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COMPLETELY MIXING MAPS WITHOUT LIMIT MEASURE

BY

GERHARD KELLER (Erlangen)

Abstract. We combine some results from the literature to give examples of com-
pletely mixing interval maps without limit measure.

Let X be a compact metric space with Borel σ-algebra B and equipped
with some Borel measure m. Consider a transformation T : X → X that is
non-singular with respect to m, which means that m(T−1A) = 0 whenever
m(A) = 0 for each Borel set A. Let P : L1

m → L1
m be the Frobenius–Perron

operator of T so that�
ϕ · Pnf dm =

�
(ϕ ◦ Tn) · f dm ∀f ∈ L1

m ∀ϕ ∈ L∞m .
We adopt the following definitions:

• The system (X,B,m, T ) is completely mixing if limn→∞ ‖Pnf‖ = 0
for each f ∈ L1

m with � f dm = 0.
• A probability measure µ on B is a limit measure for (X,B,m, T ) if

for each probability density h ∈ L1
m the measures P nh ·m converge

weakly to µ, in other words, if

lim
n→∞

�
ϕ · Pnf dm =

�
ϕdµ ·

�
f dm ∀f ∈ L1

m ∀ϕ ∈ C(X).

• If a system (X,B,m, T ) is completely mixing and has a nontrivial limit
measure µ (i.e. µ is not a one-point mass), then µ is called a stochastic
attractor for the system.
• A probability measure µ on B is a Sinai–Ruelle–Bowen measure for

the system (X,B,m, T ) if for each ϕ ∈ C(X),

lim
n→∞

1

n

n−1∑

k=0

ϕ(T kx) =
�
ϕdµ m-a.e. x.

The problems. Rudnicki [8] posed the following problems:

Problem 1. Does each completely mixing system have a limit measure?
If T has an invariant probability density the answer is obviously “yes”. In
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general, however, this is not true. In fact, we provide counterexamples in
the class of quadratic interval maps.

Problem 2. Is a stochastic attractor necessarily a Bowen–Ruelle–Sinai
measure? We give a counterexample in the class of piecewise C2 interval
maps with two surjective branches and two neutral fixed points.

The counterexamples

1. A completely mixing quadratic interval map without limit measure. For
0 < a ≤ 4 denote by Ta : [0, 1]→ [0, 1] the map Ta(x) = ax(1− x). Given a
parameter a we denote by I the dynamical interval [T 2

a (1/2), Ta(1/2)] and
consider henceforth the restriction of Ta to I.

The first ingredient to the construction of our counterexamples is a result
by Bruin and Hawkins [2, Theorem 4.2]. It says that if Ta : I → I is
topologically mixing, then it is Lebesgue exact, i.e. the tail σ-algebra T =⋂∞
n=0 T

−n
a B contains only sets of Lebesgue measure zero or full Lebesgue

measure (1).
The second ingredient is an old result of Lin [6] (see also [1, Theorem

1.3.3]). It says that a system (X,B,m, T ) is exact if and only if it is com-
pletely mixing (2). Hence, if Ta is topologically mixing, then it is completely
mixing.

The third ingredient are real quadratic maps without asymptotic mea-
sure constructed by Hofbauer and Keller [3]. Denote by ω̄a(m) the set
of all weak accumulation points of the sequence of probability measures
(n−1

∑n−1
k=0 m ◦ T−ka )n>0, where m denotes the normalized Lebesgue mea-

sure on I. Theorem 1 of [3] provides an uncountable family of parameters a
for which the set of ergodic measures in ω̄a(m) is infinite (3). Such maps do
not, in particular, have a limit measure, because m ◦ T−ka = P k1 ·m so that
the existence of a limit measure for Ta (in the sense of the above definition)
would imply ω̄a(m) = {µ}.

The missing link that combines these results to produce examples of com-
pletely mixing maps without limit measure is the observation that the maps
constructed in [3, 4] are topologically mixing. For a unimodal interval map
topological mixing is equivalent to the nondecomposability of its kneading

(1) More precisely, Bruin and Hawkins assume that the map Ta has no Cantor attractor
in the sense of Milnor. But Lyubich [7] showed that a topologically mixing quadratic map
Ta never has such an attractor. For our construction, however, this deep result need not
be invoked, because the denseness of the critical orbit in the examples below excludes the
existence of a Cantor attractor.

(2) The reader should be warned that Lin [6] uses a different terminology concerning
the notion of complete mixing. The terminology used in this note is adopted from [8].

(3) In [4] this construction is modified in such a way that, for uncountably many
parameters a, ω̄a(m) is even the set of all invariant probability measures of Ta.
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sequence (equivalently to the nonrenormalizability of the map) (4). But this
follows readily from equations (3.6) and (3.7) in [3].

Finally, we remark that we have obtained a bit more than only a negative
answer to the above problem. We showed:

Theorem. There are uncountably many maps Ta in the quadratic family
which are completely mixing with respect to Lebesgue measure, but for which
ω̄a(m) is the set of all Ta-invariant probability measures. In particular , the

sequence of measures (n−1
∑n−1

k=0 m ◦ T−ka )n>0 does not converge weakly for
these parameters.

2. A stochastic attractor which is not a Sinai–Ruelle–Bowen measure.
The second example uses interval maps with two indifferent fixed points
where the order of contact of the graph of the map to the diagonal is higher
than two. To be definite we consider the map T : [0, 1]→ [0, 1],

T (x) =

{
x+ 4x3 for x ∈ [0, 1/2),

x− 4(1− x)3 for x ∈ [1/2, 1].

The map T has a smooth σ-finite invariant density with nonintegrable singu-
larities at x = 0 and x = 1. Thaler [9, Theorem 1] proved that such maps are
Lebesgue exact, so by the result of Lin again, they are completely mixing.

Since limn→∞ � 1−δ
δ Pn1 dm = 0 for all δ > 0, the set of weak accumulation

points of the measures P n1 ·m is contained in {aδ0 + (1− a)δ1 : 0 ≤ a ≤ 1}.
Since T has the symmetry T (x) = 1−T (1−x), it maps symmetric densities
h (i.e. h(x) = h(1− x)) to symmetric ones. In particular, all P n1 are sym-
metric. Hence P n1 ·m → µ := 1

2(δ0 + δ1) weakly so that µ is a stochastic
attractor for (X,B,m, T ). On the other hand, a result of Inoue [5, Corol-
lary 2.2] shows that µ is not a Sinai–Ruelle–Bowen measure for the system.
Indeed, he proves

lim sup
n→∞

1

n

n−1∑

k=0

1A(T kx) = 1 m-a.e. x

for all intervals A = (0, δ) and A = (1− δ, 1) and all δ > 0.
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