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A CLASSIFICATION OF SYMMETRIC ALGEBRAS OF
STRICTLY CANONICAL TYPE

BY

MARTA KWIECIEŃ and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. In continuation of our article in Colloq. Math. 116.1, we give a complete
description of the symmetric algebras of strictly canonical type by quivers and relations,
using Brauer quivers.

Introduction and the main result. Throughout the article, K will
denote a fixed algebraically closed field. By an algebra is meant an asso-
ciative, finite-dimensional K-algebra with an identity, which we shall as-
sume (without loss of generality) to be basic and indecomposable. For an
algebra A, we denote by modA the category of finite-dimensional (over
K) right A-modules and by D : modA → modAop the standard duality
HomK(−,K).

In [21] we describe the structure and homological properties of the Aus-
lander–Reiten quivers of selfinjective algebras of strictly canonical type, that
is, the orbit algebras B̂/G, where B̂ is the repetitive algebra of a branch
extension (equivalently, branch coextension) B of a canonical algebra (in the
sense of Ringel [31]) and G is an infinite cyclic group generated by a strictly
positive automorphism of B̂. Here, we are concerned with the classification
of the symmetric algebras of strictly canonical type. Recall that an algebra
A is called symmetric if A and D(A) are isomorphic as A-A-bimodules. By a
classical result due to Nakayama (see [23], [24]), an algebra A is symmetric if
and only if there exists a nondegenerate, symmetric, associative, K-bilinear
form (−,−) : A×A→ K.

The classical examples of symmetric algebras are provided by the group
algebras KG of finite groups G, or more generally their blocks. In the rep-
resentation theory of blocks of group algebras, a prominent role is played by
the Brauer tree algebras. Namely, by the deep theorem due to Dade, Janusz
and Kupisch (see [1], [13], [18], [19], [20]), every block of finite representation
type of a group algebra is Morita equivalent to a Brauer tree algebra. More-
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over, by results of Gabriel and Riedtmann [15] and Rickard [30], the Brauer
tree algebras are exactly the symmetric algebras which are stably equivalent
and derived equivalent to the symmetric Nakayama algebras.

In the representation theory of symmetric algebras an important role is
played by the trivial extension algebras. The trivial extension

T (B) = B nD(B)

of an algebra B by its minimal injective cogenerator B-B-bimodule D(B) =
HomK(B,K) is the K-algebra whose K-linear space is that of B ⊕ D(B),
and whose multiplication is defined by

(a, f)(b, g) = (ab, ag + fb)

for a, b ∈ B, f, g ∈ D(B). Then T (B) is a symmetric algebra. Namely, the
K-bilinear form (−,−) : T (B)× T (B)→ K defined by

((a, f), (b, g)) = f(b) + g(a)

for a, b ∈ B and f, g ∈ D(B) is nondegenerate, symmetric and associative.
The trivial extension algebras T (B) are given by splittable Hochschild ex-
tensions

0→ D(B)→ T (B)→ B → 0,

corresponding to the trivial elements of the Hochschild cohomology spaces
H2(B,D(B)) [12, Chapter IX]. We also note that the trivial extension al-
gebras T (B) are the orbit algebras B̂/(ν bB) of the repetitive algebras B̂ of
B with respect to the action of the infinite cyclic group generated by the
Nakayama automorphism ν bB of B̂. The representation theory of the trivial
extension algebras has been extensively developed (see [2], [3], [5]–[8], [14],
[16], [17], [22], [25], [26], [28]–[30], [34]–[36], [38]–[40] for some research in
this direction).

We will introduce families Λ(p, q,Tp,T
∗
q ,λ), Λ(p,Tp,λ), Γ (k)(p,Tp,λ),

Γ (k,1)(p,Tp,λ, µ), Γ (k,2)(p,Tp,λ, µ, ξ), Γ (1,1)(p,Tp), Γ (1,2)(p,Tp) of self-
injective algebras, depending on weight sequences p and q of positive in-
tegers, parameter sequences λ, µ, ξ of pairwise different elements of the pro-
jective line P1(K), collections Tp and T ∗q of Brauer trees with distinguished
extreme edges, and positive integers k; we prove the following theorem.

Main Theorem. Let A be a basic, indecomposable, finite-dimensional
algebra over an algebraically closed field K. The following statements are
equivalent :

(i) A is a symmetric algebra of strictly canonical type.
(ii) A is isomorphic to a bound quiver algebra of one of the forms

(1) Λ(p, q,Tp,T
∗
q ,λ);

(2) Λ(p,Tp,λ) for charK = 2;
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(3) Γ (k)(p,Tp,λ), Γ (k,1)(p,Tp,λ, µ), Γ (1,1)(p,Tp);
(4) Γ (k,2)(p,Tp,λ, µ, ξ), Γ (1,2)(p,Tp) for charK 6= 2.

We refer to [21] for needed facts on selfinjective algebras of strictly canon-
ical type, and to the books [4], [32], [33] for background on the representation
theory of algebras.

1. Brauer tree algebras. In this section we introduce the Brauer tree
algebras of multiplicity one (see [1] and [34] for more general classes of Brauer
tree algebras). In this paper, by a Brauer tree T we mean a finite connected
tree, with at least one edge, where for each vertex there is a fixed circular
order on the edges adjacent to it. We draw T in a plane and assume that the
edges adjacent to a given vertex are clockwise ordered. A vertex of T having
only one neighbour in T is said to be an extreme vertex of T . Moreover, the
unique edge of T containing an extreme vertex is said to be an extreme edge
of T .

We associate to a Brauer tree T a Brauer quiver QT defined as follows.
The vertices of QT are the edges of T and there is an arrow i → j in QT if
and only if j is the direct successor of i in the order around some vertex of
T (to which i and j are both adjacent). Hence, the quiver QT is a union of
oriented cycles corresponding to the vertices of T , and every vertex of QT
belongs to exactly two cycles. Note that, for every extreme vertex of T , there
is a loop in QT . The cycles of QT may be divided into two camps: α-camps
and β-camps such that two cycles of QT having nontrivial intersection belong
to different camps. In particular, for each vertex i of QT , we have

• i αi−→ α(i), the arrow in the α-camp of QT starting at i,
• i βi−→ β(i), the arrow in the β-camp of QT starting at i,

and the cycles

Ai = αiαα(i) . . . αα−1(i), Bi = βiββ(i) . . . ββ−1(i),
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We associate to a Brauer tree T the Brauer tree algebra A(T ) = KQT /IT ,
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where IT is the ideal of the path algebra KQT of QT generated by the
elements

Ai −Bi, ββ−1(i)αi, αα−1(i)βi for all vertices i of QT .

Example 1.1. Let T be a Brauer tree of the form

◦

◦

◦ ◦ ◦ ◦

◦

◦

�
�

@
@ 5 4 2

1

3

7

6

Then the Brauer quiver QT of T is of the form
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and A(T ) = KQT /IT , where IT is the ideal of the path algebra KQT of QT
generated by the elements α1β1, β1α2, α2β2, β2α3, α3β3, β3α4, α5β4, β4α1,
α1−β1β2β3β4, α2−β2β3β4β1, α3−β3β4β1β2, α4α5−β4β1β2β3, α4β5, β5α6,
α6β6, β6α7, α7β7, β7α5, α5α4 − β5β6β7, α6 − β6β7β5, α7 − β7β5β6.

We recall the following result (see [17], [34, Section 3]).

Proposition 1.2. Let A be an algebra. The following statements are
equivalent :

(i) A is isomorphic to a Brauer tree algebra A(T ).
(ii) A is isomorphic to the trivial extension algebra T (B) of a tilted al-

gebra B of Dynkin type An, n ≥ 1.

2. Trivial extension algebras of strictly canonical type. The aim
of this section is to describe the trivial extension algebras of strictly canonical
type. We introduce a family of symmetric algebras Λ(p, q,Tp,T

∗
q ,λ). Let

m ≥ 3 be a natural number, p = (p1, . . . , pm) and q = (q1, . . . , qm) sequences
of positive natural numbers, and λ = (λ1, . . . , λm) a sequence of pairwise
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different elements of P1(K) = K ∪ {∞}, normalized so that λ1 =∞, λ2 = 0
and λ3 = 1. Consider the quiver Q(p, q) obtained from the quivers
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(1, 1)∗ (1, 2)∗ (1, q1 − 1)∗

(2, 1)∗ (2, 2)∗ (2, q2 − 1)∗

(m, 1)∗ (m, 2)∗ (m, qm − 1)∗

by identifying the vertices ω with 0∗, and 0 with ω∗. Further, for each pair
(i, ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1}, we define the cycle A(i,ri) in
Q(p, q) around (i, ri) as follows:

A(1,r1) = α1,r1 . . . α1,1α
∗
2,q2 . . . α

∗
2,1α1,p1 . . . α1,r1+1,

A(i,ri) = αi,ri . . . αi,1α
∗
1,q1 . . . α

∗
1,1αi,pi . . . αi,ri+1 for i ≥ 2.

Similarly, for each pair (i, si) with i ∈ {1, . . . ,m}, si ∈ {1, . . . , qi − 1}, we
define the cycle A∗(i,si) in Q(p, q) around (i, si)∗ as follows:

A∗(1,s1) = α∗1,s1 . . . α
∗
1,1α2,p2 . . . α2,1α

∗
1,q1 . . . α

∗
1,s1+1,

A∗(i,si) = α∗i,si . . . α
∗
i,1α1,p1 . . . α1,1α

∗
i,qi . . . α

∗
i,si+1 for i ≥ 2.

Then we define the bound quiver algebra Λ(p, q,λ) = KQ(p, q)/I(p, q,λ),
where I(p, q,λ) is the ideal of the path algebra KQ(p, q) of Q(p, q) gener-
ated by the elements

• αi,1α∗i,qi , α
∗
i,1αi,pi , i ∈ {1, . . . ,m},

• α1,r1+1A(1,r1), r1 ∈ {1, . . . , p1 − 1},
• αi,ri+1A(i,ri), i ∈ {2, . . . ,m}, ri ∈ {1, . . . , pi − 1},
• α∗1,s1+1A

∗
(1,s1), s1 ∈ {1, . . . , q1 − 1},

• α∗i,si+1A
∗
(i,si)

, i ∈ {2, . . . ,m}, si ∈ {1, . . . , qi − 1},
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1, j ∈ {3, . . . ,m},
• α∗j,qj . . . α

∗
j,1 + α∗1,q1 . . . α

∗
1,1 + λjα

∗
2,q2

. . . α∗2,1, j ∈ {3, . . . ,m}.
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Observe that the canonical algebras C(p,λ) and C(q,λ) are quotient
algebras of Λ(p, q,λ).

For p = (p1, . . . , pm) and q = (q1, . . . , qm) as above, we also consider
collections Tp and T ∗q of Brauer trees defined as follows. We define Tp to
be the collection of Brauer trees T(i,ri), i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1},
each of the trees T(i,ri) with one fixed extreme edge, denoted by (i, ri). We
assume that the loop of the Brauer quiverQT(i,ri)

of T(i,ri) at the vertex (i, ri),
corresponding to the chosen extreme edge of T(i,ri), is an α-loop α(i,ri). Then
we have in QT(i,ri)

two β-arrows

β(i, ri)
β(i,ri)←−−−− (i, ri)

ββ−1(i,ri)←−−−−−− β−1(i, ri).

Moreover, we have the β-cycle B(i,ri) = β(i,ri) . . . ββ−1(i,ri) of QT(i,ri)

around (i, ri). Similarly, T ∗q is a collection of Brauer trees T ∗(i,si), where
i ∈ {1, . . . ,m}, si ∈ {1, . . . , qi−1}, each of the trees T ∗(i,si) with one fixed ex-
treme edge, denoted by (i, si)∗. We assume also that the loop of the Brauer
quiver QT ∗

(i,si)
of T ∗(i,si) at the vertex (i, si)∗, corresponding to the chosen

extreme edge of T ∗(i,si), is an α-loop α
∗
(i,si)

= α(i,si)∗ . Then we have in QT ∗
(i,si)

two β-arrows

β((i, si)∗)
β∗
(i,si)←−−−− (i, si)∗

β∗
β−1((i,si)

∗)←−−−−−−−− β−1((i, si)∗).

Moreover, we have the β-cycle B∗(i,si) = β∗(i,ri) . . . β
∗
β−1((i,si)∗)

of QT(i,si)
∗

around (i, si)∗. Denote byQ(p, q,Tp,T
∗
q ) the quiver obtained from the quiver

Q(p, q) and the Brauer quivers QT(i,ri)
and QT ∗

(i,si)
of all Brauer trees of Tp

and T ∗q , respectively, by

• removing the α-loop α(i,ri) from QT(i,ri)
, and glueing the remaining

subquiver of QT(i,ri)
to the quiver Q(p, q) at the vertex (i, ri), for each

pair (i, ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1};
• removing the α-loop α∗(i,si) from QT ∗

(i,si)
, and glueing the remaining

subquiver of QT ∗
(i,si)

to the quiver Q(p, q) at the vertex (i, si)∗, for
each pair (i, si) with i ∈ {1, . . . ,m}, si ∈ {1, . . . , qi − 1}.

Then we define the bound quiver algebra

Λ(p, q,Tp,T
∗
q ,λ) = KQ(p, q,Tp,T

∗
q )/I(p, q,Tp,T

∗
q ,λ),

where I(p, q,Tp,T
∗
q ,λ) is the ideal of the path algebra KQ(p, q,Tp,T

∗
q ) of

Q(p, q,Tp,T
∗
q ) generated by the elements

• αi,1α∗i,qi , α
∗
i,1αi,pi , i ∈ {1, . . . ,m},

• Av−Bv, ββ−1(v)αv, αα−1(v)βv for all vertices v of QT(i,ri)
except the ver-

tex (i, ri), and the elements ββ−1(i,ri)αi,ri , αi,ri+1β(i,ri), A(i,ri) −B(i,ri)

for all (i, ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1},
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• A∗w−B∗w, β∗β−1(w)α
∗
w, α∗α−1(w)β

∗
w for all vertices w of Q∗T(i,si)

except the
vertex (i, si)∗, and the elements β∗β−1((i,si)∗)

α∗i,si , α
∗
i,si+1β

∗
(i,si)

, A∗(i,si)−
B∗(i,si) for all (i, si) with i ∈ {1, . . . ,m}, si ∈ {1, . . . , qi − 1},
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1, j ∈ {3, . . . ,m},
• α∗j,qj . . . α

∗
j,1 + α∗1,q1 . . . α

∗
1,1 + λjα

∗
2,q2

. . . α∗2,1, j ∈ {3, . . . ,m}.

We note that Λ(p, q,Tp,T
∗
q ,λ) = Λ(p, q,λ) if all Brauer trees of Tp and

T ∗q consist only of one (extreme) edge.

Proposition 2.1. The algebra Λ(p, q,Tp,T
∗
q ,λ) is symmetric.

Proof. Let A = Λ(p, q,Tp,T
∗
q ,λ) = KQ(p, q,Tp,T

∗
q )/I(p, q,Tp,T

∗
q ,λ).

By general theory, it is enough to show that there exists a K-linear form
ϕ : A → K such that ϕ(ab) = ϕ(ba) for all elements a, b ∈ A and the
kernel of ϕ does not contain nonzero one-sided ideals of A (see [37, Theo-
rem 2]). It follows from the definition that, for every indecomposable pro-
jective A-module PA(x) with x a vertex of Q(p, q,Tp,T

∗
q ,λ), PA(x) has a

one-dimensional socle and top, which are isomorphic to the simple module
SA(x) at the vertex x. Hence, A is a weakly symmetric algebra, and conse-
quently a selfinjective algebra, by the classical result due to Nakayama [24]
(see also [37, Theorem 4.4]). For each vertex x of Q(p, q,Tp,T

∗
q ), we fix a

maximal cycle wx around x in Q(p, q,Tp,T
∗
q ) with wx 6∈ I(p, q,Tp,T

∗
q ,λ).

Observe that the cosets ux = wx + I(p, q,Tp,T
∗
q ,λ), with x a vertex of

Q(p, q,Tp,T
∗
q ), form a K-linear basis of the socle of A. Then the K-linear

form ϕ : A → K with ϕ(ux) = 1 and ϕ(v + I(p, q,Tp,T
∗
q ,λ)) = 0 for any

path v of Q(p, q,Tp,T
∗
q ) with v + I(p, q,Tp,T

∗
q ,λ) 6∈ socA \ {0} satisfies

the conditions required for A to be symmetric.

Example 2.2. Let B = KQ/I be the bound quiver algebra from Ex-
ample 3.3 in [21], and T (B) the associated trivial extension algebra. Since
T (B) is the orbit algebra B̂/(ν bB), it follows from the considerations in [21,
Example 3.3] that T (B) is the bound quiver algebra T (B) = QT (B)/IT (B),
where QT (B) is the quiver of Figure 2.1 and IT (B) is the ideal of the path
algebra KQT (B) of QT (B) generated by the elements

• α3,1 + α1,3α1,2α1,1 + α2,2α2,1,
α4,5α4,4α4,3α4,2α4,1 + α1,3α1,2α1,1 + µα2,2α2,1,
• β3,2β3,1 + β1,1β2,1, β4,1 + β1,1 + µβ2,1, µ ∈ K \ {0, 1},
• β1,1α1,3, β2,1α2,2, β3,1α3,1, β4,1α4,5,
• α1,1β1,1, α2,1β2,1, α3,1β3,2, α4,1β4,1,
• α1,1β2,1α1,3α1,2α1,2, α1,2α1,2β2,1α1,3α1,2,
• β3,2γ1, α2β3,1, β3,1α1,3α1,2α1,1β3,2 − γ1α3α2, α3α2γ1α3,
• α4,2β4, γ5α4,1, α4,1β1,1α4,5α4,4α4,3α4,2 − β4β5γ5, β5γ5β4β5,
• α4,2α4,1β1,1α4,5α4,4α4,3α4,2, α4,4α4,3α4,2α4,1β1,1α4,5α4,4,
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Fig. 2.1

• α4,4β6, α8α4,3, α4,3α4,2α4,1β1,1α4,5α4,4 − β6β7β8α8,
• β8α8β6β7β8, β6γ6, α9β7, β7β8α8β6 − γ6α9,
• β8γ8, α1,1α8, α8β6β7β8 − γ8α12α11,
• γ10α9, γ6β10, α9γ6 − β10γ10, γ13α11, α12β13, α11γ8α12 − β13γ13,
• α14γ13, β13γ14, γ13β13 − γ14α14, γ15α14, γ14β15, α14γ14 − β15γ15,
• β15α15, α16γ15, γ15β15 − α15α18α16, α18β17, γ17α16,
• α16α15α18 − β17γ17, α15β19, γ19α18, α18α16α15 − β19γ19.

A simple analysis of the relations in T (B) = KQT (B)/IT (B) given by the
above generators of IT (B) shows that T (B) is isomorphic to the algebra
Λ(p, q,Tp,T

∗
q ,λ), where p = (3, 2, 1, 5), q = (1, 1, 2, 1), λ = (∞, 0, 1, µ),

Tp is the collection of Brauer trees with T(1,1), T(1,2), T(2,1), T(4,2), T(4,4)

consisting only of one edge, T(4,1) of the form
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◦ ◦
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@
@

5

4

(4, 1)

T(4,3) of the form

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
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◦
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�
�

�
�
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@

@
@
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@
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@

7

(4, 3)

6

9

10

8

11

13

14

15

16 18

17 19

12

and T ∗q consists of one tree T ∗(3,1) of the form

◦

◦

◦

◦

�
� @

@
2

(3, 1)∗ = 1

3

The following theorem gives a complete description of the trivial exten-
sion algebras of strictly canonical type.

Theorem 2.3. An algebra A is a trivial extension algebra T (B) of strict-
ly canonical type if and only if A is isomorphic to an algebra of the form
Λ(p, q,Tp,T

∗
q ,λ).

Proof. By general theory (see [21]) we know that the class of trivial
extension algebras of strictly canonical type coincides with the class of trivial
extensions T (B) = BnD(B) of branch coextensions B of canonical algebras.



258 M. KWIECIEŃ AND A. SKOWROŃSKI

Let B be a branch coextension [E1,L1, . . . , Es,Ls]C of a canonical alge-
bra C = C(p,λ) of type (p,λ). If B = C then it follows from [21, Example
5.4] that T (B) = T (C) is isomorphic to the algebra Λ(p, q,Tp,T

∗
q ,λ) with

q = (1, . . . , 1), T ∗q an empty collection of Brauer trees, Tp formed by Brauer
trees with one (extreme) edge, or empty if p = (1, . . . , 1). Therefore as-
sume that B 6= C. We will show that T (B) is isomorphic to some algebra
Λ(p, q,Tp,T

∗
q ,λ).

Let p = (p1, . . . , pm), λ = (λ1, . . . , λm), m ≥ 2, with λ1 = ∞, λ2 = 0.
We first define the weight sequence q = (q1, . . . , qm). Fix i ∈ {1, . . . ,m}.
If the unique nonsimple module E(λi) of the stable tube T Cλi of ΓC is not
one of the modules E1, . . . , Es, we set qi = 1. Assume E(λi) = El for some
l ∈ {1, . . . , s}, and let 0∗l = b∗1 → b∗2 → · · · → b∗n be the maximal path of the
branch Li starting at its germ 0∗l . Then we take qi = n + 1. We note that
the vertices b∗1, . . . , b∗n of the above path yield the vertices

(i, 1)∗ = i1 = b∗n, (i, 2)∗ = i2 = b∗n−1, . . . , (i, qi − 1)∗ = ik = b∗1

of the quiver Q(p, q,Tp,T
∗
q ) of the required algebra Λ(p, q,Tp,T

∗
q ,λ) (see

the proof of [21, Theorem 3.1]).
Assume now that pi ≥ 2 for some i ∈ {1, . . . ,m}. Take a vertex (i, ri),

with ri ∈ {1, . . . , pi−1}, lying on the ith path of QC from the source ω to the
sink 0. Our aim is to define a Brauer tree T(i,ri) with a fixed extreme edge.
Let S(i, ri) be the simple C-module at the vertex (i, ri) of QC . If S(i, ri) is
not one of the modules E1, . . . , Es, we define T(i,ri) to be the Brauer tree
consisting of one edge

◦ ◦(i, ri)

Assume that S(i, ri) = Et for some t ∈ {1, . . . , s}. Let
0∗t = b1 → b2 → · · · → bk

be the maximal path of the branch Lt starting at its germ 0∗t . Observe that
such a path consists of β-arrows of Lt. The set of edges of the Brauer tree
T(i,ri) adjacent to the ends of the extreme edge (i, ri) is defined as the Brauer
tree T (1)

(i,ri)

◦ ◦ ◦

◦

◦
◦ ◦

�
�
�

@
@
@

· ·
· · ··

(i, ri)

bk−1

bk b1

b2

bj
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with the clockwise order of edges. If a vertex bj is not the sink of an α-arrow
of QLt , then the edge bj will be an extreme edge of T(i,ri). If bj is such a
sink, let

bj ← aj1 ← aj2 ← · · · ← ajkj

be the maximal α-path of QLt with sink at the vertex bj . Then we enlarge
the above Brauer tree by glueing in the Brauer tree (with the clockwise order
of edges)

◦ ◦ ◦

◦

◦
◦ ◦

�
�
�

@
@
@

· ·
· · ··

bj

aj2

aj1 ajkj

ajkj−1

ajl

at the edge bj . Applying this procedure to all edges b1, . . . , bk of T (1)
(i,ri)

, we

obtain a Brauer tree T (2)
(i,ri)

. In the next step, take a vertex ajl of QLt . If ajl
is not the source of a β-arrow of QLt , then the edge ajl will be an extreme
edge of T(i,ri). If ajl is such a source, let

ajl → cjl1 → cjl2 → · · · → cjlkjl

be the maximal β-path of QLt with source at ajl. Then we enlarge the
above-constructed Brauer tree T (2)

(i,ri)
by glueing in the Brauer tree (with the

clockwise order of edges)

◦ ◦ ◦

◦

◦
◦ ◦

�
�
�

@
@
@

· ·
· · ··

ajl

cjlkjl−1

cjlkjl
cjl1

cjl2

cjlr

at the edge ajl. Applying this procedure to all edges ajl, for all j ∈ {1, . . . , k},
l ∈ {1, . . . , kj}, we obtain a Brauer tree T (3)

(i,ri)
. Repeating this procedure, we

obtain (in finitely many steps) a Brauer tree T(i,ri) = T
(ki)
(i,ri)

all of whose
edges except the chosen extreme edge (i, ri) correspond to the vertices of the
branch Lt, involved in the branch coextension of C using the module Et =
S(i, ri). In such a way, we define the required collection Tp of Brauer trees
T(i,ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1}. Observe that the nontrivial
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(with at least two edges) Brauer trees T(i,ri) correspond to the simple modules
S(i, ri) involved in the branch coextension B of C.

The Brauer trees T ∗(i,si) of the collection T ∗q correspond to the branches
Ll with El being nonsimple modules lying on the mouth of stable tubes of
the P1(K)-family T C . Namely, assume that qi ≥ 2 for some i ∈ {1, . . . ,m}.
We know that the vertices (i, 1)∗ = b∗n, . . . , (i, qi − 1)∗ = b∗1 of the quiver
∆(q)∗ correspond to the maximal β-path

0∗ = b∗1 → b∗1 → · · · → b∗n

of the branch Ll corresponding to the coextension module El = E(λi). Fix
(i, si)∗ for some si ∈ {1, . . . , qi−1}. We indicate how to construct the Brauer
tree T ∗(i,si). Let (i, si)∗ = b∗j . If the vertex b∗j is not the sink of an α-arrow
of the branch Ll, then T ∗(i,si) is defined as the Brauer tree consisting of one
edge

◦ ◦
b∗j

If b∗j is such a sink, let

b∗j ← a∗j1 ← a∗j2 ← · · · ← a∗jnj

be the maximal α-path of QLl with sink at the vertex b∗j . Then the set of
edges of the Brauer tree T ∗(i,si) incident to the extreme edge b∗j = (i, si)∗ is
the Brauer tree (T ∗(i,si))

(1)

◦ ◦ ◦

◦

◦
◦ ◦

�
�
�

@
@
@

· ·
· · ··

b∗j

a∗j2

a∗j1 a∗jnj

a∗jnj−1

a∗jt

with the clockwise order of edges. If a vertex a∗jt is not source of a β-path of
QLl , then a

∗
jt will be an extreme edge of T ∗(i,si). If a

∗
jt is such a source, let

a∗jt → c∗jt1 → c∗jt2 → . . .→ c∗jtnjt

be the maximal β-path of QLl with source a∗jt. Then we enlarge the Brauer
tree (T ∗(i,si))

(1) by glueing in the Brauer tree (with the clockwise order of
edges)
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◦ ◦ ◦

◦

◦
◦ ◦

�
�
�

@
@
@

· ·
· · ··

a∗jt

c∗jthjt

c∗jthjt
c∗jt1

c∗jt2

cjtr

at the edge a∗jt. Applying this procedure to all vertices a∗jt, for all j ∈
{1, . . . , n}, t ∈ {1, . . . , nj}, we obtain a Brauer tree (T ∗(i,si))

(2). Repeating
this procedure, we obtain (in finitely many steps) a Brauer tree T ∗(i,si) =

(T ∗(i,si))
(ri), whose edges correspond to the vertices of the connected sub-

quiver, containing the vertex a∗j1, of the quiver obtained from QLl by remov-
ing the path b∗1 → b∗2 → · · · → b∗n.

It follows from the proofs of Theorems 3.1 and 5.1 in [21] that indeed
T (B) is isomorphic to the algebra Λ(p, q,Tp,Tq,λ) with q, Tp, Tq defined
earlier.

Conversely, the above discussion also shows that every algebra of the
form Λ(p, q,Tp,Tq,λ) is isomorphic to the trivial extension algebra T (B)
for a unique branch coextension B = B(p, q,Tp,Tq,λ) of a canonical algebra
C = C(p,λ) (see also [21]). We also note that Λ(p, q,Tp,Tq,λ) is isomorphic
to the trivial extension algebra T (B∗) of the unique branch coextension
B∗ = B∗(p, q,Tp,Tq,λ) of the canonical algebra C∗ = C(q,λ).

Furthermore, we note that, by the main result of [21], the Auslander–
Reiten quiver ΓA of a trivial extension algebra A of strictly canonical type
has the following shape:

�
�
�
�

�
�
�
�

&%
'$

&%
'$

S0 S1

CA
0

CA
1

XA
0 XA

1

where, for q ∈ {0, 1}, CAq = (CAq (λ))λ∈P1(K) is a P1(K)-family of quasi-
tubes with s(CAq (λ)) + p(CAq (λ)) = r(CAq (λ)) − 1 for each λ ∈ P1(K), and
XAq is a family of components, containing exactly one simple module Sq.
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Here, s(CAq (λ)) denotes the number of simple modules in CAq (λ), p(CAq (λ))
the number of projective modules in CAq (λ), and r(CAq (λ)) the rank of the
stable tube of CAq (λ).

3. Weakly symmetric algebras. The aim of this section is to intro-
duce some families of weakly symmetric algebras of strictly canonical type
and discuss their symmetry.

Let m ≥ 3 be a natural number, p = (p1, . . . , pm) a sequence of positive
natural numbers, and λ = (λ1, . . . , λm) a sequence of pairwise different ele-
ments of P1(K) = K ∪{∞} normalized so that λ1 =∞, λ2 = 0 and λ3 = 1.
Consider the quiver Q(p) of Figure 3.1.
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·

·
·
·

·
·
·

Fig. 3.1

Moreover, let Tp be a collection of Brauer trees T(i,ri), i ∈ {1, . . . ,m},
ri ∈ {1, . . . , pi − 1}, each with one fixed extreme edge, denoted by (i, ri).
We assume that the loop of the Brauer quiver QT(i,ri)

of T(i,ri) at the vertex
(i, ri), corresponding to the chosen extreme edge of T(i,ri), is an α-loop α(i,ri).
Hence we have in QT(i,ri)

two β-arrows

β(i, ri)
β(i,ri)←−−−− (i, ri)

ββ−1(i,ri)←−−−−−− β−1(i, ri).



ALGEBRAS OF STRICTLY CANONICAL TYPE 263

Denote by Q(p,Tp) the quiver obtained from the quiver Q(p) and the
Brauer quivers QT(i,ri)

of the Brauer trees T(i,ri) of Tp by

• removing the α-loop α(i,ri) from QT(i,ri)
, and glueing the remaining

subquiver of QT(i,ri)
to the quiver Q(p) at the vertex (i, ri) for each

pair (i, ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1}.

For each pair (i, ri) with i ∈ {1, . . . ,m} and ri ∈ {1, . . . , pi−1}, we define
the cycles A(i,ri) and Ā(i,ri) of Q(p,Tp) around (i, ri) as follows:

A(1,r1) = α1,r1 . . . α1,1α2,p2 . . . α2,1α1,p1 . . . α1,r1+1,

A(i,ri) = αi,ri . . . αi,1α1,p1 . . . α1,1αi,pi . . . αi,ri+1 for i ≥ 2,

Ā(i,ri) = αi,ri . . . αi,1αi,pi . . . αi,1αi,pi . . . αi,ri+1 for i ≥ 1.

We define the bound quiver algebra

Λ(p,Tp,λ) = KQ(p,Tp)/I(p,Tp,λ),

where I(p,Tp,λ) is the ideal of the path algebra KQ(p,Tp) of Q(p,Tp)
generated by the elements

• αi,1αi,pi , i ∈ {1, . . . ,m},
• Av − Bv, ββ−1(v)αv, αα−1(v)βv for all vertices v of QT(i,ri)

except the
vertex (i, ri), and the elements ββ−1(i,ri)α(i,ri), α(i,ri+1)β(i,ri), A(i,ri) −
B(i,ri) for all (i, ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1},
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1, j ∈ {3, . . . ,m}.

Proposition 3.1.

(i) Λ(p,Tp,λ) is a weakly symmetric algebra of strictly canonical type.
(ii) Λ(p,Tp,λ) is a symmetric algebra if and only if charK = 2.

Proof. (i) Let A be an algebra Λ(p,Tp,λ). We set q = p, T ∗q = Tp, and
let B = B(p, q,Tp,T

∗
q ,λ) be the unique branch coextension of the canonical

algebra C = C(p,λ) such that Λ(p, q,Tp,T
∗
qλ) ∼= T (B). Then A ∼= B̂/(ϕ bB)

for a canonical automorphism ϕ bB of B̂ with ϕ2bB = ν bB, and consequently A
is a weakly symmetric algebra of strictly canonical type.

(ii) Assume A = Λ(p,Tp,λ) is a symmetric algebra. Then there exists a
K-linear form ϕ : A→ K such that ϕ(ab) = ϕ(ba) for all elements a, b ∈ A
and the kernel of ϕ does not contain nonzero one-sided ideals of A. For each
vertex x of Q(p,Tp), the indecomposable projective A-module PA(x) at x
has a one-dimensional socle socPA(x), isomorphic to topPA(x), since A is
weakly symmetric. Hence every nonzero element a ∈ socPA(x) generates the
two-sided ideal AaA = Ka = aK, and then ϕ(a) 6= 0.

We now claim that A being symmetric implies that charK = 2. In order
to simplify the calculations, we identify an element w of the path algebra
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KQ(p,Tp) with the coset w + I(p,Tp,λ) of the bound quiver algebra A =
KQ(p,Tp)/I(p,Tp,λ). Then we have in A the relations

• αi,1αi,pi = 0, i ∈ {1, . . . ,m},
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1 = 0, j ∈ {3, . . . ,m}.

Then, for each j ∈ {3, . . . ,m}, we obtain the relations

• αj,pj . . . αj,1α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1α1,p1 . . . α1,1 = 0,
• αj,pj . . . αj,1α2,p2 . . . α2,1 + α1,p1 . . . α1,1α2,p2 . . . α2,1 = 0,
• α1,p1 . . . α1,1αj,pj . . . αj,1 + λjα2,p2 . . . α2,1αj,pj . . . αj,1 = 0,

for j ∈ {3, . . . ,m}. Applying the symmetry property ϕ(ab) = ϕ(ba) for all
a, b ∈ A, we obtain the equalities

ϕ(αj,pj . . . αj,1α1,p1 . . . α1,1) = −λjϕ(α2,p2 . . . α2,1α1,p1 . . . α1,1)
= −λjϕ(α1,p1 . . . α1,1α2,p2 . . . α2,1)
= λjϕ(αj,pj . . . αj,1α2,p2 . . . α2,1)
= λjϕ(α2,p2 . . . α2,1αj,pj . . . αj,1)
= −ϕ(α1,p1 . . . α1,1αj,pj . . . αj,1)
= −ϕ(αj,pj . . . αj,1α1,p1 . . . α1,1).

Moreover, αj,pj . . . αj,1α1,p1 . . . α1,1 is a nonzero element of the socle of the in-
decomposable projective A-module PA(0) at the central vertex 0 of Q(p,Tp),
and so ϕ(αj,pj . . . αj,1α1,p1 . . . α1,1) 6= 0. Therefore, we conclude that 1 = −1,
and so charK = 2.

Conversely, assume charK 6= 2. For each vertex x of Q(p,Tp) fix a
maximal cycle wx in Q(p,Tp) with wx 6∈ I(p,Tp,λ). Then the coset ux =
wx + I(p,Tp,λ) generates the one-dimensional socle of the indecomposable
projective A-module PA(x) at x. Then the K-linear form ϕ : A → K with
ϕ(ux + I(p)) = 1 and ϕ(v+ I(p,Tp,λ)) = 0 for any path v of Q(p,Tp) with
v + I(p,Tp,λ) 6∈ socA \ {0} satisfies the conditions required for A to be
symmetric, and consequently A = Λ(p,Tp,λ) is a symmetric algebra.

Given two integers k ≥ 1 and s ≥ 0 with 2k + s = m, we define the
bound quiver algebra

Λ(k,s)(p,Tp,λ) = KQ(p,Tp)/I(k,s)(p,Tp,λ),

where I(k,s)(p,Tp,λ) is the ideal of the path algebra KQ(p,Tp) of Q(p,Tp)
generated by the elements

• α2i−1,1α2i,p2i , α2i,1α2i−1,p2i−1 , i ∈ {1, . . . , k},
• αj,1αj,pj , j ∈ {2k + 1, . . . ,m},
• Av − Bv, ββ−1(v)αv, αα−1(v)βv for all vertices v of QT(i,ri)

except the
vertex (i, ri), for all (i, ri) with i ∈ {1, . . . ,m}, ri ∈ {1, . . . , pi − 1},
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• Ā(l,rl) − B(l,rl), ββ−1(l,rl)α(l,rl), α(l,rl+1)β(l,rl) for all (l, rl) with l ∈
{1, . . . , 2k}, rl ∈ {1, . . . , pl − 1},
• A(l,rl)−B(l,rl), ββ−1(l,rl)α(l,rl), α(l,rl+1)β(l,rl) for all (l, rl) with l∈{2k+1,
. . . ,m}, rl ∈ {1, . . . , pl − 1},
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1, j ∈ {3, . . . ,m}.

Proposition 3.2. Let m = 2k + s with k ≥ 1, s ≥ 0. Then

(i) Λ(k,s)(p,Tp,λ) is a weakly symmetric algebra of strictly canonical
type.

(ii) Λ(k,s)(p,Tp,λ) is a symmetric algebra if and only if the following
conditions hold :

(1) λ2i−1λ2i = λ4 for k ≥ 3 and i ∈ {3, . . . , k},
(2) s ∈ {0, 1, 2},

(a) λ4 = −1 for k = 1, s = 2,
(b) λ2

2k+1 = λ4 for k ≥ 2, s = 1,
(c) λ2

2k+1 = λ4 = λ2
2k+2 for k ≥ 2, s = 2.

Proof. (i) Let m = 2k + s with k ≥ 1, s ≥ 0, and A = Λ(k,s)(p,Tp,λ).
Let q = (q1, . . . , qm) be the weight sequence obtained from the weight se-
quence p = (p1, . . . , pm) by the exchange q2i−1 = p2i and q2i = p2i−1 for
i ∈ {1, . . . , k}, and taking qj = pj for j ∈ {2k + 1, . . . ,m}. Further, let T ∗q
be the collection of Brauer trees obtained from Tp by taking T ∗2i−1,r2i−1

=
T2i,r2i−1 and T ∗2i,r2i = T2i−1,r2i for i ∈ {1, . . . , k}, r2i−1 ∈ {1, . . . , q2i−1−1} =
{1, . . . , p2i − 1}, r2i ∈ {1, . . . , q2i − 1} = {1, . . . , p2i−1 − 1}, and T ∗j,rj = Tj,rj
for j ∈ {2k + 1, . . . ,m} and rj ∈ {1, . . . , qj − 1} = {1, . . . , pj − 1}. Con-
sider the branch coextension B = B(p, q,Tp,T

∗
q ,λ) of the canonical algebra

C = C(p,λ) such that Λ(p, q,Tp,T
∗
q ,λ) ∼= T (B). Then A ∼= B̂/(ψ bB) for a

canonical automorphism ψ bB of B̂ with ψ2bB = ν bB, and consequently A is a
weakly symmetric algebra of strictly canonical type.

(ii) Assume that A = Λ(k,s)(p,Tp,λ) is a symmetric algebra. Let ϕ : A→
K be a K-linear form such that ϕ(ab) = ϕ(ba) for all a, b ∈ A and the kernel
of ϕ does not contain nonzero one-sided ideals of A. For each vertex x of the
quiver Q(p,Tp) of the bound quiver algebra A = KQ(p,Tp)/I(k,s)(p,Tp,λ),
the indecomposable projective A-module PA(x) at x has one-dimensional so-
cle socPA(x), isomorphic to topPA(x), since A is weakly symmetric. Hence
every nonzero element a ∈ socPA(x) generates the two-sided ideal AaA =
Ka = aK, and then ϕ(a) 6= 0. In particular, this is the case for nonzero
elements of the socle socPA(0) of the indecomposable projective A-module
PA(0) at the center 0 of the quiver Q(p,Tp). We claim that the required
conditions (1) and (2) hold.
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In order to simplify the calculations, we identify an element w of the path
algebra KQ(p,Tp) with the coset w + I(k,s)(p,Tp,λ) of the bound quiver
algebra A = KQ(p,Tp)/I(k,s)(p,Tp,λ). Then we have in A the relations

• α2i−1,1α2i,p2i = 0, α2i,1α2i−1,p2i−1 = 0, i ∈ {1, . . . , k};
• αl,1αl,pl = 0, l ∈ {2k + 1, . . . ,m},
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1 = 0, j ∈ {3, . . . ,m}.

Thus we arrive at the relations

• αj,pj . . . αj,1α1,p1 . . . α1,1 + α1,p1 . . . α1,1α1,p1 . . . α1,1 = 0,
• αj,pj . . . αj,1α2,p2 . . . α2,1 + λjα2,p2 . . . α2,1α2,p2 . . . α2,1 = 0,
• α1,p1 . . . α1,1α2i,p2i . . . α2i,1 + λ2i−1α2,p2 . . . α2,1α2i,p2i . . . α2i,1 = 0,
• α1,p1 . . . α1,1α2i−1,p2i−1 . . . α2i−1,1+λ2iα2,p2 . . . α2,1α2i−1,p2i−1 . . . α2i−1,1

= 0,
• α1,p1 . . . α1,1αs,ps . . . αs,1 + λsα2,p2 . . . α2,1αs,ps . . . αs,1 = 0,

for j ∈ {3, . . . ,m}, i ∈ {2, . . . , k} and s ∈ {2k + 1, . . . ,m}.
Applying the property ϕ(ab) = ϕ(ba) for all a, b ∈ A, we obtain the

equalities

ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −ϕ(α2i,p2i . . . α2i,1α1,p1 . . . α1,1)
= −ϕ(α1,p1 . . . α1,1α2i,p2i . . . α2i,1)
= λ2i−1ϕ(α2,p2 . . . α2,1α2i,p2i . . . α2i,1)
= λ2i−1ϕ(α2i,p2i . . . α2i,1α2,p2 . . . α2,1)
= −λ2i−1λ2iϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1)

for i ∈ {2, . . . , k}, and the equalities

ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −ϕ(αj,pj . . . αj,1α1,p1 . . . α1,1)
= −ϕ(α1,p1 . . . α1,1αj,pj . . . αj,1)
= λjϕ(α2,p2 . . . α2,1αj,pj . . . αj,1)
= λjϕ(αj,pj . . . αj,1α2,p2 . . . α2,1)

= −λ2
jϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1)

for j ∈ {2k + 1, . . . ,m}. Moreover, α1,p1 . . . α1,1α1,p1 . . . α1,1 is a nonzero
element of the socle of the indecomposable projective A-module PA(0) at the
central vertex 0 of Q(p,Tp), and so ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) 6= 0. Hence,
we conclude that λ2i−1λ2i = λ2j−1λ2j for i, j ∈ {2, . . . , k}. In particular, for
k ≥ 3 and j = 2, we obtain λ2i−1λ2i = λ3λ4 = λ4 for i ∈ {3, . . . , k}, and so
(1) holds.

Assume that k ≥ 2. Then we have the equalities

• ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −λ2
2k+1ϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1) if

s ≥ 1,
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• ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −λ2
2k+2ϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1) if

s ≥ 2,
• ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −λ2

2k+3ϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1) if
s ≥ 3,

and

• ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −λ2i−1λ2iϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1)

if i ∈ {2, . . . , k}. Hence, we obtain

• λ4 = λ2
2k+1 for s ≥ 1,

• λ4 = λ2
2k+1 = λ2

2k+2 for s ≥ 2,
• λ4 = λ2

2k+1 = λ2
2k+2 = λ2

2k+3 for s ≥ 3.

Because λ2k+1, λ2k+2, λ2k+3 are pairwise different, we conclude that s ∈
{0, 1, 2}. Therefore, conditions (2b) and (2c) hold.

Assume now k = 1 and s = 2. Then we have in A the relations

• α1,1α2,p2 = 0, α2,1α1,p1 = 0, α3,1α3,p3 = 0, α4,1α4,p4 = 0,
• αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1 = 0, j ∈ {3, 4}.

Hence, we get the relations

• αj,pj . . . αj,1α1,p1 . . . α1,1 + α1,p1 . . . α1,1α1,p1 . . . α1,1 = 0,
• αj,pj . . . αj,1α2,p2 . . . α2,1 + α2,p2 . . . α2,1α2,p2 . . . α2,1 = 0,
• α1,p1 . . . α1,1αj,pj . . . αj,1+λjα2,p2 . . . α2,1αj,pj . . . αj,1 = 0 for j ∈ {3, 4}.

Applying the property ϕ(ab) = ϕ(ba) for all a, b ∈ A, we obtain the equalities

ϕ(α1,p1 . . . α1,1α1,p1 . . . α1,1) = −ϕ(αj,pj . . . αj,1α1,p1 . . . α1,1)
= −ϕ(α1,p1 . . . α1,1αj,pj . . . αj,1)
= λjϕ(α2,p2 . . . α2,1αj,pj . . . αj,1)
= λjϕ(αj,pj . . . αj,1α2,p2 . . . α2,1)

= −λ2
jϕ(α2,p2 . . . α2,1α2,p2 . . . α2,1)

for j ∈ {3, 4}. Therefore, we conclude that 1 = λ2
3 = λ2

4, and hence λ4 = −1
(because λ3 6= λ4).

Conversely, assume that conditions (1) and (2) of (ii) are satisfied. For
each vertex x of Q(p,Tp) fix a maximal path wx in Q(p,Tp) with wx 6∈
I(k,s)(p,Tp,λ). Then the coset ux = wx + I(k,s)(p,Tp,λ) generates the one-
dimensional socle of the indecomposable projective A-module PA(x) at x.
Hence the K-linear form ϕ : A → K with ϕ(ux + I(k,s)(p)) = 1 and ϕ(v +
I(k,s)(p,Tp,λ)) = 0 for any path v of Q(p,Tp) with v + I(k,s)(p,Tp,λ) 6∈
socA \ {0} satisfies the conditions required for A to be symmetric, and
consequently A = Λ(k,s)(p,Tp,λ) is a symmetric algebra.



268 M. KWIECIEŃ AND A. SKOWROŃSKI

We note that the elements λ1 = ∞, λ2 = 0, λ3 = 1, λ4, . . . , λm of the
projective line P1(K) = K ∪ {∞} are pairwise different. Hence, the algebra
Λ(k,2)(p,Tp,λ) being symmetric forces charK 6= 2.

For an integer k ≥ 2 and a sequence λ1 =∞, λ2 = 0, λ3 = 1, λ4, . . . , λ2k

of pairwise different elements of P1(K) satisfying the equations λ2i−1λ2i

= λ4 for i ∈ {3, . . . , k} (in case k ≥ 3), we have the following symmetric
algebras of strictly canonical type:

• Γ (k)(p,Tp,λ) = Λ(k,0)(p,Tp,λ) for m = 2k;
• Γ (k,1)(p,Tp,λ, µ) = Λ(k,1)(p,Tp,λ

(1)) for m = 2k + 1, with λ(1) =
(λ1, . . . , λ2k, µ) for a square root µ of λ4;

• Γ (k,2)(p,Tp,λ, µ, ξ) = Λ(k,2)(p,Tp,λ
(2)) for m = 2k + 2, charK 6= 2,

with λ(2) = (λ1, . . . , λ2k, µ, ξ) for two different square roots µ, ξ of λ4.

Moreover, for k = 1, we have the following symmetric algebras of strictly
canonical type:

• Γ (1,1)(p,Tp) = Λ(1,1)(p,Tp,λ) for m = 3 and λ = (λ1, λ2, λ3) =
(∞, 0, 1),

• Γ (1,2)(p,Tp) = Λ(1,2)(p,Tp,λ) for m = 4, charK 6= 2, and λ =
(λ1, λ2, λ3, λ4) = (∞, 0, 1,−1).

4. Symmetric algebras of strictly canonical type. In this section
we complete the proof of the Main Theorem of the paper.

First we recall a general result proved by Ohnuki, Takeda and Yamagata
in [27].

Theorem 4.1. Let B be a basic, indecomposable algebra, ϕ a positive
automorphism of B̂, and A = B̂/(ϕν bB). Then A is a symmetric algebra if
and only if A ∼= B.

The trivial extension algebras of strictly canonical type have been de-
scribed in Theorem 2.3. Therefore, in order to complete the description of
the symmetric algebras of strictly canonical type, we have to describe the
symmetric algebras of the form A = B̂/(ψ), where B is a branch extension
(equivalently, coextension) of a canonical algebra C and ψ is a strictly posi-
tive automorphism of B̂ of the form fϕ bB, with f a rigid automorphism of B̂
and ϕ bB the canonical automorphism of B̂ such that ϕ2bB = ν bB (see [21, Propo-
sition 5.2]). Moreover, since every symmetric algebra is weakly symmetric,
for such ψ = fϕ bB we have ψ2(x) = x for any object x = em,i of B̂. In fact,
as A = B̂/(ψ) is symmetric, by Theorem 4.1 we may take ψ with ψ2 = ν bB.

We also note that, by the main result of [21], the Auslander–Reiten quiver
ΓA of such a symmetric algebra A = B̂/(ψ), ψ2 = ν bB, has the following
shape:
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where CA = (CA(λ))λ∈P1(K) is a P1(K)-family of quasi-tubes with s(CA(λ))+
p(CA(λ)) = r(CA(λ)) − 1 for each λ ∈ P1(K), and XA is a family of com-
ponents, containing exactly one simple module S and exactly one projective
module P (S) (the projective cover of S).

The following theorem is a direct consequence of Theorem 4.1 and Propo-
sitions 3.1 and 3.2, and completes the proof of the Main Theorem.

Theorem 4.2. Let A = B̂/(ψ) be a selfinjective algebra of strictly cano-
nical type with ψ2 = ν bB. Then A is a symmetric algebra if and only if A is
isomorphic to the bound quiver algebra of one of the forms

(1) Λ(p,Tp,λ) for charK = 2;
(2) Γ (k)(p,Tp,λ), Γ (k,1,µ)(p,Tp,λ), Γ (1,1)(p,Tp);
(3) Γ (k,2)(p,Tp,λ, µ, ξ), Γ (1,2)(p,Tp) for charK 6= 2.
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