VOL. 100 2004 NO. 1

THE BOREL STRUCTURE OF SOME NON-LEBESGUE SETS

BY

DON L. HANCOCK (Malibu, CA)

Abstract. For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.

- 1. Introduction. The classes of Darboux Baire 1, approximately continuous, and Lebesgue functions play a significant role in differentiation theory for real functions of a real variable. In [5] it is shown that every Darboux Baire 1 (and thus every approximately continuous) function defined on a closed interval can be transformed into a Lebesgue function by an appropriate homeomorphic change of variables, while in [2] necessary and sufficient conditions are obtained for an approximately continuous function to be transformed into a Lebesgue function by a homeomorphic change of scale. This suggests considering, loosely speaking, how far removed can an approximately continuous function be from a Lebesgue function. More precisely, what properties are possessed by the collection of non-Lebesgue points of an approximately continuous function? In this paper we show that under the additional assumption that the function is summable, the non-Lebesgue set of an approximately continuous function is a nowhere dense nullset of at most Borel class 4.
- **2. Preliminaries.** Let us begin by introducing some notation, terminology, and background results necessary to our discussion. The real line is denoted by \mathbb{R} and [a,b] is an arbitrary nondegenerate closed interval. The letters m and n always denote positive integers. Given a set S, we write \overline{S} and S^c for, respectively, the closure of S and the complement of S relative to [a,b]. It is assumed that all functions are measurable real-valued functions with domain [a,b], and any integrals are to be interpreted as Lebesgue integrals. For a given function f and a subset E of [a,b], f|E means the restriction of f to the set E. Recall that a number x is a Lebesgue point of

a function f if

$$\lim_{y \to x} \frac{1}{y - x} \int_{x}^{y} |f(t) - f(x)| dt = 0;$$

otherwise x is called a non-Lebesgue point of f. The set consisting of all the non-Lebesgue points of f is called the non-Lebesgue set and denoted by L_f^c . (If L_f^c is the empty set, then f is a Lebesgue function.) Definitions and fundamental properties of both approximately continuous and Darboux Baire 1 functions may be found in [1] and [4], and we will use these properties without restraint. In particular we note that at any of its Lebesgue points a Darboux Baire 1 function f is approximately continuous and is the derivative of its integral. On the other hand, if f is approximately continuous at x, f is a measurable subset of f and f are bounded, then

(1)
$$\lim_{y \to x} \frac{1}{y - x} \int_{(x,y) \cap A} |f(t) - f(x)| \, dt = 0,$$

and if x is additionally a density point of A, then

(2)
$$\lim_{y \to x} \frac{1}{y - x} \int_{(x,y) \cap A} |f(t)| \, dt = |f(x)|.$$

We also assume basic knowledge of Borel sets and their classifications, as found in [3].

3. Results and proofs. Every approximately continuous function f is Darboux Baire 1, and a Baire 1 function has a dense set of points of continuity. About each such point x there exists a sufficiently small open interval I_x on which f must be bounded. Using formula (1), we conclude that each point of I_x is a Lebesgue point of f. Thus L_f contains a dense open set, proving that L_f^c is nowhere dense. In addition, if f is summable, then almost every point is a Lebesgue point, so L_f^c is a nowhere dense nullset.

EXAMPLE 1. The non-Lebesgue set of a summable approximately continuous function is "small" in the sense of measure and Baire category, but not necessarily in the sense of cardinality. To see this, first let $\{I_m\}_{m=1}^{\infty} = \{(a_m,b_m)\}_{m=1}^{\infty}$ be an enumeration of the open intervals contiguous to a nowhere dense perfect nullset $P \subset [a,b]$, and for each m let (α_m,β_m) be the subinterval of I_m having length $(b_m-a_m)/m$ and midpoint $(a_m+b_m)/2$. Next, create a "spike function" f such that f(x)=2m if $x=(a_m+b_m)/2$, f is identically 0 on the complement of the union of the intervals (α_m,β_m) , and f is defined elsewhere by linear extension. It can be verified by routine computations that f is a summable approximately continuous function for which L_f^c is the uncountable set P.

For any summable f that is not a Lebesgue function, L_f^c is never open and it need not be closed. In fact, we can create a summable approximately continuous f for which $\overline{L_f^c}$ has positive measure, and therefore is also not σ -porous. To see this, consider a bounded nowhere dense perfect set Q having positive measure, and let $\{J_k\}_{k=1}^{\infty}$ be an enumeration of the open intervals contiguous to Q. Now define a function f so that it is identically 0 on Q, while on each J_k it is constructed just as the function in Example 1 was on the arbitrary interval (a,b), except we now scale down the base widths of each spike by a constant factor of 1/k. This f is easily verified to be a summable approximately continuous function such that the endpoints of each J_k are non-Lebesgue points, and thus $\overline{L_f^c}$ contains the set Q of positive measure.

We now proceed to show that L_f^c must also be a Borel set of type $G_{\delta\sigma\delta\sigma}$ for any summable approximately continuous function f. Since the proof only requires f to be a Baire 1 summable function, we state and prove our result in this more general setting. The proof will be based on three lemmas. Assume throughout that

$$D = \{(x, y, z) : x \in [a, b], y \in [a, b], z \in \mathbb{R}\}.$$

LEMMA 1. If f is summable, then for each m the set T_m defined by

$$T_m = \left\{ (x, y, z) : \frac{1}{y - x} \int_{x}^{y} |f(t) - z| dt \ge \frac{1}{m} \right\}$$

is of type F_{σ} in D.

Proof. The set-theoretic difference of two closed sets is an F_{σ} , so it is sufficient to show that $T_m = \overline{T}_m - \{(x,y,z) : x = y\}$. Containment in one direction is obvious. To show containment in the opposite direction we show that if $(x,y,z) \in \overline{T}_m$ and $x \neq y$, then $(x,y,z) \in T_m$. For convenience we suppose that y > x, as the proof is analogous if y < x. There exists a sequence $\{(x_k,y_k,z_k)\}_{k=1}^{\infty}$ that converges to (x,y,z) in D, with each (x_k,y_k,z_k) in T_m . Thus x_k tends to x, y_k tends to y, z_k tends to z, and $y_k > x_k$ for large enough k.

Choose $\varepsilon>0$ arbitrarily. Since f is summable, there exists a $\delta>0$ such that

$$\int_{B} |f(t) - z| \, dt < \frac{\varepsilon}{3}$$

for any subset B of [a,b] having measure less than δ . Now choose a large enough integer K so that the following four conditions are satisfied whenever k > K:

- (i) $y_k > x_k$,
- (ii) the set $B_k = ([x_k, y_k] \cup [x, y]) ([x_k, y_k] \cap [x, y])$ has measure less than δ ,

(iii)
$$|z_k - z| \cdot 2(y - x) < \varepsilon/3$$
,

(iv)
$$(y-x) - m\varepsilon/3 < y_k - x_k < 2(y-x)$$
.

Then for all k > K we have

$$\left| \int_{x_{k}}^{y_{k}} |f(t) - z_{k}| dt - \int_{x}^{y} |f(t) - z| dt \right|$$

$$\leq \left| \int_{x_{k}}^{y_{k}} |f(t) - z_{k}| dt - \int_{x_{k}}^{y_{k}} |f(t) - z| dt \right| + \left| \int_{x_{k}}^{y_{k}} |f(t) - z| dt - \int_{x}^{y} |f(t) - z| dt \right|$$

$$\leq \int_{x_{k}}^{y_{k}} |z_{k} - z| dt + \int_{B_{k}} |f(t) - z| dt$$

$$< |z_{k} - z| (y_{k} - x_{k}) + \varepsilon/3 \quad \text{(by (ii))}$$

$$\leq |z_{k} - z| \cdot 2(y - x) + \varepsilon/3 \quad \text{(by (iv))}$$

$$< \varepsilon/3 + \varepsilon/3 = 2\varepsilon/3 \quad \text{(by (iii))}.$$

Furthermore, since $(x_k, y_k, z_k) \in T_m$,

$$\int_{x_k}^{y_k} |f(t) - z_k| \, dt \ge \frac{1}{m} \, (y_k - x_k).$$

Hence, k > K implies

$$\int_{x}^{y} |f(t) - z| dt > \int_{x_{k}}^{y_{k}} |f(t) - z_{k}| dt - \frac{2\varepsilon}{3} \ge \frac{y_{k} - x_{k}}{m} - \frac{2\varepsilon}{3}$$

$$\ge \frac{y - x - m\varepsilon/3}{m} - \frac{2\varepsilon}{3} \quad \text{(by (iv))}$$

$$= \frac{y - x}{m} - \varepsilon.$$

Since ε was arbitrary, we deduce that $\int_x^y |f(t)-z| dt \ge (y-x)/m$ and thus $(x,y,z) \in T_m$.

LEMMA 2. Suppose that f is a summable function and that C is a subset of $[a,b] \times \mathbb{R}$ defined as follows: $(x,z) \in C$ if and only if for some m and every n, there exists a $y \in [a,b]$ such that $0 < |y-x| \le 1/n$ and

$$\frac{1}{y-x}\int_{x}^{y}|f(t)-z|\,dt\geq\frac{1}{m}.$$

Then C is of type $F_{\sigma\delta\sigma}$ in $[a,b] \times \mathbb{R}$.

Proof. For each m and n, define a set $A_{m,n}$ as follows: $(x,z) \in A_{m,n}$ if and only if there exists a y such that $0 < |y-x| \le 1/n$ and

$$\frac{1}{y-x}\int_{x}^{y}|f(t)-z|\,dt\geq\frac{1}{m}.$$

Then $C = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} A_{m,n}$. To complete the proof, it thus suffices to show that each $A_{m,n}$ is of type F_{σ} . Let $B_{m,n} = T_m \cap \{(x,y,z) : 0 < |y-x| \le 1/n\}$, where T_m is the set defined in the previous lemma. Then $B_{m,n}$, being the intersection of two F_{σ} sets, is also of type F_{σ} . Let P_2 denote the projection map of D onto $[a,b] \times \mathbb{R}$, where P_2 is defined by $P_2(x,y,z) = (x,z)$. It is evident that $P_2(B_{m,n}) = A_{m,n}$. Since $B_{m,n}$ is of type F_{σ} , we can find compact sets F_k so that $B_{m,n} = \bigcup_{k=1}^{\infty} F_k$. The continuity of P_2 implies that $P_2(F_k)$ is closed. Furthermore, $P_2(B_{m,n}) = P_2(\bigcup_{k=1}^{\infty} F_k) = \bigcup_{k=1}^{\infty} P_2(F_k)$, so $A_{m,n}$ is of type F_{σ} . This completes the proof.

LEMMA 3. Let f be a summable Baire 1 function, and let G denote the graph of f. If A is any set of type $F_{\sigma\delta\sigma}$ in $[a,b]\times\mathbb{R}$, then the projection of $G\cap A$ onto [a,b] is a Borel set of type $G_{\delta\sigma\delta\sigma}$.

Proof. This is just a special case of a theorem in [3, p. 385].

Theorem 1. Suppose that f is a summable function in Baire class 1. Then L_f^c is a Borel set of type $G_{\delta\sigma\delta\sigma}$.

Proof. By the definition of a Lebesgue point, it is evident that $x \in L_f^c$ if and only if

$$\limsup_{y \to x} \frac{1}{y - x} \int_{x}^{y} |f(t) - f(x)| \, dt > 0.$$

Thus $x \in L_f^c$ if and only if there exists some z in \mathbb{R} for which the following two conditions are satisfied:

- (i) f(x) = z,
- (ii) for some m and every n there is a y such that $0 < |y x| \le 1/n$ and

$$\frac{1}{y-x}\int_{x}^{y}|f(t)-z|\,dt\geq\frac{1}{m}.$$

Let P_1 denote the projection map of $[a, b] \times \mathbb{R}$ onto [a, b] defined by $P_1(x, z) = x$. Then it is obvious that $L_f^c = P_1(G \cap C)$, where C is the $F_{\sigma\delta\sigma}$ set of Lemma 2 and G is the graph of f. Applying Lemma 3 completes the proof.

As an immediate application of Theorem 1, we see that if L_f^c is uncountable then it contains a nonempty nowhere dense perfect set. This is true because every uncountable Borel set has that property. We also mention that there is an analogue to Lemma 3 which is valid for any function f of

Borel class α . Using this result, the proof of Theorem 1 shows that L_f^c is a Borel set of additive class $\alpha + 3$, provided that f is also summable.

For any x in [a, b] and a given approximately continuous function f, let c_x be the extended real number defined by

$$c_x = \limsup_{y \to x} \frac{1}{y - x} \int_x^y |f(t) - f(x)| dt.$$

If c_x is 0 then x is a Lebesgue point of f, while if c_x is a positive number or ∞ , then $x \in L_f^c$. A point $x \in L_f^c$ is called weak if $0 < c_x < \infty$ or firm if $c_x = \infty$. (This terminology is appropriate because for any homeomorphism h of $\mathbb R$ onto $\mathbb R$ satisfying a mild growth condition, each weak non-Lebesgue point of f is a Lebesgue point of $h \circ f$, for every approximately continuous function f. See [2].) It is a straightforward argument to prove from formulas (1) and (2) that x is a firm non-Lebesgue point of an approximately continuous function f if and only if

(3)
$$\limsup_{y \to x} \frac{1}{y-x} \int_{x}^{y} |f(t)| dt = \infty.$$

Every non-Lebesgue point x of the "spike" function in Example 1 above is weak, since crude estimates show that $c_x < 2$. However, suppose that we modify Example 1 by increasing the height of each spike by defining $f((a_m + b_m)/2) = 2ms_m$, where $\{s_m\}_{m=1}^{\infty}$ is an increasing, unbounded sequence of positive numbers such that $\sum_{m=1}^{\infty} s_m(b_m - a_m)$ converges. This produces a summable approximately continuous function with an uncountable set of firm non-Lebesgue points. Although such sets need not be closed, the next theorem shows they must be Borel of type $F_{\sigma\delta}$.

Theorem 2. If f is a summable approximately continuous function, then the set of firm non-Lebesgue points is of type $F_{\sigma\delta}$.

Proof. For each m and n, define

$$E_{m,n} = \left\{ x : \text{for some } y, \ 0 < |y - x| \le \frac{1}{n} \text{ and } \frac{1}{y - x} \int_{x}^{y} |f(t)| dt \ge m \right\}.$$

We can deduce that $E_{m,n}$ is of type F_{σ} by a slight modification of the argument that was used in the proof of Lemma 2 to show the set $A_{m,n}$ was of type F_{σ} . (Just take z=0, using the notation in that proof.) By formula (3), it is clear that the set of firm non-Lebesgue points equals $\bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} E_{m,n}$, and is therefore of type $F_{\sigma\delta}$.

4. A question. We have shown that for any summable approximately continuous function, L_f^c is a nowhere dense Borel nullset of type $G_{\sigma\delta\sigma\delta}$.

(4261)

However, it is extremely unlikely that for an arbitrary nowhere dense Borel nullset S of type $G_{\sigma\delta\sigma\delta}$ there is some summable approximately continuous function for which $S=L_f^c$. We thus pose the following question: what are necessary and sufficient conditions for a set S to be the non-Lebesgue set of some summable approximately continuous function?

REFERENCES

- A. Bruckner, Differentiation of Real Functions, 2nd ed., Amer. Math. Soc., Providence, RI, 1994.
- [2] D. Hancock, Derivatives and Lebesgue points via homeomorphic changes of scale, Trans. Amer. Math. Soc. 267 (1981), 197–218.
- [3] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1976.
- [4] I. Natanson, Theory of Functions of a Real Variable, Vol. II, Ungar, New York, 1960.
- [5] D. Preiss, Maximoff's theorem, Real Anal. Exchange 5 (1980), 92–104.

Department of Mathematics Pepperdine University Malibu, CA 90263, U.S.A. E-mail: don.hancock@pepperdine.edu

> Received 2 September 2002; revised 1 April 2004