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THE POSITIVITY PROBLEM FOR FOURTH ORDER LINEAR
RECURRENCE SEQUENCES IS DECIDABLE

BY
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VICHIAN LAOHAKOSOL (Bangkok)

Abstract. The problem whether each element of a sequence satisfying a fourth order
linear recurrence with integer coefficients is nonnegative, referred to as the Positivity
Problem for fourth order linear recurrence sequence, is shown to be decidable.

1. Introduction. Consider a fourth order linear recurrence of the form

(1.1) un = a1un−1 + a2un−2 + a3un−3 + a4un−4 (n ≥ 4),

where a1, a2, a3, a4 ( 6= 0) ∈ Z. The recurrence (1.1) defines a unique se-
quence of integers provided the initial integers u0, u1, u2, u3 are given. We
are interested in the Positivity Problem: Is it possible to decide whether
the sequence (un)n≥0 is nonnegative? Equivalently, is it decidable whether
un ≥ 0 for all n ≥ 0? For the significance and applications of the Posi-
tivity Problem, we refer to the introduction of [6]. Let us emphasize that
the Positivity Problem considered here is to decide whether all elements of
a sequence are nonnegative. In contrast, the Eventual Positivity Problem,
which asks whether the terms un are nonnegative for all sufficiently large n,
is not of interest here.

The Positivity Problem for sequences satisfying a second order linear
recurrence has already been shown to be decidable by Halava–Harju–Hirven-
salo [5] in 2006; see also [1] and [2]. The Positivity Problem for sequences
satisfying a third order linear recurrence has recently been shown to be
decidable in [6]. We show here that the same conclusion holds for each
sequence satisfying a fourth order linear recurrence with integer coefficients:

Main Theorem 1.1. The Positivity Problem is decidable for each se-
quence of integers satisfying a linear fourth order recurrence with integer
coefficients.

There are two main differences between the work here and that in the
third order case in [6]:
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1. In [6], we started by finding shapes of the roots of a third degree
polynomial with integer coefficients, and proceeded to determine the
positivity by case analysis. Here, we abolish this step and consider all
possible shapes of the roots of a fourth degree equation and invoke a
result of Bell–Gerhold [1], mentioned below in Proposition 2.1, to get
rid of about one half of the possible cases where there are no positive
dominating roots.

2. In some cases, the signs of the cosine values (Lemma 2.2 below), in
contrast to [6], are needed not only at a few points but for infinitely
many points.

The proof of Theorem 1.1 is divided into two cases (Sections 3 and 4) de-
pending on whether or not the characteristic polynomial has only real roots.

2. Preliminaries. We start by briefly recalling some facts about recur-
rence sequences; for general references, see [8] or [4]. A sequence (un)n≥0
is called a recurrence sequence of order h ∈ N if it satisfies a recurrence
relation of the form

(2.1) un = a1un−1 + a2un−2 + · · ·+ ahun−h (n ≥ h),

where a1, . . . , ah (6= 0) are given real numbers. The characteristic polynomial
associated with the relation (2.1) is

Char(z) := zh − a1zh−1 − · · · − ah−1z − ah.
Let λk ∈ C \ {0} (k = 1, . . . ,m) be all the distinct roots with multiplicities
`1, . . . , `m, respectively, of Char(z), so that `1 + · · ·+ `m = h. Each sequence
element satisfying (2.1) can be written as

un =

m∑
k=1

Pk(n)λnk (n ≥ 0),

with Pk(n) ∈ C[n] \ {0}, degPk = `k − 1 (k = 1, . . . ,m). The roots of
Char(z) having the largest absolute value are called dominating roots. Such
roots play a crucial role in the positivity of the sequence (un) as witnessed
by the following result of Bell–Gerhold [1, Theorem 2], which helps to reduce
considerably the number of cases to consider.

Lemma 2.1. Let (un) be a nonzero recurrence sequence with no positive
dominating characteristic root. Then the sets {n ∈ N : un > 0} and {n ∈ N :
un < 0} each have positive density, and so both contain infinitely many
elements.

Following [1, p. 334], the density of a set A ⊆ N is defined as

lim
x→∞

1

x
]{n ≤ x ; n ∈ A}.
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Some auxiliary results about oscillating behavior of the cosine function
are also needed:

Lemma 2.2. Let ϕ, θ ∈ [−π, π) with θ /∈ {−π, 0}.

I. If θ = sπ/t is a rational multiple of π where s, t (> 0) ∈ Z \ {0},
gcd(s, t) = 1, then as n varies over N∪{0}, the function cos(ϕ+nθ)
is periodic and takes at most 2t explicitly computable distinct values
corresponding to n = 0, 1, . . . , 2t− 1.

II. If θ is not a rational multiple of π, then as n varies over N ∪ {0}
the range of values of cos(ϕ+ nθ) is dense in [−1, 1].

III. The function cos(ϕ+nθ) takes both positive and negative values for
infinitely many n ∈ N ∪ {0}.

Proof. Part I is contained in the statement and proof of [6, Lemma
1.3(a)], part II is [6, Lemma 1.3(b)], and part III is [7, Propositions 2.1 and
2.2].

The results in the next lemma are shapes of sequence elements that have
already been shown to be decidable; those proved for second order recur-
rence sequences from [5] are in Part I, and those for third order recurrence
sequences from [6] are in Part II.

Lemma 2.3. The Positivity Problem for the following forms of sequence
elements is decidable:

Part I:

(HHH1) un = Aλn1 +Bλn2 (A,B ∈ R; λ1, λ2 ∈ R \ {0}),
(HHH2) un = (A+Bn)λn (A,B ∈ R; λ ∈ R \ {0}),
(HHH3) un = Aλn + Āλ̄n (A ∈ C; λ ∈ C \ R).

Part II:

(LT1) un = Aλn1 +Bλn2 + Cλn3 (A,B,C ∈ R; λ1, λ2, λ3 ∈ R \ {0}),
(LT2) un = (A+Bn+ Cn2)λn (A,B,C ∈ R; λ ∈ R \ {0}),
(LT3) un = Aλn1 + (B + Cn)λn2 (A,B,C ∈ R; λ1, λ2 ∈ R \ {0}),
(LT4) un = Aλn1 +Bλn2 +B̄λ̄n2 (A ∈ R, λ1 ∈ R\{0}, B ∈ C, λ2 ∈ C\R).

3. Proof of Theorem 1.1 when Char(z) has only real roots. In
this case, the general term of the sequence is

un = P1(n)λn1 + P2(n)λn2 + · · ·+ Pm(n)λnm (n ≥ 0, m ≤ 4),

where λ1, . . . , λm are distinct nonzero real numbers and

Pi(n) = Ai,1 +Ai,2n+ · · ·+Ai,`in
`i−1 (`i ∈ N; i = 1, . . . ,m; Ai,`i 6= 0),

with `1 + · · ·+ `m = 4. We have two possibilities to consider.
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3.1. There are two roots λi with the same absolute value. With-
out loss of generality, let the two roots be λ1 > 0 and λ2 = −λ1. Here,

un = {P1(n) + (−1)nP2(n)}λn1 + P3(n)λn3 + · · ·+ Pm(n)λnm (n ≥ 0),

i.e.,

u2k = (P1(2k) + P2(2k))λ2k1 + P3(2k)λ2k3 + · · ·+ Pm(2k)λ2km ,

u2k+1 = (P1(2k + 1)− P2(2k + 1))λ2k+1
1

+ P3(2k + 1)λ2k+1
3 + · · ·+ Pm(2k + 1)λ2k+1

m (k ≥ 0).

The sequence (un) is nonnegative if and only if both the sequences (u2k) and
(u2k+1) are nonnegative. The two sequences (u2k) and (u2k+1) are decidable
as they satisfy recurrence relations of lower order, i.e., they must be one of
the forms stated in Lemma 2.3.

3.2. All roots have different absolute values. By Proposition 2.1,
we need only treat the case where there is a positive dominating root, say
λ1 > 0. Without loss of generality, assume λ1 > |λ2| > · · · > |λm|. Here,

un = λn1 {P1(n) + P2(n)(λ2/λ1)
n + · · ·+ Pm(n)(λm/λ1)

n} (n ≥ 0),

and so (un) is nonnegative if and only if

P1(n) + P2(n)(λ2/λ1)
n + · · ·+ Pm(n)(λm/λ1)

n ≥ 0 for all n ≥ 0.

• If A1,`1 < 0, then

P1(n) + P2(n)(λ2/λ1)
n + · · ·+ Pm(n)(λm/λ1)

n < 0

for all sufficiently large n, and so this case is untenable.

• If A1,`1 > 0, since

P1(n) + P2(n)(λ2/λ1)
n + · · ·+ Pm(n)(λm/λ1)

n →∞ (n→∞),

there is an explicitly computable least M0 ∈ N ∪ {0} such that

P1(n) + P2(n)(λ2/λ1)
n + · · ·+ Pm(n)(λm/λ1)

n ≥ 0 for all n ≥M0,

and so the sequence (un) is nonnegative if and only if M0 = 0.

4. Proof of Theorem 1.1 when Char(z) has non-real roots. The
possible shapes of the four roots are:

1. two complex conjugate pairs, either distinct or identical, denoted by
C(z1z̄1z2z̄2);

2. two identical real numbers and one complex conjugate pair, denoted
by C(r21zz̄);

3. two distinct real numbers and one complex conjugate pair, denoted
by C(r1r2zz̄).
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The possibility C(z1z̄1z2z̄2) is decidable by Proposition 2.1 as Char(z) has
no positive dominating roots. The remaining two possible cases are now
treated.

4.1. Case C(r21zz̄). In this case, the general term of the sequence is

un = (A+Bn)λn1 + Cλn2 + C̄λ̄n2 (n ≥ 0),

where A,B, λ1 (6= 0) ∈ R, C ∈ C, λ2 ∈ C \ R and the bar denotes complex
conjugate. Let λ2 = |λ2|eiθ, C = |C|eiϕ where θ, ϕ ∈ [−π, π), θ /∈ {−π, 0} so
that

un = (A+Bn)λn1 + 2|C| |λ2|n cos(ϕ+ nθ).

By Proposition 2.1, we need only treat the case where there is a positive
dominating root, say λ1 > 0. There are two possibilities.

Subcase 1: λ1 = |λ2|. Write

un = λn1{A+Bn+ 2|C| cos(ϕ+ nθ)} (n ≥ 0).

The sequence (un) is nonnegative if and only if

(4.1) A ≥ −Bn− 2|C| cos(ϕ+ nθ) for all n ≥ 0.

• If B < 0, then (4.1) cannot be fulfilled.
• If B = 0, then un = Aλn1 + Cλn2 + C̄λ̄n2 , which is of the form (LT4).
• If B > 0, then −Bn− 2|C| cos(ϕ+ nθ)→ −∞ as n→∞. Thus, there

exists an explicitly computable N0 ∈ N depending on B,C, ϕ, θ such that

max
n∈N∪{0}

{−Bn− 2|C| cos(ϕ+ nθ)} = −BN0 − 2|C| cos(ϕ+N0θ).

Consequently, the sequence (un) is nonnegative if and only if

A ≥ −BN0 − 2|C| cos(ϕ+N0θ).

Subcase 2: λ1 > |λ2|. Rewrite the general term of the sequence as

un = λn1{A+Bn+ 2|C|(|λ2|/λ1)n cos(ϕ+ nθ)} (n ≥ 0).

Since sign(A+Bn+2|C|(|λ2|/λ1)n cos(ϕ+nθ)) = sign(B) when n sufficiently
large provided B 6= 0, for the sequence (un) to be nonnegative we must have
B ≥ 0 and

A ≥ −Bn− 2|C|(|λ2|/λ1)n cos(ϕ+ nθ) (n ≥ 0).

By Lemma 2.2, there is a least NL ∈ N ∪ {0} such that cos(ϕ + NLθ) < 0.
Since (|λ2|/λ1)n → 0 as n→∞, there is NM > NL such that for all n ≥ NM

we have

−2|C|(|λ2|/λ1)n cos(ϕ+ nθ) < −2|C|(|λ2|/λ1)NL cos(ϕ+NLθ).

Consequently, the sequence (un) is nonnegative if and only if

B ≥ 0 and A ≥ max{−Bn−2|C|(|λ2|/λ1)n cos(ϕ+nθ) ; NL ≤ n ≤ NM}.
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4.2. Case C(r1r2zz̄). In this case, the general term of the sequence is

un = Aλn1 +Bλn2 + Cλn3 + C̄λ̄n3 (n ≥ 0),

where A,B ∈ R, C ∈ C, λ1, λ2 ∈ R \ {0} and λ3 ∈ C \ R. Let λ3 = |λ3|eiθ,
C = |C|eiϕ where θ, ϕ ∈ [−π, π), θ /∈ {−π, 0} so that

un = Aλn1 +Bλn2 + 2|C| |λ3|n cos(ϕ+ nθ).

By Proposition 2.1, we need only decide the situation where Char(z) has a
positive dominating root, say λ1 > 0, and so λ1 ≥ max{|λ2|, |λ3|}. There
are three possibilities:

1. The three λ’s have the same absolute values, i.e., λ1 = |λ2| = |λ3|.
2. All three roots λ1, λ2 and λ3 have different absolute values.
3. There are exactly two λi’s having the same absolute value, i.e., λ1 =
|λ2| or λ1 = |λ3| or |λ2| = |λ3|.

Subcase 1: λ1 = |λ2| = |λ3|. Here, 0 < λ1 = −λ2 = |λ3|. The sequence
term is of the form

un = {A+ (−1)nB}λn1 + Cλn3 + C̄λ̄n3 (n ≥ 0),

i.e.,

u2k = {A+B}λ2k1 + Cλ2k3 + C̄λ̄2k3 ,

u2k+1 = {A−B}λ2k+1
1 + Cλ2k+1

3 + C̄λ̄2k+1
3 (k ≥ 0).

The two sequences (u2k) and (u2k+1) are decidable because they are of the
form (LT4).

Subcase 2: All three roots λ1, λ2 and λ3 have different absolute values.
Rewrite the general term of the sequence as

un = λn1{A+B(λ2/λ1)
n + 2|C|(|λ3|/λ1)n cos(ϕ+ nθ)} (n ≥ 0).

The sequence (un) is nonnegative if and only if

(4.2) A+B(λ2/λ1)
n + 2|C|(|λ3|/λ1)n cos(ϕ+ nθ) ≥ 0 (n ≥ 0).

If A = 0, then un = Bλn2 +Cλn3 + C̄λ̄n3 , which is of the form (LT4). If A < 0,
then

A+B(λ2/λ1)
n + 2|C|(|λ3|/λ1)n cos(ϕ+ nθ)→ A < 0 (n→∞),

showing that (4.2) cannot be fulfilled. If A > 0, then there is an explicitly
computable least integer N0 ∈ N ∪ {0} such that (4.2) holds for all n ≥ N0.
Consequently, in this case the sequence (un) is nonnegative if and only if
N0 = 0.

Subcase 3: λ1 = |λ2| or λ1 = |λ3| or λ2 = |λ3|.
3.1: λ1 = |λ2| = −λ2 > |λ3|. Here,

un = {A+ (−1)nB}λn1 + Cλn3 + C̄λ̄n3 (n ≥ 0),
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i.e.,

u2k = {A+B}λ2k1 + Cλ2k3 + C̄λ̄2k3 ,

u2k+1 = {A−B}λ2k+1
1 + Cλ2k+1

3 + C̄λ̄2k+1
3 (k ≥ 0).

The two sequences (u2k) and (u2k+1) are both decidable because they are
of the form (LT4).

3.2: λ1 > |λ2| = |λ3| > 0. If λ2 > 0, then |λ3| = |λ2| = λ2, and so

un = Aλn1 + {B + 2|C| cos(ϕ+ nθ)}λn2(4.3)

= λn1{A+ (B + 2|C| cos(ϕ+ nθ))(λ2/λ1)
n}.

Since (B + 2|C| cos(ϕ+ nθ))(λ2/λ1)
n → 0 as n→∞, either

−(B + 2|C| cos(ϕ+ nθ))(λ2/λ1)
n < 0 for all n ≥ 0,

or there is an explicit N1 ∈ N ∪ {0} such that

−(B + 2|C| cos(ϕ+N1θ))(λ2/λ1)
N1

= max
n≥0
{−(B + 2|C| cos(ϕ+ nθ))(λ2/λ1)

n} ≥ 0.

The sequence (un) is thus nonnegative if and only if

A ≥ max{0,−(B + 2|C| cos(ϕ+N1θ))(λ2/λ1)
N1}.

If λ2 < 0, then |λ3| = |λ2| = −λ2, and so

un = Aλn1 + {(−1)nB + 2|C| cos(ϕ+ nθ)}|λ3|n.
The two subsequences corresponding to even and odd subscripts, i.e,

u2k = Aλ2k1 + {B + 2|C| cos(ϕ+ 2kθ)}|λ3|2k (k ≥ 0),

u2k+1 = Aλ2k+1
1 + {−B + 2|C| cos(ϕ+ (2k + 1)θ)}|λ3|2k+1 (k ≥ 0),

are of the form (4.3) and so similar arguments show that both are decidable.

3.3: λ1 = |λ3| > |λ2| > 0. Write

un = λn1{A+ 2|C| cos(ϕ+ nθ) +B(λ2/λ1)
n}.

The sequence (un) is nonnegative if and only if

(4.4) A ≥ −2|C| cos(ϕ+ nθ)−B(λ2/λ1)
n (n ≥ 0).

• If θ is a rational multiple of π, say θ = sπ/t where s, t (> 0) ∈ Z \ {0}
and gcd(s, t) = 1, then by Lemma 2.2, cos(ϕ+ nθ) is periodic and takes at
most 2t distinct explicit (positive and negative) values at n∈{0, 1, . . . , 2t−1}
(mod 2t); among these values, let ct be the least (negative). Since−B(λ2/λ1)

n

→ 0 as n→∞, (4.4) holds if and only if

A ≥

{
−2ct|C| if “B = 0” or “B > 0, λ2 > 0”,

maxn=0,1,...,2t−1{−2|C| cos(ϕ+ nθ)−B(λ2/λ1)
n} otherwise.
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• If θ is not a rational multiple of π, rewrite the terms of the sequence
as

un = |λ2|n{(A+ 2|C| cos(ϕ+ nθ))(λ1/|λ2|)n +B(λ2/|λ2|)n}.
The sequence (un) is nonnegative if and only if

(4.5) {A+ 2|C| cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n ≥ 0 (n ≥ 0).

If C = 0, then un = Aλn1 + Bλn2 , which is of the form (HHH1). Assume
henceforth that C > 0.

(a) If A ≤ 0, since the values of cos(ϕ + nθ) are dense in the closed
interval [−1, 1] ([3, Chapters 3–4]), and (λ1/|λ2|)n →∞ as n→∞, there is
an explicitly computable NL ∈ N ∪ {0} such that

{A+ 2|C| cos(ϕ+NLθ)}(λ1/|λ2|)NL +B(λ2/|λ2|)NL < 0,

and so (4.5) cannot be fulfilled.
(b) If 0 < A < 2|C|, let 2|C| −A = ∆ > 0 so that

(4.6) {A+ 2|C| cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n

= {2|C|(1 + cos(ϕ+ nθ))−∆}(λ1/|λ2|)n +B(λ2/|λ2|)n.
Taking a subsequence (nk) for which cos(ϕ + nkθ) → −1 as k → ∞, the
left-hand expression in (4.6) tends to −∞ as k → ∞, showing that (4.5)
cannot be fulfilled.

(c) If A > 2|C| > 0, let δ = A− 2|C| > 0. Since

{A+ 2|C| cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n

≥ δ(λ1/|λ2|)n +B(λ2/|λ2|)n →∞ (n→∞),

there is an explicitly computable leastN0 ∈ N∪{0}, depending on A,B,C, ϕ,
θ, λ1, λ2, such that

{A+ 2|C| cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n ≥ 0

for all n ≥ N0. Consequently, (4.5) holds if and only if N0 = 0.
(d) If A = 2|C|, then (4.5) becomes

(4.7) 2|C|{1 + cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n ≥ 0 (n ≥ 0).

We pause to prove two important claims.

Claim 1. There is at most one integer N0 ∈ N ∪ {0} such that

(4.8) 1 + cos(ϕ+N0θ) = 0.

Proof of Claim 1. If there were two distinct such integers N0 and N ′0,
then there would exist two integers k0, k

′
0 such that

ϕ+N0θ = (2k0 + 1)π, ϕ+N ′0θ = (2k′0 + 1)π.

Subtracting the two equations, we find that θ is a multiple of π, which is a
contradiction.
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Claim 2. If (nk) ⊂ N∪{0} is an increasing sequence of positive integers
such that

1 + cos(ϕ+ nkθ)→ 0 (k →∞),

then

2|C|{1 + cos(ϕ+ nkθ)}(λ1/|λ2|)nk +B(λ2/|λ2|)nk →∞ (k →∞).

Proof of Claim 2. By Claim 1, we know that from certain k onward
all the values of 1 + cos(ϕ + nkθ) are nonzero. Since the function 2|C|{1 +
cos(ϕ+ xθ)}(λ1/|λ2|)x ±B(λ2/|λ2|)x is infinitely differentiable, the desired
result follows from a number of well-known theorems in real analysis, such
as L’Hôpital’s rule.

Returning to (4.5), if there is N0 ∈ N ∪ {0} such that (4.8) holds,
which must be unique by Claim 1, then for (4.5) to hold we must have
B(λ2/|λ2|)N0 ≥ 0. Moreover, using Claim 2 and the fact that for n large
enough the values of 1 + cos(ϕ + nθ) are positive and bounded by 1, we
deduce that

2|C|{1 + cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n →∞ (n→∞).

Thus, there is an explicitly computable least integer N1 ∈ N∪{0}, depending
on B,C, ϕ, θ, λ1, λ2, such that

2|C|{1 + cos(ϕ+ nθ)}(λ1/|λ2|)n +B(λ2/|λ2|)n ≥ 0 for all n ≥ N1.

Using all the information gathered, we conclude that (4.5) holds if and only
if N1 = 0.

Final remarks. It seems natural to ask whether the preceding proof is
applicable to the general case. Should it be so, the general positivity problem
would be solved, which in turns implies that a long unsolved conjecture of
Skolem would be settled. Though a good deal of the above analysis, such as
the case where all roots of Char(z) are real, does indeed work in the general
situation, in the case of fifth order recurrence, there are instances in which
we are not yet able to settle decidability.
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