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ON GAUSSIAN KERNEL ESTIMATES ON GROUPS

BY

NICK DUNGEY (Sydney)

Abstract. We give new and simple sufficient conditions for Gaussian upper bounds
for a convolution semigroup on a unimodular locally compact group. These conditions
involve certain semigroup estimates in L2(G). We describe an application for estimates of
heat kernels of complex subelliptic operators on unimodular Lie groups.

1. Introduction. Many authors have investigated the question of ob-
taining pointwise upper bounds for the heat kernel of a suitable differential
operator, on various classes of manifolds and Lie groups (see, for example,
[17, 16, 2] for relevant background). In this paper, we offer a new method of
obtaining Gaussian upper bounds for a convolution semigroup on a locally
compact group, which in particular applies to heat kernels on Lie groups.

Our main results show that Gaussian upper bounds are a consequence
of certain L2 operator estimates on the semigroup. In comparison, many
standard approaches to Gaussian estimates (see the references above) rely
on L1 estimates on the semigroup. Such L1 estimates may be difficult to
obtain, unless one is dealing with the special case of heat kernels for second
order operators with real coefficients. There are a number of works dealing
with heat kernel estimates on Lie groups outside this special case: see [16,
7, 1, 8, 12, 9, 11, 5, 10] and references therein. But in general, these works
seem to rely on specific structural features of the Lie groups considered, for
example, local or global scaling properties. Our approach is more general and
applies to large classes of convolution semigroups on (unimodular) locally
compact groups.

In many cases the assumptions of our main theorems are necessary, as
well as sufficient, for Gaussian estimates to hold (for a precise statement,
see Remark 2.6 below). Partly for this reason, we suspect that many of the
known examples of Gaussian estimates on groups could be derived using our
methods.

The present paper can be seen as an extension of [6], where L∞ kernel
bounds were considered. We emphasize that, as in [6], our arguments and
results rely crucially on the group invariance of the semigroups considered.
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In fact, for semigroups generated by elliptic operators in Rd which are not
translation invariant, it is well known that the L2 theory does not always
suffice to give Gaussian estimates, or Lp estimates: see, for example, [4, 3]
and references therein.

We present our theoretical results in Section 2 below. In Section 3 we
give a sample application: a new proof of Gaussian heat kernel estimates
of [10] (see also [7]) for second order complex operators on a Lie group of
polynomial growth. Compared with earlier proofs, our proof is rather more
direct and has the advantage of applying to any unimodular Lie group.

There are other applications of our methods which will not be detailed
here. For example, our results would probably yield a new proof of the
Gaussian estimates for convolution powers of a probability density obtained
in [13], or could be used to extend the theory of heat kernels corresponding
to operators which are sums of even powers of vector fields on a Lie group
(compare [12, 9, 11]). It might also be possible to alter our method to prove
pointwise estimates which do not have the standard Gaussian form. Some
of these ideas might be explored in future.

2. The basic theorems. This section contains our main theoretical
results. The two essential theorems are Theorem 2.3, which gives large time
Gaussian estimates for convolution powers of a fixed function, and The-
orem 2.7, which gives small time Gaussian estimates for a semigroup of
operators. In applications to heat kernels (see Section 3), one may use these
theorems to estimate respectively the large and small time behaviour.

The proofs in this section can be regarded as a non-trivial extension of
the proofs of L∞ estimates in [6].

Let us fix notation. Throughout, G will denote a unimodular, second
countable locally compact group, with identity element e. We fix a Haar
measure dg and consider the spaces Lp = Lp(G; dg), 1 ≤ p ≤ ∞, with
norms ‖ · ‖p. The norm of a bounded linear operator T : Lp → Lq is written
as ‖T‖p→q, or simply as ‖T‖ in the case p = q = 2. In general, c, c′, b and so
on denote positive constants whose value may change from line to line when
convenient.

Given a locally integrable function f : G → C, we set (L(g)f)(h) =
f(g−1h), g, h ∈ G, that is, L is the left regular representation of G, and we
define the convolution operator L(f) by

(L(f)f1)(g) = (f ∗ f1)(g) =
�

G

dh f(h)f1(h−1g)

for g ∈ G and suitable functions f1 : G → C. This makes sense at least
when f1 is bounded and compactly supported, and hence the domain of
L(f) is dense in Lp for 1 ≤ p <∞.
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Let us say that a Borel measurable function w : G→ (0,∞) is a weight
function on G if w and 1/w = w−1 are both locally bounded functions on G
(that is, they are bounded over any compact subset of G), and moreover
w(g) = w(g−1) for all g ∈ G.

For convenience, we also denote by w the operator of pointwise multipli-
cation f 7→ wf . For locally integrable f , we can then consider the (possibly
infinite) norms

‖wL(f)w−1‖p→q = sup{‖wL(f)w−1f1‖q : f1 ∈ Cc(G), ‖f1‖p ≤ 1}
when p < ∞, where Cc(G) denotes the continuous, compactly supported
functions on G.

We will need the following inequalities.

Lemma 2.1. If w is a weight function, then

(1)
‖w(f1 ∗ f2)‖2 ≤ ‖wL(f1)w−1‖ ‖wf2‖2,
‖w(f2 ∗ f1)‖2 ≤ ‖w−1L(f1)w‖ ‖wf2‖2

whenever f1, f2 are locally integrable functions on G such that the norms on
the right sides of the inequalities are finite.

Proof. By density, it is enough to prove inequalities (1) in the case that f2

is compactly supported and bounded (in fact, only this case will be needed
in what follows). The first inequality is immediate from the definitions.

To prove the second inequality, introduce for each locally integrable f
the function

(2) f̃(g) = f(g−1), g ∈ G.
By unimodularity, ‖f̃‖p = ‖f‖p for all p, and in particular ‖wf‖2 = ‖wf̃‖2
because w(g) = w(g−1). Observe also that (f2 ∗ f1)∼ = f̃1 ∗ f̃2. Therefore,

‖w(f2 ∗ f1)‖2 = ‖w(f2 ∗ f1)∼ ‖2 = ‖w(f̃1 ∗ f̃2)‖2 ≤ ‖wL(f̃1)w−1‖ ‖wf̃2‖2.
But it is easily checked that wL(f̃1)w−1 is formally adjoint to w−1L(f1)w

with respect to the L2 inner product, so that ‖wL(f̃1)w−1‖ = ‖w−1L(f1)w‖.
The lemma follows.

We introduce some convenient (though possibly non-standard) terminol-
ogy. A modulus is a Borel measurable function % : G→ [0,∞) such that

B%(r) := {g ∈ G : %(g) ≤ r}
is a relatively compact subset ofG for each r > 0. The Haar measure of B%(r)
will usually be denoted by V%(r) = dg(B%(r)).

An admissible modulus is a modulus which is also locally bounded and
satisfies, for some c0 ≥ 1,

(3) %(g) = %(g−1), %(gh) ≤ c0(%(g) + %(h))
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for all g, h ∈ G. We say that % is subadditive if the inequality in (3) holds
with c0 = 1. Obviously, if % is an admissible modulus, then eλ% is a weight
function for all λ ∈ R.

Heuristically, we think of %(g) as the “distance” from g to e, and our
Gaussian estimates in this section will be formulated using %.

In passing, we mention that standard examples of admissible modulus
functions are (i) on a Lie group G, the Carathéodory modulus associated
with a list of generators of the Lie algebra (see [17, 16]), and (ii) on a
compactly generated group G, the modulus %U (g) = inf{n ∈ N : g ∈ Un}
where U = U−1 ⊆ G is a fixed compact generating neighbourhood of the
identity e. There are many other examples relevant for analysis, for example,
“weighted” modulus functions on a Lie group corresponding to filtrations of
the Lie algebra (see [15, Section 4] and [9]).

The following lemma will be a crucial tool. Denote by I the identity
operator acting on functions over G.

Lemma 2.2. Let w be a weight function and let % be a modulus on G.
For r > 0 write ‖w‖∞,r = sup{w(g) : %(g) ≤ r}. If f is a locally integrable
function on G and wf ∈ L2, then

‖wf‖2 ≤ sup
g∈G, %(g)≤r

‖w(I − L(g))f‖2 + ‖w‖∞,rV%(r)−1/2‖w−1L(f)w‖

for all r > 0 (here, the right side is permitted to be infinite).

Remark. In the unweighted case w ≡ 1, the above inequality was
proved by the author in [6], where it is referred to as a convolution Nash
inequality. The reason for this name is that it differs essentially from stan-
dard Nash inequalities (see [16] for example) by replacing the L1 norm of f
with the convolution norm ‖L(f)‖. Thus, it seems natural to refer to the
inequality of Lemma 2.2 as a weighted convolution Nash inequality.

Proof of Lemma 2.2. Let r > 0 be given. If V%(r) = 0 then we interpret

V%(r)
−1/2 =∞, so let us assume that V%(r) > 0.

Following an idea of Robinson [16, p. 267], we consider the function
χ = V%(r)

−11B%(r), where 1E denotes the characteristic function of a subset

E ⊆ G. Observing that � G χ = 1, we find the identity

wf = w(χ ∗ f) +
�

G

dg χ(g)w(I − L(g))f

and take L2 norms on both sides. Applying (1) yields

‖w(χ ∗ f)‖2 ≤ ‖wχ‖2‖w−1L(f)w‖ ≤ ‖w‖∞,rV%(r)−1/2‖w−1L(f)w‖,
and the lemma follows easily.
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In the following theorem, we consider a fixed function K ∈ L2 and obtain
Gaussian estimates for K(n), n ∈ N = {1, 2, . . .}, where K(n) = K ∗ · · · ∗K
denotes the nth convolution power of K. Observe that, if one assumes that
the operator T = L(K) is bounded in L2, then the K(n) = Tn−1K are well

defined elements of L2.

Theorem 2.3. Let K ∈ L2 be such that T = L(K) is bounded in L2.
Suppose % : G → [0,∞) is an admissible modulus, and denote by Uλ the
multiplication operator f 7→ eλ%f for λ ∈ R. Assume there exist an even
positive integer M ≥ 2 and constants ω > 0, ν ∈ (0, 1] such that

(4) ‖UλK‖2 ≤ ceωλ
M

for all λ ≥ 0,

(5) ‖UλTnU−λ‖ ≤ ceωλ
Mn

for all λ ∈ R and n ∈ N, and

(6) ‖Uλ(I − L(g))TnU−λ‖ ≤ c(%(g)n−1/M)νeωλ
Mn

for all λ ∈ R, n ∈ N and g ∈ G such that %(g) ≤ n1/M . Suppose there are
a,D > 0 with V%(r) ≥ arD for all r ≥ 1. Then there exist c′, b > 0 with

(7) |K(n)(g)| ≤ c′n−D/Me−b(%(g)M/n)1/(M−1)

for all n ∈ N with n ≥ 2 and g ∈ G, and

(8) |K(n)(g)−K(n)(g
−1
1 g)| ≤ c′(%(g1)n−1/M)νn−D/Me−b(%(g)M/n)1/(M−1)

for all n ∈ N with n ≥ 3 and g, g1 ∈ G such that %(g1) ≤ n1/M .

Remark. Davies [3, Section 4] establishes L2 estimates of a type anal-
ogous to (5) and (6), for the semigroups generated by a large class of
divergence-form elliptic operators in Rd. But for non-translation invariant
elliptic operators, such estimates are not in general sufficient to guarantee
Gaussian heat kernel bounds. We can therefore say that the group invariance
plays an essential role in Theorem 2.3, as well as in Theorem 2.7 below.

Proof of Theorem 2.3. We first observe that K(n+m) = TnK(m), so that

(9) ‖UλK(n+m)‖2 ≤ ‖UλTnU−λ‖ ‖UλK(m)‖2 ≤ ceωλ
Mn‖UλK(m)‖2

for all n,m ∈ N and λ ≥ 0. By choosing m = 1 and recalling (4), it follows
that

(10) ‖UλK(n)‖2 ≤ c′eωλ
Mn

for all n ∈ N and λ ≥ 0. This last bound lacks a desired factor of n−D/(2M),
but will be useful for small n.
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Let us fix an ω′ > ω, and define, for each n ∈ N and λ ≥ 0,

βn,λ = nD/(2M)e−ω
′λMn ‖UλK(n)‖2.

Note that

‖Uλ(I − L(g))K(n+m)‖2 ≤ ‖Uλ(I − L(g))TnU−λ‖ ‖UλK(m)‖2(11)

≤ c(%(g)n−1/M)νeωλ
Mn ‖UλK(m)‖2

for all n,m ∈ N, λ ≥ 0 and g ∈ G with %(g) ≤ n1/M . Now in Lemma 2.2
put f = K(2n) and choose the weight function w = wλ = eλ%, λ ≥ 0. Then
by (11) with m = n, and because

‖w−1
λ L(K(2n))wλ‖ = ‖U−λT 2nUλ‖ ≤ ce2ωλMn,

we obtain an estimate

(12) β2n,λ ≤ c1(rn−1/M)νβn,λ + c1(rn−1/M)−D/2eλre−2(ω′−ω)λMn

for all λ ≥ 0, n ∈ N and r ≥ 1 such that r ≤ n1/M . Fix ε ∈ (0, 1) small
enough so that

c1ε
ν < 2−1, ε < 2(ω′ − ω),

and fix k0 ∈ N with 2k0 > ε−M . If n ≥ 2k0 then εn1/M ≥ 1. Therefore, we
may choose r = εn1/M in (12) to obtain

β2n,λ ≤ 2−1βn,λ + c2e
ελn1/M−2(ω′−ω)λMn

for all n ∈ N with n ≥ 2k0 and all λ ≥ 0. Since

ελn1/M ≤ ε(1 + λMn) ≤ 2(ω′ − ω)(1 + λMn),

we have

β2n,λ ≤ 2−1βn,λ + c3 ≤ max{βn,λ, 2c3}
for all n ∈ N with n ≥ 2k0 and all λ ≥ 0. This inequality implies, by
induction, that

β2k,λ ≤ max{β2k0 ,λ, 2c3}
for all k ∈ N with k ≥ k0. But (10) shows that supλ≥0 β2k0 ,λ < ∞, and
consequently there is a c4 > 0 such that

β2k,λ ≤ c4

for all k ∈ N with k ≥ k0 and all λ ≥ 0. In other words,

(13) ‖UλK(n)‖2 ≤ c4n
−D/(2M)eω

′λMn

whenever n = 2k with k ∈ N, k ≥ k0, and λ ≥ 0.
Let us remove the restriction on n in (13). By applying (9) with m = 2k,

k ≥ k0, and adjusting the value of c4, we can easily see that (13) holds for
all integers n ≥ 2k0 and all λ ≥ 0. In case 1 ≤ n ≤ 2k0 , a bound of the
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form (13) follows immediately from (10). Therefore, a bound of the form
(13) holds for all n ∈ N and λ ≥ 0.

The technique of obtaining Gaussian estimates (7) from the inequality
(13) is essentially well known. First use (3) to observe that

eλ%(g)|K(n+m)(g)| ≤
�

G

dh ec0λ%(h)|K(n)(h)|ec0λ%(h−1g)|K(m)(h
−1g)|

≤ ‖Uc0λK(n)‖2‖Uc0λK(m)‖2
for n,m ∈ N and λ ≥ 0. Then choose m = n or m = n+ 1, apply (13), and

set λ = τ(%(g)/n)1/(M−1) for a suitable small τ > 0.
Similarly, one has

eλ%(g)|K(n+m)(g)−K(n+m)(g
−1
1 g)| ≤ ‖Uc0λ(I − L(g1))K(n)‖2‖Uc0λK(m)‖2.

Thus, by applying (13) and (11), we can deduce estimates (8) for n ≥ 3,

under the condition that %(g1) ≤ κn1/M for some small constant κ ∈ (0, 1).

Finally, in case κn1/M ≤ %(g1) ≤ n1/M , by (3) there is c > 0 with
%(g−1

1 g)M ≥ c−1%(g)M − cn. Hence, in this case estimates of the form (8)
follow directly from (7). The proof of Theorem 2.3 is complete.

Remark 2.4. It is a useful technical remark that, if % is subadditive,
then the hypothesis (6) in Theorem 2.3 can be replaced by the alternative
form

(14) ‖(I − L(g))UλT
nU−λ‖ ≤ c(%(g)n−1/M)νeωλ

Mn

for n ∈ N, g ∈ G with %(g) ≤ n1/M . To see this, note the general identity

(eψ(I − L(g))e−ψf)(h) = f(h)− f(g−1h) + [1− eψ(h)−ψ(g−1h)]f(g−1h)

for g, h ∈ G and functions f and ψ on G. This leads, via the bound |1−es| ≤
|s|e|s|, s ∈ R, to an inequality

(15) ‖eψ(I − L(g))e−ψf‖2
≤ ‖(I − L(g))f‖2 + ‖(I − L(g))ψ‖∞e‖(I−L(g))ψ‖∞‖f‖2.

Now if (14) holds, then it is not hard to deduce (6) by setting ψ = λ% in (15)
and adjusting the constant ω. Note that ‖(I − L(g))%‖∞ ≤ %(g) since % is
assumed subadditive. We leave further details to the reader.

The next result is a well known consequence of the Gaussian esti-
mates (7).

Corollary 2.5. Assume the hypotheses of Theorem 2.3, and suppose
that c−1rD ≤ V%(r) ≤ crD for all r ≥ 1. Then there exists c′ > 0 with

‖Tn‖p→p ≤ c′

uniformly for all 1 ≤ p ≤ ∞ and n ∈ N, n ≥ 2.
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Proof. A standard integration of the Gaussian estimates (7), using a
volume doubling bound V%(2r) ≤ c′V%(r), r ≥ 1, yields ‖K(n)‖1 ≤ c′′ < ∞
for all n ≥ 2 (compare, for example, [17, p. 111]). The result follows since
‖Tn‖p→p = ‖L(K(n))‖p→p ≤ ‖K(n)‖1.

Remark 2.6. It should be noted that Theorem 2.3 often has a converse,
so that in many cases the hypotheses of Theorem 2.3 are necessary conditions
for Gaussian estimates.

To be more precise, suppose that the admissible modulus % is subaddi-
tive, and that c−1rD ≤ V%(r) ≤ crD, r ≥ 1. Then we claim that the Gaussian
estimates (7) and (8) imply estimates of the form

‖UλTnU−λ‖p→p ≤ c′eωλ
Mn,

‖Uλ(I − L(g))TnU−λ‖p→p ≤ c′(%(g)n−1/M)νeωλ
Mn

whenever λ ∈ R, p ∈ [1,∞] and %(g) ≤ n1/M . In particular, when p = 2 we
recover (5) and (6).

To prove this claim, one observes that UλT
nU−λ has an integral kernel

Kn,λ(g, h) = eλ%(g)K(n)(gh
−1)e−λ%(h)

for g, h ∈ G, so that

|Kn,λ(g, h)| ≤ e|λ|%(gh−1)|K(n)(gh
−1)|

by the assumed subadditivity of %. (In fact, here subadditivity could be re-
placed by a weaker condition |%(g) − %(h)| ≤ c1%(gh−1) for all g, h ∈ G.)
Then the estimates on ‖UλTnU−λ‖p→p follow by a standard integration ar-
gument from the Gaussian estimates (7). Similarly, one derives estimates
on Uλ(I − L(g1))TnU−λ using the estimates (8). We omit further details.

We will now give an analogue of Theorem 2.3 for small time Gaussian
estimates. The following result differs from Theorem 2.3 in that one does
not assume the existence of a convolution kernel, but only of a (right invari-
ant) semigroup of bounded operators in L2. The existence of a kernel Kt is
deduced in the conclusion.

Theorem 2.7. Let t0 ∈ (0,∞) and suppose {Tt}0<t<t0 is a family of
right invariant , bounded operators in L2, with Ts+t = TsTt whenever s, t,
s + t ∈ (0, t0). Let % : G → [0,∞) be an admissible modulus, which is con-
tinuous, subadditive and satisfies %(e) = 0. Set Uλf = eλ%f for λ ∈ R.
Assume that M is an even positive integer , ω > 0, and ν ∈ (0, 1], such that

‖UλTtU−λ‖ ≤ ceωλ
M t, ‖Uλ(I − L(g))TtU−λ‖ ≤ c(%(g)t−1/M)νeωλ

M t

for all t ∈ (0, t0), λ ∈ R and g ∈ G with %(g) ≤ t1/M . Suppose there are
a,D > 0 with V%(r) ≥ arD for all r ∈ (0, 1). Then there exist functions
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Kt ∈ L2∩L∞ with Tt = L(Kt) and Kt+s = Kt ∗Ks when s, t, s+ t ∈ (0, t0).
Moreover , there are c′, b > 0 such that

|Kt(g)| ≤ c′t−D/Me−b(%(g)M/t)1/(M−1)
,

|Kt(g
−1
1 g)−Kt(g)| ≤ c′(%(g1)t−1/M)νt−D/Me−b(%(g)M/t)1/(M−1)

for all t ∈ (0, t0) and g, g1 ∈ G such that %(g1) ≤ t1/M .

Proof. The proof is a variation of the proof of Theorem 2.3, and we only
outline the main ideas. The key point is to establish an estimate

(16) ‖UλTtU−λ‖1→2 ≤ ct−D/(2M)eω
′λM t

for some ω′ > ω and all t ∈ (0, t0) and λ ≥ 0. To do this, suppose that λ ≥ 0
and f ∈ Cc(G) with ‖Uλf‖1 ≤ 1, and put

βt = tD/(2M)e−ω
′λM t‖UλTtf‖2.

To establish (16), we will bound βt by a constant independent of t, λ and f
(subject to the above conditions on λ and f). One checks, using the subad-
ditivity of %, that ‖U−λL(f)Uλ‖ ≤ ‖Uλf‖1 ≤ 1. The right invariance of Tt
implies that L(Ttf)f2 = TtL(f)f2 for arbitrary f2 ∈ Cc(G). We thus have

‖U−λL(Ttf)Uλ‖ ≤ ‖U−λTtUλ‖ ‖U−λL(f)Uλ‖ ≤ ceωλ
M t.

Now apply Lemma 2.2 to the function Ttf , with w = eλ% and r = εt1/M ∈
(0, 1) for a fixed ε > 0, and note that

‖Uλ(I − L(g))Ttf‖ ≤ c′(%(g)t−1/M)νeωλ
M t/2‖UλTt/2f‖2

whenever %(g) ≤ (t/2)1/M . Provided that ε is chosen sufficiently small, this
yields an estimate

βt ≤ 2−1βt/2 + c1 ≤ max{βt/2, 2c1}
for all t ∈ (0, t0), where c1 is independent of λ and f . Because Uλf ∈ L2,
one has

lim
t→0

βt ≤ lim
t→0

tD/(2M)‖UλTtU−λ‖ ‖Uλf‖2 = 0.

It is then easy to see that βt ≤ 2c1 for all t ∈ (0, t0), and (16) follows.
It follows from the case λ = 0 of (16), and the right invariance of Tt,

that there is a kernel Kt ∈ L2 with Tt = L(Kt) and ‖Kt‖2 = ‖Tt‖1→2. Then
the operator UλTtU−λ has an integral kernel given by

K
(λ)
t (g;h) = eλ%(g)Kt(gh

−1)e−λ%(h)

for g, h ∈ G, and

sup
h∈G

( �

G

dg |K(λ)
t (g;h)|2

)1/2
= ‖UλTtU−λ‖1→2.
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Taking h = e in the last expression, we infer from (16) that

‖UλKt‖2 ≤ ct−D/(2M)eω
′λM t

for all t ∈ (0, t0) and λ ≥ 0. The remainder of the proof follows the proof of
Theorem 2.3.

Theorem 2.7 has the following corollary which is analogous to Corol-
lary 2.5. The proof is standard and is omitted.

Corollary 2.8. Assume the hypotheses of Theorem 2.7, and suppose
there exist c1, µ > 0 with

V%(r) ≤ c1r
Deµr

for all r > 0. Then there is c′ > 0 with

‖Tt‖p→p ≤ ‖Kt‖1 ≤ c′

for all t ∈ (0, t0) and p ∈ [1,∞].

Remark 2.9. One can extend the estimates of Theorem 2.7 to large
values of t, by using the semigroup property.

To see this, let us assume the hypotheses of the theorem, and set t1 =
2−1t0. If t ≥ t0, we write t = nt1 + s with n ∈ N, 0 < s ≤ t1, and define Tt
by

Tt = (Tt1)nTs.

Then Tt = L(Kt) where, by definition, Kt = (Kt1)(n) ∗Ks. One has TtTt′ =
Tt+t′ for all t, t′ > 0. Moreover, there is a σ > 0 such that an estimate of the
form

|Kt(g)| ≤ ct−D/Meσte−b(%(g)M/t)1/(M−1)

holds for all t > 0. Of course, since σ > 0 this bound does not give very
precise control of ‖Kt‖∞ for large t, but it is nevertheless of interest when
%(g)M/t is large.

To prove this bound on Kt, it suffices to get suitable estimates on
‖UλKt‖2, t ≥ t0, λ ≥ 0, and these may be obtained by writing

‖UλKt‖2 ≤ ‖UλTsU−λ‖(‖UλTt1U−λ‖)n−1‖UλKt1‖2,
where t = nt1 + s with n ∈ N, 0 < s ≤ t1. We leave further details to the
reader.

3. Complex second order operators. In this section, we present a
new proof of the Gaussian estimates for second order subelliptic operators
with complex coefficients, on a Lie group of polynomial growth (see [10, 7]).
In fact, our proof will apply to arbitrary unimodular Lie groups.

Thus, in this section let G denote a connected unimodular Lie group
with Lie algebra g. To each x ∈ g we associate a right invariant vector field
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X = dLG(x): as an operator, dLG(x) = limt→0 t
−1(L(exp(tx)) − I) where

exp: g→ G is the exponential map.
Let a1, . . . , ad′ ∈ g be a list of elements which algebraically generate g,

and set Ai = dLG(ai). We consider, as in [10] or [7], a subelliptic differential
operator of the form

H = −
d′∑

i,j=1

cijAiAj

on G, where the cij are complex constants which are assumed to satisfy

Re
∑

i,j cijξiξj ≥ µ|ξ|2 for some µ > 0 and all ξ ∈ Cd′ . The most studied

case (see [17, 16]) is where cij = δij for all i, j, in which case H = −∑iA
2
i

is called a sublaplacian.
Note that H can be precisely defined using the theory of sectorial forms

(see [14]), as the sectorial operator in L2 associated with the quadratic

form Q(f) =
∑d′

i,j=1 � G cijAjfAif for f ∈ L2 with Aif ∈ L2, i ∈ {1, . . . , d′}.
Then standard reasoning shows that H generates a holomorphic contraction
semigroup Tt = e−tH in L2, and ‖HTt‖ ≤ ct−1 for all t > 0 (see, for example,
[7, Section II.2]).

If H is a sublaplacian, then the general theory of Dirichlet forms shows
that Tt is a contraction semigroup in Lp for all 1 ≤ p ≤ ∞. But for general
complex coefficients cij , this theory is not applicable and the study of H
seems more difficult.

Let % = %A denote the standard Carathéodory modulus on G associated
with A1, . . . , Ad′ (see [17, 16]). We will see that it is not difficult to verify
the hypotheses of Theorems 2.3 and 2.7.

Consider the setD consisting of all smooth bounded functions ψ : G→ R
with ‖Aiψ‖∞ ≤ 1 for all i ∈ {1, . . . , d′}. Let Uλ and Uψλ denote respectively

the operators of multiplication by eλ% and eλψ, for ψ ∈ D, λ ∈ R. From the
formula

(17) eψAi(e
−ψf) = Aif − (Aiψ)f,

one sees that Uψ
λHU

ψ
−λ is a differential operator which is a perturbation

of H by lower order terms. Moreover, some standard arguments then give
estimates of the form

‖Uψλ TtU
ψ
−λ‖ ≤ ceωλ

2t, ‖AiUψλ TtU
ψ
−λ‖ ≤ ct−1/2eωλ

2t

uniformly for all t > 0, λ ∈ R and ψ ∈ D (compare, for example, [7,
pp. 276–277] or [3]). Now recall an elementary inequality (see [16, p. 268])

(18) ‖(I − L(g))f‖2 ≤ %(g)
( d′∑

i=1

‖Aif‖22
)1/2
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for g ∈ G and f ∈ L2 such that Aif ∈ L2, i ∈ {1, . . . , d′}. Using this
estimate, and then arguing as in Remark 2.4, one easily deduces a bound

‖Uψλ (I − L(g))TtU
ψ
−λ‖ ≤ c(%(g)t−1/2)eωλ

2t

for all t > 0, λ ∈ R, ψ ∈ D and g ∈ G satisfying %(g) ≤ t1/2.
But % can be approximated by elements of D, by setting

ψn = (min{%, n}) ∗ ϕn,
where {ϕn}∞n=1 ⊆ C∞c (G) is a suitable smooth approximation of the identity
for G, with ϕn ≥ 0 and � G ϕn = 1. It is not hard to show that ψn ∈ D and
limn→∞ ψn(g) = %(g), where the limit is uniform over any compact subset
of G. If W is any bounded operator in L2, and f1, f2 ∈ Cc(G), then

�

G

dg eλ%(g) (WU−λf1)(g) f2(g) = lim
n→∞

�

G

dg (Uψnλ WUψn−λf1)(g) f2(g).

Therefore, a simple limiting argument gives the estimates

‖UλTtU−λ‖ ≤ ceωλ
2t, ‖Uλ(I − L(g))TtU−λ‖ ≤ c(%(g)t−1/2)eωλ

2t

for all t > 0 and %(g) ≤ t1/2.
It is well known (see for example [17]) that there is an integer D′ ≥ 1

such that c−1rD
′ ≤ V%(r) ≤ crD′ for 0 < r < 1. We may apply Theorem 2.7

with M = 2 over any finite interval (0, t0), to deduce that Tt = L(Kt), t > 0,
where the kernel Kt satisfies

|Kt(g)| ≤ ct−D′/2e−b%(g)2/t

for 0 < t ≤ 1. Note that the proof of Theorem 2.7 also gives an estimate of

the form ‖UλKt‖2 ≤ ct−D′/4eωλ2t, λ ≥ 0, 0 < t ≤ 1.
Suppose now that D > 0 with V%(r) ≥ arD for all r ≥ 1. We can apply

Theorem 2.3, with K = K1, to get

(19) |Kt(g)| ≤ ct−D/2e−b%(g)2/t

for t ∈ N = {1, 2, . . .}. The latter estimate is then easily extended to all t ≥ 1
by using the semigroup property Kt = Kt−s∗Ks with s ∈ N (or alternatively,
by arguing through the L2 estimate ‖UλKt‖2 ≤ ‖UλTt−sU−λ‖ ‖UλKs‖2).

Note that the Gaussian estimate for small t was given in, for example, [9].
The estimate (19) for t ≥ 1 is proved in [10] or [7] under the stronger
assumption that G has polynomial growth of order precisely D, that is,
c−1rD ≤ V%(r) ≤ crD for r ≥ 1. The present proof is more direct than these
earlier proofs, since we do not need to exploit detailed structural properties
of G. Moreover, our proof displays a unified approach to the small and large
time estimates.
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Finally, let us briefly consider the case that G has exponential growth,
which means that for some a > 0 one has

V%(r) ≥ aear

for all r ≥ 1. Then given any D > 0 one has an estimate of the form (19).
We can improve this by using the fact that, for G of exponential growth,
there are c, σ > 0 with

‖Kt‖∞ ≤ ce−σt
1/3

for all t ≥ 1; this bound is well known for a sublaplacian ([17, 16]) and is
proved in general in [6]. By writing |Kt(g)| ≤ |Kt(g)|ε‖Kt‖1−ε∞ , we find for
some b, c > 0 that

|Kt(g)| ≤ ce−bt1/3e−b%(g)2/t

for t ≥ 1. This estimate is apparently new for complex coefficients cij.
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