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POINTWISE CONVERGENCE OF NONCONVENTIONAL AVERAGES

BY

I. ASSANI (Chapel Hill, NC)

Abstract. We answer a question of H. Furstenberg on the pointwise convergence of
the averages

1

N

N∑

n=1

Un(f ·Rn(g)),

where U and R are positive operators. We also study the pointwise convergence of the
averages

1

N

N∑

n=1

f(Snx)g(Rnx)

when T and S are measure preserving transformations.

Introduction. Throughout this paper we will denote by (X,B, µ) a
finite Lebesgue measure space. An operator V on Lp(µ) is said to be positive
if f ≥ 0 implies V f ≥ 0. We denote by U and R two positive linear operators
on Lp(µ), 1 < p < ∞, such that supn∈Z ‖Un‖p < ∞ and supn∈Z ‖Rn‖p
< ∞. We assume that their inverses U−1 and R−1 are also positive. This
implies (see [Ka]) that there are nonsingular transformations φ and θ and
functions ω and ∆ such that U(f)(x) = ω·f(φ)(x) and R(f)(x) = ∆·f(θ)(x)
for all functions f in Lp(µ). We will also consider two dynamical systems
(X,B, µ, T ) and (X,B, µ, S), where T : X → X and S : X → X are measure
preserving transformations. The present paper is motivated by the following
two questions of H. Furstenberg [F]:

Question 1. Do we have the pointwise convergence of the averages

1

N

N∑

n=1

V n[f ·Hng](x)

for all bounded functions f and for all positive operators V and H?

Question 2. Do we have the pointwise convergence of the averages

1

N

N∑

n=1

f(Tnx)g(Snx)
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for all bounded functions f and g and all measure preserving transformations
T and S?

The averages N−1
∑N

n=1 U
n[f ·Rng](x) were proposed by H. Furstenberg

as a natural generalization at the operator level of the nonconventional aver-
ages N−1

∑N
n=1 f(Tnx)g(Snx). When U and R are not necessarily measure

preserving functions, the averages

1

N

N∑

n=1

Un(f)(x) ·Rn(g)(x)

may not even be integrable for all functions f and g in Lp(µ). However,
f ·Rng is in Lp(µ), so using Un[f ·Rn] will give integrable averages to evaluate.
The assumption of positivity of the operators in the first question is essential
as there are examples of unitary operators (see [Kr, p. 191]) on L2 for which
the averages already fail to converge a.e. for some g ∈ L2 and f = 1. As
pointed out by one of the referees the averages N−1

∑N
n=1 V

n[f · V ng] do
not necessarily converge in L2 norm for V unitary [Boi]. However, we will

show in the first part of the paper that the averages N−1
∑N

n=1 V
n[f · V ng]

converge a.e. when V is a positive contraction in Lp, 1 < p < ∞, f ∈ L∞
and g ∈ Lp.

The present paper is divided in the following way. In the first part, we
will focus on the pointwise convergence of the averages

1

N

N∑

n=1

Un[f ·Rng](x),

for positive operators such that supn∈Z ‖Un‖p <∞ and supn∈Z ‖Rn‖p <∞.
We will answer the first question of Furstenberg by showing that the av-
erages do not converge pointwise or even weakly when R is a negative
power of U , namely U−1. However, if R is a positive power of U , we do
have a.e. convergence for functions in Lp. As indicated earlier, we will also
show that for a positive contraction V in Lp, 1 < p < ∞, the averages
N−1

∑N
n=1 V

n[f · V ng] converge almost everywhere.
The second part of the paper deals with the second question of Fursten-

berg. We will first study the case when T and S commute. Included in this
section are several remarks on the almost everywhere double recurrence the-
orem of J. Bourgain [Bou]. Lastly, we will study the case where T and S do
not necessarily commute.

Acknowledgements. The author thanks H. Furstenberg for bringing
these questions to his attention during his stay at the MSRI in 1992. He
also thanks the referees of this paper for their remarks.
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1. Convergence of N−1
∑N

n=1U
n[f ·Rng](x). In this section we con-

sider positive linear operators U and R on Lp(µ) such that

sup
n∈Z
‖Un‖p <∞, sup

n∈Z
‖Rn‖p <∞.

They are called invertible power bounded Lamperti operators. First, we will
show that even when R is a power of U , the convergence does not necessarily
hold. To do this we will need the following lemma. We sketch a proof for
positive contractions on Lp in order to make the paper self-contained. More
about such decomposition for L1 contractions can be found in [Kr]. The
conjugate of p is denoted by q.

Lemma 1. Let V be an invertible power bounded Lamperti operator or
a positive contraction on Lp(µ), 1 < p < ∞. There exists a decomposition
of the space X into two subsets C and D such that :

(1) There exists v∗0 ∈ Lp such that supp(v∗0) = C, V (v∗0) = v∗0 and
V ∗(v∗0

p−1) = v∗0
p−1. Furthermore C is the maximal support of any

invariant function for V or its adjoint V ∗.
(2) If supp(f)⊆C, then supp(V f)⊆C. If supp(f)⊆D, then supp(V f)
⊆ D.

Proof. Let v∗0 be the limit in norm of the constant function 1, which
exists by the mean ergodic theorem. The function v∗0 is then V -invariant.
We denote by C its support and by D the complement of C. As

‖v∗0‖pp =
�
v∗0V

∗[(v∗0)p−1] dµ = ‖v∗0‖p‖(v∗0)q(p−1)‖q,
we have the equality for Hölder’s inequality. Thus we must have V ∗[(v∗0)p−1]
= (v∗0)p−1.

If f has its support in D then

0 =
�
(v∗0)p−1f dµ =

�
V ∗[(v∗0)p−1]f dµ =

�
(v∗0)p−1V f dµ.

This shows that V f also has its support in D. To prove that if a function f
has its support in C, then so does V f , it is enough to consider functions f
such that f ≤ kv∗0 for some positive constant k. The functions f with this
property are dense in the set of functions with support in C. If f ≤ kv∗0 then
V f ≤ kV (v∗0) = kv∗0 and V f has its support in C. For the case of power
bounded Lamperti operators U the proof is similar. One can use Theorem
4.2 in [Ka] to obtain the precise connection between U and its adjoint: if
Uf(x) = ω · f(φ)(x) then U ∗g(x) = ω1−p ◦ φ−1(x)g ◦ φ−1(x)D(ω)(x).

Theorem 2. There exists an invertible power bounded Lamperti oper-
ator U on L2 (actually an isometry) and functions f ∈ L∞ and g ∈ L2

such that the averages N−1
∑N

n=1U
n(fU−ng) converge neither in norm nor

almost everywhere.
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Proof. The proof relies on the existence of nonsingular transformations
φ for which the convergence of the averages N−1

∑N
n=1 µ(φ−n(A)) fails for

some measurable sets A. Take a nonsingular invertible transformation φ
on [0, 1] with no finite invariant measure equivalent to Lebesgue measure µ
(D. Ornstein [O], A. Brunel [Br]). We define an invertible isometry on L2(µ)
by Uf = ω · f ◦ φ. By the previous lemma, the lack of a finite invariant
measure equivalent to Lebesgue measure implies that µ(D) > 0.

Otherwise we would have µ(C) = 1 and if we take any invariant function
v∗0 for U then the measure m defined as m(A) = � A v∗0p dµ would be invariant
and equivalent to µ. This would be because v∗0 > 0, ωpv∗0

p ◦ φ = v∗0
p and

m(φ−1(A)) =
�
1A ◦ φv∗0p dµ =

�
1A ◦ φωωp−1v∗0

p ◦ φdµ

=
�
U(1Av

∗
0)v∗0

p−1 ◦ φdµ =
�
1Av

∗
0v
∗
0
p−1 dµ = m(A).

We claim that the averages

1

N + 1

N∑

n=0

µ(φ−n(A))

cannot converge for all measurable sets A ⊆ D.
If the above average converges for all measurable sets A in D, the limit

would define an invariant finite measure absolutely continuous with respect
to Lebesgue measure. Its Radon–Nikodym derivative would then contradict
the maximality of C.

Thus there exists a set A for which the averages

1

N + 1

N∑

n=0

µ(φ−n(A))

do not converge. This implies that the averages

1

N + 1

N∑

n=0

χA ◦ φn =
1

N + 1

N∑

n=0

Un(χAU
−nf)

converge neither in norm nor almost everywhere. Indeed, the latter averages
are uniformly bounded by 1 and

1

N + 1

N∑

n=0

µ(φ−n(A)) =
� 1

N + 1

N∑

n=0

χA ◦ φn dµ.

Even though the previous result gives a negative answer to the first
Furstenberg question, there exist some positive results in the direction of
characterizing those operators U and V for which N−1

∑N
n=1 V

n(fV ng) con-
verges a.e.
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Theorem 3. Let V be a positive contraction on Lp, 1 < p < ∞, and f
a bounded function. For all g ∈ Lp the averages

1

N

N∑

n=1

V n(fV ng)

converge a.e.

Proof. By Lemma 1 one has to consider only two cases: the case where
all the functions involved are supported on D and the other when they
are supported on C. The first case can be solved by the pointwise ergodic
theorem for positive contractions on Lp (see [Kr, pp. 189–190]). For f ∈ L∞
and g ∈ Lp with support in D we have

1

N

N∑

n=1

V n(fV ng)(x) ≤ ‖f‖∞
1

N

N∑

n=1

V 2ng(x)→ 0 a.e.

For the case where all functions have support in C, we can introduce the
operator W on L∞(ν) where dν = [v∗0]p dµ by the formula

W (f) =
V (v∗0f)

v∗0
.

Simple computations using Lemma 1 show that W (1C) = 1C = W ∗(1C),
Wn(g) = V n(v∗0g)/v∗0 and for f ∈ L∞(µ) = L∞(ν) we have Wn(fWng) =
V n[fV n(gv∗0)]/v∗0. Thus W is a Markov operator which extends to a con-
traction on L1(ν) and L∞(ν). So we are left with proving that the averages

1

N

N∑

n=1

Wn(fWng)

converge a.e. for a Markov positive operator W for which W1 = 1 and
W ∗1 = 1. We recall a few properties on the dilation of such operators that
we will need. They were used in [Boi]. In order to simplify the notations we
assume that W is defined on (Y,B, ν).

(1) There exists a probability measure space (Y × Z,B × P,∆) which
naturally extends (Y,B, ν).

(2) There exists a measure preserving transformation Θ : Y ×Z → Y ×Z
which is B×P-measurable such that if we denote by T the operator
Th = h ◦ Θ then for all h ∈ Lp(∆), 1 ≤ p ≤ ∞, and all n ∈ N we
have

E[h ◦Θn | B] = Wn(E[h|B]).

For f, g ∈ L∞(Y,B, ν) we can express the quantities W n(fWng) in terms
of the operator T :

Wn(fWng) = Wn[f ·E[g◦Θn | B]] = Wn[E[fg◦Θn | B]] = E[f◦Θng◦Θ2n | B].
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Thus the averages N−1
∑N

n=1W
n(fWng) can be written as E

[
N−1

∑N
n=1 f ◦

Θng ◦Θ2n
∣∣B
]
. The a.e. double recurrence result of [Bou] gives the pointwise

convergence of N−1
∑N

n=1 f ◦ Θn(x)g ◦ Θ2n(x) for a.e. x. As the maximal

function supN |N−1
∑N

n=1 f ◦Θng ◦Θ2n| is integrable, the pointwise conver-
gence still holds with the application of the conditional expectation E(·|B).
This ends the proof of the theorem.

Theorem 4. Let U be an invertible power bounded Lamperti operator
on Lp, 1 < p <∞, and f a bounded function. For all g ∈ Lp the averages

1

N

N∑

n=1

Un(fUng)

converge a.e.

Proof. Because of Lemma 1, we need only look at the following two
cases:

(a) f and g have their support in C,
(b) f and g have their support in D.

Case (a). If the support of f and g is in C then we can restrict ourselves
to the measure space (C,B ∩ C,µC). The measure m defined by m(A) =

� A v∗0p dµ is invariant with respect to φ. It is also equivalent to µ. If we define
Unf = ωn ·f ◦φn for each positive integer n, then simple computations lead
to the equation

Un(fUng)(x) = v∗0 · f ◦ φn · (g/v∗0) ◦ φ2n.

An application of the a.e. double recurrence theorem of Bourgain [Bou]

allows us to conclude that the average N−1
∑N

n=1 U
n(fUng) converges a.e.

Case (b). If the support of f and g is in D then N−1
∑N

n=1U
2n(g)(x)

converges to 0 a.e. This is because the Cesàro averages N−1
∑N

n=1 U
n(|g|)(x)

converge a.e. to zero as the functions g and Un(|g|) have their support in
D and there is no invariant function with support in D by Lemma 1. The
inequality ∣∣∣∣

1

N

N∑

n=1

Un(fUng)(x)

∣∣∣∣ ≤
‖f‖∞
N

N∑

n=1

U2n(|g|)(x)

allows us to reach the same conclusion for the averages

1

N

N∑

n=1

Un(fUng)(x).

2. Convergence of N−1
∑N

n=1 f(Tnx)g(Snx). In this section, T and
S are measure preserving transformations on the same Lebesgue measure
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space (X,B, µ). If T is ergodic then the Kronecker factor is defined as the
σ-algebra generated by the eigenfunctions of T . We will denote this σ-algebra
by K. We will use the same notation to denote the space L2(X,K, µ). In this
section we offer a contribution to the Furstenberg second question which
is based on spectral theory and the analysis of the speed of convergence
in the Wiener–Wintner ergodic theorem developed in [A1] and [A2]. As
pointed out to us by one of the referees, recent results on the pointwise
convergence of N−1

∑N
n=1 f(Tnx)g(Snx) have appeared in [LRR]. In this

last paper the notion of weak disjointness of two systems is introduced.
Following the referees’ suggestions we will compare this property to the
tools and results we used in our earlier version. Thus we will show in the
case where T and S commute that our Proposition 5 is not covered by the
weak disjointness property. We will provide examples (2 and 4) showing that
this proposition holds for systems that are not weakly disjoint. Lastly we
look at the case where T and S do not necessarily commute.

Case 1: T and S commute. The commutativity of T and S is easily
checked when one is a power of the other. In response to the original ques-
tion of H. Furstenberg, J. Bourgain proved that if T is ergodic then the
averages

1

N

N∑

n=1

f(Tnx)g(T anx)

converge a.e. for all bounded functions f and g and all integers a. We used
this result in Section 1 during the proof of Theorems 3 and 4. Before pro-
ceeding further, we would like to make several remarks on his proof.

Remarks. The study of the speed of convergence in the Wiener–Wint-
ner ergodic theorem [A1], [A2] leads to a simplification of Bourgain’s proof
for a large class of dynamical systems. One can show (as in [A3] for p = 2)
that for every ergodic dynamical system and for each p with 2 ≤ p < ∞
there exists a continuous increasing function G with limN G(N) =∞ and a
dense set of functions F in Lp ∩ K⊥ such that for each f ∈ F ,

sup
ε

∥∥∥∥
1

N

N∑

n=1

f ◦ Tne2πinε

∥∥∥∥
p

≤ Cf
G(N)

.

For those dynamical systems for which G(N) ≥ Nα/ log(N) where p >
1/α the proof of the a.e. double recurrence can be greatly simplified. For
such dynamical systems, the speed of convergence of the averages

1

N

N∑

n=1

f(Tnx)g(T anx)
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can also be estimated for a dense set of functions. Examples of dynamical
systems with this last property are K-automorphisms, Abramov systems
[A2], and some transformations with singular spectrum.

The study in L2 of the “good” function G leads to classes of dynam-
ical systems which are not characterized by the entropy or the spectrum
of the transformation. There are weakly mixing dynamical systems [A2]
called Gaussian dynamical systems, for which G(N) ≥ (log(N + 1))1+α but
G(N) ≤ Nβ for infinitely many N for any β > 0. We are not aware of
examples for which G(N) goes to infinity much faster than the logarithmic
rate (log(N + 1))1+α.

The result in [Bou] covers the case where the centralizer of one transfor-
mation is only composed of its powers. Such is the case of Chacon’s transfor-
mation. We are interested in situations where the centralizer contains more
than the powers of the transformation.

The next result is a contribution to the convergence of the averages
N−1

∑N
n=1 f(Tnx)g(Snx) when T and S commute. It is motivated by the

results in [A2] and obtained with a simple application of van der Corput’s
lemma [KN].

We recall that if U is a unitary operator, then σ̂f,g(n) = 〈Unf, g〉 is the
nth Fourier coefficient of the measure σf,g. We showed in [A2, Proposition 3]
that if for all positive integers N we have

sup
ε

∥∥∥∥
1

N

N∑

n=1

F (Tnx)e2πinε

∥∥∥∥
2

≤ CF
(log(N + 1))1+γ

,

then

sup
‖g‖2≤1

1

N

N∑

h=1

|σ̂F,g(n)| ≤ CF
(log(N + 1))(1+γ)/2

.

We also recall that if T and S are two commuting ergodic transforma-
tions, then they have the same Kronecker factor. In particular, if T and S
commute then T , S and TS−1 have the same Kronecker factor K when T , S
and TS−1 are ergodic. In this case, we denote by rj the orthonormal basis of
K of eigenfunctions all with modulus 1 which correspond to the eigenvalues
e2πiθj . The function r1 is the constant function 1.

Proposition 5. Assume the following :

(1) T , S and TS−1 are ergodic,
(2) there exist a constant α and a dense set F of bounded functions in

the orthocomplement of the Kronecker factor such that for all positive
integers N , all F ∈ F and all H = O(Nd), for some d with 0 < d < 1
we have
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1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

(F · F ◦ T h)((TS−1)nx)

∥∥∥∥
2

≤ CF
(log(N + 1))1+α

.

Then the averages

1

N

N∑

n=1

f(Tnx)g(Snx)

converge a.e. for all functions f and g in L2(µ).

Proof. It is enough to prove that the averages

AN (F, g)(x) =
1

N

N∑

n=1

F (Tnx)g(Snx)

converge for all g ∈ L∞, as the result will follow from this by approximation
and the use of maximal inequalities.

Our goal will be to show that under the assumptions made, we have for
all N ,

(1)

∥∥∥∥
1

N

N∑

n=1

F (Tnx)g(Snx)

∥∥∥∥
2

≤ C

(log(N + 1))1+γ

for some γ > 0. By using sequences of the form N + 1 = [%M ] where 1 < %
<∞ we can get the convergence of the sequence AN (F, g)(x). Note that this

assumption implies the convergence of
∑∞

N=1 ‖N−1
∑N

n=1 F (Tnx)g(Snx)‖22,

which implies the a.e. convergence to zero of N−1
∑N

n=1 F (Tnx)g(Snx).
Without loss of generality, we can assume that the functions F and g are
all bounded by 1.

To estimate the L2 norm of AN (F, g) we will use the van der Corput
lemma. We have for all 1 < H < [N/2],

‖AN (F, g)‖2 ≤ C
(

1

H
+

∣∣∣∣
1

(H + 1)2

H∑

h=1

(H + 1− h)

× 1

N

N−h∑

n=1

�
F (Tnx)g(Snx)F (Tn+hx) g(Sn+hx) dµ

∣∣∣∣
)

Denoting by R the transformation TS−1, we can rewrite the second term
on the right of this inequality as

∣∣∣∣
1

(H + 1)2

H∑

h=1

(H + 1− h)
�
g(x)g(Shx)

1

N

N−h∑

n=1

F (Rnx)F ◦ T h(Rnx) dµ

∣∣∣∣.
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By using the fact that g is uniformly bounded and that h ≤ [N/2] we
can dominate the last average by

C
1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

(F · F ◦ T h)(Rnx)

∥∥∥∥
2

.

With assumption (2) this gives us estimate (1) for H = O([N d]).

Remarks. In reference to the assumptions for Proposition 5, we do not
need to assume that the functions F in F are bounded. If F is just in L2,
then the second assumption can be replaced by

1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

(F · F ◦ T h)((TS−1)nx)

∥∥∥∥
1

≤ CF
(log(N + 1))1+α

.

Secondly, we can decompose the function F ·F ◦ T h into the sum of three

orthogonal functions � F · F ◦ T h dµ, PK⊥(F · F ◦ T h) and PK′(F · F ◦ T h),
where K′ denotes the closed linear span of the functions rj , 2 ≤ j < ∞.
The second assumption is then equivalent to the set of the following three
statements (with the same condition on H as before):

1

H

H∑

h=1

∣∣∣
�
F · F ◦ T h dµ

∣∣∣ ≤ CF
(log(N + 1))1+α

,(2)

1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

PK⊥(F · F ◦ T h)((TS−1)nx)

∥∥∥∥
2

≤ CF
(log(N + 1))1+α

,(3)

1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

PK′(F · F ◦ T h)((TS−1)nx)

∥∥∥∥
2

≤ CF
(log(N + 1))1+α

.(4)

The study made in [A2] shows that, for many dynamical systems, we
can find a set F of bounded functions whose linear span is dense in K⊥ and
a positive number γ > 1 such that

(5) sup
ε

∥∥∥∥
1

H

H∑

h=1

F ◦ T he2πihε

∥∥∥∥
2

≤ CF
(log(H + 1))1+γ

for all F in F and all positive integers H. By Proposition 3 in [A2] this last
inequality implies

1

H

H∑

h=1

∣∣∣
�
F · F ◦ T h dµ

∣∣∣ ≤ C sup
‖g‖2≤1

1

H + 1

H∑

h=1

|σ̂F,g(h)|.

The same proposition shows that the last term on the right is then less than

CF
(log(H + 1))(1+γ)/2

.
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There are examples of ergodic transformations which are not necessarily
weakly mixing for which the second assumption in the proposition is true.
We will check this by using the set of the three inequalities (2), (3) and (4)
given above.

Example 1. Consider the transformations

T : (x, y) 7→ (x+ α, 2x+ y), S : (x, y) 7→ (x+ α/2, x+ y)

on the 2-torus, where α is irrational with finite type η. They commute and
neither is a power of the other. If we let

R = TS−1 : (x, y) 7→ (x+ α/2, x+ y − α/2),

then simple computations show that

Rn(x, y) = (x+ nα/2, nx+ y + n(n− 3)α/4)

for all n and

T h(x, y) = (x+ hα, 2hx+ h(h− 1)α+ y).

The Kronecker factor is the set of functions depending on the first coordi-
nate x. Hence, K⊥ is spanned by the functions F (x, y) = e2πipx · e2πiqy,
where q is not equal to zero. One can see that the functions F (x, y) ·
F ◦ T h(x, y) belong to K as

F (x, y) · F ◦ T h(x, y) = e−2πi(ph+qh(h−1))αe−2πiq2hx.

This trivially shows that inequality (3) is satisfied.

For the same function F , � F (x, y)·F ◦ T h(x, y) dm×m = 0, so inequality
(2) is true.

Finally, it remains to check inequality (4). We have
∣∣∣∣

1

N

N∑

n=1

PK′(F · F ◦ T h)(Rnx)

∣∣∣∣ =

∣∣∣∣
1

N

N∑

n=1

e2πiqhnα

∣∣∣∣.

The second term is dominated by

C
1

N

1

sin(π〈qhα〉) ,

where 〈y〉 denotes the distance from y to the nearest integer. Using the fact
that α is of finite type η and the estimate in [KN, p. 123], we have (see the
proof of Theorem 2 in [AN])

1

H

H∑

h=1

1

N

1

sin(π〈qhα〉) ≤
C

N t

for some t with 0 < t < 1 for an appropriate choice of H (H = [N r] with
0 < r < min{1, 1/(η − 1)}). This proves that inequality (4) is satisfied.
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The conditions being compatible, we have an example of transformations
T and S satisfying the assumptions of Proposition 5. We can observe that for
transformations having quasi discrete spectrum the pointwise convergence of
the averagesN−1

∑N
n=1 f(Tnx)g(Snx) also follows from the results in [LRR].

This example shows that Proposition 5 holds for some transformations with
zero entropy.

If the transformations are weakly mixing, then the only assumption that
matters is the second one, and in this case, of the three inequalities (2), (3)
and (4), only (2) and (3) will count. Such is the case in the next example.

Example 2. We consider a weakly mixing dynamical system T on the
probability measure space (X,B, µ) of logarithmic class α ([A2]) and positive
entropy (for instance a K-automorphism). This means that we can find a
dense set F of bounded functions F in K⊥ = C⊥ such that

sup
ε

∥∥∥∥
1

N

N∑

n=1

F (Tnx)e2πinε

∥∥∥∥
2

≤ CF
(log(N + 1))1+α

.

We define two commuting invertible measure preserving transformations on
(X,B, µ)Z. The first one is simply the forward shift S with the product

measure µZ. The second T̂ is defined pointwise as (T̂ (xn))n = (T (xn))n.

Let us note that the system ((X,B, µ)Z, T̂ ), as well as the K-automorphism
((X,B, µ)Z, S), is also of logarithmic class α. To show that the assumptions
of Proposition 5 apply to this commuting system we just need to prove that
functions of the form

F (x) =
L∏

i=1

Fi(xi)

satisfy the second assumption of Proposition 5. In this product of functions
the Fi are either constant or equal to one of the functions in F . At least
one of the functions Fi belongs to F . Let us denote it by Fi0 . We need to
compute

1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

(F · F ◦ T h)((TS−1)nx)

∥∥∥∥
2

.

We have

(F · F ◦ T h)((TS−1)nx) =
L∏

i=1

Fi(T
n(xi−n))Fi(T

h+n)(xi−n).

An application of the van der Corput lemma leads to the estimate

C

(
1

M
+

1

M

M∑

m=1

∣∣∣
� L∏

i=1

Fi(xi)Fi(T h(xi))Fi(T
m(xi−m))Fi(T

h+m(xi−m)) dµZ
∣∣∣
)
,



CONVERGENCE OF AVERAGES 257

where m ≤M ≤ N . Assuming (without loss of generality) that M > 2L, in
the sum from 1 to M we can focus only on the terms from 2L+ 1 to M . In
this case, the integral

� L∏

i=1

Fi(xi)Fi(T h(xi))Fi(T
m(xi−m)) · Fi(T h+m(xi−m)) dµZ

is equal to the product of integrals

( � L∏

i=1

Fi(xi)Fi(T h(xi)) dµ
Z
)
·
( �
Fi(T

m(xi−m))Fi(T
h+m(xi−m)) dµZ

)

because of the independence of the variables xi, 1 ≤ i ≤ L, and xi−m. This
product is equal to

∣∣∣
� L∏

i=1

Fi(xi)Fi(T h(xi)) dµ
Z
∣∣∣
2
,

which is less than

C
∣∣∣

�
Fi0(xi0)F i0(T h(xi0)) dµ|2.

Averaging on h and using once more Proposition 3 in [A2], we obtain the
second assumption in Proposition 5.

As the systems have positive entropy they are not weakly disjoint ([LRR,
Proposition 5.2]). Thus Proposition 5 is not covered by this property. An-
other example of this kind is given below (see Example 4).

Example 3 (K-systems). We recall that T and S generate a K-system
(see [C] for the notation we use below) if there exists a measurable partition
A of X such that

(1)
∨

(n,p)∈Z2 TnSp(A) = B.

(2) For the lexicographic order ≤ on Z2 we have (n′, p′) ≤ (n, p) ⇒
Tn
′
Sp
′A ≤ TnSpA.

(3)
∧
n S
−nA = T−1AS .

(4)
∧
n T
−nAS = {X, ∅}.

It is enough to show that each function 1A − µ(A) for A ∈ T kSlA
can be approximated in L2 norm by functions FA that satisfy the sec-
ond assumption of Proposition 5. Our goal is to show that functions of
the form

FA = 1A − E(1A |T tSsA)

for (t, s) ∈ Z2 work. The method is similar to the one used in [A1]. As in
the 1-dimensional case, one can see that

E[1A |T tSsA] ◦ (TmS−m) = E[1A ◦ (TmS−m) |T t−mSs+mA].
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For simplicity we assume that A ∈ A. Applying the van der Corput lemma,
we estimate

(6)
1

H

H∑

h=1

∥∥∥∥
1

N

N∑

n=1

(FA · FA ◦ T h))(TS−1)nx)

∥∥∥∥
2

.

We just need to concentrate on

(7) C
1

M

M∑

m=1

∣∣∣
�
(FA) · (FA ◦ T h)(FA ◦ TmS−m)(FA ◦ T h+mS−m) dµ

∣∣∣

for all M < N . The functions FA, FA ◦ T h, FA ◦ TmS−m, FA ◦ T h+mS−m

are respectively A- , T−hA- , T−mSmA- and T−(h+m)SmA- measurable. We
distinguish two cases.

Case I: t ≥ 0. Then
�
FA · (FA ◦ T h)(FA ◦ TmS−m)(FA ◦ T h+mS−m) dµ

=
�
(E(1A | A)− E[E(1A |T tSsA) | A])

× (FA ◦ T h)(FA ◦ TmS−m)(FA ◦ T h+mS−m) dµ.

Because in this case A ⊂ T tSsA, the above integral is equal to zero.

Case II: t < 0. By assuming that M = h, which is possible as M is any
positive integer less than N , we know that T−hA ⊂ T−mSmA. If we take
the conditional expectation with respect to T−mSmA of FA, we obtain

E(1A |T−mSmA)− E[E(1A |T tSsA) |T−mSmA].

Thus, if m > −t, this difference is zero. Therefore in this case, we have at
most |t| nonzero terms.

Combining Cases I and II, we see that (7) is dominated by C · (1/h) · |t|.
Summing on h we get for (6) the upper bound

C|t| 1

H

H∑

h=1

1

h
,

which is less than C · |t| · (logH)/H. For H = [N d] for any d with 0 < d < 1
we can claim that the second assumption of Proposition 5 is true for a
K-system.

Example 4. Consider a finite space X = {x1, . . . , xr} with masses pi,
1 ≤ i ≤ r, ∑r

i=1 pi = 1. We consider the Bernoulli shift U based on XZ and
the countable product m of the measure defined on X. We take T = U 2

and S = U. Then TS−1 is equal to U. The functions F that depend on
finitely many coordinates and have zero integral form a dense set in C⊥.
We need to check conditions (2), (3) and (4) for such functions that we can
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assume real and bounded. For h large enough the functions F and F ◦ T h
are independent so the integral � F ·F ◦T h dm is zero. Hence (2) is true. As
K′ = C for the same reason (4) is also true. It remains to verify (3).

For each N we have
∥∥∥∥

1

N

N∑

n=1

F · F ◦ T h
∥∥∥∥

2

=
1

N2

N∑

n=1

�
F 2 · [F ◦ U2h]2 dm

+ 2
1

N2

∑

j<l

�
(F ·F ◦ U2h)((F ·F ◦ U2h) ◦ U l−j) dm.

The first term is bounded by C/N. For h large and l − j large enough the
functions F , F ◦U2h, F ◦U l−j and F ◦U2h+l−j are independent. Thus many
of the integrals

�
(F · F ◦ U2h)((F · F ◦ U2h) ◦ U l−j) dm

are in fact equal to zero. Putting these remarks together one can see that
(3) is also true. Thus we have found two systems of positive entropy that
satisfy Proposition 5. However, they are not weakly disjoint because they
have positive entropy.

Case 2: T and S do not necessarily commute. In [Be] it is shown that we

cannot expect the weak convergence of the averagesN−1
∑N

n=1f(Tnx)g(Snx)
when T and S do not commute (see Example 7.1 there). When the systems
are disjoint, the convergence has also been studied in [Be]. Here we answer
a question raised by one of the referees.

Theorem 6. Assume that T and S are ergodic and the spectrum of their
restrictions to the orthocomplement of their maximal quasi-discrete factors
is mutually singular. Then the averages

1

N

N∑

n=1

f(Tnx)g(Snx)

converge a.e. for all functions f and g in L2(µ).

We do not give a proof of this result as it is a consequence of a more gen-
eral result that we prove below. First we introduce the following definition
motivated by [LRR].

Definition 1. Let (X,B, µ, T ) and (X,B, µ, S) be two measure preserv-
ing systems on the same finite measure space. We will say that a function
f ∈ L2(µ) has the weak disjointness property with respect to (T, S) if for
each function g ∈ L2(µ) there exists a set A of full measure and a set B of
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full measure such that the averages

1

N

N∑

n=1

f(Tnx)g(Sny)

converge for each x ∈ A and y ∈ B.

Examples of functions with the weak disjointness property are the eigen-
functions of T . Indeed, if f(Tx) = e2πiλf(x), then N−1

∑N
n=1 e

2πinλg(Snx)
can be shown to converge by applying Birkhoff’s pointwise ergodic theorem
to the product of the rotation Rλ×S. We denote byWDT the closed linear
space in L2(µ) of the functions with the weak disjointness property with re-
spect to (T, S). In the same way we denote by WDS the closed linear space
in L2(µ) of the functions with the weak disjointness property with respect
to (S, T ). It is simple to check thatWDT andWDS are respectively T - and
S-invariant. The following example motivates our next definition.

Example 5. The weak disjointness property was introduced without as-
suming the commutativity of the transformations T and S. However, if one
looks at the situation where T and S are the same Bernoulli transformation
then we have a system which is not weakly selfdisjoint because of the en-
tropy. However, the averages N−1

∑N
n=1 f(Tnx)g(Tnx) converge a.e. This is

a consequence of a simple application of Birkhoff’s theorem to the functions
f × g. So we have the pointwise convergence for all functions f, g ∈ L2 even
if the systems are not weakly disjoint.

Definition 2. Let (X,B, µ, T ) and (X,B, µ, S) be two measure preserv-
ing systems on the same finite measure space. We will say that a function
f ∈ L2(µ) has the property AT with respect to (T, S) if for each function
g ∈ L2(µ) the averages

1

N

N∑

n=1

f(Tnx)g(Snx)

converge a.e.

It is simple to check that the closed linear span AT (resp. AS) of functions
f ∈ L2 with the property AT (resp. AS) is T - (resp. S-) invariant. Further-
moreWDT is by definition a subset of AT . Example 5 shows thatWDT can
be a proper subset of AT . In that example we actually have AT = L2 while
WDT 6= L2.

Now we can state the following result.

Theorem 7. Assume that T and S are ergodic and the spectra of their
restrictions to the orthocomplements of AT and AS are mutually singular.



CONVERGENCE OF AVERAGES 261

Then the averages

1

N

N∑

n=1

f(Tnx)g(Snx)

converge a.e. for all functions f and g in L2(µ).

Proof. We can decompose f = f1 + f2 and g = g1 + g2, with f1 ∈ AT ,
f2 ∈ A⊥T , g1 ∈ AS and g2 ∈ A⊥S . By definition the averages

1

N

N∑

n=1

f1(Tnx)g(Snx) and
1

N

N∑

n=1

f(Tnx)g1(Snx)

converge a.e.
Let us show why the averages N−1

∑N
n=1 f2(Tnx)g2(Snx) converge a.e.

The convergence follows from the Affinity Principle [CKM]. More pre-
cisely, for µ-a.e. x the sequences an = f2(Tnx) and bn = g2(Snx) have a
correlation in the sense that for each h the averages

1

N

N∑

n=1

an · an+h and
1

N

N∑

n=1

bn · bn+h

converge. Because of the ergodicity of T and S, these limits are the hth
Fourier coefficients of the spectral measures σf2 and σg2 of f2 and g2. As
these measures are mutually singular, we have

lim
N

∣∣∣∣
1

N

N∑

n=1

f2(Tnx)g2(Snx)

∣∣∣∣ = 0.

Remarks. (1) One can conclude from (4.1) and Proposition 4.1 in [LRR]
that the maximal quasi discrete factor for each ergodic dynamical system T
is contained in WDT and hence in AT no matter what ergodic transforma-
tion one takes for S. Thus Theorem 6 is a consequence of Theorem 7.

(2) An example of a transformation satisfying the assumption of Theo-
rem 7 can be given by the product of the map

T (x, y) = (x+ α, x+ y)

on the 2-torus and a K-automorphism. For the second map we can take the
product of the map

S(x, y) = (x+ α, y + βx)

with any weakly mixing transformation with singular spectrum. On the
2-torus the dynamical systems associated with the maps T and S are not
disjoint because of their common nontrivial Kronecker factor given by the
set of functions depending only on x. As indicated in [M], if β is irrational
and α is irrational with unbounded partial quotients, then S is ergodic with
singular spectrum in the orthocomplement of the Kronecker factor. The
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map T has Lebesgue spectrum in the orthocomplement of the functions
depending on the first coordinate. This last known statement can be shown
by computing directly the Fourier coefficients of the spectral measure of
functions of the form e2πipxe2πiqy, where p and q are integers and q is not
equal to zero.
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