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THE BOREL STRUCTURE OF SOME NON-LEBESGUE SETS

BY

DON L. HANCOCK (Malibu, CA)

Abstract. For a given function in some classes related to real derivatives, we examine
the structure of the set of points which are not Lebesgue points. In particular, we prove
that for a summable approximately continuous function, the non-Lebesgue set is a nowhere
dense nullset of at most Borel class 4.

1. Introduction. The classes of Darboux Baire 1, approximately con-
tinuous, and Lebesgue functions play a significant role in differentiation
theory for real functions of a real variable. In [5] it is shown that every
Darboux Baire 1 (and thus every approximately continuous) function de-
fined on a closed interval can be transformed into a Lebesgue function by
an appropriate homeomorphic change of variables, while in [2] necessary and
sufficient conditions are obtained for an approximately continuous function
to be transformed into a Lebesgue function by a homeomorphic change of
scale. This suggests considering, loosely speaking, how far removed can an
approximately continuous function be from a Lebesgue function. More pre-
cisely, what properties are possessed by the collection of non-Lebesgue points
of an approximately continuous function? In this paper we show that under
the additional assumption that the function is summable, the non-Lebesgue
set of an approximately continuous function is a nowhere dense nullset of at
most Borel class 4.

2. Preliminaries. Let us begin by introducing some notation, termi-
nology, and background results necessary to our discussion. The real line is
denoted by R and [a,b] is an arbitrary nondegenerate closed interval. The
letters m and n always denote positive integers. Given a set S, we write S
and S°¢ for, respectively, the closure of S and the complement of S relative
to [a,b]. It is assumed that all functions are measurable real-valued func-
tions with domain [a, b], and any integrals are to be interpreted as Lebesgue
integrals. For a given function f and a subset F of [a,b], f|E means the
restriction of f to the set E. Recall that a number z is a Lebesgue point of
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a function f if
N
tim —— | |7(6) — f(z)]dt = 0,

otherwise x is called a mon-Lebesgue point of f. The set consisting of all
the non-Lebesgue points of f is called the non-Lebesgue set and denoted
by L§. (If L5 is the empty set, then f is a Lebesgue function.) Definitions
and fundamental properties of both approximately continuous and Darboux
Baire 1 functions may be found in [1] and [4], and we will use these properties
without restraint. In particular we note that at any of its Lebesgue points a
Darboux Baire 1 function f is approximately continuous and is the derivative
of its integral. On the other hand, if f is approximately continuous at x,
A is a measurable subset of [a,b], and f|A is bounded, then

(1) lim —— | |f(t) - f@)|dt =0,

y—ozT Y — T
Y (z,y)NA

and if z is additionally a density point of A, then

, 1
(2) lim —— | [f()]dt = |f(2)].
y—r Y — T
(z,y)NA
We also assume basic knowledge of Borel sets and their classifications, as

found in [3].

3. Results and proofs. Every approximately continuous function f
is Darboux Baire 1, and a Baire 1 function has a dense set of points of
continuity. About each such point x there exists a sufficiently small open
interval I, on which f must be bounded. Using formula (1), we conclude
that each point of I, is a Lebesgue point of f. Thus L contains a dense open
set, proving that L$ is nowhere dense. In addition, if f is summable, then
almost every point is a Lebesgue point, so L‘Ji is a nowhere dense nullset.

ExAMPLE 1. The non-Lebesgue set of a summable approximately con-
tinuous function is “small” in the sense of measure and Baire category, but
not necessarily in the sense of cardinality. To see this, first let {I,,}>°_, =
{(am,bm)}59_1 be an enumeration of the open intervals contiguous to a
nowhere dense perfect nullset P C [a, b], and for each m let (o, B, ) be the
subinterval of I,,, having length (b,, — a,,)/m and midpoint (a., + by,)/2.
Next, create a “spike function” f such that f(z) = 2m if x = (am, + bm)/2,
f is identically 0 on the complement of the union of the intervals (cy,, Om),
and f is defined elsewhere by linear extension. It can be verified by routine
computations that f is a summable approximately continuous function for
which L§ is the uncountable set P.
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For any summable f that is not a Lebesgue function, L is never open
and it need not be closed. In fact, we can create a summable approximately
continuous f for which L_§c has positive measure, and therefore is also not o-
porous. To see this, consider a bounded nowhere dense perfect set @) having
positive measure, and let {J;}72,; be an enumeration of the open intervals
contiguous to (). Now define a function f so that it is identically 0 on Q,
while on each Jj it is constructed just as the function in Example 1 was
on the arbitrary interval (a,b), except we now scale down the base widths
of each spike by a constant factor of 1/k. This f is easily verified to be
a summable approximately continuous function such that the endpoints of
each J are non-Lebesgue points, and thus L_; contains the set () of positive
measure.

We now proceed to show that L; must also be a Borel set of type Gsoso
for any summable approximately continuous function f. Since the proof
only requires f to be a Baire 1 summable function, we state and prove our
result in this more general setting. The proof will be based on three lemmas.
Assume throughout that

LEMMA 1. If f is summable, then for each m the set Ty, defined by

T =1 (2,9, 2) : S §\7‘(t)—z\dt>—1
m 7y7 . y -
is of type F, in D.

Proof. The set-theoretic difference of two closed sets is an F,, so it is
sufficient to show that T,, = T,, — {(z,y,2) : * = y}. Containment in
one direction is obvious. To show containment in the opposite direction we
show that if (z,y,2) € T, and x # y, then (z,y, z) € T),. For convenience
we suppose that y > x, as the proof is analogous if y < x. There ex-
ists a sequence {(zk, Yk, 2) } 22, that converges to (x,y,z) in D, with each
(Tk, Yk, 2k) in Tp,. Thus zj tends to x, yi tends to y, zx tends to z, and
yr > xp for large enough k.

Choose ¢ > 0 arbitrarily. Since f is summable, there exists a § > 0 such
that -

f1r) —=lar < 5

B
for any subset B of [a,b] having measure less than §. Now choose a large
enough integer K so that the following four conditions are satisfied whenever
k> K:

(i) yr > @k,
(ii) the set By = ([xk, yx] U [z, y]) — ([zk, yx] N [z,y]) has measure less
than ¢,
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(iii) |z — 2| - 2(y — z) < €/3,
(iv) (y —x) —me/3 < yr —x < 2(y — x).
Then for all ¥ > K we have

Yk Yy
| § 1) = 2l de = §17(0) - 2l e
" Yk ’ Yk Yk Yy
< | § 150 =zl dt = Y170 = 2l at] + | 170 = 2l de = §170) - 2| at]
Yk
< S |2k — 2| dt + S |f(t) —z|dt
T By

< |z — z|(yxr —xx) +¢/3  (by (ii))

<lzk —2[-2(y—7)+¢/3  (by (iv))

<e/3+¢/3=2¢/3 (by (iii)).
Furthermore, since (zg, yk, 2x) € T,
Yk 1
t) — dt > — — .
§k|f() 2| dt > m(yk Ty)
Hence, k > K implies
Y bl 2e Y — Tk 2e
t) — 2| dt ) =zl dt — 2= > IR TR 2
10— slat > § 1) - s = 5 2 BT -
oz p
> UZEI M B i)
y—

m

Since & was arbitrary, we deduce that §” |f(t) — z|dt > (y — x)/m and thus
(x’ y? Z) 6 Tm'

LEMMA 2. Suppose that fis a summable function and that C is a subset
of [a,b] x R defined as follows: (x,z) € C if and only if for some m and
every n, there exists a y € [a,b] such that 0 < |y —z| <1/n and

1 1
L) 2>

— X m
Yy T

Then C is of type Foso in [a,b] x R.
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Proof. For each m and n, define a set A,, ,, as follows: (z,2) € A, 5, if
and only if there exists a y such that 0 < |y — x| < 1/n and
1Y 1
VIF) —zldt > —.
m

y—T:

Then C = o _; oo Am,n- To complete the proof, it thus suffices to show
that each A,, ,, is of type F,. Let By, p, = TN {(2,y,2) : 0 < l[y—z| < 1/n},
where T}, is the set defined in the previous lemma. Then B,, ,, being the
intersection of two F, sets, is also of type F,. Let P, denote the projection
map of D onto [a,b] x R, where P, is defined by Pi(z,y,z) = (x,z). It
is evident that Py(By, ) = A . Since By, , is of type F,, we can find
compact sets F} so that B,, ,, = UZo:1 Fy. The continuity of P, implies that
Py (F},) is closed. Furthermore, Pa(By, ) = Po(Uzey Fr) = Upeq P2(Fk), so
Ap pn is of type F,. This completes the proof.

LEMMA 3. Let f be a summable Baire 1 function, and let G denote the
graph of f. If A is any set of type Fo55 in [a,b] x R, then the projection of
G N A onto [a,b] is a Borel set of type Gsoso -

Proof. This is just a special case of a theorem in [3, p. 385].

THEOREM 1. Suppose that f is a summable function in Baire class 1.
Then L; is a Borel set of type Gsoso -

Proof. By the definition of a Lebesgue point, it is evident that z € L}
if and only if
y
lim sup V1) = f(@)ldt > 0.

—x
y—z Y b

Thus z € L§ if and only if there exists some z in R for which the following
two conditions are satisfied:
(i) fz) = 2,
(ii) for some m and every n there is a y such that 0 < |y — x| < 1/n and
1 1
[ 1)~ 2l > -
m

y—T:

Let P; denote the projection map of [a,b] x R onto [a, b] defined by P;(z, 2)
= x. Then it is obvious that L} = P, (GNC), where C is the F,s5, set of
Lemma 2 and G is the graph of f. Applying Lemma 3 completes the proof.

As an immediate application of Theorem 1, we see that if L$ is uncount-
able then it contains a nonempty nowhere dense perfect set. This is true
because every uncountable Borel set has that property. We also mention
that there is an analogue to Lemma 3 which is valid for any function f of
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Borel class . Using this result, the proof of Theorem 1 shows that L; is a
Borel set of additive class o + 3, provided that f is also summable.

For any z in [a,b] and a given approximately continuous function f, let
¢, be the extended real number defined by

1 Yy
¢z = limsup —— | [f(t) — f(x)| dt.

—x
y—z Y -

If ¢, is 0 then x is a Lebesgue point of f, while if ¢, is a positive number or oo,
then z € LS. A point « € L is called weak if 0 < ¢, < o0 or firm if ¢; = oo.
(This terminology is appropriate because for any homeomorphism h of R
onto R satisfying a mild growth condition, each weak non-Lebesgue point of
f is a Lebesgue point of ho f, for every approximately continuous function f.
See [2].) It is a straightforward argument to prove from formulas (1) and (2)
that z is a firm non-Lebesgue point of an approximately continuous function
f if and only if
1Y
(3) limsup—x |f(t)] dt = cc.

—x
y—z Y -

Every non-Lebesgue point x of the “spike” function in Example 1 above
is weak, since crude estimates show that c, < 2. However, suppose that
we modify Example 1 by increasing the height of each spike by defining
f((am + bm)/2) = 2ms,,, where {s,,}2°_; is an increasing, unbounded se-
quence of positive numbers such that > -, 8y, (b — ay,) converges. This
produces a summable approximately continuous function with an uncount-
able set of firm non-Lebesgue points. Although such sets need not be closed,
the next theorem shows they must be Borel of type Fs.

THEOREM 2. If fis a summable approximately continuous function, then
the set of firm non-Lebesque points is of type Fys.

Proof. For each m and n, define
1 1

E,,n = q : for some y, 0<|y—a:|§—and—§|f(t)]dt2m .
n y—a

We can deduce that FE,,, is of type F, by a slight modification of the
argument that was used in the proof of Lemma 2 to show the set A,, ,, was of
type Fy. (Just take z = 0, using the notation in that proof.) By formula (3),
it is clear that the set of firm non-Lebesgue points equals () -_; (Voo Em n,
and is therefore of type F,s.

4. A question. We have shown that for any summable approximately
continuous function, L? is a nowhere dense Borel nullset of type Ggsos.
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However, it is extremely unlikely that for an arbitrary nowhere dense Borel
nullset S of type Ggss6 there is some summable approximately continuous
function for which S = L;. We thus pose the following question: what are
necessary and sufficient conditions for a set S to be the non-Lebesgue set of
some summable approximately continuous function?
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