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ON THE ENTROPY OF DARBOUX FUNCTIONS

BY

RYSZARD J. PAWLAK (Łódź)

Abstract. We prove some results concerning the entropy of Darboux (and almost
continuous) functions. We first generalize some theorems valid for continuous functions,
and then we study properties which are specific to Darboux functions. Finally, we give
theorems on approximating almost continuous functions by functions with infinite en-
tropy.

Introduction. In the classical theory of dynamical systems one usually
assumes that all the functions under consideration are continuous. However,
some investigations lead to considering Darboux functions or almost contin-
uous functions (cf. e.g. a question raised by W. Transue, cited in [10]); a
discussion of this topic can be found in [20]. There are a lot of recent papers
dealing with dynamical systems generated by Darboux-like functions (e.g.
[7], [10], [16], [18], [21]). The main aim of the current one is to give some
results on the entropy of Darboux or almost continuous functions.

Our direct inspiration was M. Čiklová’s paper [7]. She generalizes a cer-
tain theorem valid for continuous functions to the case of functions whose
graph is a connected Gδ set (in particular, such functions have the Darboux
property). We mainly aim at the properties specific to dynamical systems
generated by Darboux functions. But we also extend several classical results,
regarding them as important tools (see Section 2).

In Section 3 we define almost fixed points of a Darboux function. This
notion is characteristic for discontinuous Darboux functions. We investigate
the fundamental properties of Darboux (or Darboux-like) functions having
at least one almost fixed point. In Section 4 we consider approximation of an
arbitrary almost continuous function by almost continuous functions having
almost fixed points (or having infinite entropy).

The paper is completed by an open problem concerning the relationship
between the entropy of a function and the set of periodic points of this
function.
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1. Preliminaries. We will use standard definitions and notations (see
[1], [2], [4], [5], [9]). The graph of a function f will be denoted by Γ (f).

We will consider exclusively Darboux functions (or functions belonging to
smaller classes) from the unit interval into itself. We say that f : [0, 1]→ [0, 1]
is a Darboux function if whenever x, y ∈ [0, 1] and α is any number between
f(x) and f(y), there is a number z between x and y such that f(z) = α.
Equivalently, f is a Darboux function if f(C) is connected for any connected
set C ⊂ [0, 1]. It is well known that f is a Darboux function iff every point
x ∈ [0, 1] is a Darboux point of f (the definition will be given shortly).
We will use some notions and notations pertaining to Darboux points of f
([12], [5]).

Let us recall the definitions of the left and right range of f at x0:

α ∈ R−(f, x0)) iff f−1(α) ∩ (x0 − δ, x0) 6= ∅, for any δ > 0,
α ∈ R+(f, x0)) iff f−1(α) ∩ (x0, x0 + δ) 6= ∅, for any δ > 0.

An element β is a left-hand (resp. right-hand) cluster value of f at x0 iff
there exists a sequence {xn} (resp. {yn}) such that xn ↗ x0 and f(xn)→ β
(resp. yn ↘ x0 and f(yn) → β). Obviously, if α ∈ R−(f, x0) (resp. α ∈
R+(f, x0)) then α is a left-hand (resp. right-hand) cluster value of f , but the
converse is false.

We will say that x0 is a left-hand (resp. right-hand) Darboux point of f
if for each left-hand (resp. right-hand) cluster value β of f at x0 different
from f(x0) and each γ belonging to the interval with end-points f(x0) and
β we have γ ∈ R−(f, x0) (resp. γ ∈ R+(f, x0)) (if x0 = 0 or x0 = 1 then we
consider only one-sided cluster values).

We shall say that x0 is a Darboux point of a function f if it is simultane-
ously a right-hand and a left-hand Darboux point of f .

A function f : [0, 1]→ [0, 1] is almost continuous (in the sense of Stallings)
if every open set U ⊂ [0, 1] × [0, 1] containing Γ (f) contains the graph of a
continuous function g : [0, 1] → [0, 1]. The family of all almost continuous
functions is denoted by A.

In the class of all functions from the unit interval into itself the following
inclusions hold:

C ⊂ A ⊂ Conn ⊂ D,
where C (resp. D) is the family of all continuous (resp. Darboux) functions
and Conn is the class of all functions with connected graph.

In Section 4 we consider the following two topologies on the space A of
almost continuous functions. Let %u be the metric of uniform convergence
(i.e. %u(f, g) = supx∈[0,1] |f(x)−g(x)|), and Tu the topology (of uniform con-
vergence) generated by %u. Let TΓ be the topology generated by a neighbour-
hood system {BΓ (t) : t ∈ A} defined in the following way: if t is a function



ENTROPY OF DARBOUX FUNCTIONS 229

and U is an open set in [0, 1]×[0, 1] containing Γ (t) then Ut = {τ : Γ (τ) ⊂ U}
and BΓ (t) = {Ut : Γ (t) ⊂ U and U is an open set in [0, 1] × [0, 1]}. Obvi-
ously, W ∈ TΓ if and only if W is a union of sets belonging to

⋃
t∈ABΓ (t).

Let F1 ⊂ F2 be two families of functions and let T be a topology in F2.
We say that a function f ∈ F2 can be T -approximated by functions belonging
to F1 if for each T -neighbourhood Uf of f , there exists g ∈ F1 ∩ Uf .

Let f be a real function. We denote by Bu(f, ε) the open ball in the
metric space (A, %u) with centre at f and radius ε > 0.

We denote by Int(A) the interior of a set A (in the space [0, 1] with the
natural metric). The cardinality of a finite set A will be denoted by #(A).

If A,B are subsets of the domain of f , then f�A denotes the restriction
of f to A. We say that a set A f -covers a set B (denoted by A →

f
B) if

B ⊂ f(A).
Let f : [0, 1] → [0, 1]. Then an m-horseshoe for f (2 ≤ m < ∞) is an

ordered pair (J,D), where J ⊂ [0, 1] is an interval and D is a family of
pairwise disjoint closed intervals I1, . . . , Im ⊂ J such that each element of D
f -covers J .

A function f : [0, 1]→ [0, 1] is turbulent if there are compact subintervals
I1, I2 ⊂ [0, 1] with at most one point in common such that

I1 ∪ I2 ⊂ f(I1) ∩ f(I2).

Let f : [0, 1]→ [0, 1]. Then we define f0(x) = x, and fn(x) = f(fn−1(x))
if n> 0. A point x such that fM (x) = x but fn(x) 6= x for n∈ {1, . . . ,M − 1}
is called a periodic point of f of prime periodM . The set of all periodic points
of f of prime period M is denoted by PerM (f).

The set of all fixed points of f is denoted by Fix(f).
Denote by DB1 the class of all Darboux functions of Baire class one from

the unit interval into itself ([4]).
We now proceed to the definitions and notations connected with the

Sharkovskĭı property. Consider the following Sharkovskĭı ordering of the set
of all positive integers:

3 ≺ 5 ≺ 7 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · ≺ 22 · 3 ≺ 22 · 5 ≺ · · ·
· · · ≺ 23 ≺ 22 ≺ 2 ≺ 20 = 1.

We shall say that f is a Sharkovskĭı function (or f has the Sharkovskĭı prop-
erty) provided that if PerM (f) 6= ∅ and M ≺ K, then PerK(f) 6= ∅.

In the next definitions the subscripts are taken modulo M (i.e. M + 1
≡ 1). Let (I1, . . . , IM ) be a finite sequence of subcontinua of [0, 1] and let
f1, . . . , fM : [0, 1]→ [0, 1]. We say that (I1, . . . , IM ) is an (f1, . . . , fM )-cycle
if

I1 →
f1

I2 →
f2

· · · −→
fM−1

IM →
fM

IM+1 = I1.
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If x0 ∈ I1 is such that

(fi ◦ · · · ◦ f1)(x0) ∈ Ii+1 for i ∈ {1, . . . ,M},

then we say that x0 is associated with the (f1, . . . , fM )-cycle (I1, . . . , IM ).
We say ([21]) that a family of functions F has the property J if for any

(f1, . . . , fM )-cycle (I1, . . . , IM ) with f1, . . . , fM ∈ F , there exists a point x0

associated with this cycle and such that (fM ◦ · · · ◦ f1)(x0) = x0.
Let K = {I1, . . . , In} be a finite set of closed intervals contained in [0, 1]

and f : [0, 1] → [0, 1]. Consider the oriented graph Gf (K) = (K, Φ), where
Φ = {(Ii, Ik) : Ii →

f
Ik} ⊂ K × K, and the matrix Mf (K) = M(Gf (K)) =

[aik] defined by

aik =

{
1 if Ii →

f
Ik,

0 if ¬(Ii →
f
Ik).

We will write σ(M) and tr(M) for the maximal absolute value of an eigen-
value (in other words, the spectral radius [1]) and the trace of the ma-
trix M .

Let f : [0, 1]→ [0, 1], ε > 0 and n be a positive integer. A set M ⊂ [0, 1]
is (n, ε)-separated if for each x, y ∈ M , x 6= y there is 0 ≤ i < n such that
|f i(x) − f i(y)| > ε. Let S(f, n, ε) denote an (n, ε)-separated set with the
maximal possible number of points and sn(ε) its cardinality.

The topological entropy of the function f is the number

h(f) = lim
ε→0

lim sup
n→∞

1
n

log sn(ε).

The above definition is the Bowen and Dinaburg version of the topological
entropy ([3], [8]). Note that this is in agreement with other definitions of
topological entropy ([7], [1]).

To avoid unnecessary repetitions let us make a standing assumption that
all functions considered are Darboux functions.

2. Generalizations of classical results

Theorem 2.1. Let f : [0, 1] → [0, 1] and let {I1, . . . , Im} (m ≥ 2) be a
set of pairwise disjoint closed intervals. Then

h(f) ≥ log σ(Mf (I1, . . . , Im)).

Proof. Let M = Mf (I1, . . . , Im) and σM = σ(M). It is sufficient to
consider the case log σM > 0.

Set

ε0 :=
1
2

min{dist(Ii, Ij) : i, j ∈ {1, . . . ,m} and i 6= j}.
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It is well known (e.g. [1]) that

σM = lim sup
n→∞

n
√

tr(Mn).

Fix β ∈ (0, σM ). Then there exists a sequence {nk} of positive integers such
that

(1) nk
√

tr(Mnk) > β > 0 for k = 1, 2, . . . .

For each k = 1, 2, . . . let ank1 , . . . , ankm be the diagonal entries of the ma-
trix Mnk . By (1), anki 6= 0 for at least one i ∈ {1, . . . ,m}. Note that

for any i ∈ {1, . . . ,m} there exist anki pairwise different paths

P 1
i , . . . , P

a
nk
i

i of length nk beginning and terminating at Ii.

Set Tnk = {i ∈ {1, . . . ,m} : anki 6= 0} and let i ∈ Tnk . Then we can write P ji
(j = 1, . . . , anki ) in the form

Ii = I1
i,j →

f
I2
i,j →

f
· · · →

f
Inki,j →f Ink+1

i,j = Ii,

where Isi,j ∈ {I1, . . . , Im} for s ∈ {1, . . . , nk}. Choose xnki,j ∈ Ii such that
fs(xnki,j ) ∈ I

s+1
i,j (for s ∈ {1, . . . , nk}). We shall show that

xnki,j1 6= xnki,j2 for j1, j2 ∈ {1, . . . , anki }.

Indeed, suppose, contrary to our claim, that xnki,j1 = xnki,j2 for some distinct
j1, j2 ∈ {1, . . . , anki }. Since P

j1
i 6= P j2i there exists t ∈ {2, . . . , nk} such that

Iti,j1 ∩ I
t
i,j2

= ∅ and so f t−1(xnki,j1) ∈ Iti,j1 and f t−1(xnki,j2) /∈ Iti,j1 , contrary to
xnki,j1 = xnki,j2 .

Let Ank := {xnki,j : i ∈ Tnk , j ∈ {1, . . . , a
nk
i }}. Note that

(2) #(Ank) = ank1 + · · ·+ ankm .

Now, consider any two distinct xnki0,j0 , x
nk
i1,j1
∈ Ank . If i0 6= i1 then

|xnki0,j0 − x
nk
i1,j1
| ≥ dist(Ii0 , Ii1) > ε0.

In the case i0 = i1 we have j0 6= j1 (j0, j1 ≤ anki0 ). By the definition
of xnki0,j (j = 1, . . . , anki0 ) there exists a positive integer t < nk such that
f t(xnki0,j0), f t(xnki0,j1) belong to different intervals of the family {I1, . . . , Im}.
This means that

|f t(xnki0,j0)− f t(xnki0,j1)| > ε0.

Therefore
snk(ε0) ≥ ank1 + · · ·+ ankm .

From the above considerations and (1) we have

s(ε0) := lim sup
n→∞

1
n

log sn(ε0) ≥ lim sup
k→∞

1
nk

log(ank1 + · · ·+ ankm ) ≥ log β.
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Since ([7, Lemma 3.2]) s(ε) := lim supn→∞
1
n log sn(ε) ≥ s(ε0) for any ε ∈

(0, ε0), we have
h(f) = lim

ε→0
s(ε) ≥ log β.

As β ∈ (0, σM ) can be arbitrarily close to σM , the conclusion follows.

The above theorem is similar to a well-known theorem on continuous
functions. But in the case of continuous functions we can use the following
statement: if f is a continuous function and I1 →

f
I2 then there exists an

interval J ⊂ I1 such that f(J) = I2. Note that for f discontinuous this
need not be true: set f(0) = 0 and f(x) = max

(
x2, sin 1

x

)
and consider

I1 = [0, 1/2] and I2 = [0, 3/4].

Corollary 2.2. If f : [0, 1] → [0, 1] has an m-horseshoe, then h(f) ≥
logm.

Proof. Let (J,D) be an m-horseshoe for f and let D = {I1, . . . , Im}
(Ii ∩ Ij = ∅ for i 6= j). Then M = Mf (I1, . . . , Im) is an m×m matrix and

Mn =


mn−1 mn−1 · · · mn−1

mn−1 mn−1 · · · mn−1

· · · · · · · · · · · ·
mn−1 mn−1 · · · mn−1

 ,
which gives tr(Mn) = mn, and consequently σ(M) = m.

From Theorem 2.1 it follows that h(f) ≥ logm.

Lemma 2.3 ([7]). h(f) = 0 iff h(fk) = 0 for every positive integer k.

The above results yield a formally stronger version of [7, Proposition 4.2].

Proposition 2.4. If f : [0, 1] → [0, 1] is a turbulent function then
h(f) > 0.

Proof. Let I1 = [α1, β1] and I2 = [α2, β2] have at most one point in
common and

I1 ∪ I2 ⊂ f(I1) ∩ f(I2).

For simplicity, we may assume that α1 < β1 ≤ α2 < β2. Set J = [α1, β2].
First, suppose I1∩ I2 = ∅. Set D = {I1, I2}. Then (J,D) is a 2-horseshoe

for f . From Corollary 2.2 we infer h(f) ≥ log 2 > 0.
Now, suppose I1 ∩ I2 6= ∅. Then β1 = α2. If f(α2) 6= β2 then we can

choose p, q ∈ (α2, β2] such that f(p) ∈ (α1, β1) and f(q) = β2 (assume that
p < q). Let I ′1 = I1 and I ′2 = [p, q] ⊂ I2.

If f(α2) = β2, then pick a, b ∈ [α1, β1) such that f(a) = α1 and f(b) ∈
(α2, β2]. We can assume that a < b. Let I ′1 = [a, b] ⊂ I1 and I ′2 = I2.

In both cases (J,D1), where D1 = {I ′1, I ′2}, is a 2-horseshoe for f2. By
Corollary 2.2 we have h(f2) > 0, and Lemma 2.3 yields h(f) > 0.
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3. Almost fixed points. We now introduce the concept of an almost
fixed point.

Definition 1. Let f : [0, 1]→ [0, 1] be a Darboux function. We will say
that a point x0 is an almost fixed point of f (written x0 ∈ aFix(f)) if

x0 ∈ Int(R−(f, x0)) ∪ Int(R+(f, x0)).

If x0 = 0 or x0 = 1, then we only consider R+(f, x0) or R−(f, x0),
respectively. Note that if x0 ∈ aFix(f) then x0 is a discontinuity point of f .
What is more, if f is a Darboux function and x0 is a discontinuity point
of f , then Int(R−(f, x0)) ∪ Int(R+(f, x0)) 6= ∅.

The following theorem seems to be interesting from the point of view of
combinatorial dynamical systems.

Theorem 3.1. If f, g : [0, 1] → [0, 1] are topologically conjugate via a
homeomorphism ϕ (i.e. ϕ ◦ f = g ◦ ϕ), and x0 ∈ aFix(f), then ϕ(x0) ∈
aFix(g).

Proof. By our assumptions we have

x0 ∈ Int(R−(f, x0)) ∪ Int(R+(f, x0)).

Let, for instance, ϕ be a decreasing function and x0 ∈ Int(R+(f, x0)) (hence
x0 < 1).

If x0 = 0 then ϕ(x0) = 1. Pick λ ∈ (0, 1) with [0, λ] ⊂ Int(R+(f, x0)).
If x0 ∈ (0, 1), then there exist α, β ∈ (0, 1) such that

x0 ∈ (α, β) ⊂ Int(R+(f, x0)).

Set Z = [0, λ) if x0 = 0, and (α, β) if x0 ∈ (0, 1). Note that ϕ(x0) ∈
Int(ϕ(Z)). The proof will be completed by showing that

(3) ϕ(Z) ⊂ R−(g, ϕ(x0)).

So, pick t ∈ Z. To prove that ϕ(t) ∈ R−(g, ϕ(x0)), we fix δ > 0 and show
that

(4) there exists a point y ∈ (ϕ(x0)− δ, ϕ(x0)) such that g(y) = ϕ(t).

Indeed, since ϕ is a continuous function, there exists δ0 > 0 such that

(5) ϕ((x0 − δ0, x0 + δ0) ∩ [0, 1]) ⊂ (ϕ(x0)− δ, ϕ(x0) + δ).

Since t ∈ Z, we have t ∈ R+(f, x0), and consequently there exists a point
z ∈ (x0, x0 + δ0) such that f(z) = t. Set y = ϕ(z). We have

g(y) = ϕ(f(z)) = ϕ(t).

Moreover, (5) shows that y ∈ (ϕ(x0)− δ, ϕ(x0) + δ) and ϕ(z) < ϕ(x0). Thus
y ∈ (ϕ(x0)− δ, ϕ(x0)), proving (4).

In the next theorem (under a slightly stronger assumption than the Dar-
boux property) we establish a relation between having almost fixed points
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and fixed points. Moreover, this theorem justifies the name of “almost fixed
point”.

Theorem 3.2. Let f ∈ DB1 and let x0 ∈ aFix(f). Then

(x0 − ε, x0 + ε) ∩ Fix(f) 6= ∅ for each ε > 0.

Proof. Let ε > 0. We can assume that x0 ∈ Int(R+(f, x0)) and choose
real numbers β1, β2 such that x0+ε > β2 > β1 > x0 and [x0, β2] ⊂ R+(f, x0).
Set

K = [(x0, x0), (β1, β1)] ⊂ [0, 1]× [0, 1].

Since the values x0 and β2 are attained by f in (x0, β1), there exists
c ∈ (x0, β1) such that (c, f(c)) ∈ K.

From the definition of K we have c ∈ Fix(f).

Theorem 3.3. Let f : [0, 1] → [0, 1] be such that aFix(f) 6= ∅. Then f
has an m-horseshoe for any m ≥ 2.

Proof. Fix m ≥ 2 and x0 ∈ aFix(f). We can assume that x0 ∈
Int(R+(f, x0)).

If f(x0) = x0 then choose α ∈ R+(f, x0) such that x0 < α. If f(x0) 6= x0,
say x0 < f(x0), then pick α ∈ (x0, f(x0)).

Certainly, x0 is a right-hand Darboux point of f . Thus

f−1(α) ∩ (x0, x0 + η) 6= ∅ 6= f−1(x0) ∩ (x0, x0 + η) for any η > 0.

So, we can find two sequences {an}, {bn} such that

α > a1 > b1 > a2 > b2 > · · · > x0

and
f(an) = α and f(bn) = x0 for any n = 1, 2, . . . .

Set J = [x0, a1] ⊂ [x0, α] and D = {Ii = [ai, bi] : i = 1, . . . ,m}. Note that
Ii ⊂ J for any i = 1, . . . ,m, and (f is a Darboux function)

f(Ii) ⊃ J for any i = 1, . . . ,m.

This shows that (J,D) is an m-horseshoe for f .

Corollary 2.2 and the above theorem may be summarized as follows:

Corollary 3.4. Let f : [0, 1] → [0, 1] be such that aFix(f) 6= ∅. Then
h(f)
=∞.

The next corollary is a simple consequence of Theorem 3.3.

Corollary 3.5. Let f : [0, 1] → [0, 1] be a Darboux function such that
aFix(f) 6= ∅. Then f is turbulent.

The following statement completes the discussion of basic properties of
Darboux functions having at least one almost fixed point.
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Theorem 3.6. Let f ∈ DB1 with aFix(f) 6= ∅. Then Pern(f) 6= ∅ for
any n = 1, 2, . . . .

Proof. Using the sequences {an}, {bn} from the proof of Theorem 3.3,
set I1 = [a1, b1], I2 = [a2, b2]. Then I1 ∩ I2 = ∅ and I1, I2 ⊂ f(I1) ∩ f(I2),
and consequently

(6) I1 →
f
I2 →

f
I2 →

f
I1.

Since every DB1 function has the property J ([20], [21]), there exists
a point y0 associated with the cycle (6) such that f3(y0) = y0. Since the
intervals I1 and I2 are disjoint, we infer that f i(y0) 6= y0 for i ∈ {1, 2}.
This gives Per3(f) 6= ∅. Hence f is a Sharkovskĭı function ([17], [20]), and
consequently Pern(f) 6= ∅ for any n = 1, 2, . . . .

4. Approximation in spaces of almost continuous functions.
Almost continuity was defined by Stallings ([19]) in order to generalize
Brouwer’s fixed point theorem and very soon became intensively studied
by many mathematicians. Note that each almost continuous function from
a compact space into itself is a Darboux function and has a fixed point,
and moreover a lot of interesting classes of functions from the unit interval
into itself are subsets of the family of all almost continuous functions (for
example, Darboux Baire one functions, and consequently: all derivatives, all
approximately continuous functions, etc.).

The choice of the family of all almost continuous functions as an object
of study in this part of the paper is not accidental. Notice that a function f
is almost continuous iff it can be TΓ -approximated by continuous functions.

We, however, begin by considering the Tu-topology.

Lemma 4.1. ([19], [15]) If F is a closed set and f ∈ A, then f�F ∈ A.

Lemma 4.2 ([15]). Let [0, 1] be a union of countably many closed intervals
In such that Int(Ii)∩ Int(Ij) = ∅ for i 6= j and Ii∩Ii+1 6= ∅ for each i. Then
for any function f : [0, 1]→ [0, 1], f ∈ A iff f�Ii ∈ A for each i.

Lemma 4.3 ([15]). If J = [a, b], f : [a, b]→ [0, 1] is an almost continuous
function and U ⊂ J × [0, 1] is an open neighbourhood of Γ (f), then there
exists a continuous function g : J → [0, 1] such that Γ (g) ⊂ U , g(a) = f(a)
and g(b) = f(b).

Let F be a family of functions from the unit interval into itself. We will
write Fa = {f ∈ F : aFix(f) 6= ∅} and F∞ = {f ∈ F : h(f) =∞}.

Theorem 4.4.

(1) Any almost continuous function can be Tu-approximated by functions
belonging to Aa.
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(2) Any almost continuous function can be Tu-approximated by functions
belonging to (A \ C)∞.

(3) Any continuous function can be Tu-approximated by functions belong-
ing to C∞.

Proof. (3) is well known (e.g. [2, Proposition 31, p. 216]) (1).
For (1) and (2), according to Corollary 3.4, it is sufficient to show that any

almost continuous function can be Tu-approximated by functions in (A\C)a.
Fix f ∈ A and ε > 0. Then there exists x0 ∈ Fix(f). The proof falls

naturally into two cases: x0 6= 0 and x0 6= 1. In both cases the proofs are
similar, so we will only consider the case x0 < 1.

The proof will be divided into two cases:

Case I: x0 is a continuity point. Then there exists δ ∈ (0, ε) such that
f([x0 − δ, x0 + δ] ∩ [0, 1]) ⊂ (x0 − ε/2, x0 + ε/2). Define

g(x) =


f(x) if x /∈ (x0, x0 + δ),

max
(

0, x0 +
ε

2
sin

1
x− x0

)
if x ∈ (x0, x0 + δ/2),

linear in [x0 + δ/2, x0 + δ].

It is easy to see that x0 ∈ aFix(g). According to Lemmas 4.1 and 4.2 we
obtain g ∈ A \ C. Moreover,

%u(f, g) = %u(f�[x0, x0 + δ], g�[x0, x0 + δ]) < ε.

Case II: x0 is a discontinuity point of f , say a right-hand discontinuity
point. Then there exists a sequence {xn} such that xn ↘ x0 and f(xn) →
α 6= x0. For simplicity assume that x0 < α. Set

σ = min
(
ε

2
,
α− x0

2

)
and define k : [0, 1]→ [0, 1] in the following way:

k(x) =
{
f(x) if x ∈ [0, x0],
max(0, f(x)− σ) if x ∈ (x0, 1].

To show that k ∈ A, let W be an open set in [0, 1] × [0, 1] containing Γ (k)
and let λ > 0 be such that

([x0 − λ, x0 + λ] ∩ [0, 1])× ([f(x0)− λ, f(x0) + λ] ∩ [0, 1]) ⊂W.

As f is a Darboux function, there exists x1 ∈ (x0, x0 +λ) such that f(x1) =
x0 + σ.

(1) In (3) we cannot replace “continuous” with “almost continuous”. Later we prove a
similar theorem for the TΓ -topology and in this case it will be possible to TΓ -approximate
almost continuous functions by continuous functions.
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By Lemma 4.1, k�[0, x0] ∈ A. Thus (Lemma 4.3) there exists a continuous
function ξ1 : [0, x0]→ [0, 1] such that ξ1(x0) = k(x0) = x0 and

Γ (ξ1) ⊂W ∩ ([0, 1]× [0, 1]).

Note that k�[x1, 1] ∈ A and k(x1) = x0. Just as above, there exists a con-
tinuous function ξ2 : [x1, 1]→ [0, 1] such that ξ2(x1) = x0 and

Γ (ξ2) ⊂W ∩ ([0, 1]× [0, 1]).

We now define ξ : [0, 1]→ [0, 1] by

ξ(x) =


ξ1(x) if x ∈ [0, x0],
x0 if x ∈ [x0, x1],
ξ2(x) if x ∈ [x1, 1].

Then ξ is a continuous function and Γ (ξ) ⊂W , proving that k ∈ A.
We can now prove that x0 ∈ aFix(k). More precisely, we will show that

x0 ∈ Int(R+(k, x0)).

Let {pn} be a sequence such that pn ↘ x0 and f(pn) ↘ x0. Then k(pn) →
β = max(0, x0 − σ) and k(xn) → α − σ. Moreover, β ≤ x0 < α − σ. Let
U = [0, α − σ) if x0 = 0, and U = (β, α − σ) if x0 > 0. Then U is an open
set in [0, 1] containing x0 such that U ⊂ R+(k, x0).

Finally, note that %u(f, k) = σ < ε.

The above theorem shows that Aa is dense in the space (A, Tu). The next
theorem gives a more precise description of the topological properties of Aa.
To state it, we set

A∗a = {f ∈ A : aFix(f) ∩ (0, 1) 6= ∅}.
Theorem 4.5.

(a) If f ∈ A∗a, then there exists ε > 0 such that Bu(f, ε) ⊂ A∗a.
(b) If f ∈ Aa \ A∗a, then Bu(f, ε) \ Aa 6= ∅ for any ε > 0.

Proof. Let f ∈ A∗a and fix x0 ∈ aFix(f) ∩ (0, 1). Suppose x0 ∈
Int(R+(f, x0)) and let ε > 0 be such that x0 + ε < 1 and

(7) [x0 − 3ε, x0 + 3ε] ⊂ R+(f, x0) ∩ (0, 1).

Pick ξ ∈ Bu(f, ε). By (7) there exists a sequence {x+
n } such that x+

n ↘ x0

and f(x+
n ) ∈ (x0 + 2ε, x0 + 3ε). Thus ξ(x+

n ) > x0 + ε. Analogously, there
exists a sequence {y+

n } such that y+
n ↘ x0 and ξ(y+

n ) < x0 − ε.
Let δ > 0. Then there are n1, n2 such that x+

n1
, y+
n2
∈ (x0, x0 + δ). Since

ξ ∈ A, for every γ ∈ (x0− ε, x0 + ε), in the open interval I0 with end-points
x+
n1
, y+
n2

there exists a number zγ such that ξ(zγ) = γ. Since δ was chosen
arbitrarily, (x0 − ε, x0 + ε) ⊂ R+(ξ, x0). Hence x0 ∈ aFix(ξ) and ξ ∈ A∗a,
proving (a).
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For (b) choose f ∈ Aa \ A∗a. Then 0 ∈ aFix(f) or 1 ∈ aFix(f). Let
ε ∈ (0, 1/2).

If 0 /∈ aFix(f) then let f1 = f . Otherwise one can find x1, x2 ∈ (0, ε/2)
such that x1 < x2 and f(x2) = 0, and define ξ1 : [0, 1]→ [0, 1] by

ξ1(x) =


x if x ∈ [0, x1],
x1 · x− x1 · x2

x1 − x2
if x ∈ [x1, x2],

0 if x ∈ [x2, 1].

Then ξ1 is a continuous function. Set f1 = max(f, ξ1) ∈ A.
If 1 /∈ aFix(f) then we put f0 = f1. Otherwise there are y1, y2 ∈

(1− ε/2, 1) such that y2 < y1 and f(y2) = 1. Define ξ2 : [0, 1]→ [0, 1] by

ξ2(x) =


1 if x ∈ [0, y2],
y1 − 1
y1 − y2

x+ 1− y1 − 1
y1 − y2

y2 if x ∈ [y2, y1],

x if x ∈ [y1, 1].

Then ξ2 is a continuous function. We set f0 = min(f1, ξ2). It is obvious that
f0 ∈ A.

Since %u(f, f0) < ε, it remains to prove that

(8) aFix(f0) = ∅.

It is obvious that 0, 1 /∈ aFix(f0). Moreover, if 0 /∈ aFix(f) then [0, y2) ∩
aFix(f0) = ∅ and y2 /∈ Int(R−(f0, y2)) (if 1 /∈ aFix(f) then (x2, 1]∩ aFix(f0)
= ∅ and x2 /∈ Int(R+(f0, x2))). If 0, 1 ∈ aFix(f) we have (x2, y2) ∩ aFix(f0)
= ∅, x2 /∈ Int(R+(f0, x2)) and y2 /∈ Int(R−(f0, y2)).

Consequently, it remains to consider an interval (0, x2] if 0 ∈ aFix(f),
and [y2, 1) if 1 ∈ aFix(f).

In the case 0 ∈ aFix(f), we shall show that

(9) (0, x2] ∩ aFix(f0) = ∅.

It is easy to see that x2 /∈ aFix(f0), so let x ∈ (0, x2) and suppose that
x ∈ aFix(f0). Consider the following cases:

Case 1: x ∈ (0, x1]. Then there exists t1 ∈ (0, x) such that [t1, x] ⊂
R−(f0, x) or [t1, x] ⊂ R+(f0, x). If x < x1 then let t2 ∈ (x, x1). If x = x1, let
t2 ∈ (x1, x2) be such that ξ1(t2) = t1. Then

f−1
0 (t1) ∩ (t1, t2) = ∅.

Hence t1 /∈ R−(f0, x) ∪ R+(f0, x), which is impossible.

Case 2: x ∈ (x1, x2). Then there exist t1 ∈ (x1, x) and t2 ∈ (x, x2) such
that (t1, t2) ⊂ R−(f0, x) or (t1, t2) ⊂ R+(f0, x). Let, for instance, (t1, t2) ⊂
R−(f0, x). Thus for each t ∈ (t1, t2) and δ ∈ (0, x − x1) there exists zδt ∈
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(x− δ, x) such that f0(zδt ) = t. Note that f0(zδt ) = f(zδt ), and consequently
(t1, t2) ⊂ R−(f, x), which is impossible.

The proof of (9) is finished.
If 1 ∈ aFix(f), one can prove similarly that [y2, 1] ∩ aFix(f0) = ∅.
Corollary 4.6. If f ∈ A∗a, then f is a continuity point of the entropy

function h : (A, Tu)→ [0,∞].

Let us now turn to the TΓ topology.
Theorem 4.7.

(i) Any almost continuous function can be TΓ -approximated by func-
tions in Aa.

(ii) Any almost continuous function can be TΓ -approximated by func-
tions in (A \ C)∞.

(iii) Any almost continuous function can be TΓ -approximated by func-
tions in C∞.

Proof. Similarly to the proof of Theorem 4.4, for (i) and (ii), it is sufficient
to show that any almost continuous function can be TΓ -approximated by
functions in (A \ C)a.

Fix f ∈ A, ε > 0 and x0 ∈ Fix(f). The proof will be divided naturally
into two cases: x0 > 0 and x0 < 1. As the arguments are similar, we will
consider only the case x0 < 1.

Let Uf = {τ ∈ A : Γ (τ) ⊂ U} ∈ BΓ (f). Thus U is an open set contain-
ing Γ (f). Then there exists ε0 > 0 such that x0 + ε0 < 1 and

([x0 − ε0, x0 + ε0] ∩ [0, 1])× ([x0 − ε0, x0 + ε0] ∩ [0, 1]) ⊂ U.
We define

g(x) =


f(x) if x /∈ (x0, x0 + ε0),

max
(

0, x0 +
ε0
2

sin
1

x− x0

)
if x ∈ (x0, x0 + ε0/2],

linear in [x0 + ε0/2, x0 + ε0].
From Lemmas 4.1 and 4.2 we conclude that g ∈ A (obviously, g is discon-
tinuous).

Now, it is sufficient to note that Γ (g) ⊂ U and x0 ∈ aFix(g).
To prove (iii), for every closed interval [a, b] ⊂ [0, 1] and a fixed positive

integer n let {ai}ni=0, {bi}
n+1
i=1 be such that

a = a0 < b1 < a1 < b2 < a2 < · · · < bn < an < bn+1 = b.

Then let hna,b : [a, b]→ [a, b] be linear in all segments [ai, bi+1] (i= 0, 1, . . . , n),
[bi, ai] (i = 1, . . . , n) and such that hna,b(ai) = a (i = 0, 1, . . . , n), hna,b(bi) = b
(i = 1, . . . , n+ 1).

Now, set Vf = {τ ∈ A : Γ (τ) ⊂ V } ∈ BΓ (f), where V is an open set
containing Γ (f). Since f ∈ A, there exists a continuous function ξ such that
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Γ (ξ) ⊂ V . Let y0 ∈ Fix(ξ). We may assume that y0 6= 1 (if y0 = 1 the proof
is similar). Then there exists δ0 > 0 such that y0 + δ0 < 1 and

([y0 − δ0, y0 + δ0] ∩ [0, 1])× ([y0 − δ0, y0 + δ0] ∩ [0, 1]) ⊂ V.
So, we can define

k(x)=


ξ(x) if x /∈ (y0, y0 + δ0),
hny0+δ0/2n+1,y0+δ0/2n

if x∈ [y0+δ0/2n+1, y0+δ0/2n], n= 1, 2, . . . ,

linear in [y0 + δ0/2, y0 + δ0].
It is easy to see that k is continuous and Γ (k) ⊂ V . Moreover, k has
an (n + 1)-horseshoe for n = 1, 2, . . . . From Corollary 2.2 we infer that
h(k) =∞.

5. An open problem. It is well known that

If f is a continuous function then h(f) > 0 iff f has a periodic point
of period different from 2n for n = 1, 2, . . . .

M. Čiklová [7] proved in 2005 that we can replace the continuity by the
assumption that f has connected and Gδ graph:

If f has a connected and Gδ graph then h(f) > 0 iff f has a periodic
point of period different from 2n for n = 1, 2, . . . .

An interesting question is:

Problem. Is an analogous theorem true for f almost continuous?

It should be mentioned here that every almost continuous function map-
ping the unit interval into itself has a connected graph, but this graph need
not be a Gδ set. Moreover, in 1989 Kellum [10] proved that almost continuous
functions need not have the Sharkovskĭı property.

Acknowledgments. The author is greatly indebted to the referee for
his many helpful suggestions improving the paper.

REFERENCES

[1] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in
Dimension One, World Sci., 1993.

[2] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer, 1992.
[3] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer.

Math. Soc. 153 (1971), 401–414; Errata, ibid. 181 (1973), 509–510.
[4] A. M. Bruckner, Differentiation of Real Functions, Springer, 1978.
[5] A. M. Bruckner and J. G. Ceder, Darboux continuity , Jahresber. Deutsch. Math.-

Verein. 67 (1965), 93–117.
[6] J. G. Ceder, On Darboux points of real functions, Period. Math. Hungar. 11 (1980),

69–80.



ENTROPY OF DARBOUX FUNCTIONS 241

[7] M. Čiklová, Dynamical systems generated by functions with connected Gδ graphs,
Real Anal. Exchange 30 (2004/2005), 617–638.

[8] E. I. Dinaburg, The relation between topological entropy and metric entropy , Soviet
Math. Dokl. 11 (1970), 13–16.

[9] R. Engelking, General Topology , PWN–Polish Sci. Publ., 1977.
[10] K. L. Kellum, Iterates of almost continuous functions and Sharkovskii’s theorem,

Real Anal. Exchange 14 (1988-89), 420–422.
[11] E. Korczak, Rings of H-connected functions, doctoral thesis (in Polish, in prepara-

tion).
[12] J. S. Lipiński, On Darboux points, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.

Phys. 26 (1978), 689–873.
[13] A. Maliszewski, Darboux property and quasi-continuity. Uniform approach, habili-

tation thesis, 1996.
[14] T. Natkaniec, On compositions and products of almost continuous functions, Fund.

Math. 139 (1991), 71–78.
[15] —, Almost continuity , habilitation thesis, Bydgoszcz, 1992.
[16] H. Pawlak and R. Pawlak, Transitivity, dense orbits and some topologies finer than

the natural topology of the unit interval , to appear.
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[21] —, Sharkovskĭı’s theorem holds for some discontinuous functions, Fund. Math. 179

(2003), 27–41.
[22] P. Walters, An Introduction to Ergodic Theory , Grad. Texts in Math. 79, Springer,

1982.

Faculty of Mathematics and Computer Science
Łódź University
Banacha 22
90-238 Łódź, Poland
and
College of Computer Science
Rzgowska 17a
93-008 Łódź, Poland
E-mail: rpawlak@math.uni.lodz.pl

Received 5 May 2008;
revised 12 January 2009 (5017)


