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THE BOREL STRUCTURE OF SOME NON-LEBESGUE SETS

BY

DON L. HANCOCK (Malibu, CA)

Abstract. For a given function in some classes related to real derivatives, we examine
the structure of the set of points which are not Lebesgue points. In particular, we prove
that for a summable approximately continuous function, the non-Lebesgue set is a nowhere
dense nullset of at most Borel class 4.

1. Introduction. The classes of Darboux Baire 1, approximately con-
tinuous, and Lebesgue functions play a significant role in differentiation
theory for real functions of a real variable. In [5] it is shown that every
Darboux Baire 1 (and thus every approximately continuous) function de-
fined on a closed interval can be transformed into a Lebesgue function by
an appropriate homeomorphic change of variables, while in [2] necessary and
sufficient conditions are obtained for an approximately continuous function
to be transformed into a Lebesgue function by a homeomorphic change of
scale. This suggests considering, loosely speaking, how far removed can an
approximately continuous function be from a Lebesgue function. More pre-
cisely, what properties are possessed by the collection of non-Lebesgue points
of an approximately continuous function? In this paper we show that under
the additional assumption that the function is summable, the non-Lebesgue
set of an approximately continuous function is a nowhere dense nullset of at
most Borel class 4.

2. Preliminaries. Let us begin by introducing some notation, termi-
nology, and background results necessary to our discussion. The real line is
denoted by R and [a, b] is an arbitrary nondegenerate closed interval. The
letters m and n always denote positive integers. Given a set S, we write S
and Sc for, respectively, the closure of S and the complement of S relative
to [a, b]. It is assumed that all functions are measurable real-valued func-
tions with domain [a, b], and any integrals are to be interpreted as Lebesgue
integrals. For a given function f and a subset E of [a, b], f |E means the
restriction of f to the set E. Recall that a number x is a Lebesgue point of
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a function f if

lim
y→x

1
y − x

y�

x

|f(t)− f(x)| dt = 0;

otherwise x is called a non-Lebesgue point of f . The set consisting of all
the non-Lebesgue points of f is called the non-Lebesgue set and denoted
by Lc

f . (If Lc
f is the empty set, then f is a Lebesgue function.) Definitions

and fundamental properties of both approximately continuous and Darboux
Baire 1 functions may be found in [1] and [4], and we will use these properties
without restraint. In particular we note that at any of its Lebesgue points a
Darboux Baire 1 function f is approximately continuous and is the derivative
of its integral. On the other hand, if f is approximately continuous at x,
A is a measurable subset of [a, b], and f |A is bounded, then

(1) lim
y→x

1
y − x

�

(x,y)∩A
|f(t)− f(x)| dt = 0,

and if x is additionally a density point of A, then

(2) lim
y→x

1
y − x

�

(x,y)∩A
|f(t)| dt = |f(x)|.

We also assume basic knowledge of Borel sets and their classifications, as
found in [3].

3. Results and proofs. Every approximately continuous function f
is Darboux Baire 1, and a Baire 1 function has a dense set of points of
continuity. About each such point x there exists a sufficiently small open
interval Ix on which f must be bounded. Using formula (1), we conclude
that each point of Ix is a Lebesgue point of f . Thus Lf contains a dense open
set, proving that Lc

f is nowhere dense. In addition, if f is summable, then
almost every point is a Lebesgue point, so Lc

f is a nowhere dense nullset.

Example 1. The non-Lebesgue set of a summable approximately con-
tinuous function is “small” in the sense of measure and Baire category, but
not necessarily in the sense of cardinality. To see this, first let {Im}∞m=1 =
{(am, bm)}∞m=1 be an enumeration of the open intervals contiguous to a
nowhere dense perfect nullset P ⊂ [a, b], and for each m let (αm, βm) be the
subinterval of Im having length (bm − am)/m and midpoint (am + bm)/2.
Next, create a “spike function” f such that f(x) = 2m if x = (am + bm)/2,
f is identically 0 on the complement of the union of the intervals (αm, βm),
and f is defined elsewhere by linear extension. It can be verified by routine
computations that f is a summable approximately continuous function for
which Lc

f is the uncountable set P .



NON-LEBESGUE SETS 97

For any summable f that is not a Lebesgue function, Lc
f is never open

and it need not be closed. In fact, we can create a summable approximately
continuous f for which Lc

f has positive measure, and therefore is also not σ-
porous. To see this, consider a bounded nowhere dense perfect set Q having
positive measure, and let {Jk}∞k=1 be an enumeration of the open intervals
contiguous to Q. Now define a function f so that it is identically 0 on Q,
while on each Jk it is constructed just as the function in Example 1 was
on the arbitrary interval (a, b), except we now scale down the base widths
of each spike by a constant factor of 1/k. This f is easily verified to be
a summable approximately continuous function such that the endpoints of
each Jk are non-Lebesgue points, and thus Lc

f contains the set Q of positive
measure.

We now proceed to show that Lc
f must also be a Borel set of type Gδσδσ

for any summable approximately continuous function f . Since the proof
only requires f to be a Baire 1 summable function, we state and prove our
result in this more general setting. The proof will be based on three lemmas.
Assume throughout that

D = {(x, y, z) : x ∈ [a, b], y ∈ [a, b], z ∈ R}.
Lemma 1. If f is summable, then for each m the set Tm defined by

Tm =
{

(x, y, z) :
1

y − x

y�

x

|f(t)− z| dt ≥ 1
m

}

is of type Fσ in D.

Proof. The set-theoretic difference of two closed sets is an Fσ, so it is
sufficient to show that Tm = Tm − {(x, y, z) : x = y}. Containment in
one direction is obvious. To show containment in the opposite direction we
show that if (x, y, z) ∈ Tm and x 6= y, then (x, y, z) ∈ Tm. For convenience
we suppose that y > x, as the proof is analogous if y < x. There ex-
ists a sequence {(xk, yk, zk)}∞k=1 that converges to (x, y, z) in D, with each
(xk, yk, zk) in Tm. Thus xk tends to x, yk tends to y, zk tends to z, and
yk > xk for large enough k.

Choose ε > 0 arbitrarily. Since f is summable, there exists a δ > 0 such
that �

B

|f(t)− z| dt < ε

3

for any subset B of [a, b] having measure less than δ. Now choose a large
enough integer K so that the following four conditions are satisfied whenever
k > K:

(i) yk > xk,
(ii) the set Bk = ([xk, yk] ∪ [x, y])− ([xk, yk] ∩ [x, y]) has measure less

than δ,
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(iii) |zk − z| · 2(y − x) < ε/3,
(iv) (y − x)−mε/3 < yk − xk < 2(y − x).

Then for all k > K we have
∣∣∣
yk�

xk

|f(t)− zk| dt−
y�

x

|f(t)− z| dt
∣∣∣

≤
∣∣∣
yk�

xk

|f(t)− zk| dt−
yk�

xk

|f(t)− z| dt
∣∣∣+
∣∣∣
yk�

xk

|f(t)− z| dt−
y�

x

|f(t)− z| dt
∣∣∣

≤
yk�

xk

|zk − z| dt+
�

Bk

|f(t)− z| dt

< |zk − z|(yk − xk) + ε/3 (by (ii))

≤ |zk − z| · 2(y − x) + ε/3 (by (iv))

< ε/3 + ε/3 = 2ε/3 (by (iii)).

Furthermore, since (xk, yk, zk) ∈ Tm,
yk�

xk

|f(t)− zk| dt ≥
1
m

(yk − xk).

Hence, k > K implies
y�

x

|f(t)− z| dt >
yk�

xk

|f(t)− zk| dt−
2ε
3
≥ yk − xk

m
− 2ε

3

≥ y − x−mε/3
m

− 2ε
3

(by (iv))

=
y − x
m
− ε.

Since ε was arbitrary, we deduce that � y
x
|f(t)− z| dt ≥ (y − x)/m and thus

(x, y, z) ∈ Tm.

Lemma 2. Suppose that f is a summable function and that C is a subset
of [a, b] × R defined as follows: (x, z) ∈ C if and only if for some m and
every n, there exists a y ∈ [a, b] such that 0 < |y − x| ≤ 1/n and

1
y − x

y�

x

|f(t)− z| dt ≥ 1
m
.

Then C is of type Fσδσ in [a, b]× R.
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Proof. For each m and n, define a set Am,n as follows: (x, z) ∈ Am,n if
and only if there exists a y such that 0 < |y − x| ≤ 1/n and

1
y − x

y�

x

|f(t)− z| dt ≥ 1
m
.

Then C =
⋃∞
m=1

⋂∞
n=1 Am,n. To complete the proof, it thus suffices to show

that each Am,n is of type Fσ. Let Bm,n = Tm∩{(x, y, z) : 0 < |y−x| ≤ 1/n},
where Tm is the set defined in the previous lemma. Then Bm,n, being the
intersection of two Fσ sets, is also of type Fσ. Let P2 denote the projection
map of D onto [a, b] × R, where P2 is defined by P2(x, y, z) = (x, z). It
is evident that P2(Bm,n) = Am,n. Since Bm,n is of type Fσ, we can find
compact sets Fk so that Bm,n =

⋃∞
k=1 Fk. The continuity of P2 implies that

P2(Fk) is closed. Furthermore, P2(Bm,n) = P2(
⋃∞
k=1 Fk) =

⋃∞
k=1 P2(Fk), so

Am,n is of type Fσ. This completes the proof.

Lemma 3. Let f be a summable Baire 1 function, and let G denote the
graph of f. If A is any set of type Fσδσ in [a, b] × R, then the projection of
G ∩ A onto [a, b] is a Borel set of type Gδσδσ.

Proof. This is just a special case of a theorem in [3, p. 385].

Theorem 1. Suppose that f is a summable function in Baire class 1.
Then Lc

f is a Borel set of type Gδσδσ.

Proof. By the definition of a Lebesgue point, it is evident that x ∈ Lc
f

if and only if

lim sup
y→x

1
y − x

y�

x

|f(t)− f(x)| dt > 0.

Thus x ∈ Lc
f if and only if there exists some z in R for which the following

two conditions are satisfied:

(i) f(x) = z,
(ii) for some m and every n there is a y such that 0 < |y− x| ≤ 1/n and

1
y − x

y�

x

|f(t)− z| dt ≥ 1
m
.

Let P1 denote the projection map of [a, b]×R onto [a, b] defined by P1(x, z)
= x. Then it is obvious that Lc

f = P1(G ∩ C), where C is the Fσδσ set of
Lemma 2 and G is the graph of f . Applying Lemma 3 completes the proof.

As an immediate application of Theorem 1, we see that if Lc
f is uncount-

able then it contains a nonempty nowhere dense perfect set. This is true
because every uncountable Borel set has that property. We also mention
that there is an analogue to Lemma 3 which is valid for any function f of
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Borel class α. Using this result, the proof of Theorem 1 shows that Lc
f is a

Borel set of additive class α+ 3, provided that f is also summable.
For any x in [a, b] and a given approximately continuous function f , let

cx be the extended real number defined by

cx = lim sup
y→x

1
y − x

y�

x

|f(t)− f(x)| dt.

If cx is 0 then x is a Lebesgue point of f , while if cx is a positive number or∞,
then x ∈ Lc

f . A point x ∈ Lc
f is called weak if 0 < cx <∞ or firm if cx =∞.

(This terminology is appropriate because for any homeomorphism h of R
onto R satisfying a mild growth condition, each weak non-Lebesgue point of
f is a Lebesgue point of h◦f , for every approximately continuous function f .
See [2].) It is a straightforward argument to prove from formulas (1) and (2)
that x is a firm non-Lebesgue point of an approximately continuous function
f if and only if

(3) lim sup
y→x

1
y − x

y�

x

|f(t)| dt =∞.

Every non-Lebesgue point x of the “spike” function in Example 1 above
is weak, since crude estimates show that cx < 2. However, suppose that
we modify Example 1 by increasing the height of each spike by defining
f((am + bm)/2) = 2msm, where {sm}∞m=1 is an increasing, unbounded se-
quence of positive numbers such that

∑∞
m=1 sm(bm − am) converges. This

produces a summable approximately continuous function with an uncount-
able set of firm non-Lebesgue points. Although such sets need not be closed,
the next theorem shows they must be Borel of type Fσδ.

Theorem 2. If f is a summable approximately continuous function, then
the set of firm non-Lebesgue points is of type Fσδ.

Proof. For each m and n, define

Em,n =
{
x : for some y, 0 < |y − x| ≤ 1

n
and

1
y − x

y�

x

|f(t)| dt ≥ m
}
.

We can deduce that Em,n is of type Fσ by a slight modification of the
argument that was used in the proof of Lemma 2 to show the set Am,n was of
type Fσ. (Just take z = 0, using the notation in that proof.) By formula (3),
it is clear that the set of firm non-Lebesgue points equals

⋂∞
m=1

⋂∞
n=1 Em,n,

and is therefore of type Fσδ.

4. A question. We have shown that for any summable approximately
continuous function, Lc

f is a nowhere dense Borel nullset of type Gσδσδ.
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However, it is extremely unlikely that for an arbitrary nowhere dense Borel
nullset S of type Gσδσδ there is some summable approximately continuous
function for which S = Lc

f . We thus pose the following question: what are
necessary and sufficient conditions for a set S to be the non-Lebesgue set of
some summable approximately continuous function?

REFERENCES

[1] A. Bruckner, Differentiation of Real Functions, 2nd ed., Amer. Math. Soc., Provi-
dence, RI, 1994.

[2] D. Hancock, Derivatives and Lebesgue points via homeomorphic changes of scale,
Trans. Amer. Math. Soc. 267 (1981), 197–218.

[3] K. Kuratowski, Topology , Vol. I, Academic Press, New York, 1976.
[4] I. Natanson, Theory of Functions of a Real Variable, Vol. II, Ungar, New York, 1960.
[5] D. Preiss, Maximoff’s theorem, Real Anal. Exchange 5 (1980), 92–104.

Department of Mathematics
Pepperdine University
Malibu, CA 90263, U.S.A.
E-mail: don.hancock@pepperdine.edu

Received 2 September 2002;
revised 1 April 2004 (4261)


