$$
\begin{gathered}
\text { ON } A^{2} \pm n B^{4}+C^{4}=D^{8} \\
\text { SUSIL KUMAR JENA (Odisha) }
\end{gathered}
$$

Abstract

We prove that for each $n \in \mathbb{N}_{+}$the Diophantine equation $A^{2} \pm n B^{4}+C^{4}=$ D^{8} has infinitely many primitive integer solutions, i.e. solutions satisfying $\operatorname{gcd}(A, B, C, D)$ $=1$.

1. Introduction. Dem'yanenko [3] did not know that his parametric solution to the Diophantine equation

$$
x^{4}-y^{4}=z^{4}+t^{2}
$$

would be used by Noam Elkies [5] to disprove Euler's conjecture [4] for fourth powers that at least four integral fourth powers are required to sum to an integral fourth power, except for the trivial case $y^{4}=y^{4}$. In this paper, we give a parametric solution for the family of Diophantine equations

$$
\begin{equation*}
A^{2} \pm n B^{4}+C^{4}=D^{8} \tag{1.1}
\end{equation*}
$$

where n is any non-zero integer. The parametric solution is based on an identity which is given in the next section.

The papers [1, 2] by Bremner and Ulas contain similar material concerning Diophantine equations of the form $a\left(x^{p}-y^{q}\right)=b\left(z^{r}-w^{s}\right)$, where the exponents satisfy the identity $1 / p+1 / q+1 / r+1 / s=1$. In [1] they prove that the equation $x^{8}-y^{8}=-z^{4}+w^{2}$ has infinitely many non-trivial primitive solutions. Moreover, in [2] they prove that for each $a, b \in \mathbb{Z} \backslash\{0\}$ each of the Diophantine equations $a\left(x^{2}-y^{4}\right)=b\left(z^{8}-w^{8}\right), a\left(x^{2}-y^{8}\right)=b\left(z^{4}-w^{8}\right)$ has infinitely many non-trivial solutions in co-prime polynomials. These results serve as a good motivation for the research presented in this paper.
2. Constructing the basic identity. We give a basic identity which will be used to get the main results of this paper. The identity is

$$
\begin{equation*}
\left((8 m+1)^{4}-2^{7} m\right)^{2}+m(4(8 m-1))^{4}+(32 m)^{4}=(8 m+1)^{8} \tag{2.1}
\end{equation*}
$$

[^0]where m is any non-zero real number. The proof of (2.1) is very simple. For any two non-zero real numbers a and b we have
\[

$$
\begin{equation*}
(a+b)^{4}-(a-b)^{4}=8 a b\left(a^{2}+b^{2}\right) \tag{2.2}
\end{equation*}
$$

\]

Take $a=8 m$ and $b=1$ in (2.2) to get

$$
\begin{equation*}
(8 m+1)^{4}-(8 m-1)^{4}=2^{6} m\left(2^{6} m^{2}+1\right)=2^{12} m^{3}+2^{6} m \tag{2.3}
\end{equation*}
$$

Changing sides of 2.3) and rearranging, we get

$$
\begin{equation*}
2^{6} m+(8 m-1)^{4}+2^{12} m^{3}=(8 m+1)^{4} . \tag{2.4}
\end{equation*}
$$

Multiplying (2.4) by $2^{8} m$ and performing simple manipulations we get

$$
\begin{equation*}
2^{14} m^{2}-2^{8} m(8 m+1)^{4}+m(4(8 m-1))^{4}+(32 m)^{4}=0 . \tag{2.5}
\end{equation*}
$$

Adding $(8 m+1)^{8}$ to both the sides of (2.5) and using the identity

$$
(8 m+1)^{8}-2^{8} m(8 m+1)^{4}+2^{14} m^{2}=\left((8 m+1)^{4}-2^{7} m\right)^{2}
$$

we get (2.1).
3. The main result. The main result of this paper is the following theorem.

Theorem 3.1. For any given $n \in \mathbb{Z} \backslash\{0\}$ the Diophantine equation $A^{2}+$ $n B^{4}+C^{4}=D^{8}$ has infinitely many non-trivial primitive integer solutions (A, B, C, D) satisfying $\operatorname{gcd}(A, D)=\operatorname{gcd}(B, D)=\operatorname{gcd}(C, D)=1$.

Proof. The proof is based on the identity

$$
\begin{equation*}
\left(\left(8 n p^{4}+1\right)^{4}-2^{7} n p^{4}\right)^{2}+n\left(4 p\left(8 n p^{4}-1\right)\right)^{4}+\left(32 n p^{4}\right)^{4}=\left(8 n p^{4}+1\right)^{8}, \tag{3.1}
\end{equation*}
$$ which is obtained by putting $m=n p^{4}$ in (2.1). Comparing the Diophantine equation

$$
\begin{equation*}
A^{2}+n B^{4}+C^{4}=D^{8} \tag{3.2}
\end{equation*}
$$

with the identity (3.1), we get a polynomial solution of (3.2) given by $(A, B, C, D)=\left(\left(8 n p^{4}+1\right)^{4}-2^{7} n p^{4}, 4 p\left(8 n p^{4}-1\right), 32 n p^{4}, 8 n p^{4}+1\right)$. Now, for any given $n \in \mathbb{Z} \backslash\{0\}, p$ can take infinitely many integral values so that we get infinitely many non-trivial primitive integer solutions (A, B, C, D). Moreover, we can easily check that

$$
\begin{aligned}
& \operatorname{gcd}(A, D)=\operatorname{gcd}\left(\left(8 n p^{4}+1\right)^{4}-2^{7} n p^{4}, 8 n p^{4}+1\right)=1, \\
& \operatorname{gcd}(B, D)=\operatorname{gcd}\left(4 p\left(8 n p^{4}-1\right), 8 n p^{4}+1\right)=1, \\
& \operatorname{gcd}(C, D)=\left(32 n p^{4}, 8 n p^{4}+1\right)=1 .
\end{aligned}
$$

Thus, the proof is complete.
Corollary 3.2. Each of the Diophantine equations $A^{2}+B^{4}+C^{4}=D^{8}$, $A^{2}-B^{4}+C^{4}=D^{8}$ has infinitely many non-trivial primitive integer solutions (A, B, C, D) satisfying $\operatorname{gcd}(A, D)=\operatorname{gcd}(B, D)=\operatorname{gcd}(C, D)=1$.

Proof. This follows from Theorem 3.1 when $n= \pm 1$.
4. Some remarks. At present, we do not know of any implications of the results of this paper, but just as Noam Elkies 5] disproved Euler's conjecture [4] for fourth powers by extending the work of Dem'yanenko [3], we hope that the results of this paper can be extended to go further in finding the non-trivial polynomial solutions of the Diophantine equation $A^{4} \pm B^{4}+C^{4}=D^{8}$ in an elementary way.

The referee has rightly remarked that a natural question arises whether it is possible to extend our result and prove the existence of infinitely many primitive polynomial solutions of (1.1). This question remains open.

Acknowledgements. I express my gratitude to the anonymous referee for drawing my attention to the papers [1, 2] by Bremner and Ulas. In fact, the last paragraph in the introductory section is due to the referee. I am grateful to my family for supporting me in pursuing my dream.

REFERENCES

[1] A. Bremner and M. Ulas, On $x^{p} \pm y^{q} \pm z^{r} \pm w^{s}=0$, with $1 / p+1 / q+1 / r+1 / s=1$, Int. J. Number Theory 7 (2011), 2081-2090.
[2] A. Bremner and M. Ulas, On certain diophantine equations of diagonal type, J. Number Theory 136 (2014), 46-64.
[3] V. A. Dem'yanenko, L. Euler's conjecture, Acta Arith. 25 (1973/74), 127-135 (in Russian).
[4] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Carnegie Institute of Washington, 1923, 682-682.
[5] N. Elkies, On $A^{4}+B^{4}+C^{4}=D^{4}$, Math. Comp. 51 (1988), 825-835.
Susil Kumar Jena
Department of Electronics \& Telecommunication Engineering
KIIT University, Bhubaneswar 751024
Odisha, India
E-mail: susil_kumar@yahoo.co.uk

[^0]: 2010 Mathematics Subject Classification: Primary 11D41; Secondary 11D72.
 Key words and phrases: Diophantine equation $A^{2}+n B^{4}+C^{4}=D^{8}$, Diophantine equation $A^{2}-n B^{4}+C^{4}=D^{8}$, Euler's conjecture.

