C OLLOQUIUM MATHEMATICUM

LOCAL DERIVATIONS
 IN POLYNOMIAL AND POWER SERIES RINGS

BY
JANUSZ ZIELIŃSKI (Toruń)

Abstract

We give a description of all local derivations (in the Kadison sense) in the polynomial ring in one variable in characteristic two. Moreover, we describe all local derivations in the power series ring in one variable in any characteristic.

1. Introduction. The notion of a local derivation appeared in the paper of Kadison [1]. Let k be a field and A a commutative k-algebra with unity. Recall that a k-linear map $d: A \rightarrow A$ is a derivation of A if $d(a b)=a d(b)+b d(a)$ for all $a, b \in A$. Next, a k-linear map $\alpha: A \rightarrow A$ is called a local derivation of A if for each $a \in A$ there exists a derivation d_{a} of A such that $\alpha(a)=d_{a}(a)$.

Each derivation of A is a local derivation. It is known that every local derivation of a polynomial ring over an infinite field k is a derivation. In the case $k=\mathbb{C}$ this was proved by Kadison [1]. For any infinite field k the result was formulated by Yon [3], but his proof was incorrect. The correct proof was given by Nowicki [2]. Furthermore, in [2] Nowicki gave an example of a local derivation of the polynomial ring in n variables over a finite field which is not a derivation.

In Section 3 we describe all local derivations in any polynomial ring in one variable in characteristic two. In our proof we use, among other things, the lemma (from Section 2) which states, under some additional assumptions, the invariance of the quotient of the product by the least common multiple. These methods are unrelated to Nowicki's example, but at the end of Section 3 we present a certain natural generalization of that example.

The final Section 4 is devoted to power series rings. It contains a construction of an infinite family of local derivations in the power series ring in one variable over an arbitrary field. This family is a generalization of another example given by Nowicki [2]. Finally, we give a full description of local derivations in any power series ring in one variable.

[^0]2. Preliminary lemmas. Let k be a finite field of a positive characteristic p. If l is a non-negative integer, then we denote by B_{l} the subset of $k[t]$ defined by
$$
B_{l}:=\left\{h \in k[t] ; \operatorname{deg}_{t}(h)<l\right\}
$$

Moreover, we use the notations

$$
G_{l}(g):=\prod_{h \in B_{l}}(g+h), \quad H_{l}(g):=\operatorname{lcm}\left\{g+h ; h \in B_{l}\right\}
$$

(the least common multiple is not uniquely defined, from now on we assume that it is a monic polynomial) for any $g \in k[t] \operatorname{such}$ that $\operatorname{deg}_{t}(g) \geq l$ (then each element of the form $g+h$, for $h \in B_{l}$, is non-zero). It is clear that $G_{l}(g)$ is divisible by $H_{l}(g)$.

Lemma 1. Let $g_{1}, g_{2} \in k[t]$ be monic polynomials and $\operatorname{deg}_{t}\left(g_{1}\right) \geq l$, $\operatorname{deg}_{t}\left(g_{2}\right) \geq l$. Then

$$
\frac{G_{l}\left(g_{1}\right)}{H_{l}\left(g_{1}\right)}=\frac{G_{l}\left(g_{2}\right)}{H_{l}\left(g_{2}\right)}
$$

Proof. Put $L_{1}:=\left\{g_{1}+h ; h \in B_{l}\right\}$ and $L_{2}:=\left\{g_{2}+h ; h \in B_{l}\right\}$. Define $v_{g}(f):=m$ for $f, g \in k[t] \backslash\{0\}$ such that $f=g^{m} \bar{f}$ and \bar{f} is not divisible by g. Let $g \in k[t]$ be an irreducible polynomial. Assume that g is a factor of at least one polynomial from the set L_{1}, that is,

$$
\left\{f \in L_{1} ; v_{g}(f) \geq 1\right\} \neq \emptyset
$$

If $\#\left\{f \in L_{1} ; v_{g}(f) \geq 1\right\}=1$, then g is a factor (in some power s) of exactly one polynomial from L_{1}. Then $v_{g}\left(G_{l}\left(g_{1}\right)\right)=s=v_{g}\left(H_{l}\left(g_{1}\right)\right)$ and

$$
v_{g}\left(\frac{G_{l}\left(g_{1}\right)}{H_{l}\left(g_{1}\right)}\right)=0
$$

Let s be a positive integer. We first prove that if

$$
\#\left\{f \in L_{1} ; v_{g}(f) \geq s\right\} \geq 2
$$

then

$$
\#\left\{f \in L_{1} ; v_{g}(f) \geq s\right\}=\#\left\{f \in L_{2} ; v_{g}(f) \geq s\right\}
$$

Since $g^{s} \mid g_{1}+h_{1}$ and $g^{s} \mid g_{1}+h_{2}$ for some $h_{1}, h_{2} \in B_{l}, h_{1} \neq h_{2}$, we have $g^{s} \mid h_{1}-h_{2}$ and thus $\operatorname{deg}_{t}\left(g^{s}\right)<l$. Let $g_{1}-g_{2}=g^{s} q+r$ for $q, r \in k[t]$ such that $\operatorname{deg}_{t}(r)<\operatorname{deg}_{t}\left(g^{s}\right)$. Then

$$
g_{1} \equiv g_{2}+r\left(\bmod g^{s}\right)
$$

and $r \in B_{l}$. Since B_{l} is an additive group, when we add consecutively to both sides of the congruence all the elements of B_{l} we get on the left-hand side all the polynomials from L_{1} and on the right-hand side all the polynomials from L_{2}. Thus g^{s} divides the same number of polynomials from L_{1} and of polynomials from L_{2}.

Suppose that $\#\left\{f \in L_{1} ; v_{g}(f) \geq 1\right\} \geq 2$. Put

$$
m_{s}:=\#\left\{f \in L_{1} ; v_{g}(f) \geq s\right\}
$$

for any positive integer s. Let

$$
\begin{aligned}
j & =\max \left\{s \geq 1 ; m_{s} \geq 2\right\} \\
i_{1} & =\max \left\{s \geq 1 ; m_{s} \geq 1\right\}=\max \left\{v_{g}(f) ; f \in L_{1}\right\}
\end{aligned}
$$

The numbers j and i_{1} are well defined since L_{1} is a finite set of non-zero elements. Then

$$
v_{g}\left(G_{l}\left(g_{1}\right)\right)=m_{1}+\ldots+m_{j}+\left(i_{1}-j\right), \quad v_{g}\left(H_{l}\left(g_{1}\right)\right)=i_{1}
$$

Hence

$$
v_{g}\left(\frac{G_{l}\left(g_{1}\right)}{H_{l}\left(g_{1}\right)}\right)=m_{1}+\ldots+m_{j}-j
$$

From what has already been proved, we conclude that m_{s}, for $s=$ $1, \ldots, j$, is also the number of polynomials from L_{2} divisible by g^{s}, that is,

$$
\#\left\{f \in L_{2} ; v_{g}(f) \geq s\right\}=m_{s}
$$

Moreover, we easily deduce that

$$
\#\left\{f \in L_{2} ; v_{g}(f) \geq s\right\} \leq 1
$$

for $s>j$. Let

$$
i_{2}=\max \left\{v_{g}(f) ; f \in L_{2}\right\}
$$

Then

$$
v_{g}\left(G_{l}\left(g_{2}\right)\right)=m_{1}+\ldots+m_{j}+\left(i_{2}-j\right), \quad v_{g}\left(H_{l}\left(g_{2}\right)\right)=i_{2}
$$

Hence

$$
v_{g}\left(\frac{G_{l}\left(g_{2}\right)}{H_{l}\left(g_{2}\right)}\right)=m_{1}+\ldots+m_{j}-j
$$

The same arguments are valid when $\left\{f \in L_{2} ; v_{g}(f) \geq 1\right\} \neq \emptyset$. Thus the polynomials $G_{l}\left(g_{1}\right) / H_{l}\left(g_{1}\right)$ and $G_{l}\left(g_{2}\right) / H_{l}\left(g_{2}\right)$ have the same factorization. Since both are monic, they are equal.

For example, for each monic $g \in \mathbb{Z}_{2}[t]$ such that $\operatorname{deg}_{t}(g) \geq 2$,

$$
\frac{G_{2}(g)}{H_{2}(g)}=t(t+1)
$$

and for each monic $g \in \mathbb{Z}_{2}[t]$ such that $\operatorname{deg}_{t}(g) \geq 3$,

$$
\frac{G_{3}(g)}{H_{3}(g)}=t^{4}(t+1)^{4}\left(t^{2}+t+1\right)
$$

Slight changes in the proof of Lemma 1 actually show that if g is a monic polynomial from $k[t]$ and $\operatorname{deg}_{t}(g) \geq l$, then

$$
\frac{G_{l}(g)}{H_{l}(g)}=(-1)^{l} \prod_{h \in B_{l} \backslash\{0\}} h
$$

Moreover, the assumption of Lemma 1 that the polynomials are monic is not essential. If g_{1}, g_{2} are arbitrary polynomials from $k[t]$ such that $\operatorname{deg}_{t}\left(g_{1}\right) \geq l$ and $\operatorname{deg}_{t}\left(g_{2}\right) \geq l$, then

$$
\widetilde{g}_{2} \frac{G_{l}\left(g_{1}\right)}{H_{l}\left(g_{1}\right)}=\widetilde{g}_{1} \frac{G_{l}\left(g_{2}\right)}{H_{l}\left(g_{2}\right)}
$$

where \widetilde{g}_{1} and \widetilde{g}_{2} are respectively the leading coefficients of g_{1} and g_{2}. For our further purposes we require only Lemma 1.

Lemma 2. Let $f_{1}, \ldots, f_{l} \in k[t]$. Then the map $F_{l}: k[t] \rightarrow k[t]$ defined by

$$
F_{l}(a)=\prod_{\left(b_{1}, \ldots, b_{l}\right) \in k^{l}}\left(a+f_{1} b_{1}+\ldots+f_{l} b_{l}\right)
$$

for $a \in k[t]$ is additive.
Proof. We prove by induction that for each $l \geq 1$ there exist $g_{0}, \ldots, g_{s} \in$ $k[t]$ such that for every $a \in k[t]$,

$$
F(a)=g_{s} a^{p^{s}}+\ldots+g_{1} a^{p}+g_{0} a
$$

This proves the lemma since in characteristic p raising to the power p^{j} is additive and a linear combination of additive maps is additive.

Assume $l=1$ and let the field k consist of $\left\{c_{1}, \ldots, c_{p^{r}}\right\}$. Then

$$
\begin{equation*}
\left(a+f_{1} c_{1}\right) \ldots\left(a+f_{1} c_{p^{r}}\right)=a^{p^{r}}-f_{1}^{p^{r}-1} a \tag{1}
\end{equation*}
$$

since all the elements of the form $-f_{1} c_{i}$ are roots of the polynomial $x^{p^{r}}-$ $f_{1}^{p^{r}-1} x$.

Let $l>1$. By (1),

$$
\begin{aligned}
& \prod_{\left(b_{1}, \ldots, b_{l}\right) \in k^{l}}\left(a+f_{1} b_{1}+\ldots+f_{l} b_{l}\right) \\
= & \prod_{\left(b_{1}, \ldots, b_{l-1}\right) \in k^{l-1}}\left(\left(a+f_{1} b_{1}+\ldots+f_{l-1} b_{l-1}\right)^{p^{r}}-f_{l}^{p^{r}-1}\left(a+f_{1} b_{1}+\ldots+f_{l-1} b_{l-1}\right)\right)
\end{aligned}
$$

Hence $F(a)$ is equal to

$$
\prod_{\left(b_{1}, \ldots, b_{l-1}\right) \in k^{l-1}}\left(a^{p^{r}}-f_{l}^{p^{r}-1} a+\left(f_{1}^{p^{r}}-f_{l}^{p^{r}-1} f_{1}\right) b_{1}+\ldots+\left(f_{l-1}^{p^{r}}-f_{l}^{p^{r}-1} f_{l-1}\right) b_{l-1}\right)
$$

We now apply the inductive assumption for $\widetilde{f}_{i}=f_{i}^{p^{r}}-f_{l}^{p^{r}-1} f_{i}$ and $i=$ $1, \ldots, l-1$. The proof is complete since $\left(a^{p^{r}}-f_{l}^{p^{r}-1} a\right)^{p^{m}}$ is for any natural
m again a polynomial expression in a, with coefficients in $k[t]$, such that the exponents of a are powers of p.

Corollary 3. The map $F: k[t] \rightarrow k[t]$ defined by $F(a)=G_{l}(a)$, for $a \in k[t]$, is k-linear.

Proof. In Lemma 2 replace f_{i} by t^{i-1} for $i=1, \ldots, l$. Then F is additive. Let $c \in k$ and $c \neq 0$. Then $c G_{l}(a)=G_{l}(c a)$ since for $c \neq 0$ we have $\left\{c h ; h \in B_{l}\right\}=B_{l}$ and since $c^{p^{l r}}=c$ in the field k of cardinality p^{r} (then B_{l} contains $p^{l r}$ elements). If $c=0$, then $c G_{l}(a)=0=G_{l}(c a)$.
3. Polynomial rings in characteristic two. Let k be a finite field of characteristic two and n be a fixed non-negative even integer. Consider the set

$$
A_{n}:=\left\{h \in k[t] ; \operatorname{deg}_{t}(h)<n, h=\sum_{2 \mid i} a_{i} t^{i}, a_{i} \in k\right\} .
$$

This is a finite set (and $A_{n}=\{0\}$ in the case $n=0$). Moreover, it forms an additive group. Define a k-linear map $\alpha_{n}: k[t] \rightarrow k[t]$ by

$$
\alpha_{n}\left(t^{s}\right)= \begin{cases}0, & s \leq n \\ \operatorname{lcm}\left\{t^{s-1}+h ; h \in A_{n}\right\}, & s>n, 2 \mid(s-1) \\ 0, & s>n, 2 \mid s\end{cases}
$$

Observe that all the exponents of the polynomials on the right-hand side of the above equality are even numbers. Thus we may replace t^{2} by x. Furthermore we consider the least common multiple in the ring $k[x]$. Obviously α_{0} is a partial derivative.

Proposition 4. If $n \neq 0$, then α_{n} is a local derivation of $k[t]$ which is not a derivation.

Proof. Let $f \in k[t]$. If $\operatorname{deg}_{t}(f) \leq n$, then $\alpha_{n}(f)=0=d(f)$ where d is the zero derivation of $k[t]$. Assume that $\operatorname{deg}_{t}(f)=m>n$. Let $U:=$ $\{n<u \leq m ; 2 \mid(u-1)\}$ and $J_{n}(g):=\operatorname{lcm}\left\{g+h ; h \in A_{n}\right\}$ for $g \in k[t]$ such that $\operatorname{deg}_{t}(g) \geq n$. If $f=\sum_{i \leq m} a_{i} t^{i}$, where $a_{i} \in k$ and $a_{m} \neq 0$, then

$$
\alpha_{n}(f)=\sum_{i \in U} a_{i} J_{n}\left(t^{i-1}\right)
$$

Suppose that $\alpha_{n}(f)=f^{\prime} g$ (we denote by f^{\prime} the derivative $\partial f / \partial t$) for some $g \in k[t]$. Let $d: k[t] \rightarrow k[t]$ be the derivation such that $d(t)=g$. Then $d(f)=f^{\prime} d(t)=\alpha_{n}(f)$ and consequently α_{n} is a local derivation. Hence, it remains to prove that f^{\prime} divides $\alpha_{n}(f)$. Since

$$
f^{\prime} \in\left\{\sum_{i \in U} a_{i} t^{i-1}+h ; h \in A_{n}\right\}
$$

it suffices to show that

$$
\sum_{i \in U} a_{i} J_{n}\left(t^{i-1}\right) \quad \text { is divisible by } \quad J_{n}\left(\sum_{i \in U} a_{i} t^{i-1}\right)
$$

Again, all the exponents of the polynomials of these two expressions are even numbers and we may replace t^{2} by x. Then the above expressions are respectively of the forms

$$
\sum_{l \leq j \leq s} c_{j} H_{l}\left(x^{j}\right), \quad H_{l}\left(\sum_{l \leq j \leq s} c_{j} x^{j}\right)
$$

for some l and s, where $c_{j} \in k$ (more precisely $j=(i-1) / 2$ and $c_{j}=a_{i}$). Obviously

$$
H_{l}\left(\sum_{l \leq j \leq s} c_{j} x^{j}\right)=H_{l}\left(\sum_{l \leq j \leq s} \frac{c_{j}}{c_{s}} x^{j}\right)
$$

We now proceed to show that

$$
\sum_{l \leq j \leq s} c_{j} H_{l}\left(x^{j}\right)=c_{s} H_{l}\left(\sum_{l \leq j \leq s} \frac{c_{j}}{c_{s}} x^{j}\right)
$$

which completes the proof. By Lemma 1 it remains to prove that

$$
\sum_{l \leq j \leq s} c_{j} G_{l}\left(x^{j}\right)=c_{s} G_{l}\left(\sum_{l \leq j \leq s} \frac{c_{j}}{c_{s}} x^{j}\right)
$$

This equality is a consequence of Corollary 3.
The $\operatorname{map} \alpha_{n}$ is not a derivation since $\alpha_{n}(t)=0 \neq \alpha_{n}\left(t^{n+1}\right)$.
We denote by $\sum_{2 \mid n} f_{n} \alpha_{n}$, for $f_{0}, f_{2}, \ldots \in k[t]$, a map from $k[t]$ to $k[t]$ such that

$$
\left(\sum_{2 \mid n} f_{n} \alpha_{n}\right)(f)=\sum_{2 \mid n} f_{n} \alpha_{n}(f)
$$

for every $f \in k[t]$. Observe that the map is well defined since for each f of degree s we have $\alpha_{n}(f)=0$ for $n \geq s$. The map $\sum_{2 \mid n} f_{n} \alpha_{n}$ is a local derivation of $k[t]$ since for each f of degree s,

$$
\sum_{2 \mid n} f_{n} \alpha_{n}(f)=\sum_{n<s, 2 \mid n} f_{n} \alpha_{n}(f)
$$

and since a linear combination, with coefficients in $k[t]$, of local derivations of $k[t]$ is a local derivation of $k[t]$.

Theorem 5. A map β is a local derivation of $k[t]$ iff there exist unique polynomials $f_{0}, f_{2}, \ldots \in k[t]$ such that $\beta=\sum_{2 \mid n} f_{n} \alpha_{n}$.

Proof. Assume that $\beta: k[t] \rightarrow k[t]$ is a local derivation. Then $\beta\left(t^{m}\right)=0$ for all even m. Define

$$
f_{0}:=\beta(t), \quad \beta_{0}:=\beta-f_{0} \alpha_{0}=\beta-f_{0} \frac{\partial}{\partial t} .
$$

Then β_{0} is a local derivation and $\beta_{0}(t)=0$. Suppose we have defined polynomials $f_{0}, f_{2}, \ldots, f_{n}$ and local derivations $\beta_{0}, \beta_{2}, \ldots, \beta_{n}$ where n is an even integer, and suppose $\beta_{i}\left(t^{m}\right)=0$ for $m \leq i+2$. Since β_{n} is a local derivation and for every derivation $d: k[t] \rightarrow k[t]$ and polynomial $f \in k[t]$ we have $d(f)=f^{\prime} d(t)$, we conclude that

$$
f^{\prime} \mid \beta_{n}(f)
$$

for all $f \in k[t]$. In particular this is valid for all f of the form $t^{n+3}+g$ where $\operatorname{deg}_{t}(g)<n+3$. Since in this case $\beta_{n}(g)=0$ and $(\partial / \partial t) t^{m}=0$ for even m, we obtain

$$
t^{n+2}+h \mid \beta_{n}\left(t^{n+3}\right)
$$

for all $h \in A_{n+2}$. Then

$$
J_{n+2}\left(t^{n+2}\right) \mid \beta_{n}\left(t^{n+3}\right) .
$$

In the case $\beta_{n}\left(t^{n+3}\right)=0$ we put $f_{n+2}:=0$. If $\beta_{n}\left(t^{n+3}\right) \neq 0$, then

$$
\beta_{n}\left(t^{n+3}\right)=f_{n+2} J_{n+2}\left(t^{n+2}\right)
$$

for some $f_{n+2} \in k[t]$. Define $\beta_{n+2}:=\beta_{n}-f_{n+2} \alpha_{n+2}$. Thus β_{n+2} is a local derivation and $\beta_{n+2}\left(t^{n+3}\right)=0$. Moreover,

$$
\beta-\beta_{n+2}=\sum_{m<n+3,2 \mid m} f_{m} \alpha_{m} .
$$

We have obtained the sequence $\left(f_{0}, f_{2}, \ldots\right)$ of polynomials in $k[t]$ (in some cases f_{n} may be 0 for almost all n). Then $\beta=\sum_{2 \mid n} f_{n} \alpha_{n}$ since for each $f \in k[t]$ of degree s we have

$$
\sum_{2 \mid n} f_{n} \alpha_{n}(f)=\sum_{n<s, 2 \mid n} f_{n} \alpha_{n}(f)=\beta(f) .
$$

The sequence $\left(f_{0}, f_{2}, \ldots\right)$ is unique since the value of $\beta=\sum_{2 \mid n} f_{n} \alpha_{n}$ at the monomials t, t^{3}, t^{5}, \ldots determines successively f_{0}, f_{2}, \ldots

A consequence of the fact that $\left(f_{0}, f_{2}, \ldots\right)$ is unique, is the linear independence of the set $\left\{\alpha_{n}\right\}_{2 \mid n}$ over $k[t]$. Unfortunately the methods used in the paper in characteristic two are not valid for higher characteristics. Instead it is possible to generalize Nowicki's example of [2].

Let k be a finite field of characteristic p and of cardinality $q:=p^{r}$ with $r \geq 1$. Let $v(t) \in k[t]$ be a polynomial of the form

$$
v(t)=c_{m} t^{q^{m}}+c_{m-1} t^{q^{m-1}}+\ldots+c_{1} t^{q}+c_{0} t
$$

where $c_{0}, \ldots, c_{m} \in k$. Define a map $\gamma: k[t] \rightarrow k[t]$ by

$$
\gamma(f)=v\left(f^{\prime}\right)
$$

for all $f \in k[t]$. Obviously if $\operatorname{deg}_{t} v(t)=1$, then γ is a derivation. A modification of the proof of Proposition 3 from [2] shows that if $\operatorname{deg}_{t} v(t)>1$, then γ is a local derivation of $k[t]$ which is not a derivation. The example from [2] in the case of one variable is obtained for $v(t)=t-t^{q}$.

As in [2] we may generalize the construction of the map γ to the ring $k\left[x_{1}, \ldots, x_{n}\right]$. Unfortunately even for one variable and characteristic two the family of local derivations obtained above for all v is not sufficient for description of all local derivations. A simple calculation shows that if $k=$ \mathbb{Z}_{2}, then the local derivation $\alpha_{4}: \mathbb{Z}_{2}[t] \rightarrow \mathbb{Z}_{2}[t]$ and the set of the local derivations γ for all v are linearly independent over $\mathbb{Z}_{2}[t]$. It is also impossible to represent the map α_{4} as an infinite sum of these local derivations.
4. Local derivations in the power series rings. Let k be an arbitrary field and $A=k[[t]]$ be the formal power series ring over k. In [2] Nowicki proved that the map $\gamma: A \rightarrow A$ such that if $f \in A$, then $\gamma(f)$ is the coefficient of the monomial t in f, is a local derivation of A which is not a derivation. First we generalize this result. Denote by p the characteristic of k.

Let n be a positive integer. Define $h_{n}: A \rightarrow A$ by

$$
h_{n}(f)=n a_{n} t^{n-1} \quad \text { for } f=\sum_{i=0}^{\infty} a_{i} t^{i}
$$

If $p>0$, then we denote by B the set of the maps h_{n} for n not divisible by p. If $p=0$, then put $B:=\left\{h_{1}, h_{2}, \ldots\right\}$.

Proposition 6. The map $h_{n}: A \rightarrow A$ is a local derivation of A for each $n \geq 1$. If $h_{n} \in B$, then h_{n} is not a derivation. The set $\{\partial / \partial t\} \cup B$ is linearly independent over A.

Proof. Let m be an integer such that $m>n$ and if $p>0$, then m is not divisible by p. By definition $h_{n}\left(t^{n}\right)=n t^{n-1}$ and $h_{n}\left(t^{m}\right)=0$. Suppose h_{n} is a derivation. Then $h_{n}\left(t^{n}\right)=n t^{n-1} h_{n}(t)$ and $h_{n}\left(t^{m}\right)=m t^{m-1} h_{n}(t)$. Thus $h_{n}(t)=1$ and $h_{n}(t)=0$. We obtain a contradiction.

Obviously h_{n} is k-linear. Let $f=\sum_{i=0}^{\infty} a_{i} t^{i} \in A$. If $n a_{n}=0$, then $h_{n}(f)=0=d(f)$ where d is the zero derivation of A. Suppose that $n a_{n} \neq 0$. Assume $s a_{s}$ is the first non-zero element of the sequence $\left(a_{1}, 2 a_{2}, \ldots, n a_{n}\right)$. Then the element $g:=\sum_{i=s}^{\infty} i a_{i} t^{i-s}$ is invertible. Define the derivation d as follows:

$$
d(t)=g^{-1} n a_{n} t^{n-s}
$$

Hence

$$
d(f)=f^{\prime} d(t)=t^{s-1} n a_{n} t^{n-s}=h_{n}(f)
$$

Therefore h_{n} is a local derivation.

Let $c \partial / \partial t+c_{1} h_{i_{1}}+\ldots+c_{s} h_{i_{s}}=0$. Let m be a positive integer such that $m>\max \left\{i_{1}, \ldots, i_{s}\right\}$ and m is not divisible by p in the case $p>0$. Then

$$
0=\left(c \frac{\partial}{\partial t}+c_{1} h_{i_{1}}+\ldots+c_{s} h_{i_{s}}\right)\left(t^{m}\right)=c m t^{m-1}
$$

hence $c=0$. Suppose $i_{r}=\max \left\{i_{j} ; c_{j} \neq 0\right\}$. Then

$$
0=\left(c_{1} h_{i_{1}}+\ldots+c_{s} h_{i_{s}}\right)\left(t^{i_{r}}\right)=c_{r} i_{r} t^{i_{r}-1}
$$

and thus $c_{r}=0$. This contradiction proves that $c_{j}=0$ for all i_{j}.
Note that the γ from Nowicki's example is equal to h_{1}. Define now $M_{n}:=$ $\left\{f \in A ; f=\sum_{i=n}^{\infty} a_{i} t^{i}\right\}$ for $n \geq 0$. It is evident that if $n \geq 1$, then $h_{n}(A) \subseteq$ M_{n-1}. Let $f_{n} \in A$ for all $n \geq 1$. We denote by $\sum_{n=1}^{\infty} f_{n} h_{n}$ the map from A to A defined by

$$
\left(\sum_{n=1}^{\infty} f_{n} h_{n}\right)(f)=\sum_{n=1}^{\infty} f_{n} h_{n}(f)
$$

for every $f \in A$. Note that this map is well defined since for each $f \in A$ we have $f_{n} h_{n}(f) \in M_{n-1}$. Thus the coefficient of every monomial t^{i} is a sum of a finite number of summands.

Proposition 7. Every local derivation $h: A \rightarrow A$ is determined by its values at t^{i} for all $i \geq 1$, that is, by the set $\left\{h\left(t^{i}\right) ; i \geq 1\right\}$.

Proof. Let $f=\sum_{i=0}^{\infty} a_{i} t^{i} \in A$ and $h(f)=\sum_{i=0}^{\infty} b_{i} t^{i}$. Clearly $h\left(a_{0}\right)=0$. Then

$$
h(f)=a_{1} h(t)+h\left(\sum_{i=2}^{\infty} a_{i} t^{i}\right)
$$

Observe that $h\left(M_{n}\right) \subseteq M_{n-1}$ for all $n \geq 1$. Indeed, if $g=\sum_{i=n}^{\infty} c_{i} t^{i}$, then

$$
h(g)=d_{g}(g)=\left(\sum_{i=n}^{\infty} i c_{i} t^{i-1}\right) d_{g}(t) \subseteq M_{n-1}
$$

Since $h\left(\sum_{i=2}^{\infty} a_{i} t^{i}\right) \in M_{1}$, the coefficient b_{0} is determined by $h(t)$. Suppose b_{j} for $j<n$ is determined by $h\left(t^{i}\right)$ for $1 \leq i \leq n$. Then

$$
h(f)=\sum_{i=1}^{n+1} a_{i} h\left(t^{i}\right)+h\left(\sum_{i=n+2}^{\infty} a_{i} t^{i}\right)
$$

Since $h\left(\sum_{i=n+2}^{\infty} a_{i} t^{i}\right) \in M_{n+1}$, the coefficient b_{n} is determined by $h\left(t^{i}\right)$ for $1 \leq i \leq n+1$.

TheOrem 8. A map $h: A \rightarrow A$ is a local derivation iff it is of the form $h=\sum_{n=1}^{\infty} f_{n} h_{n}$ where $f_{1}, f_{2}, \ldots \in A$.

Proof. The map $\sum_{n=1}^{\infty} f_{n} h_{n}$ is k-linear since, by the fact that $h_{n}(A) \subseteq$ M_{n-1} for $n \geq 1$, the coefficient of every monomial t^{i} is determined only by
a finite number of summands. Thus k-linearity follows from the fact that a linear combination of k-linear maps is k-linear.

Let $f=\sum_{i=0}^{\infty} a_{i} t^{i} \in A$. If $\left(\sum_{n=1}^{\infty} f_{n} h_{n}\right)(f)=0$, then d_{f} may be the zero derivation. Assume $\left(\sum_{n=1}^{\infty} f_{n} h_{n}\right)(f)=\sum_{i=r}^{\infty} b_{i} t^{i}$ and $b_{r} \neq 0$. Let $f^{\prime}=$ $\sum_{i=s}^{\infty} i a_{i} t^{i-1}$ and $s a_{s} \neq 0$. We first prove that $s \leq r+1$. Suppose, contrary to our claim, that $s>r+1$. Then

$$
\left(\sum_{n=1}^{\infty} f_{n} h_{n}\right)(f)=\sum_{n=1}^{r+1} f_{n} h_{n}(f)+\sum_{n=r+2}^{\infty} f_{n} h_{n}(f)=\sum_{n=r+2}^{\infty} f_{n} h_{n}(f)
$$

since $h_{n}(f)=n a_{n} t^{n-1}=0$ for $n \leq r+1$. However $\sum_{n=r+2}^{\infty} f_{n} h_{n}(f) \in M_{r+1}$ and we obtain a contradiction.

Since $s a_{s} \neq 0$, the element $h:=\sum_{i=s}^{\infty} i a_{i} t^{i-s}$ is invertible. Define a derivation d of A by

$$
d(t)=h^{-1} \sum_{i=r}^{\infty} b_{i} t^{i+1-s}
$$

Hence

$$
d(f)=f^{\prime} d(t)=t^{s-1} \sum_{i=r}^{\infty} b_{i} t^{i+1-s}=\sum_{i=r}^{\infty} b_{i} t^{i}=\left(\sum_{n=1}^{\infty} f_{n} h_{n}\right)(f)
$$

Let $h: A \rightarrow A$ be a local derivation. Then

$$
h\left(t^{i}\right)=d_{t^{i}}\left(t^{i}\right)=i t^{i-1} d_{t^{i}}(t)
$$

for all $i \geq 1$. Define $f_{i}:=d_{t^{i}}(t)$ for each $i \geq 1$. By Proposition 7, the local derivations h and $\sum_{n=1}^{\infty} f_{n} h_{n}$ are equal if and only if they have the same values at t^{i} for all $i \geq 1$. Indeed,

$$
\left(\sum_{n=1}^{\infty} f_{n} h_{n}\right)\left(t^{i}\right)=f_{i} h_{i}\left(t^{i}\right)=f_{i} i t^{i-1}=i t^{i-1} d_{t^{i}}(t)=h\left(t^{i}\right)
$$

The proof above gives more, namely a k-linear map $h: A \rightarrow A$ is a local derivation iff for each $f=\sum_{i=0}^{\infty} a_{i} t^{i} \in A$ we have $s \leq r+1$, where $h(f)=\sum_{i=r}^{\infty} b_{i} t^{i}, b_{r} \neq 0$ and $f^{\prime}=\sum_{i=s}^{\infty} i a_{i} t^{i-1}, s a_{s} \neq 0$. Note that as a consequence of Proposition 7 we find that the polynomials f_{n} in Theorem 8 are unique for any n in the case $p=0$, and for n not divisible by p in the case $p>0$.

REFERENCES

[1] R. Kadison, Local derivations, J. Algebra 130 (1990), 494-509.
[2] A. Nowicki, On local derivations in the Kadison sense, Colloq. Math. 89 (2001), 193-198.
[3] Y. H. Yon, Local derivations of the polynomial ring over a field, Bull. Korean Math. Soc. 36 (1999), 247-257.

Faculty of Mathematics and Computer Science
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: ubukrool@mat.uni.torun.pl

> Received 20 November 2001;
> revised 4 February 2002

[^0]: 2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N05.
 Supported by KBN Grant 2 PO3A 01716.

