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A NOTE ON SEMISIMPLE DERIVATIONS OF
COMMUTATIVE ALGEBRAS

BY

ANDRZEJ TYC (Toruń)

Abstract. A concept of a slice of a semisimple derivation is introduced. Moreover, it
is shown that a semisimple derivation d of a finitely generated commutative algebra A over
an algebraically closed field of characteristic 0 is nothing other than an algebraic action
of a torus on Max(A), and, using this, that in some cases the derivation d is linearizable
or admits a maximal invariant ideal.

Introduction. Let A be a commutative algebra over an algebraically
closed field k. Recall that a derivation of the algebra A is a k-linear map
d : A→ A such that d(xy) = d(x)y+xd(y) for all x, y ∈ A. If d is a derivation
of A and t ∈ k, then we denote by At the subspace {a ∈ A; d(a) = ta} ⊂ A.
It is known that A0 = Ker d is a subalgebra of A called the algebra of
constants of d. A derivation d : A → A is said to be semisimple if it is
semisimple as a linear map, that is, if A =

⊕
t∈k At. Denote by k+ the

additive group of the field k. It is easily seen that for every semisimple
derivation d : A → A the decomposition A =

⊕
t∈k At is a k+-grading of

the algebra A, i.e., 1 ∈ A0 and AtAt′ ⊂ At+t′ for all t, t′ ∈ k. Conversely, if
A =

⊕
t∈k At is a k+-grading of the algebra A, then one easily verifies that

the map d : A → A, d(x =
∑
t xt) =

∑
t txt, is a semisimple derivation of

A with At = {a ∈ A; d(a) = ta} for all t ∈ k. So, a semisimple derivation
of the algebra A is nothing other than a k+-grading of A. This observation
implies (see Lemma 1) that if A is finitely generated and char(k) = 0, then
the semisimple derivations of A are in one-to-one correspondence with the
rational actions of a torus on the algebraic variety Max(A) of all maximal
ideals in A. The same observation permits introducing a concept of a slice
for semisimple derivations which is an analog of the well known concept of
a slice for locally nilpotent derivations. This is done in Section 1, where also
a corresponding structure theorem is proved. In Section 2 the linearization
problem and existence of maximal invariant ideals for semisimple deriva-
tions is considered in some special cases. The main theorems of this section
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are basically translations (into the language of derivations) of some results
concerning actions of the algebraic tori on the affine spaces An or actions of
Hopf algebras on algebras.

1. Slices and a structure theorem. In what follows, k denotes a fixed
algebraically closed field, and A denotes a fixed commutative k-algebra with
unity.

Given a derivation d : A→ A, we denote by E(d) the set of eigenvalues
of d, and by G(d) the subgroup of k+ generated by E(d). Notice that if
char(k) = 0, then G(d) is a torsion free abelian group, and if char(k) =
p > 0, then G(d) is a vector space over the simple field Fp ⊂ k. The rank
of d (we write rk(d)) is meant to be the rank of the abelian group G(d)
provided char(k) = 0, and dimFp G(d) provided char(k) = p > 0. It is clear
that the group G(d) is important for semisimple derivations, because then
A =

⊕
t∈G(d)At. Observe that if A is a domain, then E(d) is a submonoid

of G(d).

Examples. 1. If A = k[X1, . . . ,Xn] and t1, . . . , tn ∈ k, then the deriva-
tion d : A → A given by d(Xi) = tiXi, i = 1, . . . , n, is semisimple and
G(d) = Zt1 + · · ·+ Ztn ⊂ k+.

2. Let A = k[X,Y ]/(X2 − Y 3), and let d be the derivation of A de-
termined by d(X) = 3X, d(Y ) = 2Y . Then d is semisimple and G(d) =
2Z1k + 3Z1k = Z1k.

Lemma 1. Assume that the algebra A is finitely generated and d is a
semisimple derivation of A. Then the group G(d) is finitely generated , and
rk(d) ≤ n(d), where n(d) is the minimal number of eigenvectors of d which
generate the algebra A. In particular , if n = rk(d), then G(d) ' Zn when
char(k) = 0, and G(d) ' Fnp when char(k) = p > 0.

Proof. Let E = E(d). As A =
⊕

t∈E At and A is finitely generated,
there exist t1, . . . , tn ∈ E and eigenvectors ai ∈ Ati , i = 1, . . . , n, such
that A = k[a1, . . . , an]. It is sufficient to show that E ⊂ Nt1 + · · · + Ntn.
Let J be the subset of Nn such that {aα; α ∈ J} is a basis of A as a
vector space over k, where aα = aα1

1 · · · aαnn for α = (α1, . . . , αn) ∈ Nn.
Now let t ∈ E. This means that d(a) = ta for some nonzero a ∈ A. But
a =

∑
α∈J lαa

α for some lα ∈ k. It follows that
∑
α∈J tlαa

α = ta = d(a) =∑
α∈J(α1t1 + · · · + αntn)lαaα, whence tlα = (α1t1 + · · · + αntn)lα for all

α ∈ J . Consequently, t = α1t1 + · · ·+ αntn for some α = (α1, . . . , αn) ∈ J ,
because a 6= 0. The lemma is proved.

Corollary (of the proof). In the situation of the lemma, if the algebra
A is a domain and the eigenvectors a1 ∈ At1 , . . . , an ∈ Atn generate A, then
the monoid E(d) is generated by t1, . . . , tn.
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In view of the above, the lemma implies that if the algebra A is finitely
generated, then a semisimple derivation of A is simply a G-grading of A,
where G is a finitely generated subgroup of k+.

Below, U(A) stands for the group of units of the algebra A.

Definition. Let d : A → A be a semisimple derivation. A slice of d is
a homomorphism of groups σ : G(d) → U(A) such that σ(t) ∈ At for all
t ∈ G(d).

It is easy to see that if d admits a slice, then G(d) = E(d).

Examples. 3. Let A = k[X1, . . . ,Xn,X
−1
1 , . . . ,X−1

n ]. Then for any
t1, . . . , tn ∈ k the derivation d : A → A determined by d(Xi) = tiXi, i =
1, . . . , n, is semisimple and G(d) = Zt1 + · · · + Ztn. If char(k) = 0 and
t1, . . . , tn are linearly independent over Z, then σ : G(d) → U(A), σ(ti) =
Xi, i = 1, . . . , n, is a slice of d.

4. If A = k[X] and d(X) = X, then G(d) = Z1k, but d does not admit
any slice: if σ : G(d) → U(A) were a slice, then σ(1k) ∈ U(A) ∩ A1 = ∅,
because U(A) = k∗ (= k − {0}) and A1 = kX.

Given an algebra B and a group G, BG denotes the group algebra of G
over B.

Theorem 1. Let d : A→ A be a semisimple derivation with G = G(d).
If d admits a slice σ : G → U(A), then f : A0 ⊗ kG → A, f(a ⊗ t) =
aσ(t), a ∈ A0, t ∈ G, is an A0-linear isomorphism of algebras. The inverse
isomorphism g : A→ A0 ⊗ kG is given by

g
(
a =

∑

t∈G
at

)
=
∑

t∈G
atσ(−t)⊗ t.

In particular , A is isomorphic to the group algebra A0G.

Proof. The proof is an easy exercise and we omit it.

From now on, we assume that char(k) = 0. By DimA we denote the
Krull dimension of A. If A is a finitely generated domain, then it is known
that DimA = tr.degkQ(A), where Q(A) is the quotient field of A. Given a
multiplicative system S in A, AS denotes the localization of A with respect
to S.

Theorem 2. Assume that A is a domain and d is a semisimple deriva-
tion of A with G = G(d). Let S =

⋃
tAt − {0}. Then S is a multiplica-

tive system in A, the induced derivation d̃ : AS → AS is semisimple with
G(d̃) = G, and K = (AS)0 (= Ker d̃) is a field containing A0. More-
over , if A is finitely generated , then the derivation d̃ admits a slice and
AS ' K[X1, . . . ,Xn,X

−1
1 , . . . ,X−1

n ], where n = rk(d). In particular ,

tr.degkK + rk(d) = DimA.
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Proof. The first part of the theorem is a simple calculation. Notice only
that Ker(d̃ − t Id) = {a/b ∈ AS ; ∃t∈G a ∈ As+t, b ∈ As}. If A is finitely
generated, then G is a free group of finite rank, by Lemma 1. Let g1, . . . , gn
be free generators of G. As G is generated by the set E(d) of eigenvalues
of d and E(d) is a submonoid of G, gi = ti − t′i for some ti, t

′
i ∈ E(d),

i = 1, . . . , n. Now for each i choose a nonzero ai ∈ Ati , a nonzero si ∈ At′i ,
and set yi = ai/si. Then d̃(yi) = giyi, which implies that the mapping
σ : G(d̃) = G → U(AS) determined by σ(gi) = yi, i = 1, . . . , n, is a slice
of the derivation d̃ : AS → AS . Hence, by Theorem 1, AS is isomorphic
to the group algebra KG, where K = (AS)0. The conclusion is that AS '
K[X1, . . . ,Xn,X

−1
1 , . . . ,X−1

n ], because G ' Zn. This completes the proof
of the theorem.

Remark. Theorems 1 and 2 were motivated by [7, Sections I, III]. Be-
sides, they can be deduced from [7, Section I].

2. Linearization and existence of maximal invariant ideals. As
above, the field k is assumed to be of characteristic 0. If the algebra A
is finitely generated, we denote by µ(A) the minimal number of genera-
tors of A. A derivation d : A → A is called linearizable if there exist
eigenvectors a1, . . . , aµ(A) of d which generate the algebra A. Notice that
if A = k[X1, . . . ,Xn], then a derivation d : A → A is linearizable if there is
a change of variables {Xi} → {Yi} such that d(Yi) = αiYi for some αi ∈ k,
i = 1, . . . , n.

If (A,m) is a local (noetherian) algebra, then a derivation d of A is
called linearizable if there are eigenvectors x1, . . . , xn of d which form a
minimal system of generators of the maximal ideal m. Recall that for a given
derivation d : A→ A an ideal J ⊂ A is said to be invariant if d(J) ⊂ J .

Let d be a derivation of the algebra A. If A is finitely generated or local,
then obviously the following two problems are of interest.

The linearization problem: When is d linearizable?

Existence of maximal invariant ideals: When does d admit a maximal
invariant ideal m (i.e., m is maximal in A and invariant)?

In general, a given derivation d : A→ A is neither linearizable nor admits
a maximal invariant ideal. For example, this is the case for A = k[X] and
d = ∂/∂X. Observe that this d is not semisimple. So, some positive results
can be expected for semisimple derivations. Let us start with the local case.

Theorem 3. Let d be a derivation of the algebra A, and let m be a
maximal invariant ideal in A.
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(1) If (A,m) is a complete local ring , k = A/m, and for each s ≥ 2
the induced derivation ds : A/ms → A/ms is semisimple, then the
derivation d is linearizable.

(2) If the derivation d is semisimple and the algebra A is finitely gen-
erated , then the induced derivation d : Am → Am is linearizable,
where Am is the localization of A at the maximal ideal m.

Proof. (1) Let n = dimk(m/m2). Since the induced derivation d2 :
A/m2 → A/m2 is semisimple and k = A/m, we can find a minimal sys-
tem x

(1)
1 , . . . , x

(1)
n of generators of the ideal m with d(x(1)

i ) = tix
(1)
i mod m2

for some t1, . . . , tn ∈ k and i = 1, . . . , n. Now, proceeding by induction on
j ≥ 1, we construct sequences x(j)

1 , . . . , x
(j)
n , j ≥ 1, such that d(x(j)

i ) = tix
(j)
i

mod mj and x(j+1)
i = x

(j)
i mod mj for all j. Suppose that j ≥ 2, and that the

components x(i)
1 , . . . , x

(i)
n have already been constructed for i = 1, . . . , j− 1.

Denote by p the linear map A/mj → A/mj−1, a + mj 7→ a + mj−1.
As dj−1p = pdj , and the induced derivations dj−1 : A/mj−1 → A/mj−1

and dj : A/mj → A/mj are semisimple, it is easy to see that there exist
x

(j)
1 , . . . , x

(j)
n ∈ m such that p(x(j)

i +mj) = x
(j−1)
i +mj−1 and d(x(j)

i ) = tix
(j)
i

mod mj for i = 1, . . . , n. This means that the inductive procedure gives us
sequences x(j)

1 , . . . , x
(j)
n , j ≥ 1, with the required properties. Now, since the

local ring (A,m) is complete, we can consider the limits x1, . . . , xn of the
respective sequences. It is obvious that d(xi) = tixi for each i. Moreover,
x1, . . . , xn form a minimal system of generators of the maximal ideal m,
because so do x(1)

1 , . . . , x
(1)
n and xi = x

(1)
i mod m2 for all i. Thus, part (1)

of the theorem is proved.
(2) Assume that the derivation d is semisimple and A is finitely gener-

ated. As d(m) ⊂ m, we have m =
⊕

t∈kmt, where mt = {a ∈ m; d(a) = ta}.
It follows that there exist eigenvectors x1, . . . , xn of d such that x1 + m2,
. . . , xn+m2 is a basis of the k = A/m-vector space m/m2, because

⋃
t∈tmt

generates the vector space m. This in turn implies that x1/1, . . . , xn/1 ∈ Am
is a minimal system of generators of the maximal ideal M = mAm of
the local ring Am, because M/M2 = mAm/m

2Am ' m/m2. Obviously
x1/1, . . . , xn/1 are eigenvectors of the induced derivation d : Am → Am.
This proves part (2), and thus the proof of the theorem is complete.

Remark. The above theorem can be deduced from [4, Theorem 4].

Below, the algebra A is supposed to be finitely generated. Moreover, we
assume that A is a domain.

Theorem 4. Let d : A → A be a semisimple derivation, and let m =⊕
t6=0At. If A0 = k and U(A) = k∗, then the following conditions hold.

(1) m is the unique maximal invariant ideal in A.
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(2) There are eigenvectors a1, . . . , ar of d such that each ai belongs to
m and A = k[a1, . . . , ar], where r = dimk(m/m2). In particular , d
is linearizable whenever dimk(m/m2) = µ(A).

(3) If A is regular (as a ring) of Krull dimension n, then A ' k[X1, . . .
. . . ,Xn], and d is linearizable.

Proof. Part (1) follows from [8, Theorem 4.1]. For completeness we give
the proof. Let, as above, E(d) be the set of eigenvalues of d. If m =

⊕
t∈k∗ At

is an ideal, then clearly m is the unique maximal and invariant ideal in A,
because A/m ' k = A0 and m = d(A). Therefore, we need only verify
that m is an ideal. To this end, it is enough to show that given a nonzero
t ∈ E(d), we have t+ t′ 6= 0 for all t′ ∈ E(d). Suppose that, on the contrary,
t+ t′ = 0 for some t′ ∈ E(d). Then t′ 6= 0, whence there are nonzero a ∈ At
and b ∈ At′ with ab ∈ At+t′ = A0. As A is a domain and A0 = k, it follows
that ab ∈ k∗, which implies that a ∈ U(A) = k∗ ⊂ A0. This is impossible,
because a ∈ At with t 6= 0. Thus, part (1) is proved.

For (2), it is clear that there exist eigenvectors a1, . . . , ar of d such that
a1 +m2, . . . , ar +m2 is a basis of the k = A/m-vector space m/m2. Now in
view of (1) and [5, Corollary 1.4 and statement 1.7], A = k[a1, . . . , ar].

It remains to prove (3). By regularity of A, the Krull dimension of A
equals dimk(m/m2). Therefore, from (2) we infer that there are eigenvectors
a1, . . . , an of d such that A = k[a1, . . . , an], where n = DimA. Let, as above,
Q(A) denote the quotient field of A. Then DimA = tr.degkQ(A), because A
is a finitely generated domain. This implies that the elements a1, . . . , an are
algebraically independent over k, which proves (3).

Corollary. Let A = k[X,Y ]/(X i−Y j), where (i, j) = 1, i, j ≥ 2, and
let d be a semisimple derivation of A. Then d is linearizable (and admits
an invariant maximal ideal).

Proof. Obviously one can assume that d 6= 0, whence rk(d) ≥ 1. It is easy
to see that U(A) = k∗, µ(A) = 2, and dimk(m/m2) = 2 for any maximal
ideal in A. Furthermore, by Theorem 2, rk(d) + tr.degkK = DimA = 1,
where K is a subfield of Q(A) containing A0. Hence tr.degkK = 0, which
implies that A0 ⊂ K = k, because the field k is algebraically closed. The
conclusion now follows from part (2) of the theorem.

Example 5. If A = k[X,X−1] and d : A → A is the derivation defined
by d(X) = X, then d is semisimple, A0 = k, but d has no maximal invariant
ideals (in view of the above theorem, the reason is that U(A) 6= k). Notice
that d is linearizable.

We mentioned above that a semisimple derivation of the algebra A is
nothing other than a G-grading of A, where G is a finitely generated sub-
group of the group k+. But we have assumed that char(k) = 0. Therefore,
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a semisimple derivation of A is simply a Zs-grading of A, where s = rk(d).
This means that a semisimple derivation of A of rank s induces an action
of the algebraic torus T s = k∗ × . . .× k∗ (s times) on the algebraic variety
Max(A) of all maximal ideals in A. More precisely, if d : A → A is a semi-
simple derivation of rank s and t1, . . . , ts are free generators of the group
G(d), then the corresponding action of T s on Max(A) is defined as follows.
For α = (α1, . . . , αs) ∈ T s and m ∈ Max(A),

α.m = Ker(pmφα),

where φα : A → A is the homomorphism of algebras given by φα(a) =∑
(u1,...,us)∈Zs auα

u1
1 · · ·αuss with au = au1t1+···+usts in the decomposition

a =
∑
t∈G(d) at ∈

⊕
tAt, and pm : A → A/m = k is defined by pm(y) =

y+m. It is easy to see that each action of T s on the variety Max(A) comes
from a semisimple derivation d : A → A in the above way. Also it is not
difficult to prove that, given a semisimple derivation d of A, the maximal
invariant ideals for d are precisely the fixed points of the corresponding
action of the torus T s on the variety Max(A).

This translation of semisimple derivations into the language of algebraic
geometry gives us the following.

Theorem 5. Let A = k[X1, . . . ,Xn] and let d be a semisimple deriva-
tion of A.

(1) The derivation d admits a maximal invariant ideal.
(2) If rk(d) = n − 1 or n, then d is linearizable. In particular , d is

linearizable when n ≤ 2.
(3) If I =

⊕
t6=0At is an ideal in A and r = DimA0 ≤ 2, then there ex-

ists a change of variables {Xi} → {Yi} such that A0 = k[Y1, . . . , Yr],
A = A0[Yr+1, . . . , Yn], and all Yi’s are eigenvectors of d. In particu-
lar , d is linearizable.

(4) If n = 3, then d is linearizable.

Proof. Parts (1) and (2) are due to Białynicki-Birula (see [2] and [3]).
Part (3) was proved by Kambayashi and Russell in [5, proof of Theorem 3.4],
and (4) is a joint result by Kaliman, Koras, Makar-Limanov, and Russell [6].

Remark. If n = 4, then it is not known if every semisimple derivation of
A = k[X1, . . . ,Xn] is linearizable. By [1], for each n > 4 there is a semisimple
derivation of the R-algebra A = R[X1, . . . ,Xn] (i.e., d ∈ Der(A) such that
A =

∑
t∈R+ At, where At = Ker(d− t Id)) which is not linearizable.

Acknowledgments. The author thanks the referee for valuable re-
marks which allowed him to improve the text of the paper.
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