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THE DIMENSION OF HYPERSPACES OF
NON-METRIZABLE CONTINUA

BY

WOJCIECH STADNICKI (Wrocław)

Abstract. We prove that, for any Hausdorff continuum X, if dimX ≥ 2 then the
hyperspace C(X) of subcontinua of X is not a C-space; if dimX = 1 and X is hereditarily
indecomposable then either dimC(X) = 2 or C(X) is not a C-space. This generalizes some
results known for metric continua.

1. Introduction. Throughout the paper all spaces are normal. A con-
tinuum is a compact, connected Hausdorff space. By dimension we always
mean the covering dimension dim. A continuumX is hereditarily indecompo-
sable iff for any subcontinua A,B ⊆ X we have A ⊆ B, B ⊆ A or A∩B = ∅.
For a compact X denote by K(X) the hyperspace of all non-empty subcom-
pacta of X, equipped with the Vietoris topology. By C(X) we denote the
hyperspace of all non-empty subcontinua of X, with the topology inherited
from K(X).

Definition 1.1. A space X is a C-space (or has property C) if for each
sequence U1,U2, . . . of open covers of X, there exists a sequence V1,V2, . . .
such that each Vi is a family of pairwise disjoint open subsets of X, Vi ≺ Ui
(Vi refines Ui, i.e. for each V ∈ Vi there is U ∈ Ui such that V ⊆ U) and⋃∞

i=1 Vi is a cover of X.

We refer to [3] for basic properties of C-spaces. It is easy to observe that
C-spaces are weakly infinite-dimensional. The class of C-spaces contains all
finite-dimensional spaces and countable-dimensional metric spaces.

We prove the following theorem:

Theorem 1.2.

(i) Suppose X is a continuum of dimension ≥ 2. Then C(X) is not a
C-space.

(ii) Suppose X is a 1-dimensional hereditarily indecomposable continuum.
Then either dimC(X) = 2 or C(X) is not a C-space.
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The theorem is already known for metric continua. Part (i) was stated
by M. Levin and J. T. Rogers, Jr. in [8]. Part (ii) can be obtained using
methods from [2, 8, 9] (see [10, Theorem 3.1]).

To prove it for non-metric spaces we use the technique of lattices and
Wallman representations as well as some set-theoretical methods, as in [1].
We refer to [11] for the definition of a lattice and preliminary facts on Wall-
man spaces. We consider only distributive and separative lattices.

2. Lattices and Wallman spaces. For a compact space X we consider
the lattice 2X of closed subsets of X with ∪ and ∩ as lattice operations, and
∅ and X as the minimal and maximal elements. Each lattice L corresponds
to the Wallman space wL consisting of all ultrafilters on L. For a ∈ L let
â = {u ∈ wL : a ∈ u}. We define the topology in wL by taking the family
{â : a ∈ L} as a base for closed sets.

It is easy to show that w2X is homeomorphic to X. More generally, the
following fact holds true:

Fact 2.1. If F is a base for closed sets in X which is closed under finite
unions and intersections (so F is a lattice), then wF is homeomorphic to X.

Proof. We define h : X → wF in the natural way: h(x) = {F ∈F : x∈F}.
It is not difficult but tedious to verify that h is a well-defined homeomor-
phism; we leave it as an exercise.

Definition 2.2. A lattice L is normal if

L |= ∀a, b (a ∩ b = 0L → ∃c, d (c ∪ d = 1L ∧ c ∩ a = 0L ∧ d ∩ b = 0L)).

We now collect some well-known observations.

Fact 2.3 (see, e.g., [11]). L is normal if and only if wL is Hausdorff.

Fact 2.4 ([11, Theorem 2.6]). If L is a countable normal lattice then wL
is a compact metric space.

Remark 2.5. A sublattice L of L∗ yields the continuous surjection q :
wL∗ → wL, given by q(u) = u ∩ L.

3. Proof of Theorem 1.2. The proof is rather simple, but it uses some
set-theoretic framework. We deal with some inner model of (a large enough
fragment of) ZFC and its countable elementary submodel.

Our strategy is to reduce the non-metric case to the metric one. Suppose
X is a non-metric continuum. We will find a countable sublattice L ⊆ 2X

such that wL is a metric continuum, dimwL = dimX and dimC(wL) =
dimC(X). Moreover, wL [C(wL)] is hereditarily indecomposable if and only
if so X [C(X)], and wL [C(wL)] is a C-space if and only if so is X [C(X)].

To find the sublattice L, we apply the technique used in [1].
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For an infinite cardinal κ, H(κ) is the set of all sets x with |TC(x)| < κ
(TC is the transitive closure, i.e. TC(x) = x ∪

⋃
x ∪

⋃⋃
x ∪ · · · ). If κ is

regular then H(κ) is a model of ZFC without the Power Set Axiom (see [7,
p. 162]). But if κ is large enough, then there are power sets in H(κ) for all
sets we need.

Let X be a (non-metric) continuum. Fix a suitably large regular cardinal
κ (it is enough if P(P(X)) ∈ H(κ)) and take a countable elementary sub-
modelM≺ H(κ) such that X ∈M (use the Löwenheim–Skolem theorem).
ThenM also models enough of ZFC. Moreover, every finite subset ofM be-
longs toM. Denote L = 2X ∩M. By elementarity, L is a normal sublattice
of 2X . Since L is countable, applying Fact 2.4 and Remark 2.5, we obtain:

Fact 3.1. wL is a metric continuum.

Let us recall two well-known facts.

Proposition 3.2 (see [5, Subsection 4.1]). dimX = dimwL. More ge-
nerally, let K∗ be a lattice in M and K = K∗ ∩ M. Then dimwK∗ =
dimwK.

Proposition 3.3. A continuum X is hereditarily indecomposable if and
only if so is wL.

The “if” part is straightforward. For the “only if” see [6, Lemma 2.2].
Now we prove a similar fact about property C.

Theorem 3.4. The space X is a C-space if and only if so is wL. More
generally, let K∗ be a lattice inM and K = K∗∩M. Then wK∗ is a C-space
if and only if so is wK.

Proof. We provide the proof for the first part of the proposition. It can
be easily adapted to give the more general statement.

Denote B = {wL \ F̂ : F ∈ L} (an open base for wL, closed under finite
unions and intersections).

(⇐) We will show that if X is not a C-space then neither is wL. Assume
X is not a C-space. Then by compactness there exists a sequence (Ui)∞i=1

of finite open covers of X such that for every m ≥ 1 and finite families
V1, . . . ,Vm of open disjoint sets which satisfy Vi ≺ Ui, their union is not a
cover of X (compactness allows us to consider only finite families). In terms
of the lattice 2X we find that H(κ) models the following sentence ϕ:

(ϕ)



There exists a sequence (Fi)
∞
i=1 of finite subsets of 2X such that for

each i ≥ 1 the intersection
⋂
Fi is empty and for every m ≥ 1 and

finite G1, . . . ,Gm ⊆ 2X the following holds:

(∗) If for any j ≤ m and G ∈ Gj there exists F ∈ Fj such that
F ⊆ G and for any distinct G,G′ ∈ Gj we have G∪G′ = X, then⋂
(G1 ∪ · · · ∪ Gm) 6= ∅.
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We haveM |= ϕ by elementarity. So there is (Fi)
∞
i=1 ∈M as in ϕ, such that

(∗) holds for every m < ω and G1, . . . ,Gm ∈M.
The sequence (Fi)

∞
i=1 gives rise to a sequence (Ui)∞i=1 of open covers of wL

(namely Ui = {wL\ F̂ : F ∈ Fi}), which witnesses that wL is not a C-space.
Indeed, suppose we have a finite sequence V1, . . . ,Vm of finite families of
open disjoint sets such that Vi ≺ Ui and their union is a cover of wL. Then
we can produce V ′1, . . . ,V ′m which are additionally contained in the base B:
shrink each V ∈

⋃m
i=1 Vi to a closed set CV so that

⋃m
i=1{CV : V ∈ Vi} forms

a closed cover of wL. Since CV is compact, it can be covered by finitely many
sets BV

1 , . . . , B
V
j(V ) ⊆ V from the basis B. Let V ′ = BV

1 ∪ · · · ∪ BV
j(V ). We

have V ′ ∈ B, since B is closed under finite unions. Define V ′i = {V ′ : V ∈ Vi}.
Having V ′1, . . . ,V ′m it is easy to produce G1, . . . ,Gm ∈ M which do not

satisfy (∗). Indeed, each V ′ ∈ V ′i is given by some FV ′ ∈ L via V ′ = wL\F̂V ′ .
Then we set Gi = {FV ′ : V ′ ∈ V ′i}. Since V ′i ⊆ B, we have Gi ∈M.

(⇒) Suppose U1,U2, . . . is a sequence of finite open covers of wL, say
Ui = {Ui1, . . . , Uiki}. Without loss of generality we may assume that each Ui
consists of sets from B, i.e. for each i ∈ N and j ≤ ki there is some Fij ∈M
closed in X such that Uij = wL \ F̂ij .

Define U ′ij = X \ Fij and U ′i = {U ′i1, . . . , U ′iki}. Note that U ′i is an open
cover of X since Fi1 ∩ · · · ∩ Fiki = ∅ (Ui is a cover of wL).

Since X is a compact C-space there exist n ∈ N and finite families
V ′1, . . . ,V ′n of pairwise disjoint open sets such that each V ′i refines U ′i and⋃n

i=1 V ′i is a cover of X. Let us code this in terms of the lattice 2X . First
denote V ′i = {V ′i1, . . . , V ′ili} and G′ij = X \ V ′ij for i ≤ n and j ≤ li. The
following sentence ψ is true in H(κ):

(ψ)



There exist G′11, G
′
12, . . . , G

′
1l1 , G

′
21, G

′
22, . . . G

′
2l2 , . . . , G

′
n1, G

′
n2, . . .

. . . , G′nln such that:

(1)
∧n

i=1(
∧

1≤j<j′≤li(G
′
ij ∪G′ij′ = X)),

(2)
∧n

i=1(
∧li

j=1(
∨ki

j′=1(G
′
ij ∩ Fij′ = Fij′))),

(3)
⋂n

i=1

⋂li
j=1G

′
ij = ∅.

The symbols
∧

and
∨

stand for finite conjuctions and disjunctions. Note
that Fij ’s appear in ψ as parameters fromM.

We have H(κ) |= ψ and by elementarity M |= ψ. Hence, for i ≤ n and
j ≤ li there are Gij ∈ M which satisfy (1)–(3) when placed in ψ instead
of G′ij . Take Vij = wL \ Ĝij and Vi = {Vi1, . . . , Vilk}. Then V1, . . . ,Vn are
families of pairwise disjoint sets (by (1)), open in wL. For i ≤ n the family
Vi refines Ui (by (2)) and

⋃n
i=1 Vi is a cover of wL (by (3)).
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Now we will link the space X with its hyperspace C(X) in terms of
lattices. Namely, having the lattice 2X we define a lattice K∗ ∈M such that
wK∗ is homeomorphic to C(X). Then, taking K = K∗ ∩M we will show
that wK is homeomorphic to C(wL).

We define the set C(X) in terms of the lattice 2X :

C(X) = {F ∈ 2X : ¬(∃G1, G2 ∈ 2X)(G1 ∪G2 = F ∧G1 ∩G2 = ∅)}.
Define K∗ as a sublattice of (P(C(X)),∪,∩, ∅, C(X)) generated by the fa-
mily {F∗ : F ∈ [2X ]<ω}, where

F∗ = C(X) \
{
G ∈ C(X) : G ∩

⋂
F = ∅ ∧ (∀F ∈ F)(F ∪G 6= F )

}
.

The lattice K∗ is the closure under finite unions and intersections of the
family of sets F∗ for all finite F ⊆ 2X . It is easy to verify that the sets
F∗ form a closed base for C(X). Hence, K∗ is a closed base and a lattice
simultaneously. By Fact 2.1, we get:

Remark 3.5. C(X) is homeomorphic to wK∗.

Since X ∈ M, it follows directly by the definition of K∗ that K∗ ∈ M.
Take K = K∗ ∩M. The only thing we still lack is:

Proposition 3.6. wK is homeomorphic to C(wL).

Proof. We know that K∗ is generated by the family {F∗ : F ∈ [2X ]<ω}.
By elementarity, K is generated by {F∗ : F ∈ [L]<ω}. Note that a basic
closed set in C(wL) is determined by F ∈ [L]<ω via the formula CF =

C(wL) \ {C ∈ C(wL) : C ∩
⋂
{F̂ : F ∈ F} = ∅ ∧ (∀F ∈ F)(F̂ ∪ C 6= F̂ )}

(since L is isomorphic to a closed base for wL). Hence, the lattice K is
isomorphic to the lattice generated by {CF : F ∈ [L]<ω}, which forms a
closed base for C(wL). By Fact 2.1, wK is homeomorphic to C(wL).

Now we have all ingredients to prove Theorem 1.2.

Proof of Theorem 1.2. (i) Suppose that dimX ≥ 2. Proposition 3.2 gives
dimwL ≥ 2. By the results of M. Levin, J. T. Rogers, Jr. for metric continua
[8] we know that C(wL) is not a C-space. But C(wL) is homeomorphic to
wK (Proposition 3.6). Hence wK∗ is not a C-space either (Theorem 3.4).
By Remark 3.5, C(X) is homeomorphic to wK∗, so it is not a C-space.

(ii) Similarly, suppose that X is a 1-dimensional, hereditarily indecompo-
sable continuum. Then wL is also 1-dimensional (Proposition 3.2) and hered-
itarily indecomposable (Proposition 3.3). By the result for metric continua
([10, Theorem 3.1]), either C(wL) is 2-dimensional, or it is not a C-space. By
Proposition 3.6, C(wL) is homeomorphic to wK. Therefore, wK∗ is either
2-dimensional (Proposition 3.2) or not a C-space (Theorem 3.4). But wK∗
is homeomorphic to C(X) by Remark 3.5.



106 W. STADNICKI

4. Remarks on m-C-spaces

Definition 4.1 ([4]). For m ≥ 2 a space X is said to be an m-C-space
if for each sequence U1,U2, . . . of m-element open covers of X, there exists
a sequence V1,V2, . . . such that each Vi is a family of pairwise disjoint open
subsets of X, Vi ≺ Ui and

⋃∞
i=1 Vi is a cover of X.

Observe that

2-C-spaces ⊇ 3-C-spaces ⊇ · · · ⊇ m-C-spaces ⊇ · · · ⊇ C-spaces.

Moreover, the following holds:

Fact 4.2 ([4, Proposition 2.11]). A space is weakly infinite-dimensional
if and only if it is a 2-C-space.

One can easily adapt the proof of Theorem 3.4 to obtain the following:

Proposition 4.3. Let K∗ be a lattice in M and K = K∗ ∩M. Then
wK∗ is an m-C-space if and only if so is wK.

Let us recall two definitions and one question from [11]:

Definition 4.4 ([11, Definition 2.7]). We will say that a property P of
a compact space is elementarily reflected if whenever some compact space
X has property P then the Wallman representation wL of any elementary
sublattice L of 2X also has property P.

Definition 4.5 ([11, Definition 2.8]). A property P of a compact space
is elementarily reflected by submodels if whenever some compact space X has
property P then the Wallman representation wL of any elementary sublattice
L of the form L = 2X ∩M, where 2X ∈ M and M ≺ H(κ) (for a large
enough regular κ), also has property P.

Question 4.6 ([11, Question 2.32]). Is having strong infinite dimension
elementarily reflected, and is not having strong infinite dimension elemen-
tarily reflected?

Recall that, by definition, a space is strongly infinite-dimensional if it is
not weakly infinite-dimensional.

Proposition 4.3 gives a partial answer to Question 4.6. In particular it
says that that both these properties are elementarily reflected by submodels
(use the characterization of weak infinite dimension from Fact 4.2). More-
over, following the proof of Theorem 3.4, one can observe that the model
M ≺ H(κ) is not needed for the left-to-right implication. This means pro-
perty C is elementarily reflected and the opposite is elementarily reflected
by submodels. Properties m-C and non-m-C behave in the same way. Sum-
marizing, we can say that having strong infinite dimension is elementarily
reflected by submodels, and not having strong infinite dimension is elemen-
tarily reflected.
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It is not known if the notions of property C and weak infinite dimension
coincide within the class of compact spaces. However, since both properties
are elementarily reflected by submodels, there exists a metric counterexample
which distinguishes these two notions if and only if there exists a non-metric
one.
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