COLLOQUIUM MATHEMATICUM

the ruelle rotation of Killing vector fields

BY KONSTANTIN ATHANASSOPOULOS (Iraklion)

Abstract

We present an explicit formula for the Ruelle rotation of a nonsingular Killing vector field of a closed, oriented, Riemannian 3-manifold, with respect to Riemannian volume.

Let M be a closed, oriented Riemannian 3-manifold and X be a nonsingular Killing vector field on M with trivial normal bundle. The plane bundle E orthogonal to X is then spanned by two globally defined orthogonal unit vector fields Y and Z such that $\{X(x), Y(x), Z(x)\}$ is a positively oriented basis of the tangent space at $x \in M$. Once we have chosen the unit vector field Z orthogonal to X, there is only one choice of a unit vetor field Y such that $\{X, Y, Z\}$ is a positively oriented orthogonal frame on M. The flow $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ of X is a one-parameter group of isometries of M, and thus $\phi_{t *}(x)\left(E_{x}\right)=E_{\phi_{t}(x)}$ for every $t \in \mathbb{R}$ and $x \in M$. The matrix of $\phi_{t *}(x) \mid E_{x}$ with respect to the bases $\{Y(x), Z(x)\}$ and $\left\{Y\left(\phi_{t}(x)\right), Z\left(\phi_{t}(x)\right)\right\}$ is a rotation, denoted by $f(t, x)$. The resulting function $f: \mathbb{R} \times M \rightarrow \mathrm{SO}(2, \mathbb{R})$ is a smooth cocycle of the flow, by the chain rule, and can be lifted to a smooth cocycle $\tilde{f}: \mathbb{R} \times M \rightarrow \mathbb{R}$.

From the ergodic theorem for isometric systems (see [4]), the limit

$$
F(x)=\lim _{t \rightarrow \infty} \frac{\tilde{f}(t, x)}{t}
$$

exists uniformly for every $x \in M$. If ω is the normalized Riemannian volume, the integral

$$
\varrho(X)=\int_{M} F \omega=\int_{M} \tilde{f}(1, \cdot) \omega
$$

is the Ruelle rotation number of X with respect to the trivializaton $\{Y, Z\}$ of E. If $\{\bar{Y}, \bar{Z}\}$ is another trivialization of E as above and $\bar{\varrho}(X)$ is the corresponding Ruelle rotation number of X, it follows from Proposition 3.4

[^0]in [2] that
$$
\varrho(X)-\bar{\varrho}(X)=\int_{M} h^{*}\left(\frac{d \theta}{2 \pi}\right) \wedge i_{X} \omega
$$
where $d \theta / 2 \pi$ is the natural representative of the standard generator of $H^{1}(\mathrm{SO}(2, \mathbb{R}) ; \mathbb{Z})$ and $h: M \rightarrow \mathrm{SO}(2, \mathbb{R})$ is the smooth function such that the matrix $h(x)$ gives the change of basis from $\{Y(x), Z(x)\}$ to $\{\bar{Y}(x), \bar{Z}(x)\}$ in E_{x}. Since X preserves the Riemannian volume, $i_{X} \omega$ is closed. If it is exact, X is called homologically trivial, and in this case $\varrho(X)=\bar{\varrho}(X)$, that is, the Ruelle rotation number of X does not depend on the trivialization of E.

David Ruelle defined what we now call the Ruelle rotation in [5] for any nowhere vanishing smooth vector field with trivial normal bundle on a closed, oriented, smooth 3-manifold, with respect to a trivialization of the normal bundle and an invariant Borel probability measure. If the manifold is a homology 3 -sphere, then the Ruelle rotation does not depend on the choice of the trivialization of the normal bundle [2].

In this note we present an explicit formula for $\varrho(X)$ and make some remarks. More precisely, we prove the following.

Theorem. Let X be a nonsingular Killing vector field with trivial normal bundle E on an oriented, Riemannian, closed 3 -manifold M with normalized Riemannian volume element ω. Let $\{Y, Z\}$ be an orthonormal frame trivializing E such that $\{X, Y, Z\}$ is a positively oriented orthogonal frame on M. Then the Ruelle rotation number of X with respect to the given trivialization of E is given by the formula

$$
\varrho(X)=\frac{1}{2 \pi} \int_{M}\langle[X, Z], Y\rangle \omega
$$

Proof. Let $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ be the flow of X. For every $t \in \mathbb{R}$ we have

$$
\begin{aligned}
\phi_{t *}(x) Y(x) & =\cos 2 \pi \widetilde{f}(t, x) Y\left(\phi_{t}(x)\right)+\sin 2 \pi \widetilde{f}(t, x) Z\left(\phi_{t}(x)\right) \\
\phi_{t *}(x) Z(x) & =-\sin 2 \pi \widetilde{f}(t, x) Y\left(\phi_{t}(x)\right)+\cos 2 \pi \widetilde{f}(t, x) Z\left(\phi_{t}(x)\right)
\end{aligned}
$$

From [3, p. 235 and p. 245] we have

$$
\tau_{0}^{t} \circ \phi_{t *}(x)=\exp \left(t(\nabla \cdot X)_{x}\right)
$$

where τ_{0}^{t} is the parallel translation along the orbit of x from $\phi_{t}(x)$ to x. So,

$$
\begin{align*}
\cos 2 \pi \tilde{f}(t, x) & =\left\langle\exp \left(t(\nabla \cdot X)_{x}\right) Y(x), \tau_{0}^{t}\left(Y\left(\phi_{t}(x)\right)\right)\right\rangle \\
\sin 2 \pi \tilde{f}(t, x) & =\left\langle\exp \left(t(\nabla \cdot X)_{x}\right) Y(x), \tau_{0}^{t}\left(Z\left(\phi_{t}(x)\right)\right)\right\rangle \tag{*}
\end{align*}
$$

Differentiating the second equation with respect to t we get

$$
\widetilde{f}^{\prime}(t, x)=\frac{1}{2 \pi\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle} \cdot \frac{d}{d t}\left\langle\exp \left(t(\nabla . X)_{x}\right) Y(x), \tau_{0}^{t}\left(Z\left(\phi_{t}(x)\right)\right)\right\rangle
$$

for $t \in \mathbb{R}$ with $\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle \neq 0$ and

$$
\begin{aligned}
& \frac{d}{d t}\left\langle\exp \left(t(\nabla . X)_{x}\right) Y(x), \tau_{0}^{t}\left(Z\left(\phi_{t}(x)\right)\right)\right\rangle \\
&=\left\langle\exp \left(t(\nabla . X)_{x}\right)\left(\nabla_{Y(x)} X\right), \tau_{0}^{t}\left(Z\left(\phi_{t}(x)\right)\right)\right\rangle \\
&+\left\langle\exp \left(t(\nabla . X)_{x}\right) Y(x), \frac{d}{d t}\left(\tau_{0}^{t}\left(Z\left(\phi_{t}(x)\right)\right)\right)\right\rangle \\
&=\left\langle\left(\tau_{0}^{t} \circ \phi_{t *}(x)\right)\left(\nabla_{Y(x)} X\right), \tau_{0}^{t}\left(Z\left(\phi_{t}(x)\right)\right)\right\rangle \\
&+\left\langle\left(\tau_{0}^{t} \circ \phi_{t *}(x)\right) Y(x), \tau_{0}^{t}\left(\nabla_{X\left(\phi_{t}(x)\right)} Z\right)\right\rangle \\
&=\left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X\right), Z\left(\phi_{t}(x)\right)\right\rangle+\left\langle\phi_{t *}(x) Y(x), \nabla_{X\left(\phi_{t}(x)\right)} Z\right\rangle
\end{aligned}
$$

So we have

$$
\widetilde{f}^{\prime}(t, x)=\frac{\left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X, Z\left(\phi_{t}(x)\right)\right\rangle+\left\langle\phi_{t *}(x) Y(x), \nabla_{X\left(\phi_{t}(x)\right)} Z\right\rangle\right.}{2 \pi\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle} .
$$

Since Z has constant unit length, $2\left\langle\nabla_{X} Z, Z\right\rangle=X\langle Z, Z\rangle=0$. Therefore

$$
\nabla_{X} Z=\left\langle\nabla_{X} Z, Y\right\rangle Y+\frac{\left\langle\nabla_{X} Z, X\right\rangle}{\|X\|^{2}} X
$$

and
$\left\langle\phi_{t *}(x) Y(x), \nabla_{X\left(\phi_{t}(x)\right)} Z\right\rangle=\left\langle\nabla_{X\left(\phi_{t}(x)\right)} Z, Y\left(\phi_{t}(x)\right)\right\rangle \cdot\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle$.
It follows that

$$
\widetilde{f}^{\prime}(t, x)=\frac{\left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X\right), Z\left(\phi_{t}(x)\right)\right\rangle}{2 \pi\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle}+\frac{1}{2 \pi}\left\langle\nabla_{X\left(\phi_{t}(x)\right)} Z, Y\left(\phi_{t}(x)\right)\right\rangle
$$

for $t \in \mathbb{R}$ with $\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle \neq 0$. If we differentiate the first equation in $(*)$ with respect to t and use the fact that $\left\langle\nabla_{X} Y, Z\right\rangle=-\left\langle\nabla_{X} Z, Y\right\rangle$, we get

$$
\widetilde{f}^{\prime}(t, x)=-\frac{\left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X\right), Y\left(\phi_{t}(x)\right)\right\rangle}{2 \pi\left\langle\phi_{t *}(x) Y(x), Z\left(\phi_{t}(x)\right)\right\rangle}+\frac{1}{2 \pi}\left\langle\nabla_{X\left(\phi_{t}(x)\right)} Z, Y\left(\phi_{t}(x)\right)\right\rangle
$$

for $t \in \mathbb{R}$ with $\left\langle\phi_{t *}(x) Y(x), Z\left(\phi_{t}(x)\right)\right\rangle \neq 0$. The last two formulas are the same for $t \in \mathbb{R}$ with $\left\langle\phi_{t *}(x) Y(x), Y\left(\phi_{t}(x)\right)\right\rangle \cdot\left\langle\phi_{t *}(x) Y(x), Z\left(\phi_{t}(x)\right)\right\rangle \neq 0$, because

$$
\begin{aligned}
\left\langle\phi_{t *}(x) Y(x),\right. & \left.Y\left(\phi_{t}(x)\right)\right\rangle \cdot\left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X\right), Y\left(\phi_{t}(x)\right)\right\rangle \\
& +\left\langle\phi_{t *}(x) Y(x), Z\left(\phi_{t}(x)\right)\right\rangle \cdot\left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X\right), Z\left(\phi_{t}(x)\right)\right\rangle \\
= & \left\langle\phi_{t *}(x)\left(\nabla_{Y(x)} X\right), \phi_{t *}(x) Y(x)\right\rangle=\left\langle\nabla_{Y(x)} X, Y(x)\right\rangle=0
\end{aligned}
$$

since X is Killing. Now $\phi_{t *} Y=\left\langle\phi_{t *} Y, Y\right\rangle Y+\left\langle\phi_{t *} Y, Z\right\rangle Z$ and so

$$
\frac{1}{\left\langle\phi_{t *} Y, Y\right\rangle} \nabla_{\phi_{t *} Y} X=\nabla_{Y} X+\frac{\left\langle\phi_{t *} Y, Z\right\rangle}{\left\langle\phi_{t *} Y, Y\right\rangle} \nabla_{Z} X
$$

from which it follows that

$$
\begin{aligned}
\frac{\left\langle\nabla_{\phi_{t *} Y} X, Z\right\rangle}{\left\langle\phi_{t *} Y, Y\right\rangle} & =\left\langle\nabla_{Y} X, Z\right\rangle=-\left\langle\nabla_{Z} X, Y\right\rangle=-\frac{\left\langle\nabla_{\phi_{t *} Y} X, Y\right\rangle}{\left\langle\phi_{t *} Y, Z\right\rangle} \\
& =\left\langle[X, Z]-\nabla_{X} Z, Y\right\rangle
\end{aligned}
$$

since X is a Killing vector field. Consequently, for every $t \in \mathbb{R}$ we have

$$
\widetilde{f}^{\prime}(t, x)=\frac{1}{2 \pi}\left\langle[X, Z]\left(\phi_{t}(x)\right), Y\left(\phi_{t}(x)\right)\right\rangle
$$

and so

$$
\widetilde{f}(t, x)=\frac{1}{2 \pi} \int_{0}^{t}\left\langle[X, Z]\left(\phi_{s}(x)\right), Y\left(\phi_{s}(x)\right)\right\rangle d s
$$

Hence

$$
F(x)=\lim _{t \rightarrow \infty} \frac{1}{2 \pi t} \int_{0}^{t}\left\langle[X, Z]\left(\phi_{s}(x)\right), Y\left(\phi_{s}(x)\right)\right\rangle d s
$$

By Fubini's theorem and the invariance of the Riemannian volume we get

$$
\varrho(X)=\frac{1}{2 \pi} \int_{M}\langle[X, Z], Y\rangle \omega
$$

as asserted.
Remark 1. Note that since X is a Killing vector field, we have

$$
\begin{aligned}
\langle[X, Z], X\rangle & =\left\langle\nabla_{X} Z, X\right\rangle+\left\langle\nabla_{X} X, Z\right\rangle=X\langle Z, X\rangle=0 \\
\langle[X, Z], Z\rangle & =\left\langle\nabla_{X} Z, Z\right\rangle-\left\langle\nabla_{Z} X, Z\right\rangle=\frac{1}{2} X\left(\|Z\|^{2}\right)=0
\end{aligned}
$$

So $[X, Z]=\langle[X, Z], Y\rangle Y$, and if for every $x \in M$ we let

$$
\varepsilon(x)= \begin{cases}+1 & \text { if } \omega_{x}(X(x),[X, Z](x), Z(x))>0 \\ -1 & \text { if } \omega_{x}(X(x),[X, Z](x), Z(x))<0 \\ 0 & \text { if }[X, Z](x)=0\end{cases}
$$

then

$$
\varrho(X)=\frac{1}{2 \pi} \int_{M}(\varepsilon \cdot\|[X, Z]\|) \omega
$$

If η is the dual 1-form of Z with respect to the Riemannian metric, then it is not hard to see that $\|X\| \cdot \eta \wedge d \eta=\operatorname{vol}(M)\langle[X, Z], Y\rangle \omega$. Therefore

$$
\varrho(X)=\frac{1}{2 \pi \operatorname{vol}(M)} \int_{M}\|X\| \cdot \eta \wedge d \eta
$$

Remark 2. If $H^{1}(M ; \mathbb{Z})=0$, the function F does not depend on the trivialization $\{Y, Z\}$ of E. Indeed, let $\left\{Y_{1}, Z_{1}\right\}$ and $\left\{Y_{2}, Z_{2}\right\}$ be two trivializations of E as at the beginning. There exists a smooth function
$g: M \rightarrow \mathrm{SO}(2, \mathbb{R})$ such that $Y_{2}(x)=g(x)\left(Y_{1}(x)\right)$ and $Z_{2}(x)=g(x)\left(Z_{1}(x)\right)$ for every $x \in M$. Since $H^{1}(M ; \mathbb{Z})=0$, there is a smooth function $\theta: M \rightarrow \mathbb{R}$ such that $g(x)$ is the rotation by the angle $\theta(x)$. Thus,

$$
\begin{aligned}
& Y_{2}(x)=\cos \theta(x) \cdot Y_{1}(x)+\sin \theta(x) \cdot Z_{1}(x) \\
& Z_{2}(x)=-\sin \theta(x) \cdot Y_{1}(x)+\cos \theta(x) \cdot Z_{1}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle\left[X, Z_{2}\right], Y_{2}\right\rangle \\
& =\left\langle-\sin \theta\left[X, Y_{1}\right]-X(\sin \theta) Y_{1}+\cos \theta\left[X, Z_{1}\right]+X(\cos \theta) Z_{1}, \cos \theta Y_{1}+\sin \theta Z_{1}\right\rangle \\
& \quad=\left\langle\left[X, Z_{1}\right], Y_{1}\right\rangle-X(\theta)=\left\langle\left[X, Z_{1}\right], Y_{1}\right\rangle-\frac{\partial(\theta \circ \phi)}{\partial t}
\end{aligned}
$$

If f_{1} and f_{2} are the corresponding cocycles, we get
and

$$
\widetilde{f}_{1}^{\prime}-\widetilde{f}_{2}^{\prime}=\frac{1}{2 \pi} \cdot \frac{\partial(\theta \circ \phi)}{\partial t}
$$

$$
\widetilde{f}_{1}(t, x)-\widetilde{f}_{2}(t, x)=\frac{1}{2 \pi}\left[\theta\left(\phi_{t}(x)\right)-\theta(x)\right]
$$

that is, the two cocycles are cohomologous, and therefore $F_{1}=F_{2}$.
According to the topological classification of nonsingular Killing vector fields on Riemannian 3-manifolds, given in [1], if M is a homology 3-sphere, the orbits of X are periodic and M is a Seifert manifold. If $T(x)>0$ denotes the period of the orbit of x, then

$$
F(x)=\frac{1}{2 \pi T(x)} \int_{0}^{T(x)}\left\langle[X, Z]\left(\phi_{s}(x)\right), Y\left(\phi_{s}(x)\right)\right\rangle d s
$$

and F is smooth except at a finite number of orbits, the exceptional fibers of the Seifert fibration.

REFERENCES

[1] Y. Carrière, Flots riemanniens, Astérisque 116 (1984), 31-52.
[2] É. Ghys et J.-M. Gambaudo, Enlacements asymptotiques, Topology 36 (1997), 13551379.
[3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience, New York, 1963.
[4] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[5] D. Ruelle, Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), 109-115.

Department of Mathematics
University of Crete
GR-71409 Iraklion, Greece
E-mail: athanako@math.uoc.gr

[^0]: 2000 Mathematics Subject Classification: 37A20, 37E45, 53C20.
 Key words and phrases: Killing vector field, Ruelle rotation.

