VOL. 136

2014

NO. 2

$$ON A^2 \pm nB^4 + C^4 = D^8$$

ΒY

SUSIL KUMAR JENA (Odisha)

Abstract. We prove that for each $n \in \mathbb{N}_+$ the Diophantine equation $A^2 \pm nB^4 + C^4 = D^8$ has infinitely many primitive integer solutions, i.e. solutions satisfying gcd(A, B, C, D) = 1.

1. Introduction. Dem'yanenko [3] did not know that his parametric solution to the Diophantine equation

$$x^4 - y^4 = z^4 + t^2$$

would be used by Noam Elkies [5] to disprove Euler's conjecture [4] for fourth powers that at least four integral fourth powers are required to sum to an integral fourth power, except for the trivial case $y^4 = y^4$. In this paper, we give a parametric solution for the family of Diophantine equations

(1.1)
$$A^2 \pm nB^4 + C^4 = D^8$$

where n is any non-zero integer. The parametric solution is based on an identity which is given in the next section.

The papers [1, 2] by Bremner and Ulas contain similar material concerning Diophantine equations of the form $a(x^p - y^q) = b(z^r - w^s)$, where the exponents satisfy the identity 1/p+1/q+1/r+1/s = 1. In [1] they prove that the equation $x^8 - y^8 = -z^4 + w^2$ has infinitely many non-trivial primitive solutions. Moreover, in [2] they prove that for each $a, b \in \mathbb{Z} \setminus \{0\}$ each of the Diophantine equations $a(x^2 - y^4) = b(z^8 - w^8)$, $a(x^2 - y^8) = b(z^4 - w^8)$ has infinitely many non-trivial solutions in co-prime polynomials. These results serve as a good motivation for the research presented in this paper.

2. Constructing the basic identity. We give a basic identity which will be used to get the main results of this paper. The identity is

(2.1)
$$((8m+1)^4 - 2^7m)^2 + m(4(8m-1))^4 + (32m)^4 = (8m+1)^8$$

2010 Mathematics Subject Classification: Primary 11D41; Secondary 11D72.

Key words and phrases: Diophantine equation $A^2 + nB^4 + C^4 = D^8$, Diophantine equation $A^2 - nB^4 + C^4 = D^8$, Euler's conjecture.

where m is any non-zero real number. The proof of (2.1) is very simple. For any two non-zero real numbers a and b we have

(2.2)
$$(a+b)^4 - (a-b)^4 = 8ab(a^2+b^2).$$

Take a = 8m and b = 1 in (2.2) to get

$$(2.3) (8m+1)^4 - (8m-1)^4 = 2^6m(2^6m^2+1) = 2^{12}m^3 + 2^6m.$$

Changing sides of (2.3) and rearranging, we get

(2.4) $2^{6}m + (8m-1)^{4} + 2^{12}m^{3} = (8m+1)^{4}.$

Multiplying (2.4) by 2^8m and performing simple manipulations we get

(2.5)
$$2^{14}m^2 - 2^8m(8m+1)^4 + m(4(8m-1))^4 + (32m)^4 = 0.$$

Adding $(8m+1)^8$ to both the sides of (2.5) and using the identity

$$(8m+1)^8 - 2^8m(8m+1)^4 + 2^{14}m^2 = ((8m+1)^4 - 2^7m)^2$$

we get (2.1).

3. The main result. The main result of this paper is the following theorem.

THEOREM 3.1. For any given $n \in \mathbb{Z} \setminus \{0\}$ the Diophantine equation $A^2 + nB^4 + C^4 = D^8$ has infinitely many non-trivial primitive integer solutions (A, B, C, D) satisfying gcd(A, D) = gcd(B, D) = gcd(C, D) = 1.

Proof. The proof is based on the identity

(3.1) $((8np^4 + 1)^4 - 2^7np^4)^2 + n(4p(8np^4 - 1))^4 + (32np^4)^4 = (8np^4 + 1)^8$, which is obtained by putting $m = np^4$ in (2.1). Comparing the Diophantine equation

(3.2)
$$A^2 + nB^4 + C^4 = D^8$$

with the identity (3.1), we get a polynomial solution of (3.2) given by $(A, B, C, D) = ((8np^4 + 1)^4 - 2^7np^4, 4p(8np^4 - 1), 32np^4, 8np^4 + 1)$. Now, for any given $n \in \mathbb{Z} \setminus \{0\}$, p can take infinitely many integral values so that we get infinitely many non-trivial primitive integer solutions (A, B, C, D). Moreover, we can easily check that

$$gcd(A, D) = gcd((8np^4 + 1)^4 - 2^7np^4, 8np^4 + 1) = 1,$$

$$gcd(B, D) = gcd(4p(8np^4 - 1), 8np^4 + 1) = 1,$$

$$gcd(C, D) = (32np^4, 8np^4 + 1) = 1.$$

Thus, the proof is complete. \blacksquare

COROLLARY 3.2. Each of the Diophantine equations $A^2 + B^4 + C^4 = D^8$, $A^2 - B^4 + C^4 = D^8$ has infinitely many non-trivial primitive integer solutions (A, B, C, D) satisfying gcd(A, D) = gcd(B, D) = gcd(C, D) = 1.

Proof. This follows from Theorem 3.1 when $n = \pm 1$.

4. Some remarks. At present, we do not know of any implications of the results of this paper, but just as Noam Elkies [5] disproved Euler's conjecture [4] for fourth powers by extending the work of Dem'yanenko [3], we hope that the results of this paper can be extended to go further in finding the non-trivial polynomial solutions of the Diophantine equation $A^4 \pm B^4 + C^4 = D^8$ in an elementary way.

The referee has rightly remarked that a natural question arises whether it is possible to extend our result and prove the existence of infinitely many primitive polynomial solutions of (1.1). This question remains open.

Acknowledgements. I express my gratitude to the anonymous referee for drawing my attention to the papers [1, 2] by Bremner and Ulas. In fact, the last paragraph in the introductory section is due to the referee. I am grateful to my family for supporting me in pursuing my dream.

REFERENCES

- [1] A. Bremner and M. Ulas, $On x^p \pm y^q \pm z^r \pm w^s = 0$, with 1/p + 1/q + 1/r + 1/s = 1, Int. J. Number Theory 7 (2011), 2081–2090.
- [2] A. Bremner and M. Ulas, On certain diophantine equations of diagonal type, J. Number Theory 136 (2014), 46–64.
- [3] V. A. Dem'yanenko, L. Euler's conjecture, Acta Arith. 25 (1973/74), 127–135 (in Russian).
- [4] L. E. Dickson, *History of the Theory of Numbers*, Vol. 2, Carnegie Institute of Washington, 1923, 682–682.
- [5] N. Elkies, $On A^4 + B^4 + C^4 = D^4$, Math. Comp. 51 (1988), 825–835.

Susil Kumar Jena Department of Electronics & Telecommunication Engineering KIIT University, Bhubaneswar 751024 Odisha, India E-mail: susil_kumar@yahoo.co.uk

> Received 12 January 2014; revised 3 June 2014 (6128)