VOL. 102

2005

NO. 2

A NOTE ON SEMISIMPLE DERIVATIONS OF COMMUTATIVE ALGEBRAS

BҮ

ANDRZEJ TYC (Toruń)

Abstract. A concept of a slice of a semisimple derivation is introduced. Moreover, it is shown that a semisimple derivation d of a finitely generated commutative algebra A over an algebraically closed field of characteristic 0 is nothing other than an algebraic action of a torus on Max(A), and, using this, that in some cases the derivation d is linearizable or admits a maximal invariant ideal.

Introduction. Let A be a commutative algebra over an algebraically closed field k. Recall that a *derivation* of the algebra A is a k-linear map $d: A \to A$ such that d(xy) = d(x)y + xd(y) for all $x, y \in A$. If d is a derivation of A and $t \in k$, then we denote by A_t the subspace $\{a \in A; d(a) = ta\} \subset A$. It is known that $A_0 = \text{Ker } d$ is a subalgebra of A called the algebra of constants of d. A derivation $d: A \to A$ is said to be semisimple if it is semisimple as a linear map, that is, if $A = \bigoplus_{t \in k} A_t$. Denote by k^+ the additive group of the field k. It is easily seen that for every semisimple derivation $d: A \to A$ the decomposition $A = \bigoplus_{t \in k} A_t$ is a k⁺-grading of the algebra A, i.e., $1 \in A_0$ and $A_t A_{t'} \subset A_{t+t'}$ for all $t, t' \in k$. Conversely, if $A = \bigoplus_{t \in k} A_t$ is a k⁺-grading of the algebra A, then one easily verifies that the map $d: A \to A$, $d(x = \sum_t x_t) = \sum_t tx_t$, is a semisimple derivation of A with $A_t = \{a \in A; d(a) = ta\}$ for all $t \in k$. So, a semisimple derivation of the algebra A is nothing other than a k^+ -grading of A. This observation implies (see Lemma 1) that if A is finitely generated and char(k) = 0, then the semisimple derivations of A are in one-to-one correspondence with the rational actions of a torus on the algebraic variety Max(A) of all maximal ideals in A. The same observation permits introducing a concept of a slice for semisimple derivations which is an analog of the well known concept of a slice for locally nilpotent derivations. This is done in Section 1, where also a corresponding structure theorem is proved. In Section 2 the linearization problem and existence of maximal invariant ideals for semisimple derivations is considered in some special cases. The main theorems of this section

²⁰⁰⁰ Mathematics Subject Classification: 13A02, 13B10, 14L30.

Key words and phrases: slice of semisimple derivation, torus action, linearization.

A. TYC

are basically translations (into the language of derivations) of some results concerning actions of the algebraic tori on the affine spaces \mathbb{A}^n or actions of Hopf algebras on algebras.

1. Slices and a structure theorem. In what follows, k denotes a fixed algebraically closed field, and A denotes a fixed commutative k-algebra with unity.

Given a derivation $d : A \to A$, we denote by E(d) the set of eigenvalues of d, and by G(d) the subgroup of k^+ generated by E(d). Notice that if char(k) = 0, then G(d) is a torsion free abelian group, and if char(k) =p > 0, then G(d) is a vector space over the simple field $\mathbb{F}_p \subset k$. The rank of d (we write $\operatorname{rk}(d)$) is meant to be the rank of the abelian group G(d)provided char(k) = 0, and dim $\mathbb{F}_p G(d)$ provided char(k) = p > 0. It is clear that the group G(d) is important for semisimple derivations, because then $A = \bigoplus_{t \in G(d)} A_t$. Observe that if A is a domain, then E(d) is a submonoid of G(d).

EXAMPLES. 1. If $A = k[X_1, \ldots, X_n]$ and $t_1, \ldots, t_n \in k$, then the derivation $d : A \to A$ given by $d(X_i) = t_i X_i$, $i = 1, \ldots, n$, is semisimple and $G(d) = \mathbb{Z}t_1 + \cdots + \mathbb{Z}t_n \subset k^+$.

2. Let $A = k[X,Y]/(X^2 - Y^3)$, and let d be the derivation of A determined by d(X) = 3X, d(Y) = 2Y. Then d is semisimple and $G(d) = 2\mathbb{Z}\mathbf{1}_k + 3\mathbb{Z}\mathbf{1}_k = \mathbb{Z}\mathbf{1}_k$.

LEMMA 1. Assume that the algebra A is finitely generated and d is a semisimple derivation of A. Then the group G(d) is finitely generated, and $\operatorname{rk}(d) \leq n(d)$, where n(d) is the minimal number of eigenvectors of d which generate the algebra A. In particular, if $n = \operatorname{rk}(d)$, then $G(d) \simeq \mathbb{Z}^n$ when $\operatorname{char}(k) = 0$, and $G(d) \simeq \mathbb{F}_p^n$ when $\operatorname{char}(k) = p > 0$.

Proof. Let E = E(d). As $A = \bigoplus_{t \in E} A_t$ and A is finitely generated, there exist $t_1, \ldots, t_n \in E$ and eigenvectors $a_i \in A_{t_i}$, $i = 1, \ldots, n$, such that $A = k[a_1, \ldots, a_n]$. It is sufficient to show that $E \subset \mathbb{N}t_1 + \cdots + \mathbb{N}t_n$. Let J be the subset of \mathbb{N}^n such that $\{a^{\alpha}; \alpha \in J\}$ is a basis of A as a vector space over k, where $a^{\alpha} = a_1^{\alpha_1} \cdots a_n^{\alpha_n}$ for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$. Now let $t \in E$. This means that d(a) = ta for some nonzero $a \in A$. But $a = \sum_{\alpha \in J} l_{\alpha} a^{\alpha}$ for some $l_{\alpha} \in k$. It follows that $\sum_{\alpha \in J} tl_{\alpha} a^{\alpha} = ta = d(a) =$ $\sum_{\alpha \in J} (\alpha_1 t_1 + \cdots + \alpha_n t_n) l_{\alpha} a^{\alpha}$, whence $tl_{\alpha} = (\alpha_1 t_1 + \cdots + \alpha_n t_n) l_{\alpha}$ for all $\alpha \in J$. Consequently, $t = \alpha_1 t_1 + \cdots + \alpha_n t_n$ for some $\alpha = (\alpha_1, \ldots, \alpha_n) \in J$, because $a \neq 0$. The lemma is proved.

COROLLARY (of the proof). In the situation of the lemma, if the algebra A is a domain and the eigenvectors $a_1 \in A_{t_1}, \ldots, a_n \in A_{t_n}$ generate A, then the monoid E(d) is generated by t_1, \ldots, t_n .

In view of the above, the lemma implies that if the algebra A is finitely generated, then a semisimple derivation of A is simply a G-grading of A, where G is a finitely generated subgroup of k^+ .

Below, U(A) stands for the group of units of the algebra A.

DEFINITION. Let $d : A \to A$ be a semisimple derivation. A *slice* of d is a homomorphism of groups $\sigma : G(d) \to U(A)$ such that $\sigma(t) \in A_t$ for all $t \in G(d)$.

It is easy to see that if d admits a slice, then G(d) = E(d).

EXAMPLES. 3. Let $A = k[X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}]$. Then for any $t_1, \ldots, t_n \in k$ the derivation $d : A \to A$ determined by $d(X_i) = t_i X_i, i = 1, \ldots, n$, is semisimple and $G(d) = \mathbb{Z}t_1 + \cdots + \mathbb{Z}t_n$. If char(k) = 0 and t_1, \ldots, t_n are linearly independent over \mathbb{Z} , then $\sigma : G(d) \to U(A), \sigma(t_i) = X_i, i = 1, \ldots, n$, is a slice of d.

4. If A = k[X] and d(X) = X, then $G(d) = \mathbb{Z}1_k$, but d does not admit any slice: if $\sigma : G(d) \to U(A)$ were a slice, then $\sigma(1_k) \in U(A) \cap A_1 = \emptyset$, because $U(A) = k^* (= k - \{0\})$ and $A_1 = kX$.

Given an algebra B and a group G, BG denotes the group algebra of G over B.

THEOREM 1. Let $d: A \to A$ be a semisimple derivation with G = G(d). If d admits a slice $\sigma: G \to U(A)$, then $f: A_0 \otimes kG \to A$, $f(a \otimes t) = a\sigma(t)$, $a \in A_0$, $t \in G$, is an A_0 -linear isomorphism of algebras. The inverse isomorphism $g: A \to A_0 \otimes kG$ is given by

$$g\left(a = \sum_{t \in G} a_t\right) = \sum_{t \in G} a_t \sigma(-t) \otimes t.$$

In particular, A is isomorphic to the group algebra A_0G .

Proof. The proof is an easy exercise and we omit it.

From now on, we assume that $\operatorname{char}(k) = 0$. By Dim A we denote the Krull dimension of A. If A is a finitely generated domain, then it is known that $\operatorname{Dim} A = \operatorname{tr.deg}_k Q(A)$, where Q(A) is the quotient field of A. Given a multiplicative system S in A, A_S denotes the localization of A with respect to S.

THEOREM 2. Assume that A is a domain and d is a semisimple derivation of A with G = G(d). Let $S = \bigcup_t A_t - \{0\}$. Then S is a multiplicative system in A, the induced derivation $\tilde{d} : A_S \to A_S$ is semisimple with $G(\tilde{d}) = G$, and $K = (A_S)_0$ (= Ker \tilde{d}) is a field containing A_0 . Moreover, if A is finitely generated, then the derivation \tilde{d} admits a slice and $A_S \simeq K[X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}]$, where $n = \operatorname{rk}(d)$. In particular,

 $\operatorname{tr.deg}_k K + \operatorname{rk}(d) = \operatorname{Dim} A.$

Proof. The first part of the theorem is a simple calculation. Notice only that $\operatorname{Ker}(\widetilde{d} - t \operatorname{Id}) = \{a/b \in A_S; \exists_{t \in G} a \in A_{s+t}, b \in A_s\}$. If A is finitely generated, then G is a free group of finite rank, by Lemma 1. Let g_1, \ldots, g_n be free generators of G. As G is generated by the set E(d) of eigenvalues of d and E(d) is a submonoid of G, $g_i = t_i - t'_i$ for some $t_i, t'_i \in E(d)$, $i = 1, \ldots, n$. Now for each i choose a nonzero $a_i \in A_{t_i}$, a nonzero $s_i \in A_{t'_i}$, and set $y_i = a_i/s_i$. Then $\widetilde{d}(y_i) = g_i y_i$, which implies that the mapping $\sigma : G(\widetilde{d}) = G \to U(A_S)$ determined by $\sigma(g_i) = y_i, i = 1, \ldots, n$, is a slice of the derivation $\widetilde{d} : A_S \to A_S$. Hence, by Theorem 1, A_S is isomorphic to the group algebra KG, where $K = (A_S)_0$. The conclusion is that $A_S \simeq$ $K[X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}]$, because $G \simeq \mathbb{Z}^n$. This completes the proof of the theorem.

REMARK. Theorems 1 and 2 were motivated by [7, Sections I, III]. Besides, they can be deduced from [7, Section I].

2. Linearization and existence of maximal invariant ideals. As above, the field k is assumed to be of characteristic 0. If the algebra A is finitely generated, we denote by $\mu(A)$ the minimal number of generators of A. A derivation $d : A \to A$ is called *linearizable* if there exist eigenvectors $a_1, \ldots, a_{\mu(A)}$ of d which generate the algebra A. Notice that if $A = k[X_1, \ldots, X_n]$, then a derivation $d : A \to A$ is linearizable if there is a change of variables $\{X_i\} \to \{Y_i\}$ such that $d(Y_i) = \alpha_i Y_i$ for some $\alpha_i \in k$, $i = 1, \ldots, n$.

If (A, m) is a local (noetherian) algebra, then a derivation d of A is called *linearizable* if there are eigenvectors x_1, \ldots, x_n of d which form a minimal system of generators of the maximal ideal m. Recall that for a given derivation $d: A \to A$ an ideal $J \subset A$ is said to be *invariant* if $d(J) \subset J$.

Let d be a derivation of the algebra A. If A is finitely generated or local, then obviously the following two problems are of interest.

The linearization problem: When is d linearizable?

Existence of maximal invariant ideals: When does d admit a maximal invariant ideal m (i.e., m is maximal in A and invariant)?

In general, a given derivation $d: A \to A$ is neither linearizable nor admits a maximal invariant ideal. For example, this is the case for A = k[X] and $d = \partial/\partial X$. Observe that this d is not semisimple. So, some positive results can be expected for semisimple derivations. Let us start with the local case.

THEOREM 3. Let d be a derivation of the algebra A, and let m be a maximal invariant ideal in A.

- (1) If (A,m) is a complete local ring, k = A/m, and for each $s \ge 2$ the induced derivation $d_s : A/m^s \to A/m^s$ is semisimple, then the derivation d is linearizable.
- (2) If the derivation d is semisimple and the algebra A is finitely generated, then the induced derivation $d : A_m \to A_m$ is linearizable, where A_m is the localization of A at the maximal ideal m.

Proof. (1) Let $n = \dim_k(m/m^2)$. Since the induced derivation $d_2 : A/m^2 \to A/m^2$ is semisimple and k = A/m, we can find a minimal system $x_1^{(1)}, \ldots, x_n^{(1)}$ of generators of the ideal m with $d(x_i^{(1)}) = t_i x_i^{(1)} \mod m^2$ for some $t_1, \ldots, t_n \in k$ and $i = 1, \ldots, n$. Now, proceeding by induction on $j \ge 1$, we construct sequences $x_1^{(j)}, \ldots, x_n^{(j)}, j \ge 1$, such that $d(x_i^{(j)}) = t_i x_i^{(j)} \mod m^j$ and m^j and $x_i^{(j+1)} = x_i^{(j)} \mod m^j$ for all j. Suppose that $j \ge 2$, and that the components $x_1^{(i)}, \ldots, x_n^{(i)}$ have already been constructed for $i = 1, \ldots, j - 1$. Denote by p the linear map $A/m^j \to A/m^{j-1}$, $a + m^j \mapsto a + m^{j-1}$. As $d_{j-1}p = pd_j$, and the induced derivations $d_{j-1} : A/m^{j-1} \to A/m^{j-1}$ and $d_j : A/m^j \to A/m^j$ are semisimple, it is easy to see that there exist $x_1^{(j)}, \ldots, x_n^{(j)} \in m$ such that $p(x_i^{(j)} + m^j) = x_i^{(j-1)} + m^{j-1}$ and $d(x_i^{(j)}) = t_i x_i^{(j)}$ mod m^j for $i = 1, \ldots, n$. This means that the inductive procedure gives us sequences $x_1^{(j)}, \ldots, x_n^{(j)}$, $j \ge 1$, with the required properties. Now, since the local ring (A, m) is complete, we can consider the limits x_1, \ldots, x_n of the respective sequences. It is obvious that $d(x_i) = t_i x_i$ for each i. Moreover, x_1, \ldots, x_n form a minimal system of generators of the maximal ideal m, because so do $x_1^{(1)}, \ldots, x_n^{(1)}$ and $x_i = x_i^{(1)} \mod m^2$ for all i. Thus, part (1) of the theorem is proved.

(2) Assume that the derivation d is semisimple and A is finitely generated. As $d(m) \subset m$, we have $m = \bigoplus_{t \in k} m_t$, where $m_t = \{a \in m; d(a) = ta\}$. It follows that there exist eigenvectors x_1, \ldots, x_n of d such that $x_1 + m^2$, $\ldots, x_n + m^2$ is a basis of the k = A/m-vector space m/m^2 , because $\bigcup_{t \in t} m_t$ generates the vector space m. This in turn implies that $x_1/1, \ldots, x_n/1 \in A_m$ is a minimal system of generators of the maximal ideal $M = mA_m$ of the local ring A_m , because $M/M^2 = mA_m/m^2A_m \simeq m/m^2$. Obviously $x_1/1, \ldots, x_n/1$ are eigenvectors of the induced derivation $d: A_m \to A_m$. This proves part (2), and thus the proof of the theorem is complete.

REMARK. The above theorem can be deduced from [4, Theorem 4].

Below, the algebra A is supposed to be finitely generated. Moreover, we assume that A is a domain.

THEOREM 4. Let $d : A \to A$ be a semisimple derivation, and let $m = \bigoplus_{t \neq 0} A_t$. If $A_0 = k$ and $U(A) = k^*$, then the following conditions hold.

(1) m is the unique maximal invariant ideal in A.

- (2) There are eigenvectors a_1, \ldots, a_r of d such that each a_i belongs to m and $A = k[a_1, \ldots, a_r]$, where $r = \dim_k(m/m^2)$. In particular, d is linearizable whenever $\dim_k(m/m^2) = \mu(A)$.
- (3) If A is regular (as a ring) of Krull dimension n, then $A \simeq k[X_1, ..., X_n]$, and d is linearizable.

Proof. Part (1) follows from [8, Theorem 4.1]. For completeness we give the proof. Let, as above, E(d) be the set of eigenvalues of d. If $m = \bigoplus_{t \in k^*} A_t$ is an ideal, then clearly m is the unique maximal and invariant ideal in A, because $A/m \simeq k = A_0$ and m = d(A). Therefore, we need only verify that m is an ideal. To this end, it is enough to show that given a nonzero $t \in E(d)$, we have $t + t' \neq 0$ for all $t' \in E(d)$. Suppose that, on the contrary, t + t' = 0 for some $t' \in E(d)$. Then $t' \neq 0$, whence there are nonzero $a \in A_t$ and $b \in A_{t'}$ with $ab \in A_{t+t'} = A_0$. As A is a domain and $A_0 = k$, it follows that $ab \in k^*$, which implies that $a \in U(A) = k^* \subset A_0$. This is impossible, because $a \in A_t$ with $t \neq 0$. Thus, part (1) is proved.

For (2), it is clear that there exist eigenvectors a_1, \ldots, a_r of d such that $a_1 + m^2, \ldots, a_r + m^2$ is a basis of the k = A/m-vector space m/m^2 . Now in view of (1) and [5, Corollary 1.4 and statement 1.7], $A = k[a_1, \ldots, a_r]$.

It remains to prove (3). By regularity of A, the Krull dimension of A equals $\dim_k(m/m^2)$. Therefore, from (2) we infer that there are eigenvectors a_1, \ldots, a_n of d such that $A = k[a_1, \ldots, a_n]$, where n = Dim A. Let, as above, Q(A) denote the quotient field of A. Then $\text{Dim } A = \text{tr.deg}_k Q(A)$, because A is a finitely generated domain. This implies that the elements a_1, \ldots, a_n are algebraically independent over k, which proves (3).

COROLLARY. Let $A = k[X, Y]/(X^i - Y^j)$, where $(i, j) = 1, i, j \ge 2$, and let d be a semisimple derivation of A. Then d is linearizable (and admits an invariant maximal ideal).

Proof. Obviously one can assume that $d \neq 0$, whence $\operatorname{rk}(d) \geq 1$. It is easy to see that $U(A) = k^*$, $\mu(A) = 2$, and $\dim_k(m/m^2) = 2$ for any maximal ideal in A. Furthermore, by Theorem 2, $\operatorname{rk}(d) + \operatorname{tr.deg}_k K = \operatorname{Dim} A = 1$, where K is a subfield of Q(A) containing A_0 . Hence $\operatorname{tr.deg}_k K = 0$, which implies that $A_0 \subset K = k$, because the field k is algebraically closed. The conclusion now follows from part (2) of the theorem.

EXAMPLE 5. If $A = k[X, X^{-1}]$ and $d: A \to A$ is the derivation defined by d(X) = X, then d is semisimple, $A_0 = k$, but d has no maximal invariant ideals (in view of the above theorem, the reason is that $U(A) \neq k$). Notice that d is linearizable.

We mentioned above that a semisimple derivation of the algebra A is nothing other than a G-grading of A, where G is a finitely generated subgroup of the group k^+ . But we have assumed that $\operatorname{char}(k) = 0$. Therefore, a semisimple derivation of A is simply a \mathbb{Z}^s -grading of A, where $s = \operatorname{rk}(d)$. This means that a semisimple derivation of A of rank s induces an action of the algebraic torus $T^s = k^* \times \ldots \times k^*$ (s times) on the algebraic variety $\operatorname{Max}(A)$ of all maximal ideals in A. More precisely, if $d : A \to A$ is a semisimple derivation of rank s and t_1, \ldots, t_s are free generators of the group G(d), then the corresponding action of T^s on $\operatorname{Max}(A)$ is defined as follows. For $\alpha = (\alpha_1, \ldots, \alpha_s) \in T^s$ and $m \in \operatorname{Max}(A)$,

$$\alpha.m = \operatorname{Ker}(p_m \phi_\alpha),$$

where $\phi_{\alpha} : A \to A$ is the homomorphism of algebras given by $\phi_{\alpha}(a) = \sum_{(u_1,\ldots,u_s)\in\mathbb{Z}^s} a_u \alpha_1^{u_1}\cdots\alpha_s^{u_s}$ with $a_u = a_{u_1t_1+\cdots+u_st_s}$ in the decomposition $a = \sum_{t\in G(d)} a_t \in \bigoplus_t A_t$, and $p_m : A \to A/m = k$ is defined by $p_m(y) = y + m$. It is easy to see that each action of T^s on the variety Max(A) comes from a semisimple derivation $d : A \to A$ in the above way. Also it is not difficult to prove that, given a semisimple derivation d of A, the maximal invariant ideals for d are precisely the fixed points of the corresponding action of the torus T^s on the variety Max(A).

This translation of semisimple derivations into the language of algebraic geometry gives us the following.

THEOREM 5. Let $A = k[X_1, \ldots, X_n]$ and let d be a semisimple derivation of A.

- (1) The derivation d admits a maximal invariant ideal.
- (2) If rk(d) = n 1 or n, then d is linearizable. In particular, d is linearizable when $n \leq 2$.
- (3) If $I = \bigoplus_{t \neq 0} A_t$ is an ideal in A and $r = \text{Dim } A_0 \leq 2$, then there exists a change of variables $\{X_i\} \to \{Y_i\}$ such that $A_0 = k[Y_1, \ldots, Y_r]$, $A = A_0[Y_{r+1}, \ldots, Y_n]$, and all Y_i 's are eigenvectors of d. In particular, d is linearizable.
- (4) If n = 3, then d is linearizable.

Proof. Parts (1) and (2) are due to Białynicki-Birula (see [2] and [3]). Part (3) was proved by Kambayashi and Russell in [5, proof of Theorem 3.4], and (4) is a joint result by Kaliman, Koras, Makar-Limanov, and Russell [6].

REMARK. If n = 4, then it is not known if every semisimple derivation of $A = k[X_1, \ldots, X_n]$ is linearizable. By [1], for each n > 4 there is a semisimple derivation of the \mathbb{R} -algebra $A = \mathbb{R}[X_1, \ldots, X_n]$ (i.e., $d \in \text{Der}(A)$ such that $A = \sum_{t \in \mathbb{R}^+} A_t$, where $A_t = \text{Ker}(d - t \text{ Id})$) which is not linearizable.

Acknowledgments. The author thanks the referee for valuable remarks which allowed him to improve the text of the paper.

REFERENCES

- T. Asanuma, Non-linearizable algebraic k^{*}-actions on affine spaces, Invent. Math. 138 (1999), 281–306.
- [2] A. Białynicki-Birula, Remarks on the action of an algebraic torus on kⁿ, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 177–181.
- [3] —, Remarks on the action of an algebraic torus on k^n II, ibid. 15 (1967), 123–125.
- [4] M. Boratyński and A. Tyc, A note on linearization of actions of finitely semisimple Hopf algebras on local algebras, J. Pure Appl. Algebra 130 (1998), 217–222.
- [5] T. Kambayashi and P. Russell, On linearizing algebraic torus actions, ibid. 23 (1982), 243–250.
- [6] S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell, C^{*}-actions on C³ are linearizable, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 63–71.
- [7] L. Le Bruyn, M. Van den Bergh and F. Van Oystaeyen, Graded Orders, Birkhäuser, 1988.
- [8] A. Nowicki and A. Tyc, On semisimple derivations in characteristic zero, Comm. Algebra 29 (2001), 5115–5130.

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: atyc@mat.uni.torun.pl

> Received 11 October 2004; revised 6 January 2005

(4515)