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THE RUELLE ROTATION OF KILLING VECTOR FIELDS

BY

KONSTANTIN ATHANASSOPOULOS (Iraklion)

Abstract. We present an explicit formula for the Ruelle rotation of a nonsingular
Killing vector field of a closed, oriented, Riemannian 3-manifold, with respect to Rieman-
nian volume.

Let M be a closed, oriented Riemannian 3-manifold and X be a nonsin-
gular Killing vector field on M with trivial normal bundle. The plane bundle
FE orthogonal to X is then spanned by two globally defined orthogonal unit
vector fields Y and Z such that {X(z),Y (x), Z(z)} is a positively oriented
basis of the tangent space at x € M. Once we have chosen the unit vector
field Z orthogonal to X, there is only one choice of a unit vetor field Y
such that {X,Y,Z} is a positively oriented orthogonal frame on M. The
flow (¢¢)ier of X is a one-parameter group of isometries of M, and thus
bux(7)(Ey) = Eg,(z) for every t € R and x € M. The matrix of ¢ (v)|Ey
with respect to the bases {Y(x), Z(z)} and {Y (¢i(x)), Z(¢¢(x))} is a rota-
tion, denoted by f(¢,x). The resulting function f : R x M — SO(2,R) is a
smooth cocycle of the flow, by the chain rule, and can be lifted to a smooth
cocycle f: R x M — R.

From the ergodic theorem for isometric systems (see [4]), the limit

lim L@’ 7)

- t—o00 t

exists uniformly for every x € M. If w is the normalized Riemannian volume,
the integral

oX) = | Fu=1\ f(1,-)w
M M

is the Ruelle rotation number of X with respect to the trivializaton {Y, Z}
of E. If {Y,Z} is another trivialization of F as above and 9(X) is the
corresponding Ruelle rotation number of X, it follows from Proposition 3.4

2000 Mathematics Subject Classification: 37A20, 37E45, 53C20.
Key words and phrases: Killing vector field, Ruelle rotation.

DOI: 10.4064/cm116-2-8 [243] © Instytut Matematyczny PAN, 2009



244 K. ATHANASSOPOULOS

in [2] that

_ [ do .
o) ~200) = § 1 (57 ) s
where df/27 is the natural representative of the standard generator of
H'(SO(2,R);Z) and h : M — SO(2,R) is the smooth function such that
the matrix h(z) gives the change of basis from {Y (z), Z(z)} to {Y (x), Z(x)}
in F,. Since X preserves the Riemannian volume, ¢ xw is closed. If it is ex-
act, X is called homologically trivial, and in this case o(X) = 9(X), that is,
the Ruelle rotation number of X does not depend on the trivialization of E.

David Ruelle defined what we now call the Ruelle rotation in [5] for
any nowhere vanishing smooth vector field with trivial normal bundle on a
closed, oriented, smooth 3-manifold, with respect to a trivialization of the
normal bundle and an invariant Borel probability measure. If the manifold
is a homology 3-sphere, then the Ruelle rotation does not depend on the
choice of the trivialization of the normal bundle [2].

In this note we present an explicit formula for o(X) and make some
remarks. More precisely, we prove the following.

THEOREM. Let X be a nonsingular Killing vector field with trivial nor-
mal bundle E on an oriented, Riemannian, closed 3-manifold M with nor-
malized Riemannian volume element w. Let {Y, Z} be an orthonormal frame
trivializing E such that {X,Y,Z} is a positively oriented orthogonal frame
on M. Then the Ruelle rotation number of X with respect to the given triv-
1alization of E is given by the formula

1

o(X) = o S (X, 2], Y)w.
M

Proof. Let (¢¢)tcr be the flow of X. For every ¢ € R we have

Pux(2)Y (x) = cos 27Tf(t~’$) Y(¢i(x)) + sin wa(th) Z(¢()),
bru(2)Z(2) = — sin2n f(t,2) Y (6y(2)) + cos2n (¢, 2) Z(6(2)).
From [3, p. 235 and p. 245] we have
7t 0 dux(z) = exp(t(V.X)z),
where 7¢ is the parallel translation along the orbit of  from ¢;(z) to z. So,
Ccos 2ﬂf:(t,$) = (exp(t(V.X)2)Y (), 15(Y (¢1(2)))),
sin2mf(t,2) = (exp(H(V.X).)Y (2), 7 Z(n(x)))).

Differentiating the second equation with respect to ¢ we get

f! = ! -iex x Tt T
F0) = s oV e CPHT XY @), (26 @)

(*)
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for t € R with (¢ (z)Y (x),Y (é¢(x))) # 0 and

(V. X))Y (), T Z(01(2))
= (exp(H(V. X)2) (Vy (0 X), (Z(61(2))

+(xp(t(T.X))Y (o), 1 (2@
= (7% > 60 () (Ty 0 X). T(Z n(x))
(780 90 ()Y (@), 7V 0 2)

= (01 (@) (Vy (2)X), Z(¢1(2))) + (D1 (€)Y (2), Vix (6, () Z)-

)
)

So we have
Fltx) = (Dt (1) (Vy () X, Z(t())) + (e ()Y (), VX(¢t(x))Z>
’ 2m (e (2)Y (2), Y (¢e(2)))
Since Z has constant unit length, 2(VxZ, Z) = X(Z, Z) = 0. Therefore
(VxZ, X)
X2

VxZ = (VxZ,Y)Y +

and

(D1 (2)Y (2), Vx(60@)Z) = (Vix(pe(2) 2> Y (01())) - (Pex ()Y (), Y (¢1(2))).

It follows that
~ () (VynX), Z T
Pt = e L I (Vo 2. ()

for t € R with (¢ (2)Y (), Y (¢1(z))) # 0. If we differentiate the first equa-
tion in (*) with respect to ¢ and use the fact that (VxY,Z) = —(VxZ,Y),

we get
G oy (O() (Vy @) X), V(¢ (2))) .
f(th) = 27T<¢t*( ) ( ) (¢t 1’))> + <VX(¢t( ZaY(¢t( ))>

for t € R with (¢w(2)Y (), Z(pi(2))) # 0. The last two formulas are the
same for ¢ € R with (¢ (2)Y (), Y (¢:())) - (1 (2)Y (), Z(¢1(2))) # O,

because

(Dr(2)Y (2), Y (01 () - (1 (2) (Vy () X), Y (()))
+ (D ()Y (2), Z(01(2))) - (D1x(2)(Vy () X), Z(e()))
= (00:(2)(Vy () X), o (2)Y (2)) = (Vy () X, Y (2)) = 0,
since X is Killing. Now ¢n.Y = (¢4.Y, Y)Y + (é.Y, Z)Z and so

1 _ (91Y, Z)
Gy, e =V Xt YY)

VZXa
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from which it follows that
(Vo.vX, Z)
<¢t*Y; Y>

<v¢t*YX7 Y>

= (WX, 2) = ~(VzX.Y) = =

= (X, 2] - Vx2,Y),

since X is a Killing vector field. Consequently, for every ¢t € R we have

Ft) = 5 (1, 2)(612), Y (n(2),
and so .
Fit,2) = 5= 11X, Z1(0u(2)), Y (9s(2))) ds.
0
Hence

t

Fz) = lim —— [ ([X, Z](6,(x)), Y (6s(2))) ds.
0

By Fubini’s theorem and the invariance of the Riemannian volume we
get

o(X) = !

o

[ ([x,2),Y)w,
M
as asserted.

REMARK 1. Note that since X is a Killing vector field, we have
<[X7Z]’X> = <VXZaX> + <VXX7 Z> = X<ZaX> =0,

(1X.2),2) = (VxZ,2) ~ (V2X,2) = L X(|Z]*) =0.

So [X,Z] = ([X,Z],Y)Y, and if for every z € M we let
+1if we (X (2), [X, Z](2), Z(2)) >0,
e(x) =q -1 if w(X(x),[X, Z](z), Z(x)) <0,
0 if [X,Z](z) =0,
then .
o(X) = o | (- 11X, 2]

s

If n is the dual 1-form of Z with respect to the Riemannian metric, then
it is not hard to see that || X|| - n A dn = vol(M)([X, Z], Y )w. Therefore

1
X)=— =\ ||X]|-nAdn.
o(X) 27rv01(M)]§/[” I-nAdy

REMARK 2. If HY(M;Z) = 0, the function F does not depend on
the trivialization {Y,Z} of E. Indeed, let {Y7,Z;} and {Y3, Z3} be two
trivializations of E as at the beginning. There exists a smooth function
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g: M — SO(2,R) such that Ys(z) = g(z)(Y1(z)) and Zs(x) = g(z)(Z1(x))
for every x € M. Since H'(M;7Z) = 0, there is a smooth function § : M — R
such that g(z) is the rotation by the angle (z). Thus,

Ya(x) = cosf(x) - Yi(x) + sinb(z) - Z1(z),

Zy(x) = —sinf(z) - Yi(z) + cosb(z) - Z1(x),
and
(X, 23], Y2)

= (—sin0[X,Y1]— X (sin0)Y; + cos [ X, Z1]|+ X (cos ) Z1, cos Y1 + sin 0 Z)
d(0 0 ¢)
ot

If fi and fo are the corresponding cocycles, we get

. 9o
[y AL

o Ot
Fit, ) — Fat, 1) = o 10061()) ~ (2]

that is, the two cocycles are cohomologous, and therefore Fy = F5.
According to the topological classification of nonsingular Killing vector
fields on Riemannian 3-manifolds, given in [1], if M is a homology 3-sphere,
the orbits of X are periodic and M is a Seifert manifold. If T'(z) > 0 denotes
the period of the orbit of z, then
T(z)

V(X Z1(¢5(2)), Y (5(2))) ds
0

=([X,Z1],11) — X(0) =([X, Z1], 1) —

and

1

Flo) = 27T (z)

and F' is smooth except at a finite number of orbits, the exceptional fibers
of the Seifert fibration.
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