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Abstract. We consider subtorus actions on complex toric varieties. A natural candi-
date for a categorical quotient of such an action is the so-called toric quotient, a universal
object constructed in the toric category. We prove that if the toric quotient is weakly proper
and if in addition the quotient variety is of expected dimension then the toric quotient is
a categorical quotient in the category of algebraic varieties. For example, weak properness
always holds for the toric quotient of a subtorus action on a toric variety whose fan has a
convex support.

Introduction. In [Mu] D. Mumford introduced the notion of a cat-
egorical quotient for the action of an algebraic group GG on an algebraic
variety X. By definition this is a G-invariant morphism p: X — Y such
that every G-invariant morphism from X to some algebraic variety factors
uniquely through p. In general, such a categorical quotient need not exist.
In this article we will consider subtorus actions on complex toric varieties.
For a survey of results in this context see [AC;Had].

In this setting, a natural candidate for a categorical quotient has been
constructed in the category of toric varieties, namely the so-called toric quo-
tient (see [AC;Hal]). The toric quotient is universal for toric morphisms from
the given toric variety that are constant on the orbits of the subtorus action.
Clearly, a necessary condition for the toric quotient to be categorical is sur-
jectivity. But there are examples of toric quotients that are not surjective
and hence not categorical. In fact, in [AC;Ha3, Section 5], an example of a
subtorus action on a toric variety is given that does not admit a categorical
quotient, not even in the category of algebraic or analytic spaces.

On the other hand, if the codimension of H in the big torus T of the toric
variety is at most 2, then the toric quotient is always categorical (Corollary
4.3 in [AC;Ha3]). An important tool for the proof was to observe that the
toric quotient in that case is weakly proper, i.e. it satisfies a certain weak
lifting property for holomorphic germs of curves (the precise definition is
given in Section 1).
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A morphism of complex algebraic varieties is weakly proper if and only
if it is universally submersive. Another more geometric characterization is
given by the following notion: We say that a morphism p: X — Y of al-
gebraic varieties has the curve covering property if for every curve Y/ C Y
there is a (not necessarily irreducible) curve X’ € X with p(X’) = Y’ such
that the morphism from X’ to Y’ defined by p has finite fibers. If in addition
the curve covering property is preserved under any base change, then the
morphism p has the universal curve covering property. If p is a surjective
morphism over the field of complex numbers then this property is equivalent
to weak properness (see Section 1).

For a toric morphism, weak properness has a very simple characteriza-
tion in terms of fans, namely the property holds if and only if the associated
lattice homomorphism induces a surjective map on the supports of the cor-
responding fans (see Section 2).

In this article we will show that weak properness is a sufficient condition
for a toric quotient of expected dimension to be categorical. More precisely,
our main result is the following (see Corollary 6.4):

THEOREM. For a toric variety X and a subtorus H of the big torus T
of X, letp: X — Y denote the toric quotient for the action of H on X. If p
is weakly proper and dimY = dim T'/ H, then the toric quotient is categorical.

For example, weak properness is automatically satisfied if the fan asso-
ciated to X has a convex support, or equivalently, if there is a proper toric
morphism from X onto an affine toric variety. In fact, we can even show that
in this case the dimension condition can be omitted (see Corollary 6.5):

THEOREM. If the toric variety X corresponds to a fan with convex sup-
port, then for any subtorus action on X the toric quotient is a quotient in
the category of algebraic varieties.

In order to prove our results we proceed by induction on the number
of steps in the construction of the toric quotient. The intermediate steps of
this construction can be viewed as successive approximations of the quotient
by non-separated prevarieties (see Section 6). Therefore it simplifies the
arguments to work in the more general context of toric prevarieties. We
prove a result stated in this context (see Theorem 6.2) and obtain the above
theorems as corollaries.

Toric prevarieties are the non-separated analogues of toric varieties,
i.e. complex algebraic prevarieties with an effective action of a torus having
a dense orbit. In analogy to the separated case, there is a convex-geometri-
cal description of toric prevarieties in terms of so-called systems of fans (see
[AC;Ha2]). In Section 2 we briefly recall the basic facts on toric prevarieties
and systems of fans.
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In Section 3 we consider morphisms from toric prevarieties to algebraic
varieties that are not necessarily toric. Every such morphism defines an
equivalence relation on the cones occurring in the system of fans corre-
sponding to the toric prevariety, and the supports of the equivalence classes
form a partition of the support of the system of fans. The properties of
this partition are analyzed in Sections 4 and 5. These sections contain the
convex-geometrical lemmata that are needed for the proof of the main the-
orem that is carried out in Section 6.

As an application of the result, in Section 7 we give an example of a
categorical quotient p: X — Y of a 4-dimensional toric variety by some
C*-action where dimY = 3 that is not uniform in the sense of [Mu], i.e.
such that for some open subset U C Y, the restriction p: p~1(U) — U is
not the categorical quotient for the induced C*-action.

1. Weak properness and the universal curve covering property.
In this section we recall the definition of weak properness given in [AC;Ha3],
and we give another interpretation of this notion in terms of a certain curve
covering property. We start with the curve covering property, and we first
consider algebraic prevarieties defined over an arbitrary algebraically closed
field K. Following the terminology used e.g. in [Bo|, we do not require a
prevariety to be irreducible. When we speak of a curve in a prevariety we
mean a closed algebraic subset of pure dimension 1. So a curve in this sense
is also not necessarily irreducible.

1.1. DEFINITION. Let p: X — Y be a morphism of prevarieties. We
say that p has the curve covering property (CCP) if for every irreducible
curve Y/ C Y and every y € Y’ there is an irreducible curve X’ C X such
that y € p(X’) C Y’ and p(X’) is dense in Y. If the curve covering property
remains true even after any base change then we say that p has the universal
curve covering property.

1.2. EXAMPLE. Every surjective proper morphism of prevarieties has
the universal curve covering property.

Proof. Let p: X — Y be a proper surjective morphism. Consider an
irreducible curve Y’ in Y and a point y € Y’. Choose an irreducible curve
X' in X such that p(X’) is dense in Y. Since p is proper, the curve X’ must
intersect the fiber of y. m

In fact, the curve covering property is nothing but a geometric charac-
terization of submersiveness:

1.3. LEMMA. A surjective morphism p: X — Y of algebraic prevarieties
has the curve covering property if and only if it is submersive, i.e. if Y
carries the quotient topology with respect to p.
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Proof. First suppose that the (CCP) holds, and consider a subset U C Y
whose preimage p~!(U) is open in X. Assume that the complement A :=
Y \ U is not closed and choose a point y € ANU. Since A = p(X \ p~1(U))
is constructible, there is an irreducible curve Cy C Y through y such that
Cy N A is open and dense in Cy. Using the (CCP) we can find an irreducible
curve C'x C X meeting the fiber p~!(y) in a point = such that p(Cx) is dense

in Cy. That implies x € p~1(A)\p~1(A), contradicting the assumption that
p~L(A) is closed.

Conversely, suppose that p is submersive and consider an irreducible
curve Cy through a point y in Y. Since p is surjective, the fiber of y is not
empty. Moreover, since Cy \ {y} is not closed, the assumption implies that
its preimage p~1(Cy) \ p~!(y) is also not closed. So there is a point z in the
fiber of y which is contained in the closure of p~!(Cy \ {y}). This implies
that there is a curve Cx through z in p~!(Cy) intersecting the fiber of y
only in a finite number of points. So the (CCP) is fulfilled. =

An example of a surjective morphism that does not have the curve cov-
ering property is the following:

1.4. EXAMPLE. Let X denote the blow-up of K? at the origin, and let
x = 00 be the point corresponding to the es-axis in the exceptional line.
Then the morphism p: X \ {z} — K2 defined by contracting the exceptional
line is surjective. But there is no curve in X \ {z} covering the es-axis near
the origin.

Here is an example of a surjective morphism with curve covering property
but such that the (CCP) does not hold universally.

1.5. EXAMPLE. Let X denote the simple nodal curve in K? defined by
the equation y?> = 2%(z + 1). Its normalization is given by v: K! — X,
t (t2—1,¢(t>—1)). The map p: K} \ {—1} — X defined by v is surjective
and the (CCP) holds. But base change of p via v leads to a map that does
not have the (CCP):

The fiber product of K! and K'\ {—1} over X is the reducible subvariety
Y :={(t,t);t € K, t # —1}U(—1,1) of K2, and for the projection p;: Y —
K! onto the first factor the (CCP) does not hold.

From now on, all prevarieties are assumed to be defined over C. In this
case the universal curve covering property has a local interpretation in terms
of holomorphic germs of curves, and for this purpose we recall some defini-
tions from [AC;Ha3]. A local curve in x € X is defined to be a holomorphic
mapping germ v: Co — X/, where X’ is an algebraic curve in X through x.
Let p: X — Y be a regular map of prevarieties. We say that a local curve
7:Co — X; at ¥ € X is a weak p-lifting of a local curve v: Cop — Y}
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at y € Y (where Y/ C Y is a curve through y) if there is a non-constant
holomorphic mapping germ a: Cy — Cy and a commutative diagram

Co——= X,

l |»

The map p is called weakly proper if any local curve in Y admits a weak
p-lifting. A similar notion in the context of algebraic spaces was introduced
by Kollar, the so-called weak lifting property for discrete valuation rings
(see [Ko, Section 3]).

1.6. PROPOSITION. For a surjective morphism p: X — Y of complex
algebraic prevarieties the following conditions are equivalent:

(i) p is weakly proper.
(ii) p has the universal curve covering property.
(iii) p is submersive, and this property is preserved by every base change.

Proof. First note that surjectivity is preserved under base change. So the
equivalence of the last two statements follows from Lemma 1.3. Moreover,
weak properness is preserved under base change and clearly implies the
(CCP). That shows that (i) implies (ii).

Now let us assume (ii) and conclude (i). Without loss of generality we
can also assume that Y is separated. Let v be a local curve through a point
y € Y, and let Cy denote the Zariski closure of the image of v in Y. The
local curve ~ factors through the normalization Cy, and after a base change
we can achieve that Y is normal and 1-dimensional.

By assumption there is a point x in the fiber of y and an irreducible curve
Cx through z such that p(Cx) is dense in Y. Consider the normalization
C of C 'x, and choose a point T € C above z. We have an induced dominant
morphism from CtoY mapping z to y. B

Now we can argue locally in the analytic category. The germs Cj; and
Y, are smooth and hence isomorphic to Cy. The holomorphic germ of the
morphism p looks like the germ Cy — Cg defined by z — 2" for some n € N,
and similarly the germ of ~ is of the form Cy — Cgp, z — 2™ for some m.
Since both germs commute, one can choose & = p and ¥ = v to obtain the
desired commutative diagram. So in fact (i) holds. m

As mentioned in the introduction, we want to further investigate weakly
proper toric quotients. The main task will be to check the defining property
of a categorical quotient. In this context the following factorization result is
particularly useful (see Proposition 1.1 in [AC;Ha3]):
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1.7. PROPOSITION. Letp: X — Y be a weakly proper morphism of pre-
varieties, assume that'Y is normal and let f: X — Z be a morphism into a
variety Z. If f is constant on the fibers of p, then there is a unique morphism
f:Y — Z such that f = fop. =

Note that for open surjections the above result is well known (see e.g.
[Bo, I1.6.2]). However, the statement is not true in general for arbitrary
morphisms p.

2. Toric morphisms and weak properness. We now come to the
toric setting. Since for the proof of our main result we need the non-separated
analogues of toric varieties, we first briefly summarize the basic facts about
toric prevarieties. Then we state a characterization of weak properness in
terms of fans.

By definition a toric prevariety is a normal prevariety together with an
effective action of an algebraic torus having a dense orbit. We also fix an
embedding of the torus 7" in the toric prevariety X and denote the point in
X corresponding to the identity element by zg. A morphism f: X — X’ of
toric prevarieties with tori T and T” respectively is called a toric morphism
if f maps T into T" and is equivariant with respect to the actions of T and
T’ respectively. In particular, the restriction map f|r: T — T’ is a group
homomorphism, and we will refer to its kernel as the kernel of f and denote
it by ker(f).

As in the separated case, one can associate to each toric prevariety a
convex-geometrical object. More precisely, the category of toric prevarieties
is equivalent to the category of affine systems of fans (see [AC;Ha2]). Let
us recall the basic definitions. A system of fans in a lattice N is a finite
collection S = (Aj)i jer of fans A;; in the lattice N with

Aij = Aji and Aij N Ajk C A

for all 7, j, k. Such a system of fans is called affine if for every i € I the fan
A;; consists of the faces of a single cone o;; in V.

Given an affine system of fans § in a lattice IV, one can construct a toric
prevariety Xg with torus T' = N ®z C* by taking the affine toric varieties
X associated to the cones o;; in the lattice IV, and glueing X; and X; along
the open toric subvariety corresponding to the common subfan A;; of Ay
and Aj; for every 4, j € I. The subfans A;; induce a glueing relation on the
set

F(S):={(r,i);iel, T <04}

of labelled faces of the maximal cones occurring in S, namely (o,7) ~ (7, j)
if and only if 0 = 7 € A;j. There is a 1-1 correspondence between the set
of equivalence classes §2(S) := F(S)/~ and the set of T-orbits in Xs. More
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precisely, every labelled face (1,i) € F(S) defines a distinguished point =,
in the toric variety X;, and this point is identified with z; in X; if and
only if 7 € A;j. Therefore every equivalence class [7,i] € §2(S) defines a
distinguished point z|,; in Xs, and the orbits T'- [, ;, [7,1] € £2(S), form
a partition of Xs. The orbit structure is reflected by the partial ordering on
2(S) given by [r,j] < [o,1] if and only if 7 < ¢ and [r, j] = [7,]. We have

T’m[a,i] C T‘l’[m] & [T,j} < [a, Z]

We will also need a description of toric morphisms in terms of systems of
fans. For our purposes, however, it will suffice to consider toric morphisms
from prevarieties to varieties. So let Xs be the toric prevariety arising from
an affine system of fans S in a lattice N and let X o denote the toric variety
associated to a fan A in a lattice N'. Set

i€l

Then any toric morphism f: Xs — XA corresponds to a lattice homomor-
phism F: N — N’ with the property that for every 7 € C(S) there is a
cone o € A with Fr(7) C 0. (Here Fr denotes the scalar extension of F' to
the real vector spaces generated by N and N’.) For later use we also intro-
duce the following notation. For any given natural number k, we denote the
subset of k-dimensional cones in C(S) by C(S)*.

The support of the system of fans S is defined to be [S| = ;¢ |Aiil.
For toric morphisms weak properness can be characterized as follows (see
Proposition 1.2 in [AC;Ha3)):

2.1. PROPOSITION. A toric morphism f: Xs — XA from a toric preva-
riety to a toric variety is weakly proper if and only if the associated lattice
homomorphism F induces a surjection on the supports of the corresponding
systems of fans,

Fr(|S]) = [A]. =

3. Partition of the support defined by a morphism. Let us con-
sider a morphism f: X — Z from a toric prevariety X = Xg arising from
an affine system of fans § in a lattice IV to an algebraic variety Z that is
not necessarily toric. As we will see, such a morphism defines an equivalence
relation on the set C(S) of cones occurring in S, and the supports of the
equivalence classes form a finite partition of the support of S. Whether or
not f factors through a given toric morphism can be expressed in terms of
this partition.

We will consider two elements of §2(S) as equivalent with respect to
f if the corresponding parametrized orbits are mapped by f to the same
parametrized set in Z, or more precisely if the compositions of f with the
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orbit maps of the corresponding distinguished points yield the same map
onT.

3.1. DEFINITION. The morphism f induces an equivalence relation on
the set £2(S), namely:

[U, ’L] ~f [O’l,j] = f(t%t[mﬂ) = f(t~l‘[g/’j]) forallt € T.

Note that if the same cone appears with two different labels in 2(S),
[0,i] and [0, j] say, then [o,i] ~ [0, j]. That is an immediate consequence
of the following remark. For a cone o, let ¢° denote its relative interior. We
observe:

3.2. REMARK. If for [0,i],[0’,j] € £2(S) we have o° N (¢’)° # O, then
[0,4] ~¢ [0, ]

Proof. Choose v € NNo°N(c’)°. Let A, denote the corresponding one-
parameter subgroup of T and fix t € T. Then lims .ot Ay(s) 70 =t T[s)
in the affine chart X;, whereas lims_.ot- Ay(s) - 20 =t 7[5 in X;. Since f
is continuous and we assumed Z to be separated, this implies the claim. =

So in fact, f induces an equivalence relation on the set C(S), and we will
also denote this relation by ~y. We define the support of the equivalence

class of o € C(S) by
oly = {J ().

o'~yo
As an immediate consequence of Remark 3.2 we obtain the following

3.3. REMARK. The subsets |o|f, o € C(S), form a partition of the sup-
port of S. m

3.4. ExAMPLE. Consider a fan A in a lattice N/, and let X denote
the corresponding toric variety. Let f: Xs — XA be a toric morphism,
and let F: N — N’ denote the associated lattice homomorphism. Then
the equivalence classes of C(S) correspond to the elements of A that meet
F(|S|), more precisely o ~¢ o’ if and only if there is a cone 7 € A with
F(0°) C 7° D F((0”)°). The supports of the equivalence classes are the sets
FY(r)n|S|, T € A.

For example, let us look at the toric morphism f: C? — C given by
the projection on the first factor. The system of fans corresponding to C?
is the fan A := {0, 71,72,0} in Z?, where o := cone(ej, ez), 7; := cone(e;)

A T2

T1



WEAKLY PROPER TORIC QUOTIENTS 163

for i = 1,2, and C arises from the fan A’ := {cone(e;),0} in Z. The lattice
homomorphism corresponding to f is the projection F: Z? — Z. So in this
case we have 0 ~; 7 and 7 ~f 0. The supports of the equivalence classes
in |S| =0 are |m|f =7 and |o|f = 0° U 7.

For a given cone o € C(S), let T(|o|f) denote the subtorus of T' corre-
sponding to the sublattice obtained by intersecting N with the linear sub-
space lin |o| s generated in Ng by the set |o|s. Then T'(|o|s) is generated by
all isotropy subgroups Ty, , where [0/,i] € £2(S) and o' ~ 0.

3.5. REMARK. We have f(t-1'-x[, )= f(t-2[54) for every t' €T (|o]y).
In particular, f is invariant with respect to the action of T'(|0]¢).

Proof. To see this, choose cones o1, ..., 0, in the f-equivalence class of o
that generate lin [0y as a vector space. If [0, ;] € £2(S), then f(t- x5, ;) =
f(t-2(,4) forevery t €T, since o~y 0. So we can conclude that f(t'-¢ -z, ;)
= f(t-w[s,) for every ' in the stabilizer T; of the point T(o;i;]- Since the
subtori Tj generate T'(|o|¢), that implies the claim. m

Let us now consider a dominating toric morphism p: Xs — XA to some
toric variety X a, and assume that the associated lattice homomorphism
P: N — N'is surjective. That means that the kernel of the homomorphism
of tori T — T" induced by P is connected. We will denote this kernel by
ker(p) C T. Assume that p is weakly proper. With the above notations we
can describe the fibers of p as follows:

3.6. LEMMA. Two points x,y lie in the same fiber of p if and only if
there are elements [01,1], [02,7] € £2(S) with o1 ~p o2, t € T and t; €
T(|o1lp) - ker(p) with x =t x5 3 andy =t -t1 Ty, j-

Proof. Let p|p: T — T’ denote the restriction homomorphism of p to
the big tori of Xs and XA respectively. Any point z € X A is of the form
z =1t x, for some t' € T and ¢’ € A. Then the p-fiber of the point z is

i@ =N e) = U )T
Pa(0)°C(o")°

(see [AC;Ha3, Proposition 3.5]). As described in Example 3.4, since p is
surjective, the given cone o’ € A defines a p-equivalence class, represented
by o1 € C(S) say, and |o1], = |S| N Py ((0”)°). We obtain

p_l(t,'mo’) = U (p]T)_l(t/-T/%/) RALXIE

o~po1

To prove the lemma it suffices to show that

(pl) (7, ,) = T(|o1lp) - ker(p).
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First note that the subtorus Tg’ca/ corresponds to the sublattice of N defined
by lin o’. By Proposition 2.1, since p is weakly proper we have Pr(|S|) = |A|.
That implies Pr(|o1]p,) = (0/)° and hence Pg(lin|oy|,) = lino’. Therefore
Py'(ling’) = lin |01, + ker(Pg). Since we assumed P to be surjective, that
proves the claim. =

From this description of the fibers of a weakly proper toric morphism we
obtain the following factorization criterion.

3.7. LEMMA. Let f: Xs — Z be a morphism to a variety Z, and let
p: Xs — Y be a toric morphism with the universal curve covering prop-
erty to a toric variety Y such that ker(p) is connected. Then the following
statements are equivalent:

(i) The morphism f factors through p.
(i) f(t1- 2oy ) = f(ta - Ty, ) for all [01,1i], [02, j] € 2(S) with o1 ~p 72
and t1,ta € T with t; 't € T(|o1],) - ker(p).
(iii) f is ker(p)-invariant, and for 0,0’ € C(S), whenever o ~, o’ then
on~yol.

Proof. By Proposition 1.7, f factors through p if and only if f is constant
on the fibers of p. From the above description of the fibers of p it follows
immediately that (i) and (ii) are equivalent. Now assume that (i) holds. Then
in particular f is ker(p)-invariant. Moreover, it can be read off directly from
(ii) that o ~¢ ¢’ whenever o ~ o’.

Conversely, assume that (iii) holds, and let o € C(S). Then the f-
equivalence class of o contains the p-equivalence class of o, and hence
T(lolp) € T(lo|f). Now (ii) follows from Remark 3.5. =

We want to apply this lemma to the following situation. Let S be an
affine system of fans in a lattice N and let ¢ be a convex cone in N, not
necessarily contained in C(S) but with o C |S|. Let o¢ denote the minimal
face of . Then o is a linear subspace of N, and the sublattice o9 N N
defines a subtorus H of the big torus of Xg.

Define a system of fans S N o = (A};) jer in N by setting o}, := 05 N0
and A;j :={7No; 1€ A} Then the identity homomorphism idy defines
a toric morphism ¢: Xsn, — Xs, and the projection P: N — N/(og N N)
defines a toric morphism p: Xsn, — Xp(s) to the affine toric variety Xp,)
associated to the cone P(o) in N/(og N N).

3.8. COROLLARY. Let f: Xs — Z be a morphism to some variety Z,
and assume that for every face T of o, the set 7° is contained in the support
of an f-equivalence class of C(S). Then the morphism f is H-invariant, and
there is a unique morphism fo: Xp(y) — Z such that the following diagram
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18 commutative:

Proof. The minimal face og is a linear subspace and therefore it coincides
with its relative interior. By assumption, o is contained in the support of an
f-equivalence class, and that means that oo C |0[;. Therefore H C T'(|0|¢),
and Remark 3.5 implies that f is H-invariant.

By construction, P is surjective and weakly proper. So we can apply
Lemma 3.7 to conclude that the morphism f o g factors uniquely through p.
That means that there is a morphism fo: Xpy) — Z with foqg= frop. m

4. Closures of cones in the support. The following two sections
contain preparations for the proof of the main result given in Section 6.
First we analyze morphisms from a toric variety corresponding to a fan
with just two maximal cones in a special position.

4.1. LEMMA. Let A be a fan with only two mazimal cones o1 and os.
Assume that there are faces 1; of o; and vectors v € (M NT)° NN, v+ €
NN, v—v € 5NN, w e (61No2)° NN withv+v' +w € o]. Let
[+ XA — Z be a morphism such that o1 ~¢ (01 N0o2). Then 11 ~f (71 NT2).

W’
Proof. Set ¢ := 1 N 1. We have to show that for every t € T,

F(teag) = f(t-ar).
For a given t € T', consider the morphism f;: XA — Z defined by fi(z) :=
f(t-x). Then clearly the morphism f; satisfies the same assumption as f, i.e.
o1 ~f, (01 Nog). Therefore it suffices to show the claim for ¢t = 1.

Let V' denote the closure of the orbit T-z, in X . Then V is a toric va-
riety with respect to the torus 7'/7;,, and it corresponds to the fan obtained
by projecting the star of ¢ in A to N/(lin oN N). The lattice homomorphism
F: 7% — N/(lingN N) defined by F(e;) = v/ and F(ez) = W yields a toric
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morphism ¢: P; x C — V with the following properties:
A (T1/70) - Aw(8) -y if 1o,71,5 # 0,
o([ro,m],8) = ¢ Aw(s) - zq ifry =0,s#0,
A (T1/70) * oy oy if 19,7 #0, s =0.
Now consider the composition v = f o ¢: P; x C — Z. By definition,
v' € linoy and hence A, (C*) C T'(|o1]). Since we assumed o1 ~ (o1 N o2),
this implies f(Ay/(7) - Zo1n05) = f(25,) for all r € C*. So (P x {0}) =
f(xgy), i-e. ¥ contracts the curve P; x {0} to a point. By Lemma 4.2 below,

we conclude that ¢ in fact does not depend on the first coordinate, and for
s =1 we obtain f(z,) = f(z;,). =

In the above proof we used a general fact about morphisms from Py x C.

4.2. LEMMA. Let ¢: Py x C — Z be a morphism to a variety Z with
Y(Py x {0}) = z for some z € Z. Then v is constant on Py x {s} for every
s € C, i.e. ¥ does not depend on the first coordinate.

Proof. Choose an open affine neighbourhood W of z in Z and set Y :=
(P1 x C) \ »~1(W). Consider the projection pr: P; x C — C. Since Py is
complete, pr(Y) is closed in C. Moreover, 0 ¢ pr(Y). So Wy := C\ pr(Y) is
an open neighbourhood of 0 in C, and by definition

Py x Wo = pr ' (Wo) C ¢~ (W),

So by restriction we obtain a morphism v : P; x Wy — W. Since we chose W
to be affine, ¢ maps IP; x {s} to a point for every s € Wy. So for continuity
reasons, 1 does not depend on the first coordinate. m

Now we consider a system of fans S with convex support, and a morphism
f: Xs — Z to some variety Z. We apply Lemma 4.1 to prove the following:

4.3. PROPOSITION. Let o C |S| be a rational (not necessarily strictly)
convex cone. Suppose that o° is contained in the support of an f-equivalence
class of C(S). Then for every face T of o, the relative interior T° is also
contained in the support of an f-equivalence class.

Proof. By induction on n := dim ¢ we will show that the assertion is true
for all one-codimensional faces of o. If ¢ is one-dimensional there is nothing
to show. So assume that n > 2, and let 7 be a face of o of dimension n — 1.
Without loss of generality we can assume that dim o;; = dim o for all ¢ since
the cones of maximal dimension cover o. We reduce the induction step to
proving the following

CLAIM. For every cone 11 € C(SN7T)" 1 we have 71 N 7° C |11]s.

From this claim it follows that |7(|f N 7° is relatively closed in 7°. The
(n—1)-dimensional cones in C(SNT) cover 7, and we obtain a partition of 7°
into relatively closed subsets of the form |r1|r N 7°, where 71 € C(SN7)" L.
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Since 7° is connected this implies that one of the subsets actually equals 7°,
and that means that 7° is contained in the support of an f-equivalence class.

So to prove the proposition it suffices to show the claim. Assume the
claim were not true. Then since all the cones in question are rational, we
can find a rational vector v in the boundary of 7 with v € 7°\ |r1|f. Note
that v may be zero if the cone 7 is not strictly convex.

Now choose a vector v’ € lin 7 such that v+’ € 77. For sufficiently small
e the ball B (v) of radius ¢ in lin 7 around v is already covered by those cones
in C(SN7)""! that contain v. Therefore if we choose v’ of length < ¢, then
v —v' € 7y for some T € C(SNT)""! containing v.

Moreover, for i = 1,2 we can construct (n—1)-dimensional rational cones
7/ C 7; such that v + o' € (71)°, v —v' € (13)° and 71 N 75 = cone(v) is a
common face of 71 and 75. To do that, we first choose a hyperplane through
v separating v+’ and v—’, and then choose appropriate simplicial rational
cones around v + v" and v — v’ respectively that lie entirely on one side of
the hyperplane, and then form the convex hull with v.

By assumption there are n-dimensional cones o;; and oy having 7 and
T, respectively as a face. Now choose w € o, N N, and set o1 := cone(7], w)
and o9 := cone(7}, w). Let X,, denote the toric variety associated to o; in
N (i =1,2). Since the cone o is contained in the cone o;;, the identity on
N defines a toric morphism from X,, to the affine chart X; := X, of Xs.
The composition with f yields a morphism f; from X,, to Z.

The cone o9 has the following properties: ooN7T =174 C 7; and o9\ 7 C 0°.
Therefore the relative interior of every face of oy is contained in an f-equi-
valence class. Note that o9 is strictly convex, since by construction v” ¢ linv.
Hence by Corollary 3.8, f defines a morphism f5 from X,, to Z such that
the following diagram is commutative:
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f
XSOO’Q XS A

N

X,

Now consider the toric variety X corresponding to the fan with the
two maximal cones o1 and o9 in N. It follows from the above commutative
diagram that the two morphisms f1, fs coincide on the intersection of the two
maximal affine charts, and so they glue together to a morphism f’: X5 — Z.
Since 07,05 C 0°, by assumption we have o1 ~¢ (01 N 02).

The cones o; with the faces 7/ satisfy all the conditions of Lemma 4.1,
and we obtain 7 ~ o, where ¢ := 7] N 75 = cone(v) and hence v € |7{|.
Since (71)° N7y # 0, it follows that v € |71|¢, which is a contradiction. m

5. The convex hull of two cones. As in the previous section we
consider a system of fans with convex support |S| in a lattice N. Let 0,7 €
C(S) be two cones with 0 N7° # (). Then since we assumed |S| to be convex,
we have o + 7 C |S|. Moreover, it follows that 0° C (04 7)° = 0° + 7°.

A first observation is the following;:

5.1. LEMMA. Let f: Xs — Z be a morphism from the toric prevariety
Xs associated to S to some variety Z. Suppose that oy is a cone in C(S)
with 01 N 7° # 0 and (01)° C 0°+7°. Then o1 ~5 0.

Proof. The assumptions on o1 imply that there is a face 7 of o1 with
77 N 7° # (). Similarly, there is a face 7/ of o with (7/)° N 7° # ). Therefore
11 ~f 7 ~¢ 7. Now choose v; € 0] N (6° 4+ 7°), and write v; in the form
v = w + v', where w € ¢°, v' € 7°.

Suppose that [0,1], [T, j], [01,k] € £2(S) and fix t € T. Since 171 ~¢ T ~f 7/,
for all s € C* the following holds:
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S Aoy (8) - @y 1) = F(E- Aoy (8) @) = (- Aw(s) - ) 5))
=t Aw(s) - g )
In the affine chart X,, j we have limg .o t - Ay, (8) - Tz g} =+ T[sy 1]- On
the other hand, in the affine chart X{,; we have lims oo - Aiy(8) - T ;) =
t- 2|4 That implies f(t- 2|5, 1) = f(t [s;) for all £, and hence 0 ~f o1. =

5.2. PROPOSITION. Let S = (Ayj)ijer be an affine system of fans with
convex support, and let o, be cones in C(S) with o N 7° # (). Then either

(i) there is a nonzero linear subspace L C o + T and a cone o1 € C(S)
such that L C |o1|f for every morphism f: Xs — Z to a variety Z,
or

(ii) (o +71)° Clo|s for every morphism f: Xs — Z to a variety Z.

Proof. We argue by induction on the dimension of the support n :=
dimlin |S| and the number |C(S)"| of n-dimensional cones in C(S). Suppose
that the first assertion does not hold. Note that this implies that the analo-
gous assertion also does not hold for any system of the form S N ¢d obtained
by intersecting S with a cone ¢ C [S].

So without loss of generality we may assume that |S| = o + 7. Moreover,
it suffices to show assertion (ii) under the additional assumption

(1) oc+1=p+71 for some ray g of o.

To see this, suppose that (ii) is true whenever the extra condition (1)
holds. Choose a ray ¢ € o \ 7 and consider the cone ¢’ := p+ (o N 7). Our
assumption implies that (¢’ + 7)° C |o|s for every morphism f: Xs — Z
to a variety Z. And if v € o N 7°, then any point w € cone(p,v)° C o' is
contained in the relative interior of 7+ o. Therefore we can replace 7 in C(S5)
by 7 4+ o, glued to any other cone along the origin only. By recursion over
the rays we obtain the claim.

Now we further reduce the situation to the special case that

(2) dim(c N 7) =dimT.

Suppose that assertion (ii) always holds if (2) is true. Consider a pair of
cones o, T as in the proposition and satisfying condition (1). Then dim 7 = n
or n — 1, where n = dim |S|. Choose a point v; € ¢°. Since |S| =0 + 7, we
can find an n-dimensional cone o1 € C(S) containing v; such that condition
(2) holds for o1 and o. So using (ii) we may replace o in S by o1 + . In
other words, we can assume that dimo = n.

If also 7 is n-dimensional we obtain 7° N ¢° # (), and that implies condi-
tion (2) for o and 7. Otherwise 7 must be a facet of |S|. In that case consider
a point v € 0 N 7°. As above we can find an n-dimensional cone 71 € C(S)
containing v such that condition (2) holds for 71 and 7. So using (ii) we
may assume that 7; contains 7 as a facet. From the fact that 71 C o+ 7 we
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can conclude that cone(v, g) meets 71 in its relative interior. That implies
oN71y # 0, and we can replace 7 by 71. Since dim7; = n, condition (2)
follows as before.
From now on conditions (1) and (2) are assumed to be satisfied. So we
are left with two possibilities: either dim7 = dimo or dim7 = dimo — 1.
Let us first consider the case dim7 = dimo. If 0 U7 is convex then there
is nothing to show, since then we have (c U7)° =0°U7° C |o|y.

(For consider v € do N d7. Then there are facets 0y < o and 71 < 7
with v € o1 N 7. Choose defining hyperplanes u € ¢V and w € 7V with
ut No = oy and wt N7 = 7. Here 0¥ and 7V denote the dual cones of
o and 7 respectively. In a ball of sufficiently small radius around v in lino
we find a point v" with u(v’) < 0 and w(v’) < 0 and hence v' ¢ 7 U o. This
shows that v cannot lie in the relative interior of o U 7.)

So assume that o U7 is not convex. Then there is a facet o1 < o defined
by a hyperplane u € ¢ such that uN7° # () and o1 ¢ 7.

g1

(To see this, choose points v € do and w € 7 such that the segment [v, w]
joining v and w intersects o U T only in {v,w}. The point v lies on a facet
o1 < o, and since w ¢ o, we can choose a defining hyperplane u € oV of oy
such that u(w) < 0. On the other hand, u(7°N¢°) > 0, and so u-N7° # (.)

Now we decompose o + 7 along the defining hyperplane u™ of . Since
o1 ¢ 7and 0 = o+ (0N7), we have o C 01 and therefore o +7 = o1 + 7. Set

T0 :=T70N uJ', T = {U €T, u('U) > 0}7 T2 ‘= {/U €T U(U) < 0}

Then 71 and 79 are cones that intersect in the common face 9. Moreover,
since 047 = 01+7, we have 0 +7 = (01+711)U(014+72) = (0+711)U(01+72).
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Note that ¢ and 7, are again both n-dimensional cones, whose intersec-
tion is also n-dimensional. So in particular, o N7y # (). Moreover, |C(S)"] >
IC(SN (o +71))"|. In fact, we can reduce the problem to considering the pair
of cones o and 7 in SN (o + 71).

Because if (o + 71)° is contained in the support of some f-equivalence
class, then it follows from Proposition 4.3 that the same is true for its face
7' = 01 + 79 C ut. This implies (o1 + 79)° C |o1|, and so by our general
assumption, 7/ must be strictly convex. It follows from our choice of u that
0 # ult N7 C 75 C (7)° and therefore oy ~; 7. Consider the system of
fans 8’ obtained from S N (o1 + 72) by adding the fan of faces of 7/, and
glueing 7’ to the other cones along the zero cone. Since o lies on the other
side of the hyperplane u*, we have |C(S)"| < |C(S)"|. We also know that
75 N (7)° # 0. Tt follows by induction that (12 + 01)° = (12 + 7')° C |7|4.
Therefore it suffices to show the claim for the pair of cones ¢ and 7y in
SN(o+m).

If U7 is not convex, then we can again decompose o0+, along a defining
hyperplane meeting 77 and reduce the problem to considering the cone o
together with a smaller cone 7{ as above. After repeating this procedure a
finite number of times, we arrive at a pair of cones such that their union is
convex.

Now let us consider the second case, namely that dim7 = n — 1 and
dim(r No) = n — 1, and suppose that 7 ¢ o. If there is a cone o’ € C(S)"
with (¢/)°No® # 0 and o’ ¢ o, then we conclude, by the assertion of the first
case applied to the pair of cones o,0’ in SN (0 + '), that (¢ +¢”)° C |o|;.
It follows again from the general assumption that ¢” := o + ¢’ is strictly
convex. By replacing the two fans of faces of o and ¢’ respectively in S by
the single fan of faces of o, where ¢” is glued to all the other cones only
along the zero cone, we obtain a system of fans S’ that contains strictly
fewer n-dimensional cones than S. So by induction the claim follows.

From now on, assume that for every cone o’ € C(S)" that is not contained
in o, we have ¢’ N o° = (). By assumption, the intersection o N 7 contains
a point of 7°. Therefore we can find a facet o1 of o with ¢ N 7° # () and
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o1 ¢ 7. (To see this, note that c N7 C 7. So there is a facet g3 < o N7 with
0] C 7°. Since 0 = o+ (6 N 1), where o ¢ lin(oc N 7T), 01 := 0+ 01 is a facet
of o with the desired properties.)

As in the previous case, we decompose o + 7 along a defining hyperplane
of o1. We set

o:=7Nut, 7 :={veru) >0}, m:={ver ul) <0},

and observe that 7 and 79 are cones intersecting in the common face 7.
And, since 0 + 7 = 01 + 7, we again have 0 + 7 = (01 + 71) U (01 + 12) =
(0 + Tl) U (01 + T9).

N
/

/

Moreover, since the n-dimensional cones in C(S) cover o1, we can choose
a cone o/ € C(S)™ through a point v € o1 N 7° such that dim(oy No’) =
n—1. Because of our assumptions on the position of the n-dimensional cones
relative to o, that implies in particular that ¢’ C o1 + 7.

One consequence is that [C(S N (o + 71))"| < |C(S)"|. So by induction
we have (o + 71)° C |o|s. Furthermore, the face o1 + 79 of o + 71 must be
contained in an f-equivalence class. Since o1N7§ # (), that means (o1+79)° C
lo1]f. By Lemma 5.1, 01 ~f o, and therefore in fact (o1 4+ 70)° C |o|s.

Now consider the system of fans S’ obtained from SN (o1 +0’) by adding
the fan of faces of 7/ := 01479 and glueing 7’ to the other cones along the zero
cone. Since o' Noy # 0 and dim oy = dim 7, we have o/ N (7/)° # (). Because
IC(S")™| < |C(S)™], we conclude by induction that (7' 4 ¢’)° C |o'|f = |o]|.
Here the equality is again a consequence of Lemma 5.1. Altogether we find
that the relative interior of the convex cone

o == (c+7m)U(r+ )
is contained in |o| ;. Replacing the fans of faces of o and ¢’ in S as above by
the fan of faces of ¢”, glued to the other cones along zero, we end up with
a system of fans S” that has strictly fewer n-dimensional cones than S. So

by induction, applied to the pair of cones ¢” and 7, the claim follows. This
ends the proof. m
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6. Weakly proper quotients. In this section we prove the main result
of this paper, namely that if the toric quotient of a toric variety with respect
to a subtorus action is weakly proper and the quotient variety is of expected
dimension, then the toric quotient is even categorical.

In order to simplify our arguments, we work in the more general context
of toric prevarieties and obtain the announced result as a corollary of a
statement in this context.

First we note that the construction of toric quotients given in [AC;Hal]
also proves the existence of a separated quotient in the toric category for a
subtorus action on a toric prevariety. More precisely, we have the following:

6.1. PROPOSITION. Let X be a toric prevariety with big torus T, and
let H be a subtorus of T. Then there is an H-invariant toric morphism
q: X — Y to some separated toric variety Y such that every H-invariant
toric morphism from X to a toric variety factors uniquely through q.

If X is separated then ¢ is precisely the toric quotient of X by H. If X
is not separated, we call the morphism ¢ the separated toric quotient of X
by H.

Proof. This statement follows directly from the existence of a quotient
fan of a system of cones proved in [AC;Hal]. Suppose that X arises from an
affine system of fans S in a lattice N, and let L be the primitive sublattice of
N corresponding to H. The set C(S) of cones of S satisfies the definition of a
system of N-cones given in [AC;Hal]. Therefore by Theorem 2.3 of [AC;Hal]
there is a well defined fan A in a lattice N , the so-called quotient fan of C(S)
by L, with the following universal property: Whenever we have a fan A’ in a
lattice N' and a lattice homomorphism F': N — N’ with L C ker(F), such
that every cone of C(S) is mapped into a cone of A’, then there is a unique
map of fans from A to A’ such that the diagram commutes. If we translate
this property back into the language of toric prevarieties, we get exactly the
universal property stated in the proposition. =

As we have just proved, a separated toric quotient for a subtorus action
on a toric prevariety always exists. Moreover, there is even an algorithm to
construct this quotient from the combinatorial data associated to the toric
prevariety and the subtorus.

For the description of the algorithm we need to specify the combinatorial
data. So let S be the system of fans in a lattice N, associated to a given
toric prevariety. Let L C N be the primitive sublattice corresponding to a
given subtorus H. Then the separated toric quotient of X by H is of the
form ¢: Xs — X, where A is the above-mentioned quotient fan of the set
of cones of § by the sublattice L.
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The construction of the quotient fan A consists of the following steps
(see [AC;Hall):

Initialization: Let P: N — N/L denote the projection. Let S; denote
the set of maximal elements of { Pr(0); o € C(S)} with respect to inclusion
of sets.

Loop, Step | > 1: If possible choose 7,7 € S;_1 such that 7 N7’ is not a
face of 7/ and let ¢’ < 7/ denote the smallest face containing 7 N 7’. Now let
S; be the set of maximal elements of S;_1 U{7+¢'}. Otherwise set n :=1—1
and stop the procedure.

Output: Let X be the set of all faces of the cones of S,,. By construction,
the set X is a quasi-fan, i.e. the cones in Y may not be strictly convex,
but otherwise all the axioms of a fan are satisfied. We call X' the quotient
quasi-fan of C(S) by L.

Final step: The minimal element V(X) of X' is a linear subspace of
(N/L)g, and V(X)N N/L = L' is a sublattice. Let P': N/L — (N/L)/L’
denote the projection. Then the desired quotient fan is the fan A := {Pg(7);
7 € X'} in the quotient lattice (N/L)/L" of N/L.

Now we can state our main theorem in the context of toric prevarieties.

6.2. THEOREM. Let X = Xg be a toric prevariety arising from an affine
system of fans S in a lattice N, and let H be the subtorus corresponding to
a given primitive sublattice L C N. Let P: N — N/L denote the projection
and let X be the quotient quasi-fan of the set of cones of S by L intro-
duced above. If we assume P(|S|) = |X|, then the separated toric quotient
q of X with respect to H has the following universal property (CA): Every
H -invariant morphism from X to a variety factors uniquely through q.

In particular, if X is separated and hence arises from a fan Ay in N, this
theorem says:

6.3. COROLLARY. If P(|A4]) = ||, then the toric quotient of X by H
is a quotient in the category of algebraic varieties.

Our main applications of Theorem 6.2 are the following two corollaries.

6.4. COROLLARY. For a toric variety X and a subtorus H of the big
torus T, let p: X — Y denote the toric quotient. If p is weakly proper and
the quotient space Y is of expected dimension, i.e. dimY = dim(7T'/H), then
the toric quotient is a quotient in the category of algebraic varieties.

Proof. Suppose that X arises from a fan A; in a lattice V. Since dimY =
dim(T'/H) = dim(NN/L)g, the quotient fan A of A; by the lattice L cor-
responding to H lives in the space N/L. That means that the quotient
quasi-fan Y in this case is already a fan and the final step in the above
algorithm is not necessary. So here Y and A coincide.
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Moreover, the projection P: N — N/L is the lattice homomorphism
associated to the toric quotient p. So if p is weakly proper, then by Propo-
sition 2.1, we have P(]A;|) = |A|, and Theorem 6.2 applies. m

6.5. COROLLARY. Let X be a toric variety corresponding to a fan with
convex support. That means that there is a proper toric morphism from X
onto an affine toric variety. Then the toric quotient of X by any subtorus
of the big torus is always a quotient in the category of algebraic varieties.

Proof. Suppose that X arises from a fan A with convex support. Then
any projection from A; to a quotient quasi-fan is automatically surjective,
since the cones of any quotient quasi-fan are obtained by successively form-
ing convex hulls. =

Now we come to the proof of the main theorem.

Proof of Theorem 6.2. First we reduce the situation to a special case. De-
note by H the largest subtorus of T such that every H-invariant morphism
from X to some variety is in fact H-invariant. Then in partlcular the sepa-
rated toric quotient g is H- invariant, and that means that 4 C Hc ker(q).
Here, as before, ker(q) C T denotes the kernel of the homomorphism of tori
induced by gq.

Note that the separated toric quotients with respect to H and H coincide.
Moreover, the assumption P(|S]) = || implies that P(|S]) = \E |, where
P denotes the projection modulo the lattice L corresponding to H and £
denotes the quotient quasi-fan of C(S) by L. So for this proof we can assume
that H = H.

We claim that moreover we can assume H = 1 or equivalently L = 0.
To see this, let f: Xs — Z be an H-invariant morphism to some variety Z.
Consider the algebraic quotients of the affine charts p;: X,,, — Xo,,//H.
Since any good quotient is categorical, the restriction of f to X,,, factors
uniquely through p;. Therefore we obtain morphisms f;: X, //H — Z with
fi = fiopi

In particular, f is ker(p;)-invariant for every i, and therefore by assump-
tion ker(p;) = H for all . That means that X, //H is the affine toric variety
defined by the cone 7; := Pr(0y;) in N’ := N/L, and all the cones 7; are
strictly convex.

If we glue all the affine charts X,, along the open orbit 77 = T/H,
we obtain a toric prevariety X’ that in some sense is a first non-separated
approximation of the quotient variety X . The prevariety X’ corresponds
to the system of fans §" = (A};)i jer in N’, where Aj; is the fan of faces of
i and Aj; = {0} for all i # j. We can view the quotient fan A of C(S) by
L as the quotient fan of C(S’) by the zero lattice. Let ¢': Xg/ — X A denote
the separated toric quotient of X’ = Xg/ by the trivial group.
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The morphisms fl coincide on the open orbit 77, and hence they glue
together to a morphism f: Xs — Z. Since for every i, the morphism f
agrees with fop; on the affine chart Xo,;, we conclude that f factors through
q if and only if f factors through ¢:

Xi<'xs-1oz
RN
XS/

Therefore from now on we may assume that H = H = 1. In this case
the condition in Theorem 6.2 says that |S| = |X|.

Let f: Xs — Z be a morphism to a variety. Let us have a closer look
at the algorithmic construction of the quotient fan A of C(S) by the zero
lattice. The first set S; simply consists of the maximal cones in C(S). Let X,
denote the toric prevariety obtained from the maximal affine charts of Xg,
but now only glued along the open orbit. The identity on the affine charts
induces a toric morphism p;: X; — Xs. Set f1:= fop1: X1 — Z.

By induction on the index [ counting the steps in the algorithm we now
prove the following for [ > 1:

(i) All the cones in S; are strictly convex. Hence we may define a toric
prevariety X; from the affine toric varieties corresponding to the
cones in 5; by glueing them along the open orbit 7T'.

(ii) There is a morphism f;: X; — Z such that we have a commutative
diagram

X, fio1 7

"

Xi
where p; denotes the toric morphism induced by the identity on N.
So let I > 1, and assume that the induction hypothesis holds for all previous
steps. Suppose that S; was obtained from S;_; by replacing a cone 7 € S;_;
by T =7 + ¢, where ¢’ < 7/ € S;_; is such that (1 N 7")° C (¢/)°. Then, in
particular, 7N (¢')° # 0.
Let §; denote the system of fans associated to X;. By the genef\al as-

sumption, |S;| = |S;—1| and hence 7 C |S;—1|. Since we assumed that H = 1,
we can apply Proposition 5.2 to §;_1 N7 to conclude that 7° = 7° 4 (¢')° C
|T‘fzf1'

So by Proposition 4.3, the relative interior of any face of 7 is contained
in some f;_j1-equivalence class. If 7 contained a linear subspace, then this
would imply that f;_; for any choice of f would be invariant with respect
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to the corresponding subtorus, and that contradicts the assumption that
H=1.

Therefore in fact 7 must be strictly convex, and f;_1 by Corollary 3.8
defines a morphism on X>. Hence we can extend f;_1 to a morphism f:
Xs, — Z as desired. This proves the induction claims (i) and (ii).

It remains to show that the morphism f,: Xs, — Z corresponding to
the last step of the loop factors through the quotient variety X a.

As we have just seen, in our special case the cones in S, are strictly
convex. Therefore S, is in fact the set of maximal cones of the quotient fan A.
The toric prevariety X, is obtained from the affine charts X, where 7 € .Sy,
by glueing them along the open orbit 7. The morphism f,: Xs, — Z
induces morphisms f,: X, — Z that coincide on the open dense orbit 7T

We can also view the X, as affine charts of X 4. But in this variety, for
any pair 7,7 € S,, the charts X, and X, are glued along the common
subset X, ~,/. Since Z is separated, and the morphisms f; and f. agree on
the open dense orbit, they even agree on X,n;/. So they fit together to a
morphism f: XA — Z and f, = fo p, where p: Xs, — X is the toric
morphism induced by the identity on N. This ends the proof. =

As a corollary, we also obtain the following statement about actions of
subtori of small codimension that was proved in [AC;Ha3] as Theorem 4.1.

6.6. PROPOSITION. Let H C T be a subtorus of codimension < 2. Then
for any separated toric quotient of a toric prevariety with big torus T with
respect to H the universal property (CA) holds.

Proof. Let p: X — Y denote the separated toric quotient of a toric
prevariety X by H. If dim7/H = 1, then the conditions of Theorem 6.2 are
automatically satisfied for p, and therefore (CA) holds.

Now assume that dim7/H = 2. Then the projections of the maximal
cones of A in N/L are at most 2-dimensional, and therefore the convex hull
of two overlapping projections either equals their union or equals the whole
plane Nr/Lg. So if the variety Y is 2-dimensional, then the algorithm for
constructing the quotient fan shows that here p also automatically satisfies
the conditions of the theorem.

If dimY < 1, then among the cones of the given toric prevariety X = Xg
there must be a chain of cones o1, ..., 0, such that Pr(cof) N Pr(of, ;) # 0,
7= J/Z| Pr(0;) is strictly convex, and 7U Pg(0,) contains a one-dimensio-
nal linear subspace L'. Assume that [0j,i] € 2(S) and let X; := X[, 3
denote the corresponding affine chart in X. Let X' := U::_ll X; C X denote
the open toric subprevariety of X. The toric morphism p’: X' — X, is
weakly proper and hence (CA) holds for p'.
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Now let f: X — Z be an H-invariant morphism. Then f|y: factors
uniquely through p’, i.e. there is a unique morphism fl: X, — Z such that
f= ]71 op’ on X'. The toric quotient p”: X, — X, (where 7, := Pgr(0,))
is even an affine quotient and hence categorlcal So we similarly obtain a
unique morphism f2 X, — Z such that f f20p” on X,,. The morphisms
f1 and f2 glue together to a morphism f Xg — Z, where S’ denotes the
affine system of fans obtained from 7 and 7, as maximal cones by glueing
them only along the zero cone. We have f = fo q, where ¢: X'UX, — Xg
denotes the natural toric morphism.

Since 7°N7; # ), we conclude from Proposition 5.2 that either (747,)° C
| 7] jor there exists a non-trivial linear subspace L C 747, that is contained

in the support of an f—equivalence class. Since L' C 7 + 7, in any case we
have a one-dimensional linear subspace contained in the support of an ]7—
equivalence class, and f is invariant with respect to the associated subtorus
H' of the big torus T” of Xs. So f is invariant with respect to ¢~!(H’). That
shows that in fact p is the separated toric quotient of X with respect to a
torus of codimension at most 1, and we are back in the first case. m

7. Example. In this section we give an example of a C*-action on a
4-dimensional toric variety with 3-dimensional toric quotient space, such
that the toric quotient p: X — Y is categorical, but not uniform in the
sense of Mumford, i.e. there is a saturated T-stable open subset U of X
such that the restriction of p to U is not the categorical quotient of U. Note
that [AC;Ha3| also contains an example of a categorical quotient that is not
uniform. But in that example the dimension of the quotient space is not
maximal but strictly less than dim(7"/H).

Let X = XA be the 4-dimensional toric variety associated to the fan A
in Z* with the following four maximal cones:

o1 := cone(eg, ez + e3,e1 + e2 + e3, €1 + €3),
o2 1= cone(e1, €1 + €3, €1 + e2 + €3, €1 + e2),
o3 1= cone(eQ7 e1 +eg,e1 +ea+e3,eq+ 63)a
o4 1= cone(ey, e; + ez — €2, €3,€4).

Let P: Z* — Z3 denote the linear map given by the matrix

1 0 01
0100
0 011

Then the diagram below shows the images of the maximal cones in Z3. Note
that P(|4]) in this case is a convex cone.
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Let Y denote the toric variety associated to the fan in Z3 with the two
maximal cones 7y := U?Zl Pr(0;) and 75 := Pgr(o4). The lattice homomor-
phism P defines a toric morphism p: X — Y, and in fact p is the toric
quotient of X by the action of the one-dimensional subtorus H correspond-
ing to the kernel of P, which is generated by (1,0,1,—1)7 in (C*)%.

Since p is weakly proper and dim Y = dim X —1, the toric quotient in this
case is even categorical. However, the quotient does not have the base-change
property. Consider the open subset U := X o U Xgé of X consisting of the
two affine charts corresponding to the cones o] = cone(es, ea +e3) < o1 and
o4 := cone(eg + e3, e2) < 03. This subset is saturated, and the image under
p is the affine toric subvariety of Y corresponding to the cone generated by
€2,€3 in Z3.

On the other hand, the toric variety U admits a good quotient, and its
quotient space is U//H = Xp(,) U Xp(gy). So in particular, U//H is not
affine. Therefore the restriction of p to U cannot be the categorical quotient
of U by H.
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