tilted algebras for short. Recall that a BB-tilted algebra is
the endomorphism ring of a Brenner–Butler tilting module over a hereditary
algebra. The full definition is given in Section 3.1. We show in Theorem 3.1
that BB-tilted algebras are Koszul algebras. We prove that BB-tilted alge-
bras of a hereditary algebra are simply connected if and only if the hereditary
algebra is also simply connected (Proposition 3.4). In Section 3.2 we present
a class of finite representation type algebras which are also Koszul algebras.
This class includes the class of iterated tilted algebras of type An (see [2]).

In Section 4, we present a new characterization of quasi-Koszul modules
over non-graded algebras using the notion of an essentially linear resolution.
We introduce the definition of essentially T -irreducible maps which extends
the concept of T -sink maps. These maps occur in the description of quasi-
Koszul modules over endomorphism rings of tilting modules and appear
in the same way as the T -sink maps appear in Section 2. Proposition 4.8
uses essential linearity of the projective resolution of a module over the
endomorphism ring of a tilting module to give a criterion for a module to
be quasi-Koszul. Finally, starting with a quadratic monomial algebra, we
describe a class of tilting modules whose endomorphism rings are always
quasi-Koszul algebras (see Theorem 4.16).

1. Preliminaries. In this section we recall some definitions and basic
facts of the theory of Koszul algebras and the theory of tilting algebras.
The reader can find more details in [9] and [1] respectively. We also fix the
notation and terminology which we will use throughout this work.

1.1. Tilted algebras. Let Λ be an algebra. A Λ-module T is called a
tilting module when the following conditions are satisfied:

(i) pdΛ T ≤ 1.

(ii) Ext1Λ(T, T ) = 0.

(iii) There is a short exact sequence 0 → Λ → T ′ → T ′′ → 0 with
T ′, T ′′ ∈ add(T ).

The opposite endomorphism ring Γ = EndopΛ (T ) of a tilting module T
is called an algebra tilted from Λ. If Λ is hereditary, we just say that Γ is a
tilted algebra. The Γ -module homomorphism HomΛ(T, f) : HomΛ(T,M)→
HomΛ(T,N) induced from a Λ-module homomorphism f : M → N will be
denoted by f∗. If Tl is an indecomposable direct summand of T , we denote
the indecomposable projective Γ -module HomΛ(T, Tl) by Pl. We denote the
category of finitely generated left Λ-modules by Λ-mod. For any two Λ-
modules A and B, we denote the group HomΛ(A,B) by (A,B). By the top
of a Λ-module M , we mean M/rM .
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There is a close connection between the representation theory of the
algebras Λ and Γ . Given a tilting Λ-module T we consider the following
two full subcategories of the category of Λ-modules: the category T (T ) of
all modules generated by T and the category F(T ) of modules M satisfying
HomΛ(T,M) = 0. The pair (T (T ),F(T )) defines a torsion theory for Λ-mod.
There are two corresponding full subcategories of Γ -mod, namely X (T ) of
all modules N such that T ⊗Γ N = 0 and Y(T ) of all modules N such that
TorΓ1 (T,N) = 0. We have the following.

Theorem of Brenner–Butler [13]. Let T be a tilting Λ-module with
EndopΛ (T ) = Γ . Then T is also a tilting Γ -module, and Λ = EndopΓ (T ),
canonically. Moreover , we have equivalences of the categories T (T ) and
Y(T ) under the restrictions of the functors HomΛ(T,−) and − ⊗Γ T , and
of F(T ) and X (T ) under the restrictions of the functors Ext1Λ(T,−) and
TorΓ1 (T,−).

It is known that if Λ is hereditary then the torsion theory defined by T in
the category Γ -mod splits; that is, any indecomposable moduleM ∈ Γ -mod
is either in X (T ) or in Y(T ).

1.2. Linear resolutions and Koszul algebras. A graded algebra Γ is called
a Koszul algebra when the Yoneda algebra E(Γ ) =

∐
n≥0 Ext

n
Γ (Γ/r, Γ/r)

is 1-generated ; that is, the elements in Ext1Γ (Γ/r, Γ
/
r) generate all higher

extension groups under the Yoneda product. In [9], Green and Martinez give
the following necessary and sufficient condition for an algebra to be a Koszul
algebra. A graded algebra Γ is a Koszul algebra if and only if Γ/r has a
linear resolution, that is, there exists a graded projective resolution

. . .→ P(n) → P(n−1) → . . .→ P(2) → P(1) → P(0) → Γ/r→ 0

such that P(j) is generated in degree j, for all j ≥ 0.
As examples of Koszul algebras we have hereditary algebras, quadratic

algebras with global dimension 2 (see [9], for instance), quadratic monomial
algebras ([11]) and, as we shall show, the Brenner–Butler tilted algebras
(see 4.1).
We recall that tilted algebras have global dimension two. It follows from

[9] that tilted algebras are Koszul if and only if they are quadratic algebras.

2. Tilted algebras. In this section we consider a finite-dimensional
algebra Λ over the algebraically closed field k. We fix a tilting Λ-module T
and a decomposition T =

⊕n
j=1 Tj into indecomposable direct summands.

Furthermore, we assume that the {Tj} is multiplicity free. The next result
is restricted to the tilted algebras and does not hold in general.

Proposition 2.1. Let Λ be a hereditary algebra, T a tilting Λ-module
and Γ the tilted algebra EndopΛ (T ). Let 1 ≤ j ≤ n and f : T ′ → Tj be a
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Λ-module homomorphism between modules in add(T ), such that f induces

a minimal projective presentation HomΛ(T, T
′)
f∗
→ HomΛ(T, Tj)→ Sj → 0

of the simple Γ -module Sj . Then f is either a monomorphism or an epi-
morphism. Moreover , Sj ∈ Y(T ) if and only if f is a monomorphism.
Otherwise, Sj ∼= Ext

1
Λ(T, ker f).

Proof. Let Pj = HomΛ(T, Tj). Suppose that f : T
′ → Tj induces a

minimal projective presentation of the simple Γ -module Sj . Note that f =
i ◦ l where l : T ′ → Im f and i : Im f → Tj . Now Ext

1
Λ(T, Im f) = 0, since

Im f ∈ T (T ). We also have the following exact sequences in Γ -mod:

0→ (T, ker f)→ (T, T ′)
l∗→ (T, Im f)→ Ext1Λ(T, ker f)→ 0,

0→ (T, Im f)
i∗→ Pj → (T, coker f)→ 0.

Suppose first that f is not an epimorphism. Then coker f 6= 0 and so
also (T, coker f) 6= 0. Since f∗ = (il)∗ is a projective presentation of Sj , it
follows that (T, coker f) ∼= Sj . Now coker f ∈ T (T ) and so Sj ∈ Y(T ) and
hence, since Λ is hereditary, pdΓ Sj = 1. Thus (T, Im f) is projective and it
follows from the minimality of f∗ that l∗ is an isomorphism. Since T

′ and
Im f are both in T (T ), it follows from the Brenner–Butler Theorem that
they are isomorphic and hence ker f = 0.
If f is an epimorphism, then i∗ is an isomorphism and so f∗ = l∗ and

it follows that Sj ∼= Ext
1
Λ(T, ker f). We have seen that Sj ∈ Y(T ) implies

ker f = 0 and so, in this case Sj ∈ X (T ).

Let M,N ∈ T (T ) with M indecomposable. We say that the non-zero
Λ-morphism α : N → M is a sink-torsion map if it is a sink map in the
category T (T ). In other words, α is a minimal non-split homomorphism and
every non-zero non-split homomorphism β : L→M with L ∈ T (T ) factors
through α.
We observe that if f : E → M is a right minimal almost split map and

M ∈ T (T ), then the restriction of f to trT (E) given by f
′ : trT (E)→M is

a sink-torsion map, where trT (E) is the trace of T in E, since the class T (T )
of modules is closed under homomorphic images. The next result shows that
the radical of an algebra Γ which is tilted from Λ may be defined by the
Γ -module HomΛ(T, trT (E)) where E =

⊕n
j=1Ej for each fj : Ej → Tj a

right minimal almost split map.

Proposition 2.2. Let Λ be a finite-dimensional k-algebra and T a tilt-
ing Λ-module. Let Tl be an indecomposable direct summand of T such that
Pl = HomΛ(T, Tl) is not a simple Γ -module. Then there exists exactly one
sink-torsion map α : E → Tl, up to isomorphism.

Proof. We know that Pl ∈ Y(T ). It follows that rPl ∈ Y(T ). Therefore
there exists a Λ-module E such that rPl ∼= (T,E) and a map α : E → Tl
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inducing the natural inclusion rPl →֒ Pl. We may assume that α is mini-
mal and we claim that α is a sink-torsion map. Given a non-zero non-split
homomorphism β : N → Tl with N ∈ T (T ), we find that β∗ is a non-split
homomorphism. Therefore, β∗ factors through α∗ and so also β through α.
The uniqueness is immediate. We observe that if a subcategory of an abelian
category has sink maps then they are unique, up to isomorphism.

Corollary 2.3. A sink-torsion map α : E → Tl as defined in Propo-
sition 2.2 is either a monomorphism or an epimorphism. Furthermore let
Sl be the top of Pl. If α is a monomorphism then Sl ∼= HomΛ(T, cokerα).
Otherwise, Sl ∼= Ext

1
Λ(T, kerα).

Proof. Assume that a sink-torsion map α is not an epimorphism. Hence,
Imα is properly contained in Tl. By hypothesis, the inclusion j : Imα→ Tl
must factor through α, and it follows that E ∼= kerα ⊕ Imα. Since α is
minimal, we see that kerα = 0.

Now if α is a monomorphism then the short exact sequence of Λ-modules
0→ E

α
→ Tl → cokerα→ 0 induces the short exact sequence of Γ -modules

0 → (T,E)
α∗→ Pl → (T, cokerα) → 0. Since we know that rPl ∼= (T,E), it

follows that Sl ∼= HomΛ(T, cokerα).

If α is an epimorphism, the short exact sequence of Λ-modules 0 →
kerα→ E

α
→ Tl → 0 induces the exact sequence of Γ -modules

0→ (T, kerα)→ (T,E)
α∗→ Pl → Ext

1
Λ(T, kerα)→ 0,

where (T,E) ∼= rPl. But α∗ is a monomorphism and hence (T, kerα) = 0.
It follows that kerα ∈ F(T ) and Sl ∼= Ext

1
Λ(T, kerα).

The next definition introduces modules in Λ which play an important
role in the study of the radical of Γ .

Definition 2.4. The torsion-predecessor of an indecomposable direct
summand Tl of T is a Λ-module El ∈ T (T ) such that rPl ∼= HomΛ(T,El)
with Pl = HomΛ(T, Tl). Let M =

⊕n
i=1Mi be a module in add(T ), with

Mi indecomposable. Then a module E ∈ T (T ) will be called the torsion-
predecessor of M if E is the direct sum of the torsion-predecessors of Mi for
each i.

Let M be a non-zero Λ-module in add(T (T )). We denote the add(T )-
approximation ofM by (TM , π) (see [5] for a definition), or by TM for short.
This means that TM ∈ add(T ), π is a left minimal map and every morphism
ψ : T ′ →M with T ′ ∈ add(T ) factors through π.

Since add(T ) is functorially finite we see that every module has a minimal
add(T )-approximation which is unique up to isomorphism. We observe that
the map π above is an epimorphism, since M ∈ T (T ). For, consider a
projective presentation p∗ : HomΛ(T, T

′) → HomΛ(T,M) → 0. We see
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that p is an epimorphism since the functor T ⊗ − is right exact and p =
T ⊗p∗. Since p must factor through π, we see that π is also an epimorphism.
Furthermore, HomΛ(T, TM ) is the projective cover of HomΛ(T,M).

The next result is valid for a graded algebra tilted from any finite-
dimensional algebra Λ. We observe that there are examples of tilted algebras
which are not graded; that is, the ideal of a presentation of a tilted algebra
is not always a homogeneous ideal. The reader can find examples in [14].

Proposition 2.5. Let T be a tilting Λ-module. Suppose that Γ = kQ/I
= End(T )op and that I is a homogeneous ideal in KQ. Let . . . → P(3) →
P(2) → P(1) → Γ → Γ/r → 0 be the minimal projective resolution of
top(Γ ) where P(j) = HomΛ(T, T

′
j) with T

′
j ∈ add(T ). Let Ej be the torsion-

predecessor of T ′j. Then Γ is a Koszul algebra if and only if , for each j, the
canonical morphism from T ′j+1 to the minimal left add(T )-approximation of
Ej is a split monomorphism.

Proof. If Γ is a Koszul algebra then P(j) is generated in degree j, for
each j ≥ 0. Moreover P(j) is a graded direct summand of the projective
cover of rP(j−1), for j ≥ 0. Let Ej−1 ∈ T (T ) be such that HomΛ(T,Ej−1) ∼=
rP(j−1) and TEj−1 be the minimal left add(T )-approximation of Ej−1. Hence,
HomΛ(T, TEj−1) is the projective cover of rP(j−1). Therefore, T

′
j is a graded

direct summand of TEj−1 .

Conversely, if the canonical map is a split monomorphism then P(j+1) is
a graded direct summand of the projective cover of rP(j) for j ≥ 0. Since I
is homogeneous, it follows that Γ is Koszul.

The next result is the main theorem of this section. We first introduce
the concept of T-sink maps and fix the notation which we will use to prove
that result.

Definition 2.6. Let Pl = HomΛ(T, Tl) be an indecomposable projective
Γ -module, αl : El → Tl its sink-torsion map and (TEl , πl) the minimal left
add(T )-approximation of El. The map αlπl will be called a T -sink map of Tl.

We fix a decomposition TEl =
⊕r
s=1 T

mls
ls
where Tl1 , . . . , Tlr are indecom-

posable direct summands of T , pairwise non-isomorphic. We observe that
mls = dimk HomΓ (Pls , rPl/r

2Pl) where rPl = (T,El).

We now consider a finite-dimensional k-algebra Σ with quiver Q. We fix
a ring surjection φ : kQ → Σ and let I = kerφ. We assume that I is an
admissible ideal; i.e., JN ⊂ I ⊂ J2 for some positive integer N where J is
the ideal in KQ generated by the arrows of Q. Since Q is the quiver of Σ,
such a φ exists. For each arrow a ∈ Q1, say a : i → j, we define a map
fa : φ(j)Σ → φ(i)Σ, induced by the multiplication by φ(a) in Σ. We call fa
multiplication by the arrow a.
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Theorem 2.7. Let Λ be a finite-dimensional algebra over an algebrai-
cally closed field k and T a tilting Λ-module. Let Γ = kQ/I = EndopΛ (T )
with Q a finite quiver and I an admissible ideal , such that Γ has global
dimension 2. Consider the following minimal projective resolution of Γ/r:

0→

r⊕

t=1

P
mjt
jt

̺∗
→

s⊕

v=1

P
mlv
lv

f∗
→ Γ → Γ/r→ 0.

Then Γ is a Koszul algebra if and only if the map ̺ may be defined by a
matrix whose entries are maps with domain and codomain indecomposable

which are components of T -sink maps.

Proof. Let Tl be an indecomposable direct summand of T . We recall that
((T, TEl), (πl)∗) is the projective cover of rPl and since (αl)∗ : rPl → Pl is a
sink map, one can conclude that Sl has a minimal presentation given by

HomΛ(T, TEl)
(αlπl)∗
−−−→Pl → Sl → 0.

It follows that each non-zero map f∗ : Pls → Pl, with ls 6= l, which is
a multiplication by an arrow is also a component of the map αlπl. Hence
we may assume that {fα : Tls → Tl | α∗ : l → ls ∈ Q1(Γ )} ∼= {αl(πl)

us
s :

Tls → Tl | us = 1, . . . ,mls} for each s = 1, . . . , r fixed.
We now assume that Γ is a Koszul algebra. Then I is a quadratic ideal

and by (1.1) of [6],
⊕r
t=1 P

mjt
jt
∼= I/I2. It follows that the map ̺ is defined

by components with domain and codomain indecomposable which are, up
to isomorphism, multiplications by an arrow. We see from the projective
presentation of the simple Γ -modules given above that each component of
̺ is a component of some T -sink map.
Conversely, suppose that each component of ̺ is defined by ̺jt,l :

Tjt → Tl, which are also components of T -sink maps. It follows that ̺jt,l
is a component of a T -sink map of some Tl. Hence each component of ̺∗
with domain and codomain indecomposable is multiplication by an arrow.
Therefore, Γ is quadratic. Since Γ has global dimension 2, it is a Koszul
algebra.

The following examples will illustrate our result.

Example 1 (A finite type Brenner–Butler algebra). Let Λ be a quiver
algebra whose quiver is the following:

3

ր

1 −→ 2

ց

4
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Let T = τ−S2 ⊕P1⊕P3⊕P4 be a tilting Λ-module. The Auslander–Reiten
quiver of Λ, with the components of T parenthesized, is given by

(P3) τ−P3 I3

ց ր ց ր ց

P2 −→ (P1) −→ τ−P2 −→ S2 −→ I2 −→ (I1)

ր ց ր ց ր

(P4) τ−P4 I4

The morphism P2 → P1, in the graph above, is a sink map; moreover,
P3 ⊕ P4 is the T -generator of trT P2. Also, P1 is the T -generator of I2 and
the morphism I2 → τ−S2 = I1, given by the graph above, is the map that
induces the canonical sink map r(T, τ−S2) →֒ (T, τ

−S2). It follows that Γ
has ordinary quiver given by

3̂
βր

2̂
α
→ 1̂

γց

4̂

We observe that Γ is an algebra with radical square zero.

Example 2 (A concealed algebra). Let Λ be a quiver algebra whose
quiver is the following:

1 5

տ ւ

3 ←− 4

ւ տ

2 6

A local sketch of the preprojective component of the Auslander–Reiten
quiver of Λ is given by

P1 τ−P1 τ−2P1

ց ր ց ր ց ր

P2 → P3 → τ−P2→ τ−P3 → τ−2P2 → τ−2P3 →

ց ր ց ր ց

P4 → P6 → τ−P4 → τ−P6→

ց ր ց ր

P5 τ−P5
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We consider the tilting Λ-module T = τ−P5⊕τ
−P4⊕τ

−P3⊕τ
−P2⊕τ

−P1⊕P6
to define the endomorphism ring Γ . We see that the full subquiver of the
Auslander–Reiten quiver of Λ, with vertices given by the indecomposable
direct summands of T , forms a slice and it is the following quiver:

τ−P1 → τ−P3 → τ−P4 → τ−P5

ր ր

τ−P2 P6

where the arrows represent irreducible maps, hence T -sink maps. It follows
that Γ has projective radical.

3. Some applications

3.1. Brenner–Butler tilted algebras. Let Λ = kQ be a finite-dimensional
path algebra over a field k, with Q a finite connected quiver. Let P1, . . . , Pn
(respectively, I1, . . . , In) be a complete list of indecomposable projective
non-isomorphic Λ-modules (respectively indecomposable non-isomorphic in-
jective Λ-modules) corresponding to the vertices 1, . . . , n in Q. We fix a
simple Λ-module S = Si associated to the vertex i of Q and assume that
τ−Si 6= 0. The module T = τ−Si ⊕

⊕
j 6=i Pj is a tilting Λ-module. The

endomorphism ring Γ = EndΛ(T )
op will be called a Brenner–Butler tilted

algebra, or BB-tilted algebra for short (see [1]). It is known that the class
of torsion-free modules is given by F(T ) = Cogen(S). Since Ext1Λ(T, S)

∼=

DHomΛ(S, τT ) = DHomΛ(S, S) ∼= k, we see that Ŝ = Ext
1
Λ(T, S) is a simple

torsion EndΛ(T )
op-module. We shall prove the following result.

Theorem 3.1. The endomorphism ring of a Brenner–Butler tilting mod-
ule over a hereditary algebra is a Koszul algebra.

Proof. We prove this theorem by showing that top(Γ ) has a minimal
projective resolution which satisfies the conditions of our main theorem.
We know that every simple module with projective dimension 1 has a

linear presentation (see [9]). Moreover, if pdΓ Ŝ = 1 (where Ŝ = Ext
1
Λ(T, S))

then Γ is hereditary. Hence we may assume that pdΓ Ŝ = 2. We observe that
Ω2(Γ/r) = Ω2(Ŝ), since S is the only simple module in F(T ).
Let 0 → S → Ii → I1 → 0 be a minimal injective coresolution of the

simple Λ-module S = Si, where I1 = Im1l1 ⊕ . . . ⊕ I
mt
lt
is such that ls is an

immediate predecessor of the vertex i in Q and ms is the number of arrows
from ls to i for s = 1, . . . , t. We have top(τ

−S) = soc I1 (see [5]) and since
Λ is hereditary one concludes that

(∗) 0→ Pi
f
→

t⊕

s=1

Pmsls
π
→ τ−S → 0
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is a Λ-projective minimal resolution of τ−S, where the matrix of f consists of
multiplications by the arrows αuss from ls to i in Q, with s = 1, . . . , t and 1 ≤
us ≤ ms.

Applying the functor HomΛ(T,−) to the sequence (∗), we obtain the
following exact sequence of Γ -modules:

0→ (T, Pi)
f∗
→

t⊕

s=1

(T, Pls)
ms π∗→ (T, τ−S)→ Ext1Λ(T, Pi)→ 0.

Since π is a projective cover, we see that any map ϕj : Pj → τ−S must factor
through π. Hence, given ϕ ∈ rΓ (T, τ

−S), we conclude that ϕ ∈ Imπ∗. Since
π∗ is not an epimorphism, we have Imπ∗ = rΓ (T, τ

−S) and we see that

cokerπ∗ ∼= Ŝ.

We now consider the arrows βvmm from the vertex i to the vertex jm, with
m = 1, . . . , r and 1 ≤ vm ≤ vjm , where vjm is the number of arrows between
these vertices. We define g = ((βv11 )1≤v1≤vj1 , . . . , (β

vr
r )1≤vr≤vjm ) : rΛPi→Pi.

It is easy to see that coker g = Si and g∗ is an isomorphism between
the projective Γ -modules (T, rΛPi) and (T, Pi). It follows that β

vm
m αuss :

Pjm → Pls is a component of the T -sink map of Pls . Moreover the minimal

projective resolution of Ŝ is the following exact sequence:

0→ (T, rPi)
f∗
→

t⊕

s=1

(T, Pmsls )
π∗→ (T, τ−S)→ Ŝ → 0,

where each component of f∗ is defined by the map (β
vm
m αuss )∗. It follows by

Theorem 2.7 that Γ is a Koszul algebra.

As an application of the result above, we describe a presentation of BB-
tilted algebras.

Description of the quiver of BB-tilted algebras. The vertex î ∈ QΓ cor-
responding to the simple Γ -module Ŝ is a source with immediate successors
given by the vertices associated with the simple Γ -modules Ŝ

l̂s
for s =

1, . . . , t. The Γ -projective covers of the Ŝ
l̂s
are given by P

l̂s
= HomΛ(T, Pls).

It follows from the fact that HomΛ(τ
−S, Pj) = 0 for j 6= i that the projective

cover of r(T, τ−S) is given by
⊕t
s=1 P

ms

l̂s
.

The number of arrows from l̂s to some m̂ in the quiver of Γ , for m 6= i,
is equal to

ms · dimk(Pm, rΛPi/r
2
ΛPi) + dimk(Pm, P

′/rΛP
′),

where rΛPls = Pmsi ⊕ P ′ for some projective Λ-module P ′. Furthermore,
at the remaining vertices, the quiver of Γ has the same description as the
quiver Q. One can check these assertions by an easy computation.
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Description of a set of relations for BB-tilted algebras. The ideal of
relations for Γ has a minimal generating set given by the sum of paths

which start at î and end at ĵm, for m = 1, . . . , r, and is defined by∑t
s=1

∑ms
us=1
(βvmm αuss )π

us
s , for each vm = 1, . . . , vjm .

As we said above, the quivers Q(Λ) and Q(Γ ) of a hereditary algebra Λ
and the associated BB-tilted algebra Γ have the same shape at the vertices
j 6∈ {i, l1, . . . , lr, j1, . . . , jm}. In order to clarify the description above, we
restrict ourselves to the case where Q(Λ) is a tree, and present diagrams
showing the connection between both quivers. We observe that this descrip-
tion will be useful in the next proposition. We first consider the following
definition.

Definition 3.2. Let i be a vertex in a quiver Q. We define the neigh-
borhood of i to be the full subquiver whose vertices are i, its immediate
predecessors, and successors.

We now assume that the neighborhood of the vertex i in Q has the
following diagram:

l1 j1

ցα1 β1ր
... i

...
αtր ցβr

lt jr

As we have shown, the vertex î is a source in the quiver Q(Γ ) and

its immediate successors are given by the vertices l̂1, . . . , l̂t correspond-
ing to the projective Γ -modules HomΛ(T, Pls), s = 1, . . . , t. We consider
π = (π1, . . . , πt), a decomposition of π, and the arrow πs corresponding to

the homomorphism (πs)∗ = Hom(T, πs). Each vertex l̂s is an immediate

predecessor of each ĵm. The arrows between l̂s and ĵm denoted by (βmαs)
correspond to the homomorphism (βmαs)∗, as defined in the proof of The-
orem 2.7. For each m = 1, . . . , r we have the following local picture:

l̂1
π1ր ց(βmα1)

î
... ĵm

πtց ր(βmαt)

l̂t

We present some explicit examples to further clarify the quiver with
relations of a BB-tilted algebra.
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Example 3. If Λ is the quiver algebra whose quiver is

2
αւ ցγ

Q : 1
β
→ 3

and T = τ−S1 ⊕
⊕
j 6=1 Pj , we see that Γ has the following ordinary quiver:

1̂
π
→ 2̂

βα
−→
−→
γ

3̂

and relation (βα)π = 0.

Example 4. Let Λ be the quiver algebra whose quiver is

1
β
← 2

α1
←−
←−
α2

3

and T the Brenner–Butler tilting module associated with the vertex 2, that
is, T = τ−S2 ⊕ P1 ⊕ P3. In this case Γ has a presentation whose ordinary
quiver is given by

2̂
π1
−→
−→
π2

3̂
βα1
−→
−→
βα2

1̂

and only one relation π1(βα1) + π2(βα2) = 0.

It is conjectured that a tilted algebra is simply connected if and only if the
original hereditary algebra is simply connected. We recall that a hereditary
algebra is simply connected when its quiver is a tree. We know by [3] that
this conjecture holds in the case of tame tilted algebras. Our objective now is
to prove that this statement still holds for BB-tilted algebras irrespective of
their representation type. We review some notation and definitions (see [4]).

Let (Q, I) be a presentation of a connected algebra Γ ; we denote by
Π1(Q, I) its fundamental group. Given any abelian group G, we denote
by Z1(Γ, I,G) the set of all G-valued functions f : Q1 → G such that∑u
i=1 f(αi) =

∑p
j=1 f(βj) whenever there exists a minimal relation ̺ =∑q

i=1 λiwi, with q ≥ 2, such that w1 = α1 . . . αu and w2 = β1 . . . βp. In [4],
Section 2.3, Assem and de la Peña show the existence of the following exact
sequence of abelian groups:

0→ G→ G|Q0| → Z1(Γ, I,G)→ Hom(Π1(Q, I), G)→ 0.

The next lemma is a consequence of the exact sequence above and will be
used in our next proposition.

Lemma 3.3. Let (Q, I) be a presentation of a connected algebra, where
I is generated by a set {̺m =

∑um
i=1 λiwi | m = 1, . . . , r} ∪ {γj} where each

γj is a monomial relation in I and each ̺m is a minimal relation with um
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terms. Then

dimQ(Hom(Π1(Q, I),Q)) ≥ |Q1| − |Q0|+ 1−

r∑

m=1

um + r.

Proof. This is a straightforward consequence of the sequence above with
G being the additive group of the rational numbers. We just observe that
Z1(Γ, I,Q) is a subspace of Q|Q1| which is determined by

∑r
m=1 um−r linear

equations.

Proposition 3.4. Let Γ be a BB-tilted algebra from a hereditary algebra
Λ = kQ. Then Γ is simply connected if and only if Q is a tree.

Proof. Assume first Q is a tree. Let (Q(Γ ), I) be the presentation of Γ
given above. Then it is easy to see that the fundamental group π1(Q(Γ ), I)
is trivial. Since dim o(γ)Γt(γ) = 1 for any arrow γ ∈ Q(Γ ), it follows by
Theorem 3.5 of [8] that the fundamental group of any presentation is triv-
ial. Since it is also known that Γ is directed, it follows that Γ is simply
connected.
We assume now that the BB-tilted algebra Γ is simply connected and

we shall prove that Λ is simply connected; that is, Q is a tree. We know that
H1(Γ ) = H1(Λ) by Theorem 4.2 of [12]. Hence it is enough to prove that
H1(Γ ) = 0.
We recall that outside the neighborhood of the vertex i ∈ Q the quivers

Q and Q(Γ ) have the same shape. Since Γ is simply connected, we conclude
that Q does not contain simple closed walks not involving arrows in the
neighborhood of i. We also see that there is no path in Q which starts at
some li and ends at some lj . Otherwise, we would have the following picture
of the neighborhood of i in Q:

l1 j1

↓ ց ր

l2 → i
...

... ր ց

lt jr

Then Q(Γ ) would have the following picture of the neighborhood of î:

l̂1

ր ↓ ց

î → l̂2 → ĵm

ց
... ր

l̂t
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for each m = 1, . . . , r. In this case, we claim that Γ is not simply connected.
According to our description of BB-tilted algebras, if we compute the funda-
mental group of our presentation, the closed walk starting at î and passing
through l̂1 and l̂2 is not trivial in the fundamental group. The same kind
of argument shows that there is no path in Q starting and ending at the
vertices j1, . . . , jr.
We consider the following set of vertices: C = {î, l̂1, . . . , l̂t, ĵ1, . . . , ĵr}. It

follows from our presentation and the fact that Γ is simply connected that
all simple closed walks in Q(Γ ) have vertices belonging to C.
Let Γ ′ be a full subcategory of Γ whose vertices belong to C. Hence Γ ′ is

a full convex subcategory of Γ . If we identify all the vertices in the set C, we
obtain a quiver which is a tree. Using one-point extensions and coextensions,
and Happel’s long exact sequence, we see that H1(Γ ) = H1(Γ ′).
We claim that Γ ′ is the BB-tilted algebra from the hereditary algebra Λ′

whose quiver is such that all the arrows start or end at i; that is, the quiver
of Λ′ has the following description:

l1 j1

ց ր
... i

...

ր ց

lt jr

The result follows from the claim. Indeed, Λ′ is hereditary and Q(Λ′) is a
tree. Therefore H1(Λ′) = 0. We also know that H1(Γ ′) = H1(Λ′). Hence
H1(Λ) = 0, as we wished to prove.
We now prove the claim. We have shown that, in the quiver Q, there

is no path between l’s or between j’s and no paths from some l to some j.
Hence, in the quiver of Λ′, there is no closed simple walk with origin at
some ls passing through some jm or between themselves. Next, we prove
that there is no multiple arrow starting at some ls or ending at some jm, for
every s = 1, . . . , t and m = 1, . . . , r.
We recall that Γ ′ is a connected algebra such that the relations are given

by

̺vm =

t∑

s=1

ms∑

us=1

(βvmm αuss )π
us
s ,

for each pair (m, vm). We shall prove that if ms > 1 or vjm > 1 for some s
or some m then Γ ′ is not simply connected.
We set l = m1+ . . .+mt and v = vj1+ . . .+vjr . Observe that the number

of vertices of Γ ′ is t+r+1, by the description for the quiver of the BB-tilted
algebras.
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If l > 1 then by the description of the minimal relations of Γ ′ and the
lemma above we have

dimQ(Hom(Π1(Q, I),Q)) ≥ (l + v)− (t+ r).

If Q(Λ′) has multiple arrows then l > t or v > r; in this case

dimQ(Hom(Π1(Q, I),Q)) > 0.

Therefore Γ ′ is not simply connected. Finally, if l = 1 then all relations
are monomial. In this case, if vjm > 1 for some m, then Γ ′ is not simply
connected.

3.2. A class of Koszul iterated tilted algebras. A complete characteri-
zation of the generalized tilted algebra of type An is given by Assem and
Happel in [2]. We recall that a quiver is called a linear quiver if for each
vertex in the quiver there exists at most one arrow starting and one arrow
ending at the vertex. In Section 2 of the cited paper the authors establish
the following.

Lemma ([2]). Let A be a finite-dimensional algebra of finite representa-
tion type with the following properties:

1. There are at most two irreducible maps with prescribed domain or
codomain.

2. If PA is a projective module with indecomposable radical R then there
is at most one irreducible map of codomain R. Dually if IA is injective
with I/soc I indecomposable then there is at most one irreducible map with
domain I/soc I.

Then, for every indecomposable M , the set of all (isomorphism classes
of ) indecomposable modules N such that Hom(N,M) 6= 0 and Hom(N, τM)
= 0 is the union of two full linear subquivers of the AR-quiver intersecting
at the vertex [M ]. The dual conclusion also holds.

Let Λ be a finite-dimensional algebra of finite representation type sat-
isfying the hypothesis of the lemma above and Γ a tilted algebra from Λ.
Using the Lemma above, Happel and Ringel have described the correspon-
dence between indecomposable summands of the tilting module T and the
vertices of the quiver Q(Γ ), in the following sense.

They consider an indecomposable direct summand Tl of T correspond-
ing under the functor HomΛ(T,−) to the projective Γ -module associated
with the vertex l ∈ Q(Γ ). Then, in the AR-quiver of Λ, there are at most
two irreducible maps f and g of codomain Tl and at most two irreducible
maps u, v of domain Tl. Furthermore, these irreducible maps determine at
most four linear subquivers intersecting at Tl, such that any indecompos-
able module that does not lie in these subquivers is neither the domain of
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a non-zero map with codomain in Tl nor the codomain of a non-zero map
with domain in Tl.

We denote by L(f), L(g), R(u) and R(v) the subquivers to the left and to
the right of Tl, respectively, such that L(f) together with R(u) and L(g) to-
gether with R(v) are the full linear subquivers of the AR-quivers intersecting
in Tl, as described in the lemma above. Let Ts be an indecomposable direct
summand of T corresponding to the vertex s ∈ Q(Γ ). If HomΛ(Tl, Ts) 6= 0
then we have Ts ∈ R(u) or Ts ∈ R(v). If HomΛ(Ts, Tl) 6= 0 then Ts ∈ L(f)
or Ts ∈ L(g).

Now we consider two neighbors s and j of the vertex l in the quiver of Γ
such that there exist non-zero maps Ts → Tl and Tl → Tj . If Ts, Tl belong
to a linear subquiver determined by an irreducible map with codomain Tj
then the composition Ts → Tl → Tj is non-zero. Otherwise the composition
Ts → Tl → Tj is zero, since Ts is not in the linear subquiver determined by
an irreducible map with codomain Tj in which Tl lies.

Happel and Ringel observed that the Lemma above is crucial for the
proof of their main result since they have proved that every generalized
tilted algebra of type An satisfies these hypotheses and hence its AR-quiver
has the properties of that assertion. Using this lemma, Proposition 2.2
and the same kind of arguments presented in that paper, we show that
the algebras tilted from an algebra Λ, where Λ satisfies the conditions of
the lemma (which includes the generalized tilted algebras of type An), are
monomial quadratic and by Green and Zacharia [11], they are Koszul alge-
bras.

Proposition 3.5. Let Λ be a finite-dimensional algebra of finite repre-
sentation type satisfying the hypotheses of the Lemma above and Γ a tilted
algebra from Λ. Then all presentations of Γ are monomial quadratic. In
particular Γ is a Koszul algebra.

Proof. Let Tl be an indecomposable direct summand of T , α : El → Tl
the sink-torsion map and (TEl , πl) the minimal left add(T )-approximation
of El. Since TEl belongs to add(T ) and Hom(TEl , Tl) 6= 0, it follows from
the considerations above that each indecomposable direct summand of TEl
(isomorphism class) lies on the subquiver L(f) or on the subquiver L(g).
Since (T, TEl) is the projective cover of r(T, Tl) it follows that each inde-
composable direct summand of TEl defines an immediate predecessor vertex
in Q(Γ ) of the vertex l. Hence TEl has, at most, two indecomposable direct
summands, say Tl,1 and Tl,2, belonging to the subquivers L(f) and L(g),
respectively. Applying the same argument to the modules Tl,1 and Tl,2, we
have the following picture, where the arrows represent components of T -sink
maps:



KOSZUL AND QUASI-KOSZUL ALGEBRAS 213

Tl,1,1
ց

Tl,1

ր ց

Tl,1,2 Tl
Tl,2,1

ց ր

Tl,2

ր

Tl,2,2

We now describe the relations starting at l ∈ Q(Γ ). We first observe
that there do not exist commutative relations in Γ . Suppose we have Tl,1,2 ∼=
Tl,2,1. Since Tl,2,1 does not belong to L(f) or to L(g) we have HomΛ(Tl,2,1, Tl)
= 0. Hence both compositions Tl,1,2 → Tl,1 → Tl and Tl,1,2 → Tl,2 → Tl are
zero maps. Therefore these composition maps define monomial relations.
We also see that there is no non-zero homomorphism with domain an inde-
composable module whose class is not in a full linear subquiver intersecting
at Tl and with codomain Tl. It follows that the above presentation of Γ
is monomial quadratic. Since we also have dim o(γ)Γt(γ) = 1 for all ar-
rows γ, it follows by Proposition 2.5 of [8] that all presentations are mono-
mial quadratic.

4. Quasi-Koszul algebras. The concept of quasi-Koszul algebras was
introduced in [9], where Green and Martinez consider the case of non-graded
algebras. They introduce the notion of linear resolutions in that case. They
assume that Λ is a Noetherian semiperfect algebra over the field k and
they prove that a Λ-module M is a quasi-Koszul module if and only if M
has a linear non-graded resolution (see Thm. 4.4 in [9]). They show that
this is equivalent to saying that E(M) =

∐
n≥0 Ext

n
Λ(M,Λ/r), as a graded

E(Λ)-module, is generated in degree zero. We introduce a new method of
dealing with the concept of quasi-Koszul modules.

Definition 4.1. Let Λ be a Noetherian semiperfect algebra over the
field k. Let Θ : P → Q be a non-zero Λ-map between projective modules. We
say that Θ is an essentially linear map if P ∼=

⊕
i Pi and Q

∼=
⊕
j Qj where

the Pi and Qj are indecomposable projective modules and, for each i and j,
the map Θi,j : Pi → Qj induced by Θ induces a non-zero monomorphism
Θi,j : Pi/rPi → rQj/r

2Qj .

We say that a finitely generated Λ-module M has an essentially linear
resolution if the minimal projective resolution of M
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. . .→ Pn
fn
→ Pn−1 → . . .→ P1

f1
→ P0 →M → 0

is such that fj is an essentially linear map for every j > 0. The next result
shows that M has an essentially linear resolution if and only if it is a quasi-
Koszul module.

Proposition 4.2. Let Λ be a Noetherian semiperfect k-algebra and M
be a finitely generated Λ-module. Then M is a quasi-Koszul module if and
only if M has an essentially linear resolution.

Proof. We follow the argument in the proof of Theorem 4.4 of [9]. Let
M be a finitely generated Λ-module with the following minimal projective
resolution:

. . .→ Pn
fn
→ Pn−1 → . . .→ P1

f1
→ P0 →M → 0.

We considerH = ker fj−1 and we observe that if fj is an essentially linear
map for each j ≥ 1 then the induced map f j : Pj/rPj → rPj−1/r

2Pj−1
is a non-zero monomorphism for each j ≥ 1. Thus we have the following
commutative diagram:

H
i
→ rPj−1

↓p q↓

H/rH
i
→ rPj−1/r

2Pj−1

where i is the inclusion map, i is induced by i and p, q are canonical epi-
morphisms. We observe that i is a non-zero monomorphism since fj is an
essentially linear map. It follows from the argument in the proof of Proposi-

tion 4.1 of [9] that ExtjΛ(M,Λ/r) = Ext1Λ(Λ/r, Λ/r) ·Ext
j−1
Λ (M,Λ/r). It fol-

lows by induction that E(M) is generated in degree zero. Hence M is a
quasi-Koszul module.
Conversely, if we assume that M is a quasi-Koszul module, then it

follows from the argument in the proof of Theorem 4.4 of [9] that the
map ker f0 → Λ/r factors through rP0. Hence f1 is an essentially linear
map. The proof follows by induction. Since M is a quasi-Koszul module
we have ExtjΛ(M,Λ/r) = Ext1Λ(Λ/r, Λ/r) · Ext

j−1
Λ (M,Λ/r). We also have

Extj−1Λ (M,Λ/r) ∼= HomΛ(ker fj−2, Λ/r). We now apply the same arguments
in the case j = 1 to conclude that every map ker fj−1 → Λ/r factors through
rPj−1. It follows that fj is an essentially linear map for each j > 1.

4.1. Endomorphism rings of tilting modules. In this subsection we shall
introduce the concept of essentially T -irreducible maps and prove that they
are strongly related to the essentially linear maps presented in the previous
subsection. As a consequence, we shall give a condition for a module over
an endomorphism ring of a tilting module to be a quasi-Koszul module. We
fix a finite-dimensional algebra Λ over the algebraically closed field k and
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a tilting Λ-module T . We also choose a fixed decomposition T =
⊕n
j=1 Tj

into indecomposable direct summands and denote by Γ the opposite endo-
morphism ring of the tilting module T .

Definition 4.3. Let f : Tv → Tl be a non-zero Λ-morphism between
indecomposable modules in add(T ). We say that f is a T -irreducible map if
f is not an isomorphism and for any factorization f = gh through add(T ),
either h is a split monomorphism or g is a split epimorphism.

Lemma 4.4. Let f∗ : Pv → Pl be a Γ -morphism which is not an isomor-
phism and is not in r2Γ . Then f is a T -irreducible map.

Proof. Assume that f is not a T -irreducible map and let f = gh for
some g : T ′ → Tl and h : Tl → T ′ with T ′ ∈ add(T ). If h is not a split
monomorphism then h∗(Pv) is contained in rP

′, where P ′ = (T, T ′). If g is
not a split epimorphism then g∗(h∗(Pv)) ⊂ g∗(rP

′) ⊂ r2Pl. Hence f∗ is in
r2Γ .

Lemma 4.5. Let Pl = HomΛ(T, Tl) and Pj = HomΛ(T, Tj) be indecom-
posable projective Γ -modules. Then there exists a T -irreducible map f :
Tj → Tl if and only if Pj is a direct summand of the projective cover of rPl.

Proof. Assume that f is a T -irreducible map. Let αlπl : TEl → Tl be
the T -sink map of Tl. Hence f factors through αlπl. We consider a map
β : Tj → TEl such that f = αlπlβ. Since αlπl is not a split epimorphism it
follows by the hypothesis on f that β is a split monomorphism. Hence Tj is
a direct summand of TEl .

Conversely, assume that Pj = (T, Tj) is a direct summand of the projec-
tive cover of the radical of Pl. In this case, there exists a non-zero morphism
f∗ : Pj → Pl such that Im f∗ is contained in rPl and Im f∗ is not contained in
r2Pl. We claim that f is a T -irreducible map. Suppose not; that is, there ex-
ist non-zero maps g : T ′ → Tl and h : Tj → T ′, with T ′ ∈ add(T ), such that
f = gh, where g is not a split epimorphism and h is not a split monomor-
phism. By the Brenner–Butler Theorem we have f∗ = g∗h∗, Im g∗ ⊂ rPl
and Imh∗ ⊂ r(T, T

′). It follows that Im f∗ ⊂ r
2Pl, a contradiction with the

hypothesis on f∗.

Remark. It follows from Lemma 4.5 that if f : Tv → Tl is T -irreducible
then f induces a non-zero monomorphism f∗ : Pv/rPv → rPl/r

2Pl; that is,
if Γ is the endomorphism ring of a tilting module over an algebra Λ, then
every T -irreducible map is also an essentially linear map. The next definition
generalizes the concept of T -irreducible maps.

Definition 4.6. Let ̺∗ : (T, T(1)) → (T, T(2)) be a non-zero Λ-module
homomorphism. We say that ̺ is an essentially T -irreducible map if the
following conditions hold:
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(1) For every indecomposable direct summand T ′(1) of T(1), there exists

an indecomposable direct summand T ′(2) of T(2) such that the composition

T ′(1)
̺T ′→ T(2)

p
→ T ′(2) is non-zero, where ̺T ′(1) is the restriction of ̺ to T

′
(1) and

p is the canonical projection.
(2) Whenever α = p̺T ′

(1)
for p and ̺T ′

(1)
as described above, then α is a

T -irreducible map.

The next result relates the concepts of essentially linear maps and es-
sentially T -irreducible maps over endomorphism rings of tilting modules.

Lemma 4.7. Let Λ be a finite-dimensional algebra over the field k, T
be a tilting module and Γ = EndopΛ (T ) the endomorphism ring of T over
Λ. Let ̺∗ : P(1) = (T, T(1)) → P(2) = (T, T(2)) be a non-zero Γ -module
homomorphism. Then ̺∗ is an essentially linear map if and only if ̺ is an
essentially T -irreducible map.

Proof. Assume that ̺ is an essentially T -irreducible map. It follows
from the remark above that ̺∗ induces a non-zero monomorphism (̺T ′)∗ :
(T, T ′)/r(T, T ′) → rP(2)/r

2P(2) for each indecomposable direct summand
(T, T ′) of P(1). Therefore ̺∗ is an essentially linear map.
We now assume that ̺∗ is an essentially linear map and we shall prove

that each component ̺′ : T ′(1) → T ′(2) of ̺, for T
′
(1) and T

′
(2) indecomposable

direct summands of T(1) and T(2) respectively, is a T -irreducible map. We
consider a factorization of ̺′ through add(T ), say ̺′ = gh with g : T ′′ → T ′(2)
and h : T ′(1) → T ′′ for T ′′ ∈ add(T ), and let ̺′∗, h∗ and g∗ be the induced

maps on the tops of the modules (T, T ′′), (T, T ′(1)) and (T, T
′
(2)), respectively.

Since ̺′∗ is a split monomorphism, so is h∗. Since (T, T
′′) is a projective

Γ -module, h∗ is a split monomorphism. Hence h is also a split monomor-
phism. Therefore ̺′ is a T -irreducible map and we conclude that ̺ is an
essentially T -irreducible map.

We now present the main result of this subsection.

Proposition 4.8. Let Γ = EndopΛ (T ) be the endomorphism ring of the
tilting module T over the finite-dimensional algebra Λ. Let M be a finitely
generated Γ -module. Consider the minimal projective resolution of M given
by the following long exact sequence:

. . .→ Pn
(̺n)∗
−→ Pn−1 → . . .→ P1

(̺1)∗
−→ P0 →M → 0.

Then M is a quasi-Koszul module if and only if ̺j is an essentially
T -irreducible map for each j > 0.

Proof. It follows from Proposition 4.2 that M is a quasi-Koszul module
if and only if M has an essentially linear resolution. By Lemma 4.7, the



KOSZUL AND QUASI-KOSZUL ALGEBRAS 217

latter condition is equivalent to ̺j being an essentially T -irreducible map
for each j > 0.

We have the following characterization of quasi-Koszul modules in the
context of the endomorphism rings of tilting modules, as a consequence of
Definition 4.6 and Proposition 4.8. Let Λ be a finite-dimensional algebra
over the field k and T be a tilting Λ-module. Let Γ = EndopΛ (T ) be the
endomorphism ring of T over Λ, and M be a finitely generated Γ -module.
Observe thatM is a quasi-Koszul module if and only ifM has an essentially
T -irreducible projective resolution.

Corollary 4.9. Let Γ = EndopΛ (T ) be the graded endomorphism ring
of the tilting module T over the finite-dimensional algebra Λ. Let M be a
finitely generated Γ -module generated in degree zero. Then M is a Koszul
module if and only if M has an essentially T -irreducible projective resolu-
tion.

Proof. Since Γ is graded the proof is straightforward from Proposi-
tion 4.8.

4.2. A class of quasi-Koszul endomorphism rings. In this subsection we
fix the following notation and assumptions. Recall that a finite-dimensional
k-algebra is called triangular if its quiver has no oriented cycles. Recall that
Λ is called a quadratic monomial algebra if Λ = kQ/I where I is generated
by a set of paths of length 2 in Q. In this subsection, Λ will denote a tri-
angular, basic, finite-dimensional, quadratic, monomial k-algebra of global
dimension smaller than or equal to two. Let P1, . . . , Pn be a complete list
of indecomposable projective non-isomorphic Λ-modules. Let X be an in-
decomposable Λ-module such that T = X ⊕

⊕
j 6=i Pj is a tilting Λ-module.

Assume moreover that Γ = EndopΛ (T ) has global dimension at most 2. We
shall prove that if X is a Koszul module then Γ is a quasi-Koszul algebra.
This result will be obtained as a consequence of several lemmas.
If X is a projective module then we have Γ ∼= Λ, which is a Koszul

algebra. For the remainder of this subsection, we assume that X is not a
projective Λ-module.

Lemma 4.10. Let 0 → P(1)
f
→ P(X)

π
→ X → 0 be a minimal projective

resolution of X. Then P(1) ∼= Pi and P(X) ∈ add(T ).

Proof. We show first that P(1) ∼= Pni and PX ∈ add(T ). Let P(1)
∼=

Pni ⊕ P
′ with P ′ ∈ add(T ) and n ≥ 0 and

0 → P(1)
f
→ P(X) → X → 0

↓p ↓ ‖

0 → P ′ → E → X → 0
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where p : P(1) → P ′ is the projection and the commutative diagram is

obtained by taking the pushout of p and f . Since Ext1(X,T ) = 0, the bottom
row splits. Hence the map p can be factored through P(X). This contradicts
the minimality of the resolution unless P ′ = 0. Therefore P(1) = Pni for
some n ≥ 0. The triangularity of Λ and the fact that P(1) = P

n
i imply that

Hom(P(X), Pi) = 0. Hence, we conclude that P(X) is in add(T ).

We now show that n = 1. We apply the functor HomΛ(T,−) to the
minimal projective resolution of X to obtain the exact sequence

(I) 0→ (T, Pni )→ (T, P(X))
π∗→ (T,X)→ Ext1Λ(T, P

n
i )

→ Ext1Λ(T, P(X))→ Ext
1
Λ(T,X)→ 0.

Since Ext1Λ(T, P(X)) = 0 and (T,X) is an indecomposable projective Γ -mod-

ule, it follows that Ext1Λ(T, P
n
i ) is indecomposable and therefore n = 1.

For each indecomposable projective module Pi, let Si denote the top
of Pi.

Lemma 4.11. Keeping the hypotheses and notation of this subsection,
the following statements hold :

1. The canonical inclusion β : rPi → Pi defines an isomorphism
β∗ : (T, rPi)→ (T, Pi).

2. Ext1Λ(T, Pi) is a simple Γ -module.

3. pdΛ Si = 1 and hence rPi is a projective Λ-module.

Proof. We observe that (T, Si) = 0, since Si is not a simple module in
top(T ). It follows by definition that Si ∈ F(T ). Using the projective resolu-
tion of X to compute the Ext groups we have Ext1Λ(T, Si)

∼= Ext1Λ(X,Si)
∼=

HomΛ(Pi, Si) ∼= k. It follows that Ext
1
Λ(T, Si) is a Γ -simple module.

We apply the functor HomΛ(T,−) to the short exact sequence

0→ rPi
β
→ Pi → Si → 0

where β is the canonical inclusion and we obtain the exact sequence

(II) 0→ (T, rPi)
β∗
→ (T, Pi)→ (T, Si)→ Ext

1
Λ(T, rPi)

→ Ext1Λ(T, Pi)→ Ext
1
Λ(T, Si)→ 0.

Now the first statement follows from the fact that (T, Si) = 0.

Since Λ is triangular, the projective cover of rPi does not have Pi as
a direct summand. Now T (T ) = Gen(T ) implies that rPi ∈ T (T ). Hence
Ext1Λ(T, rPi) = 0. It follows from the exact sequence above that Ext

1
Λ(T, Pi)

∼= Ext1Λ(T, Si), which is a simple Λ-module.

We now prove that pdSi = 1. Since gldimΓ = 2 it follows from the
sequence (I) that the following exact sequence is a projective resolution for
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the Γ -simple module Ext1Λ(T, Pi):

0→ (T, rPi)
(fβ)∗
−→ (T, P(X))

π∗→ (T,X)→ Ext1Λ(T, Pi)→ 0

Hence (T, rPi) is a projective Γ -module. Since rPi ∈ T (T ) we have rPi ∈
add(T ). From the triangularity of Γ it follows that (T,X) is not a direct
summand of (T, rPi). Therefore rPi is a projective Λ-module.

We now fix some more notation. We denote by Ŝj the simple Γ -module

top(T, Pj) for j 6= i and by ŜX the simple Γ -module top(T,X). By the

previous lemma, ŜX is isomorphic to Ext
1(T, Si). Let l1, . . . , lr, lr+1, . . . , lt

denote vertices which are the immediate predecessors of the vertex i ∈ QΛ,
ordered in such a way that P(X) =

⊕r
s=1 P

ms
ls
is the projective cover of X.

We assume that rPi =
⊕m
j=1 Pvj is a decomposition of rPi as direct sum

of indecomposable projective modules and we consider the minimal almost
split map β : rPi → Pi defined by βj : Pvj → Pi for j = 1, . . . ,m, where βj
is multiplication by an arrow in QΛ.

Lemma 4.12. With the hypotheses and notation of this subsection, let lu
be an immediate predecessor of the vertex i fixed above and g : Pi → Plu a
linear map for some u = 1, . . . , t. Also, consider the map βj : Pvj → Pi for
j = 1, . . . ,m, defined above. For each j, if gβj is a non-zero map then it is
a T -irreducible map.

Proof. Suppose first that gβj factors through some projective module
P ′ ∈ add(T ), say gβj = fh for f : P

′ → Plu and h : Pvj → P ′. We observe
that gβj − fh defines a linear combination of paths in Λ which is a relation.
Since Λ is monomial we see that each term of that linear combination is null.
Hence, each component of the map gβj is a null function, a contradiction to
our hypothesis.

If gβj factors through X, say gβj = f
′h′ for f ′ : X → Plu and h

′ : Pvj →
X, then h′ must factor through P(X) and we have the previous case.

Corollary 4.13. (a) If X is a Koszul module then the simple module

ŜX is a quasi-Koszul module.

(b) Given any projective Λ-module P we have Ext1(T, P ) ∈ add(ŜX).

Proof. If X is a Koszul module then, by Lemma 4.10, we have a linear
resolution for X given by the short exact sequence

0→ Pi
f
→ P(X)

π
→ X → 0,

with P(X) ∈ add(T ), and f a linear map. It follows from Lemma 4.12 that
fβ is an essentially T -irreducible map. Since the exact sequence (II) is a pro-
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jective resolution for the simple module Ext1Λ(T, Si), Proposition 4.8 shows

that ŜX is a quasi-Koszul module. Statement (b) follows from Lemma 4.11.

Remarks. (1) We have (X,Sj) = 0 for each j 6∈ {l1, . . . , lr}. Hence the
Γ -module (T, Sj) is a simple module.

(2) We have Ext1Λ(T, Pj) = Ext
1
Λ(T, Sj) = 0 since Pj ∈ add(T ) and

Sj ∈ T (T ). Hence if we apply the functor HomΛ(T,−) to the short exact

sequence 0→ rPj → Pj
πj
→ Sj → 0 then we obtain the exact sequence

0→ (T, rPj)→ (T, Pj)
(πj)∗
−→ (T, Sj)→ Ext

1
Λ(T, rPj)→ 0.

Since r(T, Pj) ∼= (T, rPj) for each j 6= i and (T, Pj) is an indecomposable

projective module, the short sequence 0 → (T, rPj) → (T, Pj) → Ŝj → 0 is
exact.

(3) We recall from [9] and Remark (2) above that Ŝj is a quasi-Koszul
module if and only if (T, rPj) is a quasi-Koszul module.

Lemma 4.14. Let Γ = EndopΛ (T ) be the opposite endomorphism ring of
the tilting module T = X⊕

⊕
j 6=i Pj over a quadratic, monomial , triangular

algebra Λ. Let f : Q→ P be a Λ-map with P and Q projective Λ-modules.
If f is linear and P ∈ add(T ) then f∗ is an essentially linear map.

Proof. It is enough to prove the statement for the case of P and Q
indecomposable modules. We may also assume P = Pj for j 6= i since
P ∈ add(T ). We consider two cases:

Case 1: Assume that Q ∈ add(T ). Since f is a linear map and P,Q ∈
add(T ) it follows from Lemma 4.4 that f is a T -irreducible map. Lemma 4.7
yields that the Γ -map HomΛ(T, f) : (T,Q)→ (T, Pj) is essentially linear.

Case 2: Assume that Q 6∈ add(T ). Since Q is an indecomposable pro-
jective Λ-module, we have Q = Pi. We consider the natural inclusion map
β : rPi → Pi. We observe that HomΛ(T, fβ) : (T, rPi)→ (T, Pj) is a Γ -map
given by (fβ)∗ = {(fβj)∗}j=1,...,m where βj : Pvj → Pi for j = 1, . . . ,m are
linear maps. It follows from Lemma 4.12 that fβj is an irreducible Λ-map
for each j = 1, . . . ,m. Now Lemma 4.7 shows that HomΛ(T, fβ) is an es-
sentially linear map. We know by Lemma 4.11 that β∗ is an isomorphism.
Hence we may conclude that f∗ is an essentially linear map.

Corollary 4.15. Let Γ = EndopΛ (T ) be the opposite endomorphism
ring of the tilting module T = X ⊕

⊕
j 6=i Pj over a quadratic, monomial ,

triangular algebra Λ. Let f : Q → P be a Λ-map with P and Q projective
Λ-modules. If f is linear then f∗ is a direct sum of an essentially linear
map and a split monomorphism.
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Proof. Using the previous lemma, it is enough to consider the case
P = Pi; but then the result follows from Lemma 4.11.

We next present the main result of this section. We observe that the class
of endomorphism rings considered in this statement includes the Brenner–
Butler tilted algebras.

Theorem 4.16. Let Λ be a triangular finite-dimensional monomial qua-
dratic algebra over the field k with gldimΛ = 2 and T = X ⊕

⊕
j 6=i Pj be a

tilting Λ-module. Let Γ = EndopΛ (T ) be the opposite endomorphism ring of
T over Λ. Assume that Γ has global dimension 2. If X is a Koszul module
then Γ is a quasi-Koszul algebra.

Proof. It is enough to prove that rΓ is a quasi-Koszul module. Since rPj
is a Koszul module and has projective dimension at most one, we have a
linear resolution of rPj given by

(∗) 0→ P(1)
̺
→ P(0)

pj
→ rPj → 0,

with ̺ a linear map. Applying Corollary 4.13, we see that Ext1Λ(T, P(1))

is a semisimple module in add(ŜX). Therefore all the submodules of

Ext1Λ(T, P(1)) are also in add(ŜX).

If we apply the functor HomΛ(T,−) to the short exact sequence (∗), we
obtain the following exact sequence:

(III) 0→ (T, P(1))
̺∗
→ (T, P(0))

(pj)∗
−→ (T, rPj)→ (ŜX)

n′ → 0,

for some n′ ≥ 0.

We show first that Im (pj)∗ is a quasi-Koszul module. Since the sequence
(∗) is a linear resolution, it follows from Corollary 4.15 that Im (pj)∗ is a
quasi-Koszul module.

We now consider the following exact sequence:

0→ Im (pj)∗ → (T, rPj)→ Ŝn
′

X → 0.

By Corollary 4.13, Ŝn
′

X a quasi-Koszul module. Lemma 4.14 tells us that
0 → Im (pj)∗ → (T, rPj) is an essentially linear map hence it induces a
monomorphism top(Im (pj)∗)→ top(T, rPj). It follows from Proposition 5.3
of [9] that (T, rPj) is a quasi-Koszul module. Hence (T, rPj) = r(T, Pj) is
a quasi-Koszul module for every j 6= i. By Corollary 4.13, r(T,X) is also
a quasi-Koszul module. Hence rΓ is a quasi-Koszul module.

We observe that the hypothesis that Λ is monomial is crucial in The-
orem 4.16 above. It is easy to check that Lemma 4.12 does not hold if Λ
is not a monomial algebra. It follows that ŜX is not a quasi-Koszul mod-
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ule in that case. We now give some examples of the class of endomorphism
rings presented in Theorem 4.16. Examples 5 and 6 show that the quadratic
property of Λ and the hypothesis that X be a Koszul module cannot be
discarded in our main result. We also observe that we know of no example
where Λ is a finite-dimensional k-algebra, T is a tilting module of the form
X ⊕
⊕
j 6=i Pj with X a Koszul module and Γ = End

op
Λ (T ) such that Γ is

not actually Koszul (and not merely quasi-Koszul).

Example 5. Let Λ be the quiver algebra given by a quiver with relations
as follows. The quiver Q is

1
a
→ 2

b
→ 3

c
→ 4

d
→ 5

with the relation dcba = 0. Let T =
⊕
j 6=3 Pj ⊕ τ

−S3 be a tilting Λ-module

and Γ = EndopΛ (T ) the endomorphism ring of T over Λ.

Then Γ is given by the following quiver with relations:

3̂

↓ π

1
a
→ 2

b
→ 4

c
→ 5

with the relations cba = bπ = 0. A minimal projective resolution for the
Γ -simple module Ŝ1 is given by the exact sequence

0→ P̂5
cb
→ P̂2 → P̂1 → Ŝ1 → 0.

Hence Ŝ1 has no essentially linear resolution. Moreover Γ is not a quasi-
Koszul algebra.

Example 6. Let Λ be the quiver algebra given by the quiver

3
bր ցc

1
a
→ 2

d
→ 4

e
→ 5

with the relations ba = ed = 0.

We consider a tilting module T = (
⊕
j 6=i Pj) ⊕X with X given by the

minimal projective resolution 0 → P4
cb
→ P2 → X → 0. Hence X is not a

Koszul module. We see that the projective resolution of ŜX is given by

0→ (T, P5)
(ec)∗b∗
−−−→ (T, P2)→ (T,X)→ ŜX → 0.

Therefore ŜX is not a quasi-Koszul module.
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Example 7. Let Λ be the quiver algebra of Example 6. We consider a
tilting module T = (

⊕
j 6=i Pj)⊕X with X given by the minimal projective

resolution 0 → P4
d
→ P2 → X → 0. Since X is a Koszul module, it follows

that Γ = EndopΛ (T ) is a quasi-Koszul algebra. The quiver with relations of
Γ is given as follows:

4̂

↓ π

1
a
→ 2

b
→ 3

ec
→ 5

with the relation ba = 0. We note that Γ is a Koszul algebra with global
dimension 2.
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