VOL. 128

2012

NO. 1

A CLASSIFICATION OF TETRAVALENT ONE-REGULAR GRAPHS OF ORDER $3p^2$

BҮ

MOHSEN GHASEMI (Urmia)

Abstract. A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper, tetravalent one-regular graphs of order $3p^2$, where p is a prime, are classified.

1. Introduction. In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use V(X), E(X), A(X) and Aut(X) to denote its vertex set, edge set, arc set and its full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in X. A graph X is said to be *vertex-transitive* and *arc-transitive* (or *symmetric*) if Aut(X) acts transitively on V(X) and A(X), respectively. In particular, if Aut(X) acts regularly on A(X), then X is said to be *one-regular* (or 1-regular).

The main result of the paper is Theorem 3.4 asserting that, given a prime p and a tetravalent 1-regular graph X of order $3p^2$, we have one of the following cases:

- (i) $p \in \{2, 3, 5, 7, 11, 13\};$
- (ii) X is a Cayley graph over $\langle x, y | x^p = y^{3p} = [x, y] = 1 \rangle$, with connection set $\{y, y^{-1}, xy, x^{-1}y^{-1}\}$;
- (iii) X is a connected arc-transitive circulant graph with respect to every connection set S;
- (iv) X is one of the graphs described in [GP2, Lemma 8.4].

Clearly, a one-regular graph is connected, and it is of valency 2 if and only if it is a cycle. In this sense the first non-trivial case is that of cubic graphs. The first example of a cubic one-regular graph was constructed by Frucht [F] and later on a lot of related work has been done (as part of the more general investigation of cubic arc-transitive graphs; see [FK1, FK2, FK3, FKW]). Tetravalent one-regular graphs have also received considerable attention. In [C], tetravalent one-regular graphs of prime order

²⁰¹⁰ Mathematics Subject Classification: Primary 05C25; Secondary 20B25.

Key words and phrases: s-transitive graphs, symmetric graphs, Cayley graphs.

were constructed. In [M], an infinite family of tetravalent one-regular Cayley graphs on alternating groups is given. Tetravalent one-regular circulant graphs were classified in [X1] and tetravalent one-regular Cayley graphs on abelian groups were classified in [XX]. Next, one may deduce a classification of tetravalent one-regular Cayley graphs on dihedral groups from [KO, WX1, WZ]. Let p and q be primes. Then clearly every tetravalent one-regular graph of order p is a circulant graph. Also, by [CO, PWX, PX, WX2, X1, XX] every tetravalent one-regular graph of order pq or p^2 is a circulant graph. Furthermore, the classifications of tetravalent one-regular graphs of order $4p^2$, $6p^2$ and 2pq are given in [FKMZ, GS, ZF]. Continuing this research, the aim of this paper is to classify tetravalent one-regular graphs of order $3p^2$ (see Theorem 3.4).

A referee has pointed out that the results and the technique used in the paper can find useful application in the study of signed graphs in the sense of Harary [Har] and Zaslavsky [Z], and in the Coxeter spectral analysis of connected simply-laced edge-bipartite graphs recently developed in [S1, S2, S3] (see also [Ino] and [SW]).

2. Preliminaries. In this section, we introduce some notation and definitions as well as some preliminary results which will be used later.

For a regular graph X, we use d(X) to represent the valency of X, and for any subset B of V(X), the subgraph of X induced by B will be denoted by X[B]. Let X be a connected vertex-transitive graph, and let $G \leq \operatorname{Aut}(X)$ be vertex-transitive on X. For a G-invariant partition β of V(X), the quotient graph X_{β} is defined as the graph with vertex set β such that, for any two vertices $B, C \in \beta$, B is adjacent to C if and only if there exist $u \in B$ and $v \in C$ which are adjacent in X. Let N be a normal subgroup of G. Then the set β of orbits of N in V(X) is a G-invariant partition of V(X). In this case, the symbol X_{β} will be replaced by X_N .

For a positive integer n, denote by \mathbb{Z}_n the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_n^* the multiplicative group of \mathbb{Z}_n consisting of numbers coprime to n, by D_{2n} the dihedral group of order 2n, and by C_n and K_n the cycle and the complete graph of order n, respectively. We call C_n an n-cycle.

For a finite group G and a subset S of G such that $1 \notin S$ and $S = S^{-1}$, the *Cayley graph* Cay(G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$. Given a $g \in G$, define the permutation R(g) on G by $x \mapsto xg$, $x \in G$. The permutation group $R(G) = \{R(g) \mid g \in G\}$ on G is called the *right regular representation* of G. It is easy to see that R(G) is isomorphic to G, and it is a regular subgroup of the automorphism group Aut(Cay(G, S)). Also it is easy to see that Xis connected if and only if $G = \langle S \rangle$, that is, S is a connection set. Furthermore, the group $\operatorname{Aut}(G, S) = \{ \alpha \in \operatorname{Aut}(G) \mid S^{\alpha} = S \}$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Actually, $\operatorname{Aut}(G, S)$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))_1$, the stabilizer of the vertex 1 in $\operatorname{Aut}(\operatorname{Cay}(G, S))$. A Cayley graph $\operatorname{Cay}(G, S)$ is said to be *normal* if R(G) is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Xu [X2] proved that $\operatorname{Cay}(G, S)$ is normal if and only if $\operatorname{Aut}(\operatorname{Cay}(G, S))_1 = \operatorname{Aut}(G, S)$. Suppose that $\alpha \in \operatorname{Aut}(G)$. One can easily prove that $\operatorname{Cay}(G, S)$ is normal if and only if $\operatorname{Cay}(G, S)$ is normal if and only if $\operatorname{Cay}(G, S)$ is normal if only if $\operatorname{Cay}(G, S)$ is normal. Determining automorphism groups, or equivalently, studying normality of Cayley graphs, plays an important role in the investigation of various symmetry properties of graphs, and has become a very active topic in algebraic graph theory. The concept of normal Cayley graph was first introduced by Xu [X2], and later much related work was done (see [BFSX, FX, G, GZ, KO, WZ]).

For $u \in V(X)$, denote by $N_X(u)$ the neighbourhood of u in X, that is, the set of vertices adjacent to u in X. A graph \widetilde{X} is called a covering of a graph X with projection $p: \widetilde{X} \to X$ if there is a surjection $p: V(\widetilde{X}) \to V(X)$ such that $p|_{N_{\widetilde{X}}(\widetilde{v})} : N_{\widetilde{X}}(\widetilde{v}) \to N_X(v)$ is a bijection for any $v \in V(X)$ and $\widetilde{v} \in p^{-1}(v)$. A covering \widetilde{X} of X with projection p is said to be regular (or a K-covering) if there is a semiregular subgroup K of $\operatorname{Aut}(\widetilde{X})$ such that X is isomorphic to the quotient graph \widetilde{X}/K , say via a map h, and the quotient map $\widetilde{X} \to \widetilde{X}/K$ is the composition ph (for the purpose of this paper, all functions are composed from left to right). If K is cyclic or elementary abelian then \widetilde{X} is called a cyclic or an elementary abelian covering of X, and if \widetilde{X} is connected, K becomes the covering transformation group. The fibre of an edge or a vertex is its preimage under p. An automorphism of \widetilde{X} is said to be fibre-preserving if it maps a fibre to a fibre, while every covering transformation maps a fibre onto itself. All the fibre-preserving automorphisms form a group called the fibre-preserving group.

Let X be a K-covering of X with projection p. If $\alpha \in \operatorname{Aut}(X)$ and $\widetilde{\alpha} \in \operatorname{Aut}(\widetilde{X})$ satisfy $\widetilde{\alpha}p = p\alpha$, we call $\widetilde{\alpha}$ a *lift* of α , and α the *projection* of $\widetilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(X)$ and the projection of a subgroup of $\operatorname{Aut}(\widetilde{X})$ are self-explanatory. The lifts and projections of such subgroups are of course subgroups in $\operatorname{Aut}(\widetilde{X})$ and $\operatorname{Aut}(X)$ respectively.

For two groups M and N, $N \rtimes M$ denotes a semidirect product of N by M. For a subgroup H of a group G, we denote by $C_G(H)$ the centralizer of H in G, and by $N_G(H)$ the normalizer of H in G. Then $C_G(H)$ is normal in $N_G(H)$.

PROPOSITION 2.1 ([Hup, Chapter I, Theorem 4.5]). The quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).

PROPOSITION 2.2 ([W, Chapter I, Theorem 4.5]). Every transitive abelian group G on a set Ω is regular. Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α . We say that G is *semiregular* on Ω if $G_{\alpha} = 1$ for every $\alpha \in \Omega$ and *regular* if G is transitive and semiregular. For any $g \in G$, g is said to be *semiregular* if $\langle g \rangle$ is semiregular. The following proposition due to Praeger et al. (see [GP1, Theorem 1.1]) gives a characterization of Cayley graphs in terms of their automorphism groups.

PROPOSITION 2.3. Let X be a connected tetravalent (G, 1)-arc-transitive graph. For each normal subgroup N of G, one of the following holds:

- (1) N is transitive on V(X);
- (2) X is bipartite and N acts transitively on each part of the bipartition;
- (3) N has $r \ge 3$ orbits on V(X), the quotient graph X_N is a cycle of length r, and G induces the full automorphism group D_{2r} on X_N ;
- (4) N has $r \ge 5$ orbits on V(X), N acts semiregularly on V(X), the quotient graph X_N is a connected tetravalent G/N-symmetric graph, and X is a G-normal cover of X_N .

Moreover, if X is also (G, 2)-arc-transitive, then case (3) cannot happen.

The following classical result is due to Wielandt [W, Theorem 3.4].

PROPOSITION 2.4. Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω . Let $\omega \in \Omega$. If p^m divides the length of the G-orbit containing ω , then p^m also divides the length of the P-orbit containing ω .

To state the next result we need to introduce a family of tetravalent graphs that were first defined in [GP2]. The graph $C^{\pm 1}(p; 3p, 1)$ is defined to have vertex set $\mathbb{Z}_p \times \mathbb{Z}_{3p}$ and edge set $\{(i, j)(i \pm 1, j + 1) \mid i \in \mathbb{Z}_p, j \in \mathbb{Z}_{3p}\}$. Also from [GP2, Definition 2.2], the graphs $C^{\pm 1}(p; 3p, 1)$ are Cayley graphs over $\mathbb{Z}_p \times \mathbb{Z}_{3p}$ with connection set $\{(1, 1), (-1, 1), (-1, -1), (1, -1)\}$. In the proof of Theorem 3.4, we will need $C^{\pm 1}(p; 3p, 1)$ with p > 13. It can be readily checked from [GP2, Definition 2.2] that for p > 13 these graphs are actually normal Cayley graphs over $\mathbb{Z}_p \times \mathbb{Z}_{3p}$.

PROPOSITION 2.5 ([GP2, Theorem 1.1]). Let X be a connected, G-symmetric, tetravalent graph of order $3p^2$, and let $N = \mathbb{Z}_p$ be a minimal normal subgroup of G with orbits of size p, where p is an odd prime. Let K denote the kernel of the action of G on $V(X_N)$. If $X_N = C_{3p}$ and $K_v \cong \mathbb{Z}_2$ then X is isomorphic to $C^{\pm 1}(p; 3p, 1)$.

The graphs defined in [GP2, Lemma 8.4] are all one-regular (see [GP2, Section 8]) and therefore we refer to [GP2] for an intrinsic description of these families.

PROPOSITION 2.6 ([GP2, Theorem 1.2]). Let X be a connected, G-symmetric, tetravalent graph of order $3p^2$, and let $N = \mathbb{Z}_p \times \mathbb{Z}_p$ be a minimal normal subgroup of G with orbits of size p^2 , where p is an odd prime. Let K denote the kernel of the action of G on $V(X_N)$. If $X_N = C_3$ and $K_v \cong \mathbb{Z}_2$ then X is isomorphic to one of the graphs in [GP2, Lemma 8.4].

Let A be a group that acts on the group G. Also let A or G be solvable. Then the action of A on G is *coprime* if (|A|, |G|) = 1. The following result can be deduced from [KS, 8.2.7, p. 187].

PROPOSITION 2.7. Suppose that the action of A on G is coprime. Then $G = [G, A] \times C_G(A)$.

Finally in the following example we introduce G(3p, r), which was first defined in [CO].

EXAMPLE 2.8. For each positive divisor r of p-1 we use H_r to denote the unique subgroup of $\operatorname{Aut}(\mathbb{Z}_p)$ of order r which is isomorphic to \mathbb{Z}_r . Define a graph G(3p, r) by $V(G(3p, r)) = \{x_i \mid i \in \mathbb{Z}_3, x \in \mathbb{Z}_p\}$ and E(G(3p, r)) = $\{x_iy_{i+1} \mid i \in \mathbb{Z}_3, x, y \in \mathbb{Z}_p, y - x \in H_r\}$. Then G(3p, r) is a connected symmetric graph of order 3p and valency 2r. Also $\operatorname{Aut}(G(3p, p-1)) \cong$ $S_p \times S_3$. For $r \neq p-1$, $\operatorname{Aut}(G(3p, r))$ is isomorphic to $(\mathbb{Z}_p.H_r).S_3$ and acts regularly on the arc set, where X.Y denotes an extension of X by Y.

3. One-regular graphs of order $3p^2$. To prove the main theorem we need the following three lemmas.

LEMMA 3.1. Let G be a non-abelian group of order p^2q , where p and q are primes. Also let p > q, and N be a normal subgroup of order p such that G/N is cyclic. Then G is isomorphic to $\langle x, y, z | x^p = y^q = z^p = [x, z] = [y, z] = 1, y^{-1}xy = x^i \rangle$, where $i^q \equiv 1 \pmod{p}$ and (i, p) = 1.

Proof. Let P and Q be a Sylow p-subgroup and q-subgroup of G, respectively. Clearly $P \trianglelefteq G$, and since $G' \neq 1$, we have N = G'. Since the action of Q on P is coprime, it follows that $P = [P,Q] \times C_P(Q)$, by Proposition 2.7. If $C_P(Q) = 1$, then $P \leq G'$, a contradiction. Also since G is non-abelian, $[P,Q] \neq 1$. So $q \mid p-1$, and $P \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Thus $G = PQ = [P,Q]Q \times C_P(Q)$, and hence $G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_q \times \mathbb{Z}_p$. Therefore $G = \langle x, y, z \mid x^p = y^q = z^p = [x, z] = [y, z] = 1, y^{-1}xy = x^i \rangle$, where $i^q \equiv 1 \pmod{p}$ and (i, p) = 1.

LEMMA 3.2. Let p be a prime, $p \ge 5$ and $G = \langle x, y, z \mid x^p = y^3 = z^p = [x, z] = [y, z] = 1$, $y^{-1}xy = x^i \rangle$, where $i^3 \equiv 1 \pmod{p}$ and (i, p) = 1. Then there is no tetravalent one-regular normal Cayley graph X of order $3p^2$ on G. M. GHASEMI

Proof. Suppose to the contrary that X is a tetravalent one-regular normal Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to the generating set S. Since X is one-regular and normal, the stabilizer $A_1 = \operatorname{Aut}(G, S)$ of $1 \in G$ is transitive on S and the elements in S are all of the same order. The elements of G of order 3 lie in $\langle x, y \rangle$ and those of order p lie in $\langle x, z \rangle$. Since X is connected, $G = \langle S \rangle$ and hence S consists of elements of order 3p. Denote by S_{3p} the elements of G of order 3p. Then

$$S \subseteq \mathcal{S}_{3p} = \{ x^s y^t z^j \mid s \in \mathbb{Z}_p, t \in \mathbb{Z}_3^*, j \in \mathbb{Z}_p^* \}.$$

We now consider the action of $\operatorname{Aut}(G)$ on \mathcal{S}_{3p} . Clearly the action is transitive and hence we may assume that $yz \in S$. In particular

$$S = \{yz, y^{-1}z^{-1}, x^{u}y^{v}z^{l}, y^{-v}x^{-u}z^{-l}\}$$

for some $u \in \mathbb{Z}_p$, $v \in \mathbb{Z}_3^*$, and $l \in \mathbb{Z}_p^*$. Also since $\sigma : x \mapsto x^u, y \mapsto y, z \mapsto z$ is an automorphism of G, we may suppose that

$$S = \{yz, y^{-1}z^{-1}, xy^{v}z^{l}, y^{-v}x^{-1}z^{-l}\}$$

Since $\operatorname{Aut}(G, S)$ acts transitively on S, there is an $\alpha \in \operatorname{Aut}(G, S)$ such that $(yz)^{\alpha} = xy^{v}z^{l}$. If $y^{\alpha} = y$, then $z^{\alpha} = y^{-1}xy^{v}z^{l} = x^{i}y^{v+2}z^{l}$. Since o(z) = p, it follows that $z^{\alpha} = x^{i}z^{l}$, and v = -2. Also $(y^{-1}z^{-1})^{\alpha} = y^{-1}z^{-l}x^{-i} = y^{-1}x^{-i}z^{-l} = y^{2}x^{-i}z^{-l}$. By considering S, one has $y^{2}x^{-i}z^{-l} = y^{2}x^{-1}z^{-l}$. So i = 1, a contradiction.

If $y^{\alpha} = y^{-1}$, then $z^{\alpha} = yxy^{v}z^{l} = x^{i^{2}}y^{v+1}z^{l}$. Thus v = -1 and $z^{\alpha} = x^{i^{2}}z^{l}$. Now $(y^{-1}z^{-1})^{\alpha} = yz^{-l}x^{-i^{2}} = yx^{-i^{2}}z^{-l}$. On the other hand $(y^{-1}z^{-1})^{\alpha} = yx^{-1}z^{-l}$. Thus $i^{2} = 1$, a contradiction.

LEMMA 3.3. Let p be a prime and $G = \mathbb{Z}_p \times \mathbb{Z}_{3p} = \langle x, y \mid x^p = y^{3p} = [x, y] = 1 \rangle$, where $p \geq 5$. Also let X be a connected normal tetravalent Cayley graph. Then X is one-regular if and only if $X = \operatorname{Cay}(G, \{y, y^{-1}, xy, x^{-1}y^{-1}\})$. Moreover $X \cong C^{\pm 1}(p; 3p, 1)$.

Proof. Suppose that X is a tetravalent one-regular normal Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to the generating set S. Since X is one-regular normal, and since G is an abelian group of exponent 3p, we see that S contains an element of order 3p. Denote by \mathcal{S}_{3p} the set of all elements of G of order 3p. Then

$$S \subseteq \mathcal{S}_{3p} = \{ x^a y^b \mid a \in \mathbb{Z}_p, b \in \mathbb{Z}_{3p}^* \}.$$

It is clear that $\operatorname{Aut}(G)$ acts transitively on S_{3p} by conjugation. In particular, replacing S by a suitable $\operatorname{Aut}(G)$ -conjugate, we may assume that $y \in S$. Therefore

$$S = \{y, y^{-1}, x^{u}y^{v}, x^{-u}y^{-v}\}$$

for some $u \in \mathbb{Z}_p^*$ and $v \in \mathbb{Z}_{3p}^*$.

Let $B = \{\phi \in \operatorname{Aut}(G) \mid y^{\phi} = y\}$. Given $\phi \in B$, we have $\phi : x \mapsto x^a y^{3b}$, $y \mapsto y$ with $a, b \in \mathbb{Z}_p$ and $a \neq 0$. Note that every invertible element of \mathbb{Z}_{3p} is of the form 1 + 3b or -1 + 3b, for some $b \in \mathbb{Z}_p$. Therefore, we may choose $a, b \in \mathbb{Z}_p$ with $(xy)^{\phi} = x^u y^v$ or $(xy^{-1})^{\phi} = x^u y^v$. Thus, replacing S by a suitable B-conjugate, we may assume that either $xy \in S$ or $xy^{-1} \in S$, that is,

$$S = \{y, y^{-1}, xy, x^{-1}y^{-1}\}$$
 or $S = \{y, y^{-1}, xy^{-1}, x^{-1}y\}.$

Let α be the automorphism of G with $x^{\alpha} = x$ and $y^{\alpha} = y^{-1}$. Clearly, α maps the first possibility for S onto the second. Therefore, we may assume that

$$S = \{y, y^{-1}, xy, x^{-1}y^{-1}\}.$$

Also, [GP2, Definition 2.2], we see that X is isomorphic to $C^{\pm 1}(p; 3p, 1)$.

The following classification theorem is the main result of this paper.

THEOREM 3.4. Let p be a prime. A tetravalent graph X of order $3p^2$ is one-regular if and only if one of the following holds:

- (i) $p \in \{2, 3, 5, 7, 11, 13\};$
- (ii) X is a Cayley graph over $\langle x, y | x^p = y^{6p} = [x, y] = 1 \rangle$, with connection set $\{y, y^{-1}, xy, x^{-1}y^{-1}\}$;
- (iii) X is a connected arc-transitive circulant graph with respect to every connection set S;
- (iv) X is one of the graphs described in [GP2, Lemma 8.4].

Proof. Let X be a tetravalent one-regular graph of order $3p^2$. If $p \leq 13$, then |V(X)| = 12, 27, 75, 147, 363, or 507. Now, a complete list of tetravalent arc-transitive graphs of order at most 640 has recently been obtained by Potočnik, Spiga and Verret [PSV1, PSV2]. A quick inspection of this list (with the invaluable help of magma, see [BCP]) gives the proof of the theorem for $p \leq 13$.

Now, suppose that p > 13. Let $A = \operatorname{Aut}(X)$ and let A_v be the stabilizer of $v \in V(X)$ in A. Let P be a Sylow p-subgroup of A. Since A is one-regular, it follows that $|A| = 12p^2$. Clearly, P is normal in A.

Assume first that P is cyclic. Let X_P be the quotient graph of X relative to the orbits of P and let K be the kernel of A acting on $V(X_P)$. By Proposition 2.4, the orbits of P are of length p^2 . Thus $|V(X_P)| = 3$, $P \leq K$ and A/K acts arc-transitively on X_P . By Proposition 2.3, we have $X_P \cong C_3$ and hence $A/K \cong D_6$, forcing that $|K| = 2p^2$.

If A/P is abelian then, since A/K is a quotient group of A/P, also A/K is abelian. But since A/K is vertex-transitive on X_P , Proposition 2.2 implies that it is regular on X_P , contradicting arc-transitivity of A/K on X_P . Thus A/P is a non-abelian group.

Clearly K is not semiregular on V(X). Then $K_v \cong \mathbb{Z}_2$, where $v \in V(X)$. By Proposition 2.1, $A/C \leq \mathbb{Z}_{p(p-1)}$, where $C = C_A(P)$. Since A/P is not abelian we find that P is a proper subgroup of C.

If $C \cap K \neq P$, then $C \cap K = K$ ($|K| = 2p^2$). Since K_v is a Sylow 2-subgroup of K, K_v is characteristic in K and so normal in A, implying that $K_v = 1$, a contradiction. Thus $C \cap K = P$ and $1 \neq C/P = C/C \cap K \cong CK/K \leq A/K \cong D_6$.

If $C/P \cong \mathbb{Z}_2$, then C/P is in the center of A/P and since $(A/P)/(C/P) \cong A/C$ is cyclic, A/P is abelian, a contradiction. It follows that $|C/P| \in \{3, 6\}$, and hence C/P has a characteristic subgroup of order 3, say H/P. Thus $|H| = 3p^2$, and $H/P \trianglelefteq A/P$ implies that $H \trianglelefteq A$. In addition since $H \le C = C_A(P)$, we see that H is abelian. Clearly $|H_v| \in \{1, 3\}$.

If $|H_v| = 3$, then H_v is a Sylow 3-subgroup of H, implying that H_v is characteristic in H. The normality of H in A implies that $H_v \leq A$, forcing $H_v = 1$, a contradiction.

If $H_v = 1$, then since $|H| = 3p^2$, H is regular on V(X). It follows that X is a Cayley graph on an abelian group with a cyclic Sylow *p*-subgroup P. By elementary group theory, we know that up to isomorphism \mathbb{Z}_{3p^2} , where p > 13, is the only abelian group with a cyclic Sylow *p*-subgroup. Also by [X1, Theorem 7], X is one-regular.

Now assume that P is elementary abelian. Suppose first that P is a minimal normal subgroup of A, and consider the quotient graph X_P of X relative to the orbits of P. Let K be the kernel of A acting on $V(X_P)$. By Proposition 2.4, the orbits of P are of length p^2 , and thus $|V(X_P)| = 3$. By Proposition 2.3, $X_P \cong C_3$, and hence $A/K \cong D_6$, forcing $|K| = 2p^2$ and thus $K_v = \mathbb{Z}_2$. Proposition 2.6 implies that X is isomorphic to one of the graphs described in [GP2, Lemma 8.4].

Suppose now that P is not a minimal normal subgroup of A. Then a minimal normal subgroup N of A is isomorphic to \mathbb{Z}_p . Let X_N be the quotient graph of X relative to the orbits of N and let K be the kernel of A acting on $V(X_N)$. Then $N \leq K$ and A/K is transitive on $V(X_N)$; moreover, we have $|V(X_N)| = 3p$. By Proposition 2.3, either X_N is a cycle of length 3p, or N acts semiregularly on V(X), the quotient graph X_N is a tetravalent connected G/N-arc-transitive graph and X is a regular cover of X_N .

If $X_N \cong C_{3p}$, then $A/K \cong D_{6p}$. Thus |K| = 2p and so $K_v \cong \mathbb{Z}_2$. Applying Proposition 2.5, we conclude that X is isomorphic to $C^{\pm 1}(p; 3p, 1)$.

If, however, X_N is a tetravalent connected G/N-symmetric graph, then, by Proposition 2.3, X is a covering graph of a symmetric graph of order 3p. By [WX2], G(3p, 2) is the tetravalent symmetric graph of order 3p (see Example 2.8). Observe that in this case a one-regular subgroup of automorphism contains a normal regular subgroup isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_p$. Let H be a one-regular subgroup of automorphisms of X_N . Since X is a one-regular graph, A is the lift of H. Since H contains a normal regular subgroup isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_p$, also A contains a normal regular subgroup. Therefore X is a normal Cayley graph of order $3p^2$. Since $A/\mathbb{Z}_p \cong H$ and $\mathbb{Z}_3 \times \mathbb{Z}_p \subseteq H$, there exists a normal subgroup G of A such that $G/\mathbb{Z}_p \cong \mathbb{Z}_p \times \mathbb{Z}_3$. If G is an abelian group, then G is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{3p}$, or \mathbb{Z}_{3p^2} . Also if G is not abelian, then by Lemma 3.1, G is isomorphic to $\langle x, y, z | x^p = y^3 =$ $z^p = [x, z] = [y, z] = 1, y^{-1}xy = x^i \rangle$, where $i^3 \equiv 1 \pmod{p}$ and (i, p) = 1. If $G \cong \mathbb{Z}_{3p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_{3p}$ then by [X1, Theorem 7], and Lemma 3.3, X is one-regular. Also for the latter case, by Lemma 3.2, X is not one-regular. This completes the proof.

REFERENCES

- [BFSX] Y. G. Baik, Y. Q. Feng, H. S. Sim and M. Y. Xu, On the normality of Cayley graph of abelian groups, Algebra Colloq. 5 (1998), 297–304.
- [BCP] W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput. 24 (1997), 235–265.
- [C] C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247–256.
- [CO] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196–211.
- [FKMZ] Y.-Q. Feng, K. Kutnar, D. Marušič and C. Zhang, Tetravalent one-regular graphs of order $4p^2$, submitted.
- [FK1] Y.-Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p², Sci. China A 49 (2006), 300–319.
- [FK2] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Austral. Math. Soc. 81 (2006), 153–164.
- [FK3] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), 627–646.
- [FKW] Y.-Q. Feng, J. H. Kwak and K. S. Wang, Classifying cubic symmetric graphs of order 8p or 8p², Eur. J. Combin. 26 (2005), 1033–1052.
- [FX] Y. Q. Feng and M. Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math. 305 (2005), 354–360.
- [F] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952), 240– 247.
- [G] M. Ghasemi, Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups, Algebra Discrete Math. 13 (2012), 52–58.
- [GS] M. Ghasemi and P. Spiga, Tetravalent one-regular graphs of order $6p^2$, submitted.
- [GZ] M. Ghasemi and J. X. Zhou, Automorphisms of a family of cubic graphs, Algebra Colloq., to appear.
- [GP1] A. Gardiner and C. E. Praeger, On tetravalent symmetric graphs, Eur. J. Combin. 15 (1994), 375–381.
- [GP2] A. Gardiner and C. E. Praeger, A characterization of certain families of tetravalent symmetric graphs, Eur. J. Combin. 15 (1994), 383–397.
- [Har] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953), 143–146.
- [Hup] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.

24	M. GHASEMI
[Ino]	T. Inohara, Characterization of clusterability of signed graph in terms of New- comb's balance of sentiments, Appl. Math. Comput. 133 (2002), 93–104.
[KS]	H. Kurzweil and B. Stellmacher, <i>The Theory of Finite Groups. An Introduction</i> , Springer, 2004.
[KO]	J. H. Kwak and J. M. Oh, One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer, Acta Math. Sinica English Ser. 22 (2006), 1305–1320.
[M]	D. Marušič, A family of one-regular graphs of valency 4, Eur. J. Combin. 18 (1997), 59–64.
[PSV1] [PSV2]	 P. Potočnik, P. Spiga and G. Verret, http://www.matapp.unimib.it/~spiga/ P. Potočnik, P. Spiga and G. Verret, <i>Cubic vertex-transitive graphs on up to 1280 vertices</i>, arXiv:1201.5317v1 [math.CO].
[PWX]	C. E. Praeger, R. J. Wang and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299–318.
[PX]	C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 216–45.
[S1]	D. Simson, Mesh algorithms for solving principal Diophantine equations, sand- glasstubes and tori of roots, Fund. Inform. 109 (2011), 425–462.
[S2]	D. Simson, Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform. 120 (2012), in press.
[S3]	D. Simson, A Coxeter-Gram classification of simply-laced edge-bipartite graphs, SIAM J. Discrete Math. (2012), to appear.
[SW]	D. Simson and M. Wojewódzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83 (2008), 389–410.
[WX1]	C. Q. Wang and M. Y. Xu, Non-normal one-regular and tetravalent Cayley graphs of dihedral groups D_{2n} , Eur. J. Combin. 27 (2006), 750–766.
[WX2]	R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993), 197–216.
[WZ]	C. Q. Wang and Z. Y. Zhou, <i>Tetravalent one-regular normal Cayley graphs of dihedral groups</i> , Acta Math. Sinica Chinese Ser. 49 (2006), 669–678.
[W]	H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
[XX]	J. Xu and M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on Abelian groups, Southest Asian Bull. Math. 25 (2001), 355–363.
[X1]	M. Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000), 2160–2162.
[X2]	M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 44 (2001), 1502–1508.
[Z] [ZF]	T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), 47–74. JX. Zhou and YQ. Feng, Tetravalent one-regular graphs of order 2pq, J. Al- gebraic Combin. 29 (2009), 457–471.
Mohsen	Ghasemi

Department of Mathematics Urmia University Urmia 57135, Iran E-mail: m.ghasemi@urmia.ac.ir

Received 26 June 2012

(5705)