A CLASSIFICATION OF TETRAVALENT ONE-REGULAR GRAPHS OF ORDER $3 p^{2}$

BY
MOHSEN GHASEMI (Urmia)

Abstract

A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper, tetravalent one-regular graphs of order $3 p^{2}$, where p is a prime, are classified.

1. Introduction. In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X), E(X)$, $A(X)$ and $\operatorname{Aut}(X)$ to denote its vertex set, edge set, arc set and its full automorphism group, respectively. For $u, v \in V(X),\{u, v\}$ is the edge incident to u and v in X. A graph X is said to be vertex-transitive and arc-transitive (or symmetric) if $\operatorname{Aut}(X)$ acts transitively on $V(X)$ and $A(X)$, respectively. In particular, if $\operatorname{Aut}(X)$ acts regularly on $A(X)$, then X is said to be one-regular (or 1-regular).

The main result of the paper is Theorem 3.4 asserting that, given a prime p and a tetravalent 1-regular graph X of order $3 p^{2}$, we have one of the following cases:
(i) $p \in\{2,3,5,7,11,13\}$;
(ii) X is a Cayley graph over $\left\langle x, y \mid x^{p}=y^{3 p}=[x, y]=1\right\rangle$, with connection set $\left\{y, y^{-1}, x y, x^{-1} y^{-1}\right\} ;$
(iii) X is a connected arc-transitive circulant graph with respect to every connection set S;
(iv) X is one of the graphs described in [GP2, Lemma 8.4].

Clearly, a one-regular graph is connected, and it is of valency 2 if and only if it is a cycle. In this sense the first non-trivial case is that of cubic graphs. The first example of a cubic one-regular graph was constructed by Frucht $[\mathrm{F}]$ and later on a lot of related work has been done (as part of the more general investigation of cubic arc-transitive graphs; see FK1, FK2, FK3, FKW]). Tetravalent one-regular graphs have also received considerable attention. In [C], tetravalent one-regular graphs of prime order

[^0]were constructed. In $[M$, an infinite family of tetravalent one-regular Cayley graphs on alternating groups is given. Tetravalent one-regular circulant graphs were classified in [X1 and tetravalent one-regular Cayley graphs on abelian groups were classified in [XX]. Next, one may deduce a classification of tetravalent one-regular Cayley graphs on dihedral groups from [KO, WX1, WZ. Let p and q be primes. Then clearly every tetravalent one-regular graph of order p is a circulant graph. Also, by [CO, PWX, PX, WX2, X1, XX] every tetravalent one-regular graph of order $p q$ or p^{2} is a circulant graph. Furthermore, the classifications of tetravalent one-regular graphs of order $4 p^{2}, 6 p^{2}$ and $2 p q$ are given in FKMZ, GS, ZF]. Continuing this research, the aim of this paper is to classify tetravalent one-regular graphs of order $3 p^{2}$ (see Theorem (3.4).

A referee has pointed out that the results and the technique used in the paper can find useful application in the study of signed graphs in the sense of Harary [Har] and Zaslavsky [Z], and in the Coxeter spectral analysis of connected simply-laced edge-bipartite graphs recently developed in S1, S2, [S3] (see also [InO and [SW]).
2. Preliminaries. In this section, we introduce some notation and definitions as well as some preliminary results which will be used later.

For a regular graph X, we use $d(X)$ to represent the valency of X, and for any subset B of $V(X)$, the subgraph of X induced by B will be denoted by $X[B]$. Let X be a connected vertex-transitive graph, and let $G \leq \operatorname{Aut}(X)$ be vertex-transitive on X. For a G-invariant partition β of $V(X)$, the quotient graph X_{β} is defined as the graph with vertex set β such that, for any two vertices $B, C \in \beta, B$ is adjacent to C if and only if there exist $u \in B$ and $v \in C$ which are adjacent in X. Let N be a normal subgroup of G. Then the set β of orbits of N in $V(X)$ is a G-invariant partition of $V(X)$. In this case, the symbol X_{β} will be replaced by X_{N}.

For a positive integer n, denote by \mathbb{Z}_{n} the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_{n}^{*} the multiplicative group of \mathbb{Z}_{n} consisting of numbers coprime to n, by $D_{2 n}$ the dihedral group of order $2 n$, and by C_{n} and K_{n} the cycle and the complete graph of order n, respectively. We call C_{n} an n-cycle.

For a finite group G and a subset S of G such that $1 \notin S$ and $S=S^{-1}$, the Cayley graph Cay (G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$. Given a $g \in G$, define the permutation $R(g)$ on G by $x \mapsto x g, x \in G$. The permutation group $R(G)=\{R(g) \mid g \in G\}$ on G is called the right regular representation of G. It is easy to see that $R(G)$ is isomorphic to G, and it is a regular subgroup of the automorphism group $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Also it is easy to see that X is connected if and only if $G=\langle S\rangle$, that is, S is a connection set. Further-
more, the group $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Actually, $\operatorname{Aut}(G, S)$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))_{1}$, the stabilizer of the vertex $1 \operatorname{in} \operatorname{Aut}(\operatorname{Cay}(G, S))$. A Cayley graph $\operatorname{Cay}(G, S)$ is said to be normal if $R(G)$ is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Xu [X2] proved that $\operatorname{Cay}(G, S)$ is normal if and only if $\operatorname{Aut}(\operatorname{Cay}(G, S))_{1}=\operatorname{Aut}(G, S)$. Suppose that $\alpha \in \operatorname{Aut}(G)$. One can easily prove that $\operatorname{Cay}(G, S)$ is normal if and only if $\operatorname{Cay}\left(G, S^{\alpha}\right)$ is normal. Determining automorphism groups, or equivalently, studying normality of Cayley graphs, plays an important role in the investigation of various symmetry properties of graphs, and has become a very active topic in algebraic graph theory. The concept of normal Cayley graph was first introduced by Xu [X2], and later much related work was done (see [BFSX, FX, G, GZ, KO, WZ).

For $u \in V(X)$, denote by $N_{X}(u)$ the neighbourhood of u in X, that is, the set of vertices adjacent to u in X. A graph \widetilde{X} is called a covering of a graph X with projection $p: \widetilde{X} \rightarrow X$ if there is a surjection $p: V(\widetilde{X}) \rightarrow V(X)$ such that $\left.p\right|_{N_{\tilde{X}}(\tilde{v})}: N_{\tilde{X}}(\tilde{v}) \rightarrow N_{X}(v)$ is a bijection for any $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$. A covering \widetilde{X} of X with projection p is said to be regular (or a K-covering) if there is a semiregular subgroup K of $\operatorname{Aut}(\widetilde{X})$ such that X is isomorphic to the quotient graph \widetilde{X} / K, say via a map h, and the quotient map $\tilde{X} \rightarrow \widetilde{X} / K$ is the composition $p h$ (for the purpose of this paper, all functions are composed from left to right). If K is cyclic or elementary abelian then \widetilde{X} is called a cyclic or an elementary abelian covering of X, and if \widetilde{X} is connected, K becomes the covering transformation group. The fibre of an edge or a vertex is its preimage under p. An automorphism of \widetilde{X} is said to be fibre-preserving if it maps a fibre to a fibre, while every covering transformation maps a fibre onto itself. All the fibre-preserving automorphisms form a group called the fibre-preserving group.

Let \widetilde{X} be a K-covering of X with projection p. If $\alpha \in \operatorname{Aut}(X)$ and $\widetilde{\alpha} \in \operatorname{Aut}(\widetilde{X})$ satisfy $\widetilde{\alpha} p=p \alpha$, we call $\widetilde{\alpha}$ a lift of α, and α the projection of $\widetilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(X)$ and the projection of a subgroup of $\operatorname{Aut}(\widetilde{X})$ are self-explanatory. The lifts and projections of such subgroups are of course subgroups in $\operatorname{Aut}(\widetilde{X})$ and $\operatorname{Aut}(X)$ respectively.

For two groups M and $N, N \rtimes M$ denotes a semidirect product of N by M. For a subgroup H of a group G, we denote by $C_{G}(H)$ the centralizer of H in G, and by $N_{G}(H)$ the normalizer of H in G. Then $C_{G}(H)$ is normal in $N_{G}(H)$.

Proposition 2.1 (Hup, Chapter I, Theorem 4.5]). The quotient group $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.

Proposition 2.2 ($(\mathbb{W}, ~ C h a p t e r ~ I, ~ T h e o r e m ~ 4.5]) . ~ E v e r y ~ t r a n s i t i v e ~ a b e l-~$ ian group G on a set Ω is regular.

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_{\alpha}=1$ for every $\alpha \in \Omega$ and regular if G is transitive and semiregular. For any $g \in G, g$ is said to be semiregular if $\langle g\rangle$ is semiregular. The following proposition due to Praeger et al. (see GP1, Theorem 1.1]) gives a characterization of Cayley graphs in terms of their automorphism groups.

Proposition 2.3. Let X be a connected tetravalent $(G, 1)$-arc-transitive graph. For each normal subgroup N of G, one of the following holds:
(1) N is transitive on $V(X)$;
(2) X is bipartite and N acts transitively on each part of the bipartition;
(3) N has $r \geq 3$ orbits on $V(X)$, the quotient graph X_{N} is a cycle of length r, and G induces the full automorphism group $D_{2 r}$ on X_{N};
(4) N has $r \geq 5$ orbits on $V(X), N$ acts semiregularly on $V(X)$, the quotient graph X_{N} is a connected tetravalent G / N-symmetric graph, and X is a G-normal cover of X_{N}.

Moreover, if X is also ($G, 2$)-arc-transitive, then case (3) cannot happen.
The following classical result is due to Wielandt [W, Theorem 3.4].
Proposition 2.4. Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω. Let $\omega \in \Omega$. If p^{m} divides the length of the G-orbit containing ω, then p^{m} also divides the length of the P-orbit containing ω.

To state the next result we need to introduce a family of tetravalent graphs that were first defined in GP2]. The graph $C^{ \pm 1}(p ; 3 p, 1)$ is defined to have vertex set $\mathbb{Z}_{p} \times \mathbb{Z}_{3 p}$ and edge set $\left\{(i, j)(i \pm 1, j+1) \mid i \in \mathbb{Z}_{p}, j \in \mathbb{Z}_{3 p}\right\}$. Also from GP2, Definition 2.2], the graphs $C^{ \pm 1}(p ; 3 p, 1)$ are Cayley graphs over $\mathbb{Z}_{p} \times \mathbb{Z}_{3 p}$ with connection set $\{(1,1),(-1,1),(-1,-1),(1,-1)\}$. In the proof of Theorem 3.4, we will need $C^{ \pm 1}(p ; 3 p, 1)$ with $p>13$. It can be readily checked from [GP2, Definition 2.2] that for $p>13$ these graphs are actually normal Cayley graphs over $\mathbb{Z}_{p} \times \mathbb{Z}_{3 p}$.

Proposition 2.5 ([GP2, Theorem 1.1]). Let X be a connected, G-symmetric, tetravalent graph of order $3 p^{2}$, and let $N=\mathbb{Z}_{p}$ be a minimal normal subgroup of G with orbits of size p, where p is an odd prime. Let K denote the kernel of the action of G on $V\left(X_{N}\right)$. If $X_{N}=C_{3 p}$ and $K_{v} \cong \mathbb{Z}_{2}$ then X is isomorphic to $C^{ \pm 1}(p ; 3 p, 1)$.

The graphs defined in [GP2, Lemma 8.4] are all one-regular (see GP2, Section 8]) and therefore we refer to [GP2] for an intrinsic description of these families.

Proposition 2.6 ([GP2, Theorem 1.2]). Let X be a connected, G-symmetric, tetravalent graph of order $3 p^{2}$, and let $N=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ be a minimal normal subgroup of G with orbits of size p^{2}, where p is an odd prime. Let K denote the kernel of the action of G on $V\left(X_{N}\right)$. If $X_{N}=C_{3}$ and $K_{v} \cong \mathbb{Z}_{2}$ then X is isomorphic to one of the graphs in [GP2, Lemma 8.4].

Let A be a group that acts on the group G. Also let A or G be solvable. Then the action of A on G is coprime if $(|A|,|G|)=1$. The following result can be deduced from [KS, 8.2.7, p. 187].

Proposition 2.7. Suppose that the action of A on G is coprime. Then $G=[G, A] \times C_{G}(A)$.

Finally in the following example we introduce $G(3 p, r)$, which was first defined in [CO].

Example 2.8. For each positive divisor r of $p-1$ we use H_{r} to denote the unique subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ of order r which is isomorphic to \mathbb{Z}_{r}. Define a graph $G(3 p, r)$ by $V(G(3 p, r))=\left\{x_{i} \mid i \in \mathbb{Z}_{3}, x \in \mathbb{Z}_{p}\right\}$ and $E(G(3 p, r))=$ $\left\{x_{i} y_{i+1} \mid i \in \mathbb{Z}_{3}, x, y \in \mathbb{Z}_{p}, y-x \in H_{r}\right\}$. Then $G(3 p, r)$ is a connected symmetric graph of order $3 p$ and valency $2 r$. Also Aut $(G(3 p, p-1)) \cong$ $S_{p} \times S_{3}$. For $r \neq p-1, \operatorname{Aut}(G(3 p, r))$ is isomorphic to $\left(\mathbb{Z}_{p} \cdot H_{r}\right) \cdot S_{3}$ and acts regularly on the arc set, where $X . Y$ denotes an extension of X by Y.
3. One-regular graphs of order $3 p^{2}$. To prove the main theorem we need the following three lemmas.

LEMMA 3.1. Let G be a non-abelian group of order $p^{2} q$, where p and q are primes. Also let $p>q$, and N be a normal subgroup of order p such that G / N is cyclic. Then G is isomorphic to $\langle x, y, z| x^{p}=y^{q}=z^{p}=[x, z]=$ $\left.[y, z]=1, y^{-1} x y=x^{i}\right\rangle$, where $i^{q} \equiv 1(\bmod p)$ and $(i, p)=1$.

Proof. Let P and Q be a Sylow p-subgroup and q-subgroup of G, respectively. Clearly $P \unlhd G$, and since $G^{\prime} \neq 1$, we have $N=G^{\prime}$. Since the action of Q on P is coprime, it follows that $P=[P, Q] \times C_{P}(Q)$, by Proposition 2.7. If $C_{P}(Q)=1$, then $P \leq G^{\prime}$, a contradiction. Also since G is non-abelian, $[P, Q] \neq 1$. So $q \mid p-1$, and $P \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Thus $G=P Q=[P, Q] Q \times C_{P}(Q)$, and hence $G \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{q} \times \mathbb{Z}_{p}$. Therefore $G=\left\langle x, y, z \mid x^{p}=y^{q}=z^{p}=[x, z]=[y, z]=1, y^{-1} x y=x^{i}\right\rangle$, where $i^{q} \equiv 1$ $(\bmod p)$ and $(i, p)=1 .$.

Lemma 3.2. Let p be a prime, $p \geq 5$ and $G=\langle x, y, z| x^{p}=y^{3}=$ $\left.z^{p}=[x, z]=[y, z]=1, y^{-1} x y=x^{i}\right\rangle$, where $i^{3} \equiv 1(\bmod p)$ and $(i, p)=1$. Then there is no tetravalent one-regular normal Cayley graph X of order $3 p^{2}$ on G.

Proof. Suppose to the contrary that X is a tetravalent one-regular normal Cayley graph Cay (G, S) on G with respect to the generating set S. Since X is one-regular and normal, the stabilizer $A_{1}=\operatorname{Aut}(G, S)$ of $1 \in G$ is transitive on S and the elements in S are all of the same order. The elements of G of order 3 lie in $\langle x, y\rangle$ and those of order p lie in $\langle x, z\rangle$. Since X is connected, $G=\langle S\rangle$ and hence S consists of elements of order 3p. Denote by $\mathcal{S}_{3 p}$ the elements of G of order $3 p$. Then

$$
S \subseteq \mathcal{S}_{3 p}=\left\{x^{s} y^{t} z^{j} \mid s \in \mathbb{Z}_{p}, t \in \mathbb{Z}_{3}^{*}, j \in \mathbb{Z}_{p}^{*}\right\} .
$$

We now consider the action of $\operatorname{Aut}(G)$ on $\mathcal{S}_{3 p}$. Clearly the action is transitive and hence we may assume that $y z \in S$. In particular

$$
S=\left\{y z, y^{-1} z^{-1}, x^{u} y^{v} z^{l}, y^{-v} x^{-u} z^{-l}\right\}
$$

for some $u \in \mathbb{Z}_{p}, v \in \mathbb{Z}_{3}^{*}$, and $l \in \mathbb{Z}_{p}^{*}$. Also since $\sigma: x \mapsto x^{u}, y \mapsto y, z \mapsto z$ is an automorphism of G, we may suppose that

$$
S=\left\{y z, y^{-1} z^{-1}, x y^{v} z^{l}, y^{-v} x^{-1} z^{-l}\right\} .
$$

Since $\operatorname{Aut}(G, S)$ acts transitively on S, there is an $\alpha \in \operatorname{Aut}(G, S)$ such that $(y z)^{\alpha}=x y^{v} z^{l}$. If $y^{\alpha}=y$, then $z^{\alpha}=y^{-1} x y^{v} z^{l}=x^{i} y^{v+2} z^{l}$. Since $o(z)=p$, it follows that $z^{\alpha}=x^{i} z^{l}$, and $v=-2$. Also $\left(y^{-1} z^{-1}\right)^{\alpha}=y^{-1} z^{-l} x^{-i}=$ $y^{-1} x^{-i} z^{-l}=y^{2} x^{-i} z^{-l}$. By considering S, one has $y^{2} x^{-i} z^{-l}=y^{2} x^{-1} z^{-l}$. So $i=1$, a contradiction.

If $y^{\alpha}=y^{-1}$, then $z^{\alpha}=y x y^{v} z^{l}=x^{i^{2}} y^{v+1} z^{l}$. Thus $v=-1$ and $z^{\alpha}=x^{i^{2}} z^{l}$. Now $\left(y^{-1} z^{-1}\right)^{\alpha}=y z^{-l} x^{-i^{2}}=y x^{-i^{2}} z^{-l}$. On the other hand $\left(y^{-1} z^{-1}\right)^{\alpha}=$ $y x^{-1} z^{-l}$. Thus $i^{2}=1$, a contradiction.

Lemma 3.3. Let p be a prime and $G=\mathbb{Z}_{p} \times \mathbb{Z}_{3 p}=\langle x, y| x^{p}=y^{3 p}=$ $[x, y]=1\rangle$, where $p \geq 5$. Also let X be a connected normal tetravalent Cayley graph. Then X is one-regular if and only if $X=\operatorname{Cay}\left(G,\left\{y, y^{-1}, x y, x^{-1} y^{-1}\right\}\right)$. Moreover $X \cong C^{ \pm 1}(p ; 3 p, 1)$.

Proof. Suppose that X is a tetravalent one-regular normal Cayley graph Cay (G, S) on G with respect to the generating set S. Since X is one-regular normal, and since G is an abelian group of exponent $3 p$, we see that S contains an element of order $3 p$. Denote by $\mathcal{S}_{3 p}$ the set of all elements of G of order $3 p$. Then

$$
S \subseteq \mathcal{S}_{3 p}=\left\{x^{a} y^{b} \mid a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{3 p}^{*}\right\}
$$

It is clear that $\operatorname{Aut}(G)$ acts transitively on $\mathcal{S}_{3 p}$ by conjugation. In particular, replacing S by a suitable $\operatorname{Aut}(G)$-conjugate, we may assume that $y \in S$. Therefore

$$
S=\left\{y, y^{-1}, x^{u} y^{v}, x^{-u} y^{-v}\right\}
$$

for some $u \in \mathbb{Z}_{p}^{*}$ and $v \in \mathbb{Z}_{3 p}^{*}$.

Let $B=\left\{\phi \in \operatorname{Aut}(G) \mid y^{\phi}=y\right\}$. Given $\phi \in B$, we have $\phi: x \mapsto x^{a} y^{3 b}$, $y \mapsto y$ with $a, b \in \mathbb{Z}_{p}$ and $a \neq 0$. Note that every invertible element of $\mathbb{Z}_{3 p}$ is of the form $1+3 b$ or $-1+3 b$, for some $b \in \mathbb{Z}_{p}$. Therefore, we may choose $a, b \in \mathbb{Z}_{p}$ with $(x y)^{\phi}=x^{u} y^{v}$ or $\left(x y^{-1}\right)^{\phi}=x^{u} y^{v}$. Thus, replacing S by a suitable B-conjugate, we may assume that either $x y \in S$ or $x y^{-1} \in S$, that is,

$$
S=\left\{y, y^{-1}, x y, x^{-1} y^{-1}\right\} \quad \text { or } \quad S=\left\{y, y^{-1}, x y^{-1}, x^{-1} y\right\} .
$$

Let α be the automorphism of G with $x^{\alpha}=x$ and $y^{\alpha}=y^{-1}$. Clearly, α maps the first possibility for S onto the second. Therefore, we may assume that

$$
S=\left\{y, y^{-1}, x y, x^{-1} y^{-1}\right\} .
$$

Also, [GP2, Definition 2.2], we see that X is isomorphic to $C^{ \pm 1}(p ; 3 p, 1)$.
The following classification theorem is the main result of this paper.
Theorem 3.4. Let p be a prime. A tetravalent graph X of order $3 p^{2}$ is one-regular if and only if one of the following holds:
(i) $p \in\{2,3,5,7,11,13\}$;
(ii) X is a Cayley graph over $\left\langle x, y \mid x^{p}=y^{6 p}=[x, y]=1\right\rangle$, with connection set $\left\{y, y^{-1}, x y, x^{-1} y^{-1}\right\}$;
(iii) X is a connected arc-transitive circulant graph with respect to every connection set S;
(iv) X is one of the graphs described in [GP2, Lemma 8.4].

Proof. Let X be a tetravalent one-regular graph of order $3 p^{2}$. If $p \leq 13$, then $|V(X)|=12,27,75,147,363$, or 507 . Now, a complete list of tetravalent arc-transitive graphs of order at most 640 has recently been obtained by Potočnik, Spiga and Verret [PSV1, PSV2]. A quick inspection of this list (with the invaluable help of magma, see [BCP]) gives the proof of the theorem for $p \leq 13$.

Now, suppose that $p>13$. Let $A=\operatorname{Aut}(X)$ and let A_{v} be the stabilizer of $v \in V(X)$ in A. Let P be a Sylow p-subgroup of A. Since A is one-regular, it follows that $|A|=12 p^{2}$. Clearly, P is normal in A.

Assume first that P is cyclic. Let X_{P} be the quotient graph of X relative to the orbits of P and let K be the kernel of A acting on $V\left(X_{P}\right)$. By Proposition 2.4 the orbits of P are of length p^{2}. Thus $\left|V\left(X_{P}\right)\right|=3, P \leq K$ and A / K acts arc-transitively on X_{P}. By Proposition 2.3, we have $X_{P} \cong C_{3}$ and hence $A / K \cong D_{6}$, forcing that $|K|=2 p^{2}$.

If A / P is abelian then, since A / K is a quotient group of A / P, also A / K is abelian. But since A / K is vertex-transitive on X_{P}, Proposition 2.2 implies that it is regular on X_{P}, contradicting arc-transitivity of A / K on X_{P}. Thus A / P is a non-abelian group.

Clearly K is not semiregular on $V(X)$. Then $K_{v} \cong \mathbb{Z}_{2}$, where $v \in V(X)$. By Proposition 2.1, $A / C \lesssim \mathbb{Z}_{p(p-1)}$, where $C=C_{A}(P)$. Since A / P is not abelian we find that P is a proper subgroup of C.

If $C \cap K \neq P$, then $C \cap K=K\left(|K|=2 p^{2}\right)$. Since K_{v} is a Sylow 2-subgroup of K, K_{v} is characteristic in K and so normal in A, implying that $K_{v}=1$, a contradiction. Thus $C \cap K=P$ and $1 \neq C / P=C / C \cap K \cong$ $C K / K \unlhd A / K \cong D_{6}$.

If $C / P \cong \mathbb{Z}_{2}$, then C / P is in the center of A / P and since $(A / P) /(C / P)$ $\cong A / C$ is cyclic, A / P is abelian, a contradiction. It follows that $|C / P| \in$ $\{3,6\}$, and hence C / P has a characteristic subgroup of order 3, say H / P. Thus $|H|=3 p^{2}$, and $H / P \unlhd A / P$ implies that $H \unlhd A$. In addition since $H \leq C=C_{A}(P)$, we see that H is abelian. Clearly $\left|H_{v}\right| \in\{1,3\}$.

If $\left|H_{v}\right|=3$, then H_{v} is a Sylow 3-subgroup of H, implying that H_{v} is characteristic in H. The normality of H in A implies that $H_{v} \unlhd A$, forcing $H_{v}=1$, a contradiction.

If $H_{v}=1$, then since $|H|=3 p^{2}, H$ is regular on $V(X)$. It follows that X is a Cayley graph on an abelian group with a cyclic Sylow p-subgroup P. By elementary group theory, we know that up to isomorphism $\mathbb{Z}_{3 p^{2}}$, where $p>13$, is the only abelian group with a cyclic Sylow p-subgroup. Also by [X1, Theorem 7], X is one-regular.

Now assume that P is elementary abelian. Suppose first that P is a minimal normal subgroup of A, and consider the quotient graph X_{P} of X relative to the orbits of P. Let K be the kernel of A acting on $V\left(X_{P}\right)$. By Proposition 2.4 the orbits of P are of length p^{2}, and thus $\left|V\left(X_{P}\right)\right|=3$. By Proposition 2.3, $X_{P} \cong C_{3}$, and hence $A / K \cong D_{6}$, forcing $|K|=2 p^{2}$ and thus $K_{v}=\mathbb{Z}_{2}$. Proposition 2.6 implies that X is isomorphic to one of the graphs described in [GP2, Lemma 8.4].

Suppose now that P is not a minimal normal subgroup of A. Then a minimal normal subgroup N of A is isomorphic to \mathbb{Z}_{p}. Let X_{N} be the quotient graph of X relative to the orbits of N and let K be the kernel of A acting on $V\left(X_{N}\right)$. Then $N \leq K$ and A / K is transitive on $V\left(X_{N}\right)$; moreover, we have $\left|V\left(X_{N}\right)\right|=3 p$. By Proposition 2.3, either X_{N} is a cycle of length $3 p$, or N acts semiregularly on $V(X)$, the quotient graph X_{N} is a tetravalent connected G / N-arc-transitive graph and X is a regular cover of X_{N}.

If $X_{N} \cong C_{3 p}$, then $A / K \cong D_{6 p}$. Thus $|K|=2 p$ and so $K_{v} \cong \mathbb{Z}_{2}$. Applying Proposition 2.5, we conclude that X is isomorphic to $C^{ \pm 1}(p ; 3 p, 1)$.

If, however, X_{N} is a tetravalent connected G / N-symmetric graph, then, by Proposition 2.3, X is a covering graph of a symmetric graph of order $3 p$. By WX2], $G(3 p, 2)$ is the tetravalent symmetric graph of order $3 p$ (see Example 2.8). Observe that in this case a one-regular subgroup of automorphism contains a normal regular subgroup isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{p}$. Let H be
a one-regular subgroup of automorphisms of X_{N}. Since X is a one-regular graph, A is the lift of H. Since H contains a normal regular subgroup isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{p}$, also A contains a normal regular subgroup. Therefore X is a normal Cayley graph of order $3 p^{2}$. Since $A / \mathbb{Z}_{p} \cong H$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{p} \unlhd H$, there exists a normal subgroup G of A such that $G / \mathbb{Z}_{p} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{3}$. If G is an abelian group, then G is isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{3 p}$, or $\mathbb{Z}_{3 p^{2}}$. Also if G is not abelian, then by Lemma 3.1. G is isomorphic to $\langle x, y, z| x^{p}=y^{3}=$ $\left.z^{p}=[x, z]=[y, z]=1, y^{-1} x y=x^{i}\right\rangle$, where $i^{3} \equiv 1(\bmod p)$ and $(i, p)=1$. If $G \cong \mathbb{Z}_{3 p^{2}}$ or $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{3 p}$ then by [X1, Theorem 7], and Lemma 3.3, X is one-regular. Also for the latter case, by Lemma 3.2, X is not one-regular. This completes the proof.

REFERENCES

[BFSX] Y. G. Baik, Y. Q. Feng, H. S. Sim and M. Y. Xu, On the normality of Cayley graph of abelian groups, Algebra Colloq. 5 (1998), 297-304.
[BCP] W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput. 24 (1997), 235-265.
[C] C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256.
[CO] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.
[FKMZ] Y.-Q. Feng, K. Kutnar, D. Marušič and C. Zhang, Tetravalent one-regular graphs of order $4 p^{2}$, submitted.
[FK1] Y.-Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$, Sci. China A 49 (2006), 300-319.
[FK2] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Austral. Math. Soc. 81 (2006), 153-164.
[FK3] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), 627-646.
[FKW] Y.-Q. Feng, J. H. Kwak and K. S. Wang, Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, Eur. J. Combin. 26 (2005), 1033-1052.
[FX] Y. Q. Feng and M. Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math. 305 (2005), 354-360.
[F] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952), 240247.
[G] M. Ghasemi, Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups, Algebra Discrete Math. 13 (2012), 52-58.
[GS] M. Ghasemi and P. Spiga, Tetravalent one-regular graphs of order $6 p^{2}$, submitted.
[GZ] M. Ghasemi and J. X. Zhou, Automorphisms of a family of cubic graphs, Algebra Colloq., to appear.
[GP1] A. Gardiner and C. E. Praeger, On tetravalent symmetric graphs, Eur. J. Combin. 15 (1994), 375-381.
[GP2] A. Gardiner and C. E. Praeger, A characterization of certain families of tetravalent symmetric graphs, Eur. J. Combin. 15 (1994), 383-397.
[Har] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953), 143-146.
[Hup] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[Ino] T. Inohara, Characterization of clusterability of signed graph in terms of Newcomb's balance of sentiments, Appl. Math. Comput. 133 (2002), 93-104.
[KS] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups. An Introduction, Springer, 2004.
[KO] J. H. Kwak and J. M. Oh, One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer, Acta Math. Sinica English Ser. 22 (2006), 1305-1320.
[M] D. Marušič, A family of one-regular graphs of valency 4, Eur. J. Combin. 18 (1997), 59-64.
[PSV1] P. Potočnik, P. Spiga and G. Verret, http://www.matapp.unimib.it/~spiga/
[PSV2] P. Potočnik, P. Spiga and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, arXiv:1201.5317v1 [math.CO].
[PWX] C. E. Praeger, R. J. Wang and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299-318.
[PX] C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 216-45.
[S1] D. Simson, Mesh algorithms for solving principal Diophantine equations, sandglasstubes and tori of roots, Fund. Inform. 109 (2011), 425-462.
[S2] D. Simson, Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform. 120 (2012), in press.
[S3] D. Simson, A Coxeter-Gram classification of simply-laced edge-bipartite graphs, SIAM J. Discrete Math. (2012), to appear.
[SW] D. Simson and M. Wojewódzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83 (2008), 389-410.
[WX1] C. Q. Wang and M. Y. Xu, Non-normal one-regular and tetravalent Cayley graphs of dihedral groups $D_{2 n}$, Eur. J. Combin. 27 (2006), 750-766.
[WX2] R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order $3 p$, J. Combin. Theory Ser. B 58 (1993), 197-216.
[WZ] C. Q. Wang and Z. Y. Zhou, Tetravalent one-regular normal Cayley graphs of dihedral groups, Acta Math. Sinica Chinese Ser. 49 (2006), 669-678.
[W] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
[XX] J. Xu and M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on Abelian groups, Southest Asian Bull. Math. 25 (2001), 355-363.
[X1] M. Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000), 21602162.
[X2] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 44 (2001), 1502-1508.
[Z] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), 47-74.
[ZF] J.-X. Zhou and Y.-Q. Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009), 457-471.

Mohsen Ghasemi
Department of Mathematics
Urmia University
Urmia 57135, Iran
E-mail: m.ghasemi@urmia.ac.ir

[^0]: 2010 Mathematics Subject Classification: Primary 05C25; Secondary 20B25.
 Key words and phrases: s-transitive graphs, symmetric graphs, Cayley graphs.

