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A CLASSIFICATION OF TETRAVALENT ONE-REGULAR GRAPHS
OF ORDER 3p2

BY

MOHSEN GHASEMI (Urmia)

Abstract. A graph is one-regular if its automorphism group acts regularly on the set
of its arcs. In this paper, tetravalent one-regular graphs of order 3p2, where p is a prime,
are classified.

1. Introduction. In this paper we consider undirected finite connected
graphs without loops or multiple edges. For a graph X we use V (X), E(X),
A(X) and Aut(X) to denote its vertex set, edge set, arc set and its full auto-
morphism group, respectively. For u, v ∈ V (X), {u, v} is the edge incident to
u and v in X. A graph X is said to be vertex-transitive and arc-transitive (or
symmetric) if Aut(X) acts transitively on V (X) and A(X), respectively. In
particular, if Aut(X) acts regularly onA(X), thenX is said to be one-regular
(or 1-regular).

The main result of the paper is Theorem 3.4 asserting that, given a
prime p and a tetravalent 1-regular graph X of order 3p2, we have one of
the following cases:

(i) p ∈ {2, 3, 5, 7, 11, 13};
(ii) X is a Cayley graph over 〈x, y | xp = y3p = [x, y] = 1〉, with

connection set {y, y−1, xy, x−1y−1};
(iii) X is a connected arc-transitive circulant graph with respect to every

connection set S;
(iv) X is one of the graphs described in [GP2, Lemma 8.4].

Clearly, a one-regular graph is connected, and it is of valency 2 if and
only if it is a cycle. In this sense the first non-trivial case is that of cu-
bic graphs. The first example of a cubic one-regular graph was constructed
by Frucht [F] and later on a lot of related work has been done (as part
of the more general investigation of cubic arc-transitive graphs; see [FK1,
FK2, FK3, FKW]). Tetravalent one-regular graphs have also received con-
siderable attention. In [C], tetravalent one-regular graphs of prime order
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were constructed. In [M], an infinite family of tetravalent one-regular Cay-
ley graphs on alternating groups is given. Tetravalent one-regular circulant
graphs were classified in [X1] and tetravalent one-regular Cayley graphs on
abelian groups were classified in [XX]. Next, one may deduce a classification
of tetravalent one-regular Cayley graphs on dihedral groups from [KO, WX1,
WZ]. Let p and q be primes. Then clearly every tetravalent one-regular graph
of order p is a circulant graph. Also, by [CO, PWX, PX, WX2, X1, XX] every
tetravalent one-regular graph of order pq or p2 is a circulant graph. Further-
more, the classifications of tetravalent one-regular graphs of order 4p2, 6p2

and 2pq are given in [FKMZ, GS, ZF]. Continuing this research, the aim
of this paper is to classify tetravalent one-regular graphs of order 3p2 (see
Theorem 3.4).

A referee has pointed out that the results and the technique used in the
paper can find useful application in the study of signed graphs in the sense
of Harary [Har] and Zaslavsky [Z], and in the Coxeter spectral analysis of
connected simply-laced edge-bipartite graphs recently developed in [S1, S2,
S3] (see also [Ino] and [SW]).

2. Preliminaries. In this section, we introduce some notation and def-
initions as well as some preliminary results which will be used later.

For a regular graph X, we use d(X) to represent the valency of X, and for
any subset B of V (X), the subgraph of X induced by B will be denoted by
X[B]. Let X be a connected vertex-transitive graph, and let G ≤ Aut(X) be
vertex-transitive on X. For a G-invariant partition β of V (X), the quotient
graph Xβ is defined as the graph with vertex set β such that, for any two
vertices B,C ∈ β, B is adjacent to C if and only if there exist u ∈ B and
v ∈ C which are adjacent in X. Let N be a normal subgroup of G. Then
the set β of orbits of N in V (X) is a G-invariant partition of V (X). In this
case, the symbol Xβ will be replaced by XN .

For a positive integer n, denote by Zn the cyclic group of order n as
well as the ring of integers modulo n, by Z∗n the multiplicative group of Zn
consisting of numbers coprime to n, by D2n the dihedral group of order 2n,
and by Cn and Kn the cycle and the complete graph of order n, respectively.
We call Cn an n-cycle.

For a finite group G and a subset S of G such that 1 /∈ S and S = S−1,
the Cayley graph Cay(G,S) on G with respect to S is defined to have ver-
tex set G and edge set {{g, sg} | g ∈ G, s ∈ S}. Given a g ∈ G, define
the permutation R(g) on G by x 7→ xg, x ∈ G. The permutation group
R(G) = {R(g) | g ∈ G} on G is called the right regular representation of G.
It is easy to see that R(G) is isomorphic to G, and it is a regular subgroup
of the automorphism group Aut(Cay(G,S)). Also it is easy to see that X
is connected if and only if G = 〈S〉, that is, S is a connection set. Further-
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more, the group Aut(G,S) = {α ∈ Aut(G) | Sα = S} is a subgroup of
Aut(Cay(G,S)). Actually, Aut(G,S) is a subgroup of Aut(Cay(G,S))1, the
stabilizer of the vertex 1 in Aut(Cay(G,S)). A Cayley graph Cay(G,S) is
said to be normal if R(G) is normal in Aut(Cay(G,S)). Xu [X2] proved that
Cay(G,S) is normal if and only if Aut(Cay(G,S))1 = Aut(G,S). Suppose
that α ∈ Aut(G). One can easily prove that Cay(G,S) is normal if and
only if Cay(G,Sα) is normal. Determining automorphism groups, or equiv-
alently, studying normality of Cayley graphs, plays an important role in the
investigation of various symmetry properties of graphs, and has become a
very active topic in algebraic graph theory. The concept of normal Cayley
graph was first introduced by Xu [X2], and later much related work was
done (see [BFSX, FX, G, GZ, KO, WZ]).

For u ∈ V (X), denote by NX(u) the neighbourhood of u in X, that is, the

set of vertices adjacent to u in X. A graph X̃ is called a covering of a graph

X with projection p : X̃ → X if there is a surjection p : V (X̃) → V (X)
such that p|N

X̃
(ṽ) : N

X̃
(ṽ) → NX(v) is a bijection for any v ∈ V (X) and

ṽ ∈ p−1(v). A covering X̃ of X with projection p is said to be regular (or a

K-covering) if there is a semiregular subgroup K of Aut(X̃) such that X is

isomorphic to the quotient graph X̃/K, say via a map h, and the quotient

map X̃ → X̃/K is the composition ph (for the purpose of this paper, all
functions are composed from left to right). If K is cyclic or elementary

abelian then X̃ is called a cyclic or an elementary abelian covering of X,
and if X̃ is connected, K becomes the covering transformation group. The
fibre of an edge or a vertex is its preimage under p. An automorphism of
X̃ is said to be fibre-preserving if it maps a fibre to a fibre, while every
covering transformation maps a fibre onto itself. All the fibre-preserving
automorphisms form a group called the fibre-preserving group.

Let X̃ be a K-covering of X with projection p. If α ∈ Aut(X) and

α̃ ∈ Aut(X̃) satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃.
Concepts such as a lift of a subgroup of Aut(X) and the projection of a

subgroup of Aut(X̃) are self-explanatory. The lifts and projections of such

subgroups are of course subgroups in Aut(X̃) and Aut(X) respectively.
For two groups M and N , N oM denotes a semidirect product of N

by M . For a subgroup H of a group G, we denote by CG(H) the centralizer
of H in G, and by NG(H) the normalizer of H in G. Then CG(H) is normal
in NG(H).

Proposition 2.1 ([Hup, Chapter I, Theorem 4.5]). The quotient group
NG(H)/CG(H) is isomorphic to a subgroup of Aut(H).

Proposition 2.2 ([W, Chapter I, Theorem 4.5]). Every transitive abel-
ian group G on a set Ω is regular.
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Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the
stabilizer of α in G, that is, the subgroup of G fixing the point α. We say
that G is semiregular on Ω if Gα = 1 for every α ∈ Ω and regular if G is
transitive and semiregular. For any g ∈ G, g is said to be semiregular if 〈g〉
is semiregular. The following proposition due to Praeger et al. (see [GP1,
Theorem 1.1]) gives a characterization of Cayley graphs in terms of their
automorphism groups.

Proposition 2.3. Let X be a connected tetravalent (G, 1)-arc-transitive
graph. For each normal subgroup N of G, one of the following holds:

(1) N is transitive on V (X);
(2) X is bipartite and N acts transitively on each part of the bipartition;
(3) N has r ≥ 3 orbits on V (X), the quotient graph XN is a cycle of

length r, and G induces the full automorphism group D2r on XN ;
(4) N has r ≥ 5 orbits on V (X), N acts semiregularly on V (X), the

quotient graph XN is a connected tetravalent G/N -symmetric graph,
and X is a G-normal cover of XN .

Moreover, if X is also (G, 2)-arc-transitive, then case (3) cannot happen.

The following classical result is due to Wielandt [W, Theorem 3.4].

Proposition 2.4. Let p be a prime and let P be a Sylow p-subgroup of a
permutation group G acting on a set Ω. Let ω ∈ Ω. If pm divides the length
of the G-orbit containing ω, then pm also divides the length of the P -orbit
containing ω.

To state the next result we need to introduce a family of tetravalent
graphs that were first defined in [GP2]. The graph C±1(p; 3p, 1) is defined
to have vertex set Zp×Z3p and edge set {(i, j)(i±1, j+1) | i ∈ Zp, j ∈ Z3p}.
Also from [GP2, Definition 2.2], the graphs C±1(p; 3p, 1) are Cayley graphs
over Zp × Z3p with connection set {(1, 1), (−1, 1), (−1,−1), (1,−1)}. In the
proof of Theorem 3.4, we will need C±1(p; 3p, 1) with p > 13. It can be
readily checked from [GP2, Definition 2.2] that for p > 13 these graphs are
actually normal Cayley graphs over Zp × Z3p.

Proposition 2.5 ([GP2, Theorem 1.1]). Let X be a connected, G-sym-
metric, tetravalent graph of order 3p2, and let N = Zp be a minimal normal
subgroup of G with orbits of size p, where p is an odd prime. Let K denote
the kernel of the action of G on V (XN ). If XN = C3p and Kv

∼= Z2 then X
is isomorphic to C±1(p; 3p, 1).

The graphs defined in [GP2, Lemma 8.4] are all one-regular (see [GP2,
Section 8]) and therefore we refer to [GP2] for an intrinsic description of
these families.
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Proposition 2.6 ([GP2, Theorem 1.2]). Let X be a connected, G-sym-
metric, tetravalent graph of order 3p2, and let N = Zp × Zp be a minimal
normal subgroup of G with orbits of size p2, where p is an odd prime. Let K
denote the kernel of the action of G on V (XN ). If XN = C3 and Kv

∼= Z2

then X is isomorphic to one of the graphs in [GP2, Lemma 8.4].

Let A be a group that acts on the group G. Also let A or G be solvable.
Then the action of A on G is coprime if (|A|, |G|) = 1. The following result
can be deduced from [KS, 8.2.7, p. 187].

Proposition 2.7. Suppose that the action of A on G is coprime. Then
G = [G,A]× CG(A).

Finally in the following example we introduce G(3p, r), which was first
defined in [CO].

Example 2.8. For each positive divisor r of p− 1 we use Hr to denote
the unique subgroup of Aut(Zp) of order r which is isomorphic to Zr. Define
a graph G(3p, r) by V (G(3p, r)) = {xi | i ∈ Z3, x ∈ Zp} and E(G(3p, r)) =
{xiyi+1 | i ∈ Z3, x, y ∈ Zp, y − x ∈ Hr}. Then G(3p, r) is a connected
symmetric graph of order 3p and valency 2r. Also Aut(G(3p, p − 1)) ∼=
Sp × S3. For r 6= p− 1, Aut(G(3p, r)) is isomorphic to (Zp.Hr).S3 and acts
regularly on the arc set, where X.Y denotes an extension of X by Y .

3. One-regular graphs of order 3p2. To prove the main theorem we
need the following three lemmas.

Lemma 3.1. Let G be a non-abelian group of order p2q, where p and q
are primes. Also let p > q, and N be a normal subgroup of order p such that
G/N is cyclic. Then G is isomorphic to 〈x, y, z | xp = yq = zp = [x, z] =
[y, z] = 1, y−1xy = xi〉, where iq ≡ 1 (mod p) and (i, p) = 1.

Proof. Let P and Q be a Sylow p-subgroup and q-subgroup of G, re-
spectively. Clearly P � G, and since G′ 6= 1, we have N = G′. Since
the action of Q on P is coprime, it follows that P = [P,Q] × CP (Q),
by Proposition 2.7. If CP (Q) = 1, then P ≤ G′, a contradiction. Also
since G is non-abelian, [P,Q] 6= 1. So q | p − 1, and P ∼= Zp × Zp. Thus
G = PQ = [P,Q]Q × CP (Q), and hence G ∼= Zp o Zq × Zp. Therefore
G = 〈x, y, z | xp = yq = zp = [x, z] = [y, z] = 1, y−1xy = xi〉, where iq ≡ 1
(mod p) and (i, p) = 1.

Lemma 3.2. Let p be a prime, p ≥ 5 and G = 〈x, y, z | xp = y3 =
zp = [x, z] = [y, z] = 1, y−1xy = xi〉, where i3 ≡ 1 (mod p) and (i, p) = 1.
Then there is no tetravalent one-regular normal Cayley graph X of order
3p2 on G.
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Proof. Suppose to the contrary that X is a tetravalent one-regular nor-
mal Cayley graph Cay(G,S) on G with respect to the generating set S.
Since X is one-regular and normal, the stabilizer A1 = Aut(G,S) of 1 ∈ G
is transitive on S and the elements in S are all of the same order. The ele-
ments of G of order 3 lie in 〈x, y〉 and those of order p lie in 〈x, z〉. Since X
is connected, G = 〈S〉 and hence S consists of elements of order 3p. Denote
by S3p the elements of G of order 3p. Then

S ⊆ S3p = {xsytzj | s ∈ Zp, t ∈ Z∗3, j ∈ Z∗p}.

We now consider the action of Aut(G) on S3p. Clearly the action is transitive
and hence we may assume that yz ∈ S. In particular

S = {yz, y−1z−1, xuyvzl, y−vx−uz−l}

for some u ∈ Zp, v ∈ Z∗3, and l ∈ Z∗p. Also since σ : x 7→ xu, y 7→ y, z 7→ z is
an automorphism of G, we may suppose that

S = {yz, y−1z−1, xyvzl, y−vx−1z−l}.

Since Aut(G,S) acts transitively on S, there is an α ∈ Aut(G,S) such that
(yz)α = xyvzl. If yα = y, then zα = y−1xyvzl = xiyv+2zl. Since o(z) = p,
it follows that zα = xizl, and v = −2. Also (y−1z−1)α = y−1z−lx−i =
y−1x−iz−l = y2x−iz−l. By considering S, one has y2x−iz−l = y2x−1z−l. So
i = 1, a contradiction.

If yα = y−1, then zα = yxyvzl = xi
2
yv+1zl. Thus v = −1 and zα = xi

2
zl.

Now (y−1z−1)α = yz−lx−i
2

= yx−i
2
z−l. On the other hand (y−1z−1)α =

yx−1z−l. Thus i2 = 1, a contradiction.

Lemma 3.3. Let p be a prime and G = Zp × Z3p = 〈x, y | xp = y3p =
[x, y] = 1〉, where p ≥ 5. Also let X be a connected normal tetravalent Cayley
graph. Then X is one-regular if and only if X=Cay(G, {y, y−1, xy, x−1y−1}).
Moreover X ∼= C±1(p; 3p, 1).

Proof. Suppose that X is a tetravalent one-regular normal Cayley graph
Cay(G,S) on G with respect to the generating set S. Since X is one-regular
normal, and since G is an abelian group of exponent 3p, we see that S
contains an element of order 3p. Denote by S3p the set of all elements of G
of order 3p. Then

S ⊆ S3p = {xayb | a ∈ Zp, b ∈ Z∗3p}.

It is clear that Aut(G) acts transitively on S3p by conjugation. In particular,
replacing S by a suitable Aut(G)-conjugate, we may assume that y ∈ S.
Therefore

S = {y, y−1, xuyv, x−uy−v}

for some u ∈ Z∗p and v ∈ Z∗3p.
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Let B = {φ ∈ Aut(G) | yφ = y}. Given φ ∈ B, we have φ : x 7→ xay3b,
y 7→ y with a, b ∈ Zp and a 6= 0. Note that every invertible element of
Z3p is of the form 1 + 3b or −1 + 3b, for some b ∈ Zp. Therefore, we may
choose a, b ∈ Zp with (xy)φ = xuyv or (xy−1)φ = xuyv. Thus, replacing S
by a suitable B-conjugate, we may assume that either xy ∈ S or xy−1 ∈ S,
that is,

S = {y, y−1, xy, x−1y−1} or S = {y, y−1, xy−1, x−1y}.
Let α be the automorphism of G with xα = x and yα = y−1. Clearly, α

maps the first possibility for S onto the second. Therefore, we may assume
that

S = {y, y−1, xy, x−1y−1}.
Also, [GP2, Definition 2.2], we see that X is isomorphic to C±1(p; 3p, 1).

The following classification theorem is the main result of this paper.

Theorem 3.4. Let p be a prime. A tetravalent graph X of order 3p2 is
one-regular if and only if one of the following holds:

(i) p ∈ {2, 3, 5, 7, 11, 13};
(ii) X is a Cayley graph over 〈x, y | xp = y6p = [x, y] = 1〉, with

connection set {y, y−1, xy, x−1y−1};
(iii) X is a connected arc-transitive circulant graph with respect to every

connection set S;
(iv) X is one of the graphs described in [GP2, Lemma 8.4].

Proof. Let X be a tetravalent one-regular graph of order 3p2. If p ≤ 13,
then |V (X)| = 12, 27, 75, 147, 363, or 507. Now, a complete list of tetravalent
arc-transitive graphs of order at most 640 has recently been obtained by
Potočnik, Spiga and Verret [PSV1, PSV2]. A quick inspection of this list
(with the invaluable help of magma, see [BCP]) gives the proof of the theorem
for p ≤ 13.

Now, suppose that p > 13. Let A = Aut(X) and let Av be the stabilizer
of v ∈ V (X) in A. Let P be a Sylow p-subgroup of A. Since A is one-regular,
it follows that |A| = 12p2. Clearly, P is normal in A.

Assume first that P is cyclic. Let XP be the quotient graph of X relative
to the orbits of P and let K be the kernel of A acting on V (XP ). By
Proposition 2.4, the orbits of P are of length p2. Thus |V (XP )| = 3, P ≤ K
and A/K acts arc-transitively on XP . By Proposition 2.3, we have XP

∼= C3

and hence A/K ∼= D6, forcing that |K| = 2p2.
If A/P is abelian then, since A/K is a quotient group of A/P , also A/K

is abelian. But since A/K is vertex-transitive on XP , Proposition 2.2 implies
that it is regular on XP , contradicting arc-transitivity of A/K on XP . Thus
A/P is a non-abelian group.
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Clearly K is not semiregular on V (X). Then Kv
∼= Z2, where v ∈ V (X).

By Proposition 2.1, A/C . Zp(p−1), where C = CA(P ). Since A/P is not
abelian we find that P is a proper subgroup of C.

If C ∩ K 6= P , then C ∩ K = K (|K| = 2p2). Since Kv is a Sylow
2-subgroup of K, Kv is characteristic in K and so normal in A, implying
that Kv = 1, a contradiction. Thus C ∩K = P and 1 6= C/P = C/C ∩K ∼=
CK/K �A/K ∼= D6.

If C/P ∼= Z2, then C/P is in the center of A/P and since (A/P )/(C/P )
∼= A/C is cyclic, A/P is abelian, a contradiction. It follows that |C/P | ∈
{3, 6}, and hence C/P has a characteristic subgroup of order 3, say H/P .
Thus |H| = 3p2, and H/P � A/P implies that H � A. In addition since
H ≤ C = CA(P ), we see that H is abelian. Clearly |Hv| ∈ {1, 3}.

If |Hv| = 3, then Hv is a Sylow 3-subgroup of H, implying that Hv is
characteristic in H. The normality of H in A implies that Hv � A, forcing
Hv = 1, a contradiction.

If Hv = 1, then since |H| = 3p2, H is regular on V (X). It follows that
X is a Cayley graph on an abelian group with a cyclic Sylow p-subgroup P .
By elementary group theory, we know that up to isomorphism Z3p2 , where
p > 13, is the only abelian group with a cyclic Sylow p-subgroup. Also
by [X1, Theorem 7], X is one-regular.

Now assume that P is elementary abelian. Suppose first that P is a
minimal normal subgroup of A, and consider the quotient graph XP of X
relative to the orbits of P . Let K be the kernel of A acting on V (XP ). By
Proposition 2.4, the orbits of P are of length p2, and thus |V (XP )| = 3. By
Proposition 2.3, XP

∼= C3, and hence A/K ∼= D6, forcing |K| = 2p2 and
thus Kv = Z2. Proposition 2.6 implies that X is isomorphic to one of the
graphs described in [GP2, Lemma 8.4].

Suppose now that P is not a minimal normal subgroup of A. Then a min-
imal normal subgroup N of A is isomorphic to Zp. Let XN be the quotient
graph of X relative to the orbits of N and let K be the kernel of A acting
on V (XN ). Then N ≤ K and A/K is transitive on V (XN ); moreover, we
have |V (XN )| = 3p. By Proposition 2.3, either XN is a cycle of length 3p,
or N acts semiregularly on V (X), the quotient graph XN is a tetravalent
connected G/N -arc-transitive graph and X is a regular cover of XN .

IfXN
∼= C3p, then A/K ∼= D6p. Thus |K| = 2p and soKv

∼= Z2. Applying
Proposition 2.5, we conclude that X is isomorphic to C±1(p; 3p, 1).

If, however, XN is a tetravalent connected G/N -symmetric graph, then,
by Proposition 2.3, X is a covering graph of a symmetric graph of order 3p.
By [WX2], G(3p, 2) is the tetravalent symmetric graph of order 3p (see
Example 2.8). Observe that in this case a one-regular subgroup of automor-
phism contains a normal regular subgroup isomorphic to Z3×Zp. Let H be
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a one-regular subgroup of automorphisms of XN . Since X is a one-regular
graph, A is the lift of H. Since H contains a normal regular subgroup iso-
morphic to Z3 × Zp, also A contains a normal regular subgroup. Therefore
X is a normal Cayley graph of order 3p2. Since A/Zp ∼= H and Z3×Zp�H,
there exists a normal subgroup G of A such that G/Zp ∼= Zp × Z3. If G is
an abelian group, then G is isomorphic to Zp × Z3p, or Z3p2 . Also if G is
not abelian, then by Lemma 3.1, G is isomorphic to 〈x, y, z | xp = y3 =
zp = [x, z] = [y, z] = 1, y−1xy = xi〉, where i3 ≡ 1 (mod p) and (i, p) = 1.
If G ∼= Z3p2 or G ∼= Zp × Z3p then by [X1, Theorem 7], and Lemma 3.3, X
is one-regular. Also for the latter case, by Lemma 3.2, X is not one-regular.
This completes the proof.
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[SW] D. Simson and M. Wojewódzki, An algorithmic solution of a Birkhoff type
problem, Fund. Inform. 83 (2008), 389–410.

[WX1] C. Q. Wang and M. Y. Xu, Non-normal one-regular and tetravalent Cayley
graphs of dihedral groups D2n, Eur. J. Combin. 27 (2006), 750–766.

[WX2] R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p,
J. Combin. Theory Ser. B 58 (1993), 197–216.

[WZ] C. Q. Wang and Z. Y. Zhou, Tetravalent one-regular normal Cayley graphs of
dihedral groups, Acta Math. Sinica Chinese Ser. 49 (2006), 669–678.

[W] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
[XX] J. Xu and M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on

Abelian groups, Southest Asian Bull. Math. 25 (2001), 355–363.
[X1] M. Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000), 2160–

2162.
[X2] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete

Math. 44 (2001), 1502–1508.
[Z] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), 47–74.
[ZF] J.-X. Zhou and Y.-Q. Feng, Tetravalent one-regular graphs of order 2pq, J. Al-

gebraic Combin. 29 (2009), 457–471.

Mohsen Ghasemi
Department of Mathematics
Urmia University
Urmia 57135, Iran
E-mail: m.ghasemi@urmia.ac.ir

Received 26 June 2012 (5705)

http://dx.doi.org/10.1016/S0096-3003(01)00224-7
http://dx.doi.org/10.1007/s10114-005-0752-9
http://dx.doi.org/10.1006/eujc.1995.0076
http://www.matapp.unimib.it/~spiga/
http://dx.doi.org/10.1006/jctb.1993.1046
http://dx.doi.org/10.1016/j.ejc.2004.12.007
http://dx.doi.org/10.1006/jctb.1993.1037
http://dx.doi.org/10.1007/s11425-006-0669-5
http://dx.doi.org/10.1007/s10012-001-0355-z
http://dx.doi.org/10.1016/0166-218X(82)90033-6
http://dx.doi.org/10.1007/s10801-008-0146-z

	Introduction
	Preliminaries
	One-regular graphs of order 3p2

