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BESOV SPACES AND 2-SUMMING OPERATORS

BY

M. A. FUGAROLAS (Santiago de Compostela)

Abstract. Let Π2 be the operator ideal of all absolutely 2-summing operators and
let Im be the identity map of the m-dimensional linear space. We first establish upper
estimates for some mixing norms of Im. Employing these estimates, we study the embed-
ding operators between Besov function spaces as mixing operators. The result obtained is
applied to give sufficient conditions under which certain kinds of integral operators, acting
on a Besov function space, belong to Π2; in this context, we also consider the case of the
square Π2 ◦Π2.

1. Introduction. Let us start with some preliminaries. For the general
theory of operator ideals we refer the reader to the monograph [14].

The class of all (bounded linear) operators between arbitrary Banach
spaces is denoted by L, while L(E,F ) stands for the space of those operators
acting from E into F , equipped with the usual operator norm

‖S‖ = ‖S : E → F‖ := sup{‖Sx‖ : ‖x‖ ≤ 1}.
The set Fn(E,F ) consists of all S∈L(E,F ) such that S(E) :={Sx : x∈E}
is at most n-dimensional. The dual of E is denoted by E ′, the value of a ∈ E′
at x ∈ E by 〈x, a〉, and the identity map of the m-dimensional linear space
by Im.

In the following, by [Ms,r, µs,r] and [Πq,p, πq,p], with 1 ≤ r ≤ s ≤ ∞
and 1 ≤ p ≤ q ≤ ∞, we denote the normed operator ideals of (s, r)-mixing
and absolutely (q, p)-summing operators, respectively. For p = q we have the
normed operator ideal [Πp, πp] of absolutely p-summing operators. The basic
facts related to them are established in [14, Chapters 17 and 20]. Further
information is also given in [6] and [7].

For 0 < p, u ≤ ∞ the Lorentz sequence space lp,u consists of all bounded
sequences x = (ξk) having a finite quasi-norm

λp,u(x) :=





( ∞∑

n=1

[n1/p−1/usn(x)]u
)1/u

if 0 < u <∞,

sup
n

[n1/psn(x)] if u =∞,

2000 Mathematics Subject Classification: 47B10, 47L20, 46E35, 47G10.

[1]



2 M. A. FUGAROLAS

where (sn(x)) is the non-increasing rearrangement of x. For p = u we get
the classical space of p-summable sequences, denoted by lp.

If T ∈ L(E,F ) and n = 1, 2, . . . , then the nth approximation number
and Weyl number are defined by

an(T ) := inf{‖T − L‖ : L ∈ Fn−1(E,F )},
xn(T ) := sup{an(TX) : X ∈ L(l2, E), ‖X‖ ≤ 1}

respectively. We write T ∈ L(x)
p,u(E,F ) if (xn(T )) ∈ lp,u, and we define

L(x)
p,u(T ) := λp,u(xn(T )).

Then [L(x)
p,u, L

(x)
p,u] is a quasi-normed operator ideal, introduced by A. Pietsch

in [12] (see also [15, Chapter 2]).
If 1 ≤ p ≤ ∞, then the dual exponent p′ is determined by 1/p+1/p′ = 1.
By c, c1, c2, . . . we always denote positive constants, possibly depending

on certain exponents or operators, but not on other quantities like natural
numbers.

2. Inequalities for mixing norms. First, we have

Lemma 2.1. Let 2 < q, s ≤ ∞ with 1/2 − 1/s > 1/q. Let E and F be
Banach spaces and let T ∈ Fn(E,F ) for n = 1, 2, . . . . Then

µs,2(T ) ≤ cn1/2−1/s−1/qπq,2(T ).

Proof. If 1/t+ 1/s = 1/2, from [3] we have L(x)
t,1 ⊆Ms,2. Combining the

above inclusion with well-known inequalities of Lewis type related to Weyl
numbers (see [12]), we arrive at

µs,2(T ) ≤ c1L(x)
t,1 (T ) ≤ c2n1/t−1/qL(x)

q,∞(T ) ≤ c2n1/t−1/qπq,2(T )

since 0 < t < q ≤ ∞ and L
(x)
q,∞(T ) ≤ πq,2(T ), which also follows by [12].

We are now in a position to give

Proposition 2.2. Let

1/r :=





1/p− 1/q if 1 ≤ p ≤ q ≤ 2,

1/p− 1/2 if 1 ≤ p ≤ 2 ≤ q ≤ ∞,
0 if 2 ≤ p ≤ q ≤ ∞.

(i) If 2 < s ≤ ∞ and 1/2− 1/s > 1/r, then

µs,2(In : lnp → lnq ) ≤ c1n1/2−1/s−1/r

for n = 1, 2, . . . , whenever 2 < r ≤ ∞.
(ii) If 2 ≤ s ≤ ∞ and 1/2− 1/s ≤ 1/r, then

µs,2(In : lnp → lnq ) ≤ c2
for n = 1, 2, . . . .
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Proof. (i) By [1] and [2] (see also [15, (1.6.7)]), the embedding operator
I from lp into lq satisfies I ∈ Πr,2(lp, lq). Hence

πr,2(In : lnp → lnq ) ≤ c3 := πr,2(I : lp → lq)

for n = 1, 2, . . . . Since 2 < r ≤ ∞, in view of Lemma 2.1 we have

µs,2(In : lnp → lnq ) ≤ cn1/2−1/s−1/rπr,2(In : lnp → lnq ) ≤ cc3n1/2−1/s−1/r,

which is the desired estimate with c1 := cc3.
(ii) If 1 ≤ p ≤ q ≤ 2 and 1 ≤ p ≤ 2 ≤ q ≤ ∞, from [3] we know that

the above embedding I satisfies I ∈ Ms,2(lp, lq), whenever 1/2− 1/s ≤ 1/r.
Consequently,

µs,2(In : lnp → lnq ) ≤ c2 := µs,2(I : lp → lq)

for n = 1, 2, . . . . In the case 2 ≤ p ≤ q ≤ ∞ we have 0 ≤ 1/2−1/s ≤ 1/r = 0,
hence s = 2 and

[Ms,2, µs,2] = [L, ‖ ‖],
and the inequality follows with c2 := 1.

Remark. By [14, (22.3.7)] we know that the operator ideals Ms,2 and
Πt,2, with 1/s + 1/t = 1/2, have the same limit order. Using [4] (see also
[14, (22.6.8)]) for the limit order of Πt,2, one sees that the estimates given
in Proposition 2.2 are the best possible.

3. Besov spaces and mixing operators. Let −∞ < σ < ∞ and
1 ≤ p, u ≤ ∞. The Besov sequence space bσp,u consists of all scalar sequences
x = (ξm,n), with the index set

{(m,n) : m = 0, 1, . . . ; n = 1, . . . , 2m}
lexicographically ordered, such that the norm

‖x‖bσp,u :=
( ∞∑

m=0

[
2mσ

( 2m∑

n=1

|ξm,n|p
)1/p]u)1/u

is finite; see [13] and [15, (5.4.1)]. In the cases when p = ∞ or u = ∞ the
usual modifications are required.

According to [15, (5.4.1)] we have bσp,u := [lu, 2mσl2
m

p ], and using [14,
(C.4.2)] we obtain (bσp,u)′ = b−σp′,u′ if −∞ < σ <∞ and 1 ≤ p, u <∞.

In order to prove the next proposition, an auxiliary result is required.

Lemma 3.1. Let −∞ < σ, τ < ∞, 1 ≤ p, q, u, v ≤ ∞ and σ − τ >
max (1/q − 1/p, 0). Let [A, A] be a normed operator ideal. Assume there
exist constants c, α ≥ 0 such that σ − τ > α and

A(I2m : l2
m

p → l2
m

q ) ≤ c2mα
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for m = 0, 1, 2, . . . . Then I ∈ A(bσp,u, b
τ
q,v), where I is the natural embedding

from bσp,u into bτq,v.

Proof. We consider the canonical operators J2m ∈ L(l2
m

q , bτq,v) and Q2m

∈ L(bσp,u, l
2m
p ) defined by

J2m(ξ1, . . . , ξ2m) := (0; . . . ; 0, . . . , 0; ξ1, . . . , ξ2m ; 0, . . . , 0; . . .),

Q2m(ξ0,1; . . . ; ξm,1, . . . , ξm,2m ; . . .) := (ξm,1, . . . , ξm,2m).

Then ‖J2m‖ = 2mτ and ‖Q2m‖ = 2−mσ. Hence
∞∑

m=0

A(J2mI2mQ2m) ≤
∞∑

m=0

‖J2m‖A(I2m) ‖Q2m‖ ≤ c
∞∑

m=0

2m(α+τ−σ) <∞.

Therefore
∑∞
m=0 J2mI2mQ2m is convergent in the Banach space A(bσp,u, b

τ
q,v)

and since I =
∑∞
m=0 J2mI2mQ2m in L(bσp,u, b

τ
q,v), it follows that

I ∈ A(bσp,u, b
τ
q,v).

Let σ > 0 and 1 ≤ p, u ≤ ∞. The Besov function space [Bσ
p,u(0, 1), E]

consists of certain E-valued functions defined on the unit interval [0, 1] (see
[15, (6.4)]). If E is the scalar field, then we simply write Bσ

p,u(0, 1).
For m > σ+1−1/p, the Ciesielski transform, denoted by Cm, establishes

an isomorphism between

Bσp,u(0, 1) and lmp ⊕ bσ−1/p+1/2
p,u .

Further information is also given in [15, (6.4)], where the original papers [5]
and [16] with the complete proof of this deep result are quoted.

For the embedding operator IB from Bσp,u(0, 1) into Bτq,v(0, 1)′, which
exists if σ + τ > 1/p+ 1/q − 1, we state

Proposition 3.2. Let σ, τ > 0, 1 ≤ p, u ≤ ∞ and 1 ≤ q, v <∞. Let

1/t :=





1/p− 1/q′ if 1 ≤ p ≤ q′ ≤ 2,

1/p− 1/2 if 1 ≤ p ≤ 2 ≤ q′ ≤ ∞,
0 if 2 ≤ p ≤ q′ ≤ ∞.

Consider the following two cases:

(i) 2 < s ≤ ∞, 2 < t ≤ ∞, 1/2− 1/s > 1/t and

σ + τ − 1/p− 1/q + 1 > 1/2− 1/s− 1/t.

(ii) 2 ≤ s ≤ ∞, 1/2− 1/s ≤ 1/t and

σ + τ − 1/p− 1/q + 1 > 0.

If either (i) or (ii) is satisfied , then

IB ∈ Ms,2(Bσp,u(0, 1), Bτq,v(0, 1)′).
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Proof. In (i) and (ii) we have σ + τ > 1/p+ 1/q − 1. Let m > max (σ +
1 − 1/p, τ + 1 − 1/q). From [15, (6.4.13)] the embedding IB is related to
embedding operators Im and Ib acting between sequence spaces by

Bσp,u(0, 1) Bτq,v(0, 1)′

lmp ⊕ bσ−1/p+1/2
p,u (lmq )′ ⊕ (bτ−1/q+1/2

q,v )′

Cm
��

IB //

Im⊕Ib //

C′m

OO

(i) In this case, by Proposition 2.2(i) we have

µs,2(I2m : l2
m

p → l2
m

q′ ) ≤ c12mα

for m = 0, 1, 2, . . . , with α := 1/2 − 1/s − 1/t. We have (bτ−1/q+1/2
q,v )′ =

b
−τ+1/q−1/2
q′,v′ , and from Lemma 3.1 it follows that

Jb ∈ Ms,2(bσ−1/p+1/2
p,u , b

−τ+1/q−1/2
q′,v′ ),

where Jb is the natural embedding from b
σ−1/p+1/2
p,u into b−τ+1/q−1/2

q′,v′ . Hence,
in view of the above diagram we obtain

IB ∈ Ms,2(Bσp,u(0, 1), Bτq,v(0, 1)′).

(ii) Now, it follows from Proposition 2.2(ii) that

µs,2(I2m : l2
m

p → l2
m

q′ ) ≤ c2
for m = 0, 1, 2, . . . , and by Lemma 3.1 for the embedding Jb we get

Jb ∈ Ms,2(bσ−1/p+1/2
p,u , b

−τ+1/q−1/2
q′,v′ ).

Thus, the preceding diagram also yields

IB ∈ Ms,2(Bσp,u(0, 1), Bτq,v(0, 1)′).

4. Integral operators, Besov spaces and Π2. A kernel K defined on
the unit square [0, 1]× [0, 1] belongs to

[Bσp,u(0, 1), Bτq,v(0, 1)]

if the function-valued function

KX : ξ → K(ξ, ·)
belongs to [Bσp,u(0, 1), Bτq,v(0, 1)].

We observe that the above type of kernel was introduced by A. Pietsch
in [13] (see also [15, (6.4.17)]) in order to establish an important result
concerning the distribution of eigenvalues of integral operators.

We formulate
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Theorem 4.1. Let σ, τ > 0, 1 ≤ p, u ≤ ∞ and 1 ≤ q, v < ∞. Let
s := max (p, u) and

1/t :=





1/p− 1/q′ if 1 ≤ p ≤ q′ ≤ 2,

1/p− 1/2 if 1 ≤ p ≤ 2 ≤ q′ ≤ ∞,
0 if 2 ≤ p ≤ q′ ≤ ∞.

Consider the following two cases:

(i) 2 < s ≤ ∞, 2 < t ≤ ∞, 1/2− 1/s > 1/t and

σ + τ − 1/p− 1/q + 1 > 1/2− 1/s− 1/t.

(ii) 2 ≤ s ≤ ∞, 1/2− 1/s ≤ 1/t and

σ + τ − 1/p− 1/q + 1 > 0.

Suppose that either (i) or (ii) is satisfied. If K ∈ [Bσp,u(0, 1), Bτq,v(0, 1)], then

TK : f(η) 7→
1�

0

K(ξ, η)f(η) dη

satisfies TK ∈ Π2(Bσp,u(0, 1), Bσp,u(0, 1)).

Proof. The operator TK admits the factorization TK = SKIB:

TK : Bσp,u(0, 1) IB−→ Bτq,v(0, 1)′ SK−→ Bσp,u(0, 1),

where SK(a) := 〈KX(·), a〉, and from [15, (6.4.16)] we get

SK ∈ Πs(Bτq,v(0, 1)′, Bσp,u(0, 1)).

Applying Proposition 3.2, in both cases (i) and (ii), we obtain

IB ∈ Ms,2(Bσp,u(0, 1), Bτq,v(0, 1)′).

Now the formula
[Πs, πs] ◦ [Ms,2, µs,2] ⊆ [Π2, π2]

(see [14, (20.2.1)]) completes the proof.

A variant of the above result is

Theorem 4.2. Let σ, τ > 0, 1 ≤ p, u ≤ ∞ and 1 ≤ q, v < ∞ be such
that q′ ≤ p. Let s := max (q′, u). Suppose that 2 < s ≤ ∞ and

σ + τ − 1/p− 1/q + 1/2 + 1/s > 0.

If K ∈ [Bσp,u(0, 1), Bτq,v(0, 1)], then

TK : f(η) 7→
1�

0

K(ξ, η)f(η) dη

satisfies TK ∈ Π2(Bσq′,u(0, 1), Bσq′,u(0, 1)).
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Proof. Since 1 < q′ ≤ p ≤ ∞, from [15, (6.4.4)] we have the (obvious)
inclusion

[Bσp,u(0, 1), Bτq,v(0, 1)] ⊆ [Bσq′,u(0, 1), Bτq,v(0, 1)],

hence K ∈ [Bσq′,u(0, 1), Bτq,v(0, 1)]. Moreover, if α := 1/2− 1/s then σ+ τ −
1/p− 1/q + 1 > α, and Theorem 4.1(i) yields the assertion.

Let (Π2)2 be the square Π2 ◦Π2 (see [14, (7.1)]). Finally, we get

Theorem 4.3. Let σ, τ > 0, 1 ≤ p, u ≤ 2 and 1 ≤ q, v <∞. Let

β :=
{

1/2− 1/p+ 1/q′ if 1 ≤ q′ ≤ 2,

1− 1/p if 2 ≤ q′ ≤ ∞.
Suppose that σ+ τ − 1/p− 1/q+ 1 > β. If K ∈ [Bσp,u(0, 1), Bτq,v(0, 1)], then

TK : f(η) 7→
1�

0

K(ξ, η)f(η) dη

satisfies TK ∈ (Π2)2(Bσp,u(0, 1), Bσp,u(0, 1)).

Proof. From [14, (22.4.9)] we have

π2(I2m : l2
m

p → l2
m

q′ ) = 2mβ

for m = 0, 1, 2, . . . . Therefore, by Lemma 3.1 the natural embedding Jb from
b
σ−1/p+1/2
p,u into b−τ+1/q−1/2

q′,v′ satisfies

Jb ∈ Π2(bσ−1/p+1/2
p,u , b

−τ+1/q−1/2
q′,v′ ).

Using the diagram given in the proof of Proposition 3.2 we now obtain

IB ∈ Π2(Bσp,u(0, 1), Bτq,v(0, 1)′).

It remains to recall the factorization TK = SKIB given in the proof of
Theorem 4.1, with SK ∈ Π2(Bτq,v(0, 1)′, Bσp,u(0, 1)).

Remarks. (i) We recall two important properties of (Π2)2: (a) as proved
by H. König [10] (see also [11, (4.a.6)] and [15, (4.2.30)]) this operator ideal
admits a spectral trace, and (b) every (Π2)2-operator is nuclear (see [14,
(24.6.5)]).

(ii) In [8] and [9] sufficient conditions for kernels of Besov type to generate
operators belonging to the idealsΠ1 and (Π2)(a)

2,1 respectively are established.

Here, (Π2)(a)
2,1 denotes the collection of all operators whose approximation

numbers with respect to the 2-summing norm are in l2,1; this operator ideal
has the above properties (a) and (b).

(iii) There is a translation of the previous results from the continuous
into the discrete case: one can obtain the corresponding results for matrix
operators of Besov type. For further information on these matrix operators
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and operator ideals different from Π2 and (Π2)2, one can see [8], [9], [13]
and [15, (5.4)].
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