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A CONSTRUCTION OF THE HOM-YETTER–DRINFELD CATEGORY

BY

HAIYING LI and TIANSHUI MA (Xinxiang)

Abstract. In continuation of our recent work about smash product Hom-Hopf alge-
bras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter–Drinfeld category H

HYD via
the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter–Drinfeld modules
can provide solutions of the Hom-Yang–Baxter equation and H

HYD is a pre-braided tensor
category, where (H,β, S) is a Hom-Hopf algebra. Furthermore, we show that (A\�H,α⊗β)
is a Radford biproduct Hom-Hopf algebra if and only if (A,α) is a Hom-Hopf algebra in
the category H

HYD. Finally, some examples and applications are given.

1. Introduction. The motivation to introduce Hom-type algebras
comes from examples related to q-deformations of Witt and Virasoro al-
gebras, which play an important role in physics, mainly in conformal field
theory. Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras)
have been intensively investigated in the literature recently: see [2, 3, 5, 8–
11,16–19,24–32]. Hom-algebras are generalizations of algebras obtained by a
twisting map, which have been introduced for the first time by Makhlouf and
Silvestrov [18]. Here associativity is replaced by Hom-associativity; Hom-
coassociativity for a Hom-coalgebra can be considered in a similar way.

Yau [24, 28] introduced and characterized the concept of module Hom-
algebras as a twisted version of usual module algebras, and the dual version
(i.e. comodule Hom-coalgebras) was studied by Zhang [31]. Based on Yau’s
definition of module Hom-algebras, Ma–Li–Yang [11] constructed smash
product Hom-Hopf algebras (A\H,α⊗β) generalizing Molnar’s smash prod-
uct (see [13]), gave the cobraided structure (in the sense of Yau’s definition
in [27]) on (A\H,α⊗β), and also considered the case of twist tensor product
Hom-Hopf algebras. Makhlouf and Panaite [16] defined and studied a class
of Yetter–Drinfeld modules over Hom-bialgebras and derived the construc-
tions of twistors, pseudotwistors, twisted tensor product and smash product
in the Hom-case in [17].

Yetter–Drinfeld modules are known to be at the origin of a very vast
family of solutions to the Yang–Baxter equation. Let H be a bialgebra, and
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A a left H-module algebra and a left H-comodule coalgebra. Radford [20]
gave a construction of a bialgebra (called a Radford biproduct bialgebra) by
combining the smash product algebra A#H with the smash coproduct coal-
gebra A×H. Majid [14,15] made the following conclusion: A is a bialgebra in
the Yetter–Drinfeld category H

HYD if and only if A?H is a Radford biprod-
uct. The Radford biproduct plays an important role in the lifting method
for the classification of finite-dimensional pointed Hopf algebras (see [1]).

In this paper, we introduce the Hom-Yetter–Drinfeld category H
HYD via

the Radford biproduct Hom-Hopf algebra, and prove that the Hom-Yetter–
Drinfeld modules can provide solutions of the Hom-Yang–Baxter equation.
Furthermore, we show that (A\�H,α⊗ β) is a Radford biproduct Hom-Hopf
algebra if and only if (A,α) is a Hom-Hopf algebra in the category H

HYD.

This article is organized as follows. In Section 2, we recall some defini-
tions and results which will be used later. Let (H,β) be a Hom-bialgebra,
and (A,α) a left (H,β)-module Hom-algebra and a left (H,β)-comodule
Hom-coalgebra. In [11], the smash product Hom-algebra (A \H,α⊗ β) was
constructed. In Section 3, we first define a smash coproduct Hom-coalgebra
(A�H,α⊗β) (see Proposition 3.1), then derive necessary and sufficient con-
ditions for (A\H,α⊗β) and (A�H,α⊗β) to be a Hom-bialgebra, which is

called the Radford biproduct Hom-bialgebra and denoted by (A\�H,α ⊗ β)
(see Theorems 3.3, 3.6). In Section 4, we introduce the Hom-Yetter–Drinfeld
category H

HYD (see Definition 4.1,4.2), which is different from the one de-
fined by Makhlouf and Panaite [16], the one defined by Chen and Zhang [5]
and the one defined by Liu and Shen [9]. We also prove that Hom-Yetter–
Drinfeld modules can provide solutions of the Hom-Yang–Baxter equation
in the sense of Yau’s definition in [26, 29, 30] (see Proposition 4.3) and that
H
HYD is a pre-braided tensor category (see Theorem 4.7). Furthermore, we

deduce that (A\�H,α⊗ β) is a Radford biproduct Hom-Hopf algebra if and
only if (A,α) is a Hom-Hopf algebra in the category H

HYD (see Theorem 4.8),
which generalizes Majid’s result [14, 15]. In the last section, some examples
and applications are given.

Throughout this paper we freely use the Hopf algebra and coalgebra
terminology introduced in [6, 21–23].

The authors have been informed by the Editor that paper [4] related to
the subject of our paper is accepted for publication.

2. Preliminaries. Throughout this paper, we follow the definitions and
terminology of [7, 11, 24, 26, 31], with all algebraic systems supposed to be
over the field K. Given a K-space M , we write idM for the identity map
on M .

We now recall some useful definitions.
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Definition 2.1. A Hom-algebra is a quadruple (A,µ, 1A, α) (abbr.
(A,α)), where A is a K-linear space, µ : A ⊗ A → A is a K-linear map,
1A ∈ A and α is an automorphism of A, such that

(HA1) α(aa′) = α(a)α(a′), α(1A) = 1A,

(HA2) α(a)(a′a′′) = (aa′)α(a′′), a1A = 1Aa = α(a),

for all a, a′, a′′ ∈ A. Here we use the notation µ(a⊗ a′) = aa′.

Let (A,α) and (B, β) be two Hom-algebras. Then (A ⊗ B,α ⊗ β) is a
Hom-algebra (called the tensor product Hom-algebra) with multiplication
(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ and unit 1A ⊗ 1B.

Definition 2.2. A Hom-coalgebra is a quadruple (C,∆, εC , β) (abbr.
(C, β)), where C is a K-linear space, ∆ : C → C ⊗ C, εC : C → K are
K-linear maps, and β is an automorphism of C, such that

(HC1) β(c)1 ⊗ β(c)2 = β(c1)⊗ β(c2), εC ◦ β = εC ,

(HC2) β(c1)⊗ c21⊗ c22 = c11⊗ c12⊗ β(c2), εC(c1)c2 = c1εC(c2) = β(c),

for all c ∈ A. Here we use the notation ∆(c) = c1⊗c2 (summation implicitly
understood).

Let (C,α) and (D,β) be two Hom-coalgebras. Then (C ⊗D,α⊗ β) is a
Hom-coalgebra (called the tensor product Hom-coalgebra) with comultipli-
cation ∆(c⊗ d) = c1 ⊗ d1 ⊗ c2 ⊗ d2 and counit εC ⊗ εD.

Definition 2.3. A Hom-bialgebra is a sextuple (H,µ, 1H ,∆, ε, γ) (abbr.
(H, γ)), where (H,µ, 1H , γ) is a Hom-algebra and (H,∆, ε, γ) is a Hom-
coalgebra, such that ∆ and ε are morphisms of Hom-algebras, i.e.

∆(hh′) = ∆(h)∆(h′), ∆(1H) = 1H ⊗ 1H ,

ε(hh′) = ε(h)ε(h′), ε(1H) = 1.

Furthermore, if there exists a linear map S : H → H such that

S(h1)h2 = h1S(h2) = ε(h)1H and S(γ(h)) = γ(S(h)),

then we call (H,µ, 1H ,∆, ε, γ, S) (abbr. (H, γ, S)) a Hom-Hopf algebra.

Let (H, γ) and (H ′, γ′) be two Hom-bialgebras. A linear map f : H → H ′

is called a Hom-bialgebra map if f ◦ γ = γ′ ◦ f and at the same time f is a
bialgebra map in the usual sense.

Definition 2.4 (see [24, 28]). Let (A, β) be a Hom-algebra. A left (A, β)-
Hom-module is a triple (M,B, α), where M is a linear space, B : A⊗M →M
is a linear map, and α is an automorphism of M , such that

(HM1) α(aBm) = β(a) B α(m),

(HM2) β(a) B (a′ Bm) = (aa′) B α(m), 1A Bm = α(m),

for all a, a′ ∈ A and m ∈M .
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Let (M,BM , αM ) and (N,BN , αN ) be two left (A, β)-Hom-modules.
Then a linear morphism f : M → N is called a morphism of left (A, β)-
Hom-modules if f(hBM m) = hBN f(m) and αM ◦ f = f ◦ αN .

Remarks. (1) It is obvious that (A,µ, β) is a left (A, β)-Hom-module.

(2) When β = idA and α = idM , a left (A, β)-Hom-module is the usual
left A-module.

Definition 2.5 (see [24,28]). Let (H,β) be a Hom-bialgebra and (A,α)
a Hom-algebra. If (A,B, α) is a left (H,β)-Hom-module and for all h ∈ H
and a, a′ ∈ A,

(HMA1) β2(h) B (aa′) = (h1 B a)(h2 B a′),

(HMA2) hB 1A = εH(h)1A,

then (A,B, α) is called an (H,β)-module Hom-algebra.

Remarks. (1) When α = idA and β = idH , an (H,β)-module Hom-
algebra is the usual H-module algebra.

(2) Similar to the case of Hopf algebras, Yau [24, 28] concluded that
(HMA1) is satisfied if and only if µA is a morphism of H-modules for suitable
H-module structures on A⊗A and A.

(3) The smash product Hom-Hopf algebra (A\H,α⊗β) is different from
the one defined by Chen, Wang and Zhang [3], since here the construction of
(A\B,α⊗β) is based on the concept of the module Hom-algebra introduced
by Yau [24, 28], while two of conditions [3, (6.1), (6.2)] are the same as in
the case of Hopf algebra.

Definition 2.6 (see [31]). Let (C, β) be a Hom-coalgebra. A left (C, β)-
Hom-comodule is a triple (M,ρ, α), where M is a linear space, ρ : M →
C ⊗M (write ρ(m) = m−1 ⊗m0, ∀m ∈ M) is a linear map, and α is an
automorphism of M , such that

(HCM1) α(m)−1 ⊗ α(m)0 = β(m−1)⊗ α(m0),

(HCM2) β(m−1)⊗m0−1 ⊗m00 = m−11 ⊗m−12 ⊗ α(m0),
εC(m−1)m0 = α(m),

for all m ∈M .

Let (M,ρM , αM ) and (N, ρN , αN ) be two left (C, β)-Hom-comodules.
Then a linear map f : M → N is called a map of left (C, β)-Hom-comodules
if f(m)−1 ⊗ f(m)0 = m−1 ⊗ f(m0) and αM ◦ f = f ◦ αN .

Remarks. (1) It is obvious that (C,∆C , β) is a left (C, β)-Hom-comodule.

(2) When β = idA and α = idM , a left (C, β)-Hom-comodule is the usual
left C-comodule.
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Definition 2.7 (see [31]). Let (H,β) be a Hom-bialgebra and (C,α) a
Hom-coalgebra. If (C, ρ, α) is a left (H,β)-Hom-comodule and for all c ∈ C,

(HCMC1) β2(c−1)⊗ c01 ⊗ c02 = c1−1c2−1 ⊗ c10 ⊗ c20,
(HCMC2) c−1εC(c0) = 1HεC(c),

then (C, ρ, α) is called an (H,β)-comodule Hom-coalgebra.

Remarks. (1) When α = idA and β = idH , an (H,β)-comodule Hom-
coalgebra is the usual H-comodule coalgebra.

(2) Similar to the case of Hopf algebras, Zhang [31] concluded that
(HCMC1) is satisfied if and only if ∆C is a morphism of H-comodules for
suitable H-comodule structures on C ⊗ C and C.

Definition 2.8 (see [11]). Let (H,β) be a Hom-bialgebra and (C,α) a
Hom-coalgebra. If (C,B, α) is a left (H,β)-Hom-module and for all h ∈ H
and c ∈ A,

(HMC1) (hB c)1 ⊗ (hB c)2 = (h1 B c1)⊗ (h2 B c2),
(HMC2) εC(hB c) = εH(h)εC(c),

then (C,B, α) is called an (H,β)-module Hom-coalgebra.

Remark. When α = idC and β = idH , an (H,β)-module Hom-coalgebra
is the usual H-module coalgebra.

Definition 2.9 (see [25]). Let (H,β) be a Hom-bialgebra and (A,α) a
Hom-algebra. If (A, ρ, α) is a left (H,β)-Hom-comodule and for all a, a′ ∈ A,

(HCMA1) ρ(aa′) = a−1a
′
−1 ⊗ a0a′0,

(HCMA2) ρ(1A) = 1H ⊗ 1A,

then (A, ρ, α) is called an (H,β)-comodule Hom-algebra.

Remark. When α = idA and β = idH , an (H,β)-comodule Hom-
algebra is the usual H-comodule algebra.

Definition 2.10 (see [11]). Let (H,β) be a Hom-bialgebra and (A,B, α)
an (H,β)-module Hom-algebra. Then (A \ H,α ⊗ β) (A \ H = A ⊗H as a
linear space) with multiplication

(a⊗ h)(a′ ⊗ h′) = a(h1 B α−1(a′))⊗ β−1(h2)h′,
where a, a′ ∈ A, h, h′ ∈ H, and with unit 1A ⊗ 1H , is a Hom-algebra; we
call it a smash product Hom-algebra.

Remark. Here the multiplication of a smash product Hom-algebra is
different from the one defined by Makhlouf and Panaite in [17, Theorem 3.1].

Definition 2.11 (see [1, 15, 16]). Let H be a bialgebra and M a linear
space which is a left H-module with action B : H⊗M →M , h⊗m 7→ hBm,
and a left H-comodule with coaction ρ : M → H ⊗M , ρ(m) = m−1 ⊗m0.
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Then M is called a (left-left) Yetter–Drinfeld module over H if the following
compatibility condition holds, for all h ∈ H and m ∈M :

(YD) h1m−1 ⊗ (h2 Bm0) = (h1 Bm)−1h2 ⊗ (h1 Bm)0.

When H is a Hopf algebra, then (YD) is equivalent to

(YD)′ h1m−1SH(h3)⊗ (h2 Bm0) = (hBm)−1 ⊗ (hBm)0.

3. Radford biproduct Hom-Hopf algebra. In this section, we mainly
generalize the Radford biproduct bialgebra of [20, Theorem 1] to the Hom-
setting.

Dual to Definition 2.10, we have:

Proposition 3.1. Let (H,β) be a Hom-bialgebra and (C, ρ, α) an (H,β)-
comodule Hom-coalgebra. Then (C �H,α⊗ β) (C �H = C ⊗H as a linear
space) with comultiplication

∆C�H(c⊗ h) = c1 ⊗ c2−1β−1(h1)⊗ α−1(c20)⊗ h2,

where c ∈ C, h ∈ H, and with counit εC ⊗ εH , is a Hom-coalgebra; we call
it a smash coproduct Hom-coalgebra.

In fact, dual to [11, Theorem 3.1], we have

Proposition 3.2. Let (C,∆C , εC , α) and (H,∆H , εH , β) be two Hom-
coalgebras, and T : C ⊗ H → H ⊗ C (write T (c ⊗ h) = hT ⊗ cT , ∀c ∈ C,
h ∈ H) a linear map such that for all c ∈ C and h ∈ H,

α(c)T ⊗ β(h)T = α(cT )⊗ β(hT ).

Then (C�TH,α⊗β) (C�TH = C⊗H as a linear space) with comultiplication

∆C�TH(c⊗ h) = c1 ⊗ β−1(h1)T ⊗ α−1(c2T )⊗ h2,

and with counit εC⊗εH , becomes a Hom-coalgebra if and only if the following
conditions hold:

(C1) εH(hT )cT = εH(h)α(c), hT εC(cT ) = β(h)εC(c),

(C2) hT1 ⊗ hT2 ⊗ α(cT ) = β(β−1(h1)T )⊗ h2t ⊗ cTt,
(C3) β(hT )⊗ α(c)T1 ⊗ α(c)T2 = hTt ⊗ α(c1)t ⊗ α(c2T ),

where c ∈ C, h ∈ H and t is a copy of T .

We call this Hom-coalgebra a T -smash coproduct Hom-coalgebra.

Remarks. (1) Letting T (c⊗h) = c−1h⊗c0 in C �T H, we get the smash
coproduct Hom-coalgebra C �H.

(2) Here the comultiplication of a T -smash coproduct Hom-coalgebra is
slightly different from the one defined by Zheng [32]. And the conditions
(C1)–(C3) are simpler than the ones in [32].
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Theorem 3.3. Let (H,β) be a Hom-bialgebra, (A,α) a left (H,β)-module
Hom-algebra with module structure B : H ⊗ A → A and a left (H,β)-
comodule Hom-coalgebra with comodule structure ρ : A→ H ⊗A. Then the
following are equivalent:

• (A\�H,µA\H , 1A⊗1H ,∆A�H , εA⊗εH , α⊗β) is a Hom-bialgebra, where
(A \ H,α ⊗ β) is a smash product Hom-algebra and (A �H,α ⊗ β) is
a smash coproduct Hom-coalgebra.

• The following conditions hold (for all a, b ∈ A and h ∈ H):

(R1) (A, ρ, α) is an (H,β)-comodule Hom-algebra,
(R2) (A,B, α) is an (H,β)-module Hom-coalgebra,
(R3) εA is a Hom-algebra map and ∆A(1A) = 1A ⊗ 1A,
(R4) ∆A(ab) = a1(β

2(a2−1) B α−1(b1))⊗ α−1(a20)b2,
(R5) h1β(a−1)⊗ (β3(h2) B a0) = (β2(h1) B a)−1h2 ⊗ (β2(h1) B a)0.

In this case, we call this Hom-bialgebra a Radford biproduct Hom-bi-
algebra and denote it by (A\�H,α⊗ β).

Proof. (⇐) It is easy to prove that ε
A\�H

= εA ⊗ εH is a morphism of

Hom-algebras. Next we check ∆
A\�H

= ∆A�H is a morphism of Hom-algebras

as follows. For all a, b ∈ A and h, g ∈ H, we have

∆
A\�H

((a⊗ h)(b⊗ g))

= (a(h1 B α−1(b)))1 ⊗ (a(h1 B α−1(b)))2−1β
−1((β−1(h2)g)1)

⊗α−1((a(h1 B α−1(b)))20)⊗ (β−1(h2)g)2
(HA1),(HC1)

= (a(h1 B α−1(b)))1 ⊗ (a(h1 B α−1(b)))2−1(β
−2(h21)β

−1(g1))

⊗α−1((a(h1 B α−1(b)))20)⊗ β−1(h22)g2
(R4)
= a1(β

2(a2−1) B α−1((h1 B α−1(b))1))

⊗ (α−1(a20)(h1 B α−1(b))2)−1(β
−2(h21)β

−1(g1))

⊗α−1((α−1(a20)(h1 B α−1(b))2)0)⊗ β−1(h22)g2
(HCA1)

= a1(β
2(a2−1) B α−1((h1 B α−1(b))1))

⊗ (α−1(a20)−1(h1 B α−1(b))2−1)(β
−2(h21)β

−1(g1))

⊗α−1(α−1(a20)0)α−1((h1 B α−1(b))20)⊗ β−1(h22)g2
(HMC1)

= a1(β
2(a2−1) B α−1(h11 B α−1(b1)))

⊗ (α−1(a20)−1(h12 B α−1(b2))−1)(β
−2(h21)β

−1(g1))

⊗α−1(α−1(a20)0)α−1((h12 B α−1(b2))0)⊗ β−1(h22)g2
(HA2)
= a1(β

2(a2−1) B α−1(h11 B α−1(b1)))

⊗ (α−1(a20)−1β
−1((h12 B α−1(b2))−1(β

−2(h21)))g1

⊗α−1(α−1(a20)0)α−1((h12 B α−1(b2))0)⊗ β−1(h22)g2
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(HC2)
= a1(β

2(a2−1) B α−1(β(h1) B α−1(b1)))

⊗ (α−1(a20)−1β
−1((β−1(h211) B α−1(b2))−1β

−3(h212)))g1
⊗α−1(α−1(a20)0)α−1((β−1(h211) B α−1(b2))0)⊗ β−1(h22)g2

(HC1)
= a1(β

2(a2−1) B α−1(β(h1) B α−1(b1)))

⊗ (α−1(a20)−1β
−1((β2(β−3(h21)1) B α−1(b2))−1β

−3(h21)2))g1
⊗α−1(α−1(a20)0)α−1((β2(β−3(h21)1) B α−1(b2))0)⊗ β−1(h22)g2

(R5)
= a1(β

2(a2−1) B α−1(β(h1) B α−1(b1)))

⊗ (α−1(a20)−1β
−1(β−3(h21)1)β(α−1(b2)−1)))g1

⊗α−1(α−1(a20)0)α−1(β3(β−3(h21)2) B α−1(b2)0)
(HCM1),(HC1)

= a1(β
2(a2−1) B α−1(β(h1) B α−1(b1)))

⊗ (β−1(a20−1)β
−1(β−3(h211)b2−1))g1

⊗α−2(a200)α−1(h212 B α−1(b20))⊗ β−1(h22)g2
(HCM2)

= a1(β(a2−11) B α−1(β(h1) B α−1(b1)))

⊗ (β−1(a2−12)β
−1(β−3(h211)b2−1))g1

⊗α−1(a20)α−1(h212 B α−1(b20))⊗ β−1(h22)g2
(HA2)
= a1(β(a2−11) B α−1(β(h1) B α−1(b1)))

⊗ (β−1(a2−12)β
−3(h211))(b2−1β

−1(g1))

⊗α−1(a20)α−1(h212 B α−1(b20))⊗ β−1(h22)g2
(HC2)
= a1(β(a2−11) B α−1(h11 B α−1(b1)))

⊗ (β−1(a2−12)β
−2(h12))(b2−1β

−1(g1))

⊗α−1(a20)α−1(β(h21) B α−1(b20))⊗ β−1(h22)g2
(HM1)

= a1(β(a2−11) B (β−1(h11) B α−2(b1)))

⊗ (β−1(a2−12)β
−2(h12))(b2−1β

−1(g1))

⊗α−1(a20)(h21 B α−2(b20))⊗ β−1(h22)g2
(HM2)

= a1((a2−11β
−1(h11)) B α−1(b1))

⊗ (β−1(a2−12)β
−2(h12))(b2−1β

−1(g1))

⊗α−1(a20)(h21 B α−2(b20))⊗ β−1(h22)g2
(HA1)
= a1((a2−1β

−1(h1))1 B α−1(b1))

⊗β−1((a2−1β−1(h1))2)(b2−1β−1(g1))
⊗α−1(a20)(h21 B α−2(b20))⊗ β−1(h22)g2

= (a1 ⊗ a2−1β−1(h1)⊗ α−1(a20)⊗ h2)
× (b1 ⊗ b2−1β−1(h1)⊗ α−1(b20)⊗ h2)

= ∆
A\�H

(a⊗ h)∆
A\�H

(b⊗ g),

and ∆
A\�H

(1A ⊗ 1H) = 1A ⊗ 1H ⊗ 1A ⊗ 1H can be proved directly.
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(⇒) We only verify that conditions (R4) and (R5) hold; the others hold
similarly. As ∆

A\�H
= ∆A�H is a morphism of Hom-algebras, for all a, b ∈ A

and h, g ∈ H we have

a1((a2−1β
−1(h1))1 B α−1(b1))⊗ β−1((a2−1β−1(h1))2)(b2−1β−1(g1))
⊗ α−1(a20)(h21 B α−2(b20))⊗ β−1(h22)g2

= (a(h1 B α−1(b)))1 ⊗ (a(h1 B α−1(b)))2−1β
−1((β−1(h2)g)1)

⊗ α−1((a(h1 B α−1(b)))20)⊗ (β−1(h2)g)2.

Applying idA⊗εH⊗ idA⊗εH to the above equation and setting h = g = 1H
we get (HB). (HYD) can be obtained by applying εA ⊗ idH ⊗ idA ⊗ εH to
the above equation and setting a = 1A and g = 1H .

Remarks. If α = idA and β = idH , then we get the well-known Radford
biproduct bialgebra of [20, Theorem 1].

(2) Theorem 3.3 is different from the one defined by Liu and Shen [9],
because the Hom-smash product there is based on the concept of module
Hom-algebra in [3] and ours is based on Yau’s [24,28].

Corollary 3.4 (see [11]). Let (A,α), (H,β) be two Hom-bialgebras,
and (A,B, α) an (H,β)-module Hom-algebra. Then the smash product Hom-
algebra (A\H,α⊗β) endowed with the tensor product Hom-coalgebra struc-
ture becomes a Hom-bialgebra if and only if (A,B, α) is an (H,β)-module
Hom-coalgebra and

h1 ⊗ h2 B a = h2 ⊗ h1 B a.

Proof. Let the comodule action ρ be trivial, i.e. ρ(a) = 1H ⊗ α(a) in
Theorem 3.3.

Corollary 3.5. Let (C,α), (H,β) be two Hom-bialgebras, and (C, ρ, α)
an (H,β)-comodule Hom-coalgebra. Then the smash coproduct Hom-coalgebra
(C�H,α⊗β) endowed with the tensor product Hom-algebra structure becomes
a Hom-bialgebra if and only if (C, ρ, α) is an (H,β)-comodule Hom-algebra
and

hc−1 ⊗ c0 = c−1h⊗ c0.
Proof. Let the module action B be trivial, i.e. h B c = εH(h)α(c) in

Theorem 3.3.

Theorem 3.6. Let (H,β, SH) be a Hom-Hopf algebra, and (A,α) be a

Hom-algebra and a Hom-coalgebra. Assume that (A\�H,α⊗ β) is a Radford
biproduct Hom-bialgebra defined as above, and SA : A → A is a linear map
such that SA(a1)a2 = a1SA(a2) = εA(a)1A and α ◦ SA = SA ◦ α. Then

(A\�H,α⊗ β, SA\�H) is a Hom-Hopf algebra, where

S
A\�H

(a⊗ h) = (SH(a−1β
−1(h))1 B SA(α−2(a0)))⊗ β−1(SH(a−1β

−1(h))2).
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Proof. We can compute that (A\�H,α⊗β, SA\�H) is a Hom-Hopf algebra

as follows. For all a ∈ A and h ∈ H, we have

(S
A\�H
∗ id

A\�H
)(a⊗ h)

= (SH(a1−1β
−1(a2−1β

−1(h1)))1 B SA(α−2(a10)))

× (β−1(SH(a1−1β
−1(a2−1β

−1(h1)))2)1 B α−2(a20))

⊗β−1(β−1(SH(a1−1β
−1(a2−1β

−1(h1)))2)2)h2
(HA1),(HA2)

= (SH(β−1(a1−1a2−1)β
−1(h1))1 B SA(α−2(a10)))

× (β−1(SH(β−1(a1−1a2−1)β
−1(h1))2)1 B α−2(a20))

⊗β−1(β−1(SH(β−1(a1−1a2−1)β
−1(h1))2)2)h2

(HCMC1)
= (SH(β(a−1)β

−1(h1))1 B SA(α−2(a01)))

× (β−1(SH(β(a−1)β
−1(h1))2)1 B α−2(a02))

⊗β−1(β−1(SH(β(a−1)β
−1(h1))2)2)h2

(HC1),(HC2)
= (β−1(SH(β(a−1)β

−1(h1))11) B SA(α−2(a01)))

× (β−1(SH(β(a−1)β
−1(h1))12) B α−2(a02))

⊗β−1(SH(β(a−1)β
−1(h1))2)h2

(HC1),(HMA1)
= (β(SH(β(a−1)β

−1(h1))1) B (SA(α−2(a01))α
−2(a02))

⊗β−1(SH(β(a−1)β
−1(h1))2)h2

(HA1)
= (β(SH(β(a−1)β

−1(h1))1) B 1AεA(a0))

⊗β−1(SH(β(a−1)β
−1(h1))2)h2

(HCMC2)
= (β(SH(h1)1) B 1AεA(a))⊗ β−1(SH(h1)2)h2

(HMA2)
= 1AεA(a)⊗ SH(h1)h2 = (1A ⊗ 1H)εA(a)εH(h)

and

(id
A\�H
∗ S

A\�H
)(a⊗ h)

= a1((a2−1β
−1(h1))1 B α−1(SH(α−1(a20)−1β

−1(h2))1

BSA(α−2(α−1(a20)0))))

⊗β−1((a2−1β−1(h1))2)β−1(SH(α−1(a20)−1β
−1(h2))2)

(HM1)
= a1((a2−1β

−1(h1))1 B (β−1(SH(α−1(a20)−1β
−1(h2))1)

BSA(α−3(α−1(a20)0))))

⊗β−1((a2−1β−1(h1))2)β−1(SH(α−1(a20)−1β
−1(h2))2)

(HM2),(HA1)
= a1(β

−1((a2−1β
−1(h1))1SH(α−1(a20)−1β

−1(h2))1)

BSA(α−2(α−1(a20)0)))

⊗β−1((a2−1β−1(h1))2SH(α−1(a20)−1β
−1(h2))2)
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(HC1)
= a1(β

−1((a2−1β
−1(h1))SH(α−1(a20)−1β

−1(h2)))1

BSA(α−2(α−1(a20)0)))

⊗β−1((a2−1β−1(h1))SH(α−1(a20)−1β
−1(h2)))2

(HCM1)
= a1(β

−1((a2−1β
−1(h1))SH(β−1(a20−1)β

−1(h2)))1BSA(α−3(a200)))

⊗β−1((a2−1β−1(h1))SH(β−1(a20−1)β
−1(h2)))2

(HCM2)
= a1(β

−1((β−1(a2−11)β
−1(h1))SH(β−1(a2−12)β

−1(h2)))1

BSA(α−2(a20)))

⊗β−1((β−1(a2−11)β−1(h1))SH(β−1(a2−12)β
−1(h2)))2

(HC1)
= a1((1H B SA(α−2(a20)))εH(a2−1)⊗ 1HεH(h)

(HCM2)
= a1(1H B SA(α−1(a2)))⊗ 1HεH(h)

(HM2)
= a1SA(a2)⊗ 1HεH(h)

= (1A ⊗ 1H)εA(a)εH(h),

while

S
A\�H

(α(a)⊗ β(h))

= (SH(α(a)−1h)1 B SA(α−2(α(a)0)))⊗ β−1(SH(α(a)−1h)2)
(HCM1)

= (SH(β(a−1)h)1 B SA(α−1(a0)))⊗ β−1(SH(β(a−1)h)2)

= (α⊗ β)(S
A\�H

(a⊗ h)),

finishing the proof.

Corollary 3.7 (see [11]). Let (A,α, SA), (H,β, SH) be two Hom-Hopf
algebras, and (A \ H,α ⊗ β) a smash product Hom-bialgebra. Then (A \ H,
α⊗ β, SA\H) is a Hom-Hopf algebra, where

SA\H(a⊗ h) = (SH(h)1 B α−1(SA(a)))⊗ β−1(SH(h)2).

Proof. Let the comodule action ρ be trivial, i.e. ρ(a) = 1H ⊗ α(a) in
Theorem 3.6.

Corollary 3.8. Let (C,α, SC), (H,β, SH) be two Hom-Hopf algebras,
and (C �H,α⊗ β) a smash coproduct Hom-bialgebra. Then (C �H, α⊗ β,
SC�H) is a Hom-Hopf algebra, where

SC�H(c⊗ h) = SC(α−1(c(0)))⊗ SH(c(−1)β
−1(h)).

Proof. Let the module action B be trivial, i.e. h B c = εH(h)α(c) in
Theorem 3.6.

4. Hom-Yetter–Drinfeld category. In this section, we give the def-
inition of a Hom-Yetter–Drinfeld module and also prove that the category
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H
HYD of Hom-Yetter–Drinfeld modules is a pre-braided tensor category. Fur-

thermore, we show that (A\�H,α⊗β) is a Radford biproduct Hom-bialgebra
if and only if (A,α) is a Hom-bialgebra in the category H

HYD.

Definition 4.1. Let (H,β) be a Hom-bialgebra, (M,BM , αM ) a left
(H,β)-module with action BM : H ⊗ M → M , h ⊗ m 7→ h BM m, and
(M,ρM , αM ) a left (H,β)-comodule with coaction ρM : M → H ⊗M,m 7→
m−1⊗m0. Then we call (M,BM , ρ

M , αM ) a (left-left) Hom-Yetter–Drinfeld
module over (H,β) if

(HYD) h1β(m−1)⊗(β3(h2)BMm0) = (β2(h1)BMm)−1h2⊗(β2(h1)BMm)0

for all h ∈ H and m ∈M .

Remarks. (1) The compatibility condition (HYD) is different from con-
dition (2.1) in [16, Definition 2.1], condition (3.1) in [5, Definition 3.1] and
condition (4.1) in [9, Definition 4.1].

(2) When β = idH , condition (HYD) is exactly condition (YD).

(3) Let (H,β) be a Hom-bialgebra and K a field. Then (K, idK) is a
(left-left) Hom-Yetter–Drinfeld module over (H,β) with the module and
comodule actions defined as follows: H ⊗ K → K, h ⊗ k 7→ ε(h)k and
K → H ⊗K, k 7→ 1H ⊗ k.

(4) When (H,β, SH) is a Hom-Hopf algebra, then the condition (HYD)
is equivalent to

(HYD)′ (β4(h) BM m)−1 ⊗ (β4(h) BM m)0

= β−2(h11β(m−1))SH(h2)⊗ (β3(h12) BM m0).

Proof. (⇒) We have

β−2(h11β(m−1))S(h2)⊗ (β3(h12) Bm0)
(HYD)

= β−2((β2(h11 Bm))−1h12)S(h2)⊗ (β2(h11 Bm))0
(HA1),(HA2)

= β−1((β2(h11 Bm))−1)(β
−2(h12)β

−1(S(h2)))⊗ (β2(h11 Bm))0
(HC2)
= β−1((β2(h1 Bm))−1)(β

−2(h21)β
−2(S(h22)))⊗ (β2(h1 Bm))0

(HA1)
= β−1((β2(h1 Bm))−1)(β

−2(h21S(h22)))⊗ (β2(h1 Bm))0
(HA2),(HC2)

= (β4(h) Bm)−1 ⊗ (β4(h) Bm)0.

(⇐) We have

(β2(h1) Bm)−1h2 ⊗ (β2(h1) Bm)0
(HYD)′

= (β−2(β−2(h1)11β(m−1))S(β−2(h1)2))h2 ⊗ (β3(β−2(h1)12) Bm0)
(HC1)
= (β−2(β−2(h111)β(m−1))S(β−2(h12)))h2 ⊗ (β(h112) Bm0)

(HC2),(HC1)
= (β−2(β−1(h11)β(m−1))S(β−2(h21)))β

−1(h22)⊗ (β2(h12) Bm0)
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(HA2),(HA1)
= (β−1(β−1(h11)β(m−1))(β

−2S(h21)h22)⊗ (β2(h12) Bm0)

= (β−1(β−1(h11)β(m−1))1HεH(h2)⊗ (β2(h12) Bm0)
(HC1),(HC2),(HA1)

= h1β(m−1)⊗ (β3(h2) Bm0).

Here we use B, S instead of BM , SH , respectively.

Definition 4.2. Let (H,β) be a Hom-bialgebra. We denote by H
HYD

the category whose objects are all Hom-Yetter–Drinfeld modules (M,BM ,
ρM , αM ) over (H,β); the morphisms are morphisms of left (H,β)-modules
and left (H,β)-comodules.

In the following, we give a solution of the Hom-Yang–Baxter equation
introduced and studied by Yau [26,29,30].

Proposition 4.3. Let (H,β) be a Hom-bialgebra and (M,BM , ρ
M , αM ),

(N,BN , ρ
N , αN ) ∈ H

HYD. Define the linear map

τM,N : M ⊗N → N ⊗M, m⊗ n 7→ β3(m−1) BN n⊗m0,

for m ∈ M and n ∈ N . Then τM,N ◦ (αM ⊗ αN ) = (αN ⊗ αM ) ◦ τM,N ,
and if (P,BP , ρ

P , αP ) ∈ H
HYD, the maps τ , satisfy the Hom-Yang–Baxter

equation

(αP ⊗ τM,N ) ◦ (τM,P ⊗ αN ) ◦ (αM ⊗ τN,P )

= (τN,P ⊗ αM ) ◦ (αN ⊗ τM,P ) ◦ (τM,N ⊗ αP ).

Proof. We only check the second equality; the first one is easy. For all
m ∈M , n ∈ N and p ∈ P , we have

(αP ⊗ τM,N ) ◦ (τM,P ⊗ αN ) ◦ (αM ⊗ τN,P )(m⊗ n⊗ p)
= (β3(αM (m)−1) BP (β3(n−1) BP p))⊗ β3(αM (m)0−1) BN αN (n0)

⊗αM (m)00
(HM1)

= (β4(αM (m)−1) BP (β4(n−1) BP αP (p)))

⊗β3(αM (m)0−1) BN αN (n0)⊗ αM (m)00
(HCM1)

= (β5(m−1) BP (β4(n−1) BP αP (p)))⊗ β4(m0−1) BN αN (n0)

⊗αM (m00)
(HCM2)

= (β4(m−11) BP (β4(n−1) BP αP (p)))⊗ β4(m−12) BN αN (n0)

⊗α2
M (m0)

(HM2)
= ((β3(m−11)β

4(n−1)) BP α
2
P (p))⊗ β4(m−12) BN αN (n0)⊗ α2

M (m0)
(HCM1)

= ((β3(m−11αN (n)−1)) BP α
2
P (p))⊗ β4(m−12) BN αN (n)0 ⊗ α2

M (m0)
(HA1)
= (β2(β(m−11)β(αN (n)−1))) BP α

2
P (p))⊗ β3(β(m−12)) BN αN (n)0

⊗α2
M (m0)
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(HC1)
= (β2(β(m−1)1β(αN (n)−1))) BP α

2
P (p))⊗ β3(β(m−1)2) BN αN (n)0

⊗α2
M (m0)

(HYD)
= (β2((β2(β(m−1)1) BN αN (n))−1β(m−1)2) BP α

2
P (p))

⊗β2(β(m−1)1) BN αN (n))0 ⊗ α2
M (m0)

(HA1),(HC1)
= ((β2((β3(m−11) BN αN (n))−1)β

3(m−12)) BP α
2
P (p))

⊗ (β3(m−11) BN αN (n))0 ⊗ α2
M (m0)

(HCM2)
= ((β2((β4(m−1) BN αN (n))−1)β

3(m0−1)) BP α
2
P (p))

⊗ (β4(m−1) BN αN (n))0 ⊗ αM (m00)
(HM2)

= (β3((β4(m−1) BN αN (n))−1) BP (β3(m0−1) BP αP (p)))

⊗ (β4(m−1) BN αN (n))0 ⊗ αM (m00)
(HM1)

= (β3(αN (β3(m−1) BN n)−1) BP (β3(m0−1) BP αP (p)))

⊗αN (β3(m−1) BN n)0 ⊗ αM (m00)

= (τN,P ⊗ αM ) ◦ (αN ⊗ τM,P ) ◦ (τM,N ⊗ αP )(m⊗ n⊗ p).

Lemma 4.4. Let (H,β) be a Hom-bialgebra and (M,BM , ρ
M , αM ),

(N,BN , ρ
N , αN ) ∈ H

HYD. Define the linear maps

BM⊗N : H ⊗M ⊗N →M ⊗N, h⊗m⊗ n 7→ (h1 BM m)⊗ (h2 BN n),

and

ρM⊗N : M ⊗N → H ⊗M ⊗N, m⊗ n 7→ β−2(m−1n−1)⊗m0 ⊗ n0,

for h ∈ H, m ∈ M and n ∈ N . Then (M ⊗N,BM⊗N , ρ
M⊗N , αM ⊗ αN ) is

a Hom-Yetter–Drinfeld module.

Proof. It is easy to check that (M ⊗N,BM⊗N , αM ⊗ αN ) is an (H,β)-
Hom-module and (M ⊗ N, ρM⊗N , αM ⊗ αN ) is an (H,β)-Hom-comodule.
Since for h ∈ H, m ∈M and n ∈ N , we have

(β2(h1) BM⊗N (m⊗ n))−1h2 ⊗ (β2(h1) BM⊗N (m⊗ n))0

= ((β2(h1)1 BM m)⊗ (β2(h1)2 BN n))−1h2

⊗ ((β2(h1)1 BM m)⊗ (β2(h1)2 BN n))0

= β−2(((β2(h1)1 BM m)−1(β
2(h1)2 BN n)−1)β

2(h2))

⊗ (β2(h1)1 BM m)0 ⊗ (β2(h1)2 BN n)0
(HA1),(HA2)

= β−2(β((β2(h11) BM m)−1)((β
2(h12) BN n)−1β(h2)))

⊗ (β2(h11) BM m)0 ⊗ (β2(h12) BN n)0
(HC2)
= β−2(β((β3(h1) BM m)−1)((β

2(h21) BN n)−1h22))

⊗ (β3(h1) BM m)0 ⊗ (β2(h21) BN n)0
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(HYD)
= β−2(β((β3(h1) BM m)−1)(h21β(n−1)))

⊗ (β3(h1) BM m)0 ⊗ (β3(h22) BN n0)
(HA2)
= β−2(((β3(h1) BM m)−1h21)β

2(n−1))⊗ (β3(h1) BM m)0
⊗ (β3(h22) BN n0)

(HC2)
= β−2(((β2(h11) BM m)−1h12)β

2(n−1))

⊗ (β2(h11) BM m)0 ⊗ (β4(h2) BN n0)
(HYD)

= β−2((h11β(m−1))β
2(n−1))⊗ (β3(h12) BM m0)⊗ (β4(h2) BN n0)

(HA1)
= (β−2(h11)β

−1(m−1))n−1 ⊗ (β3(h12) BM m0)⊗ (β4(h2) BN n0)
(HA2)
= β−1(h11)(β

−1(m−1)β
−1(n−1))⊗ (β3(h12) BM m0)

⊗ (β4(h2) BN n0)
(HC2)
= h1(β

−1(m−1)β
−1(n−1))⊗ (β3(h21) BM m0)⊗ (β3(h22) BN n0)

(HC1),(HA1)
= h1β(β−2(m−1n−1))⊗ (β3(h2)1 BM m0)⊗ (β3(h2)2 BN n0)

= h1β((m⊗ n)−1)⊗ (β3(h2) BM⊗N (m⊗ n)0),

condition (HYD) holds. Therefore (M ⊗ N,BM⊗N , ρ
M⊗N , αM ⊗ αN ) is a

Hom-Yetter–Drinfeld module.

Lemma 4.5. Let (H,β) be a Hom-bialgebra and (M,BM , ρ
M , αM ),

(N ,BN , ρN , αN ), (P,BP , ρ
P , αP ) ∈ H

HYD. With notation as above, define
the linear map

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P ),

(m⊗ n)⊗ p 7→ α−1M (m)⊗ (n⊗ αP (p)),

for m ∈ M , n ∈ N and p ∈ P . Then aM,N,P is an isomorphism of left
(H,β)-Hom-modules and left (H,β)-Hom-comodules.

Proof. Same as the proof of [16, Proposition 3.2].

Lemma 4.6. Let (H,β) be a Hom-bialgebra and (M,BM , ρ
M , αM ),

(N,BN , ρ
N , αN ) ∈ H

HYD. Define the linear map

cM,N : M ⊗N → N ⊗M, m⊗ n 7→ (β2(m−1) BN α−1N (n))⊗ α−1M (m0),

where m ∈ M and n ∈ N . Then cM,N is a morphism of left (H,β)-Hom-
modules and left (H,β)-Hom-comodules.

Proof. For all h ∈ H, m ∈M and n ∈ N , firstly,

(αN ⊗ αM ) ◦ cM,N (m⊗ n)

= αN (β2(m−1) BN α−1N (n))⊗m0
(HM1)

= (β3(m−1) BN n)⊗m0
(HCM1)

= (β2(αM (m)−1) BN α−1N (αN (n))⊗ α−1M (αM (m)0)

= cM,N ◦ (αM ⊗ αN )(m⊗ n),



58 H. Y. LI AND T. S. MA

secondly,

cM,N (hBM⊗N (m⊗ n)) = cM,N ((h1 BM m)⊗ (h2 BN n))

= (β2((h1 BM m)−1) BN α−1N (h2 BN n))⊗ α−1M ((h1 BM m)0)
(HM1)

= (β2((h1 BM m)−1) BN (β−1(h2) BN α−1N (n)))⊗ α−1M ((h1 BM m)0)
(HM2)

= ((β((h1 BM m)−1)β
−1(h2)) BN n)⊗ α−1M ((h1 BM m)0)

(HA1)
= (β((h1 BM m)−1β

−2(h2)) BN n)⊗ α−1M ((h1 BM m)0)
(HYD)

= (β(β−2(h)1β(m−1)) BN n)⊗ α−1M (β3(β−2(h)2) BM m0)
(HC1)
= (β(β−2(h1)β(m−1)) BN n)⊗ α−1M (β3(β−2(h2)) BM m0)

= ((β−1(h1)β
2(m−1)) BN n)⊗ α−1M (β(h2) BM m0)

(HM1)
= ((β−1(h1)β

2(m−1)) BN n)⊗ (h2 BM α−1M (m0))
(HM2)

= (h1 BN (β2(m−1) BN α−1N (n)))⊗ (h2 BM α−1M (m0))

= hBN⊗M ((β2(m−1) BN α−1N (n))⊗ α−1M (m0))

= hBN⊗M cM,N (m⊗ n);

finally,

(ρN⊗M ◦ cM,N )(m⊗ n))

= β−2((β2(m−1) BN α−1N (n))−1α
−1
M (m0)−1)

⊗ (β2(m−1) BN α−1N (n))0 ⊗ α−1M (m0)0
(HCM1)

= β−2((β2(m−1) BN α−1N (n))−1β
−1(m0−1))

⊗ (β2(m−1) BN α−1N (n))0 ⊗ α−1M (m00)
(HCM2)

= β−2((β(m−11) BN α−1N (n))−1β
−1(m−12))

⊗ (β(m−11) BN α−1N (n))0 ⊗m0

(HC1)
= β−2((β2(β−1(m−1)1) BN α−1N (n))−1β

−1(m−1)2)

⊗ (β2(β−1(m−1)1) BN α−1N (n))0 ⊗m0

(HYD)
= β−2(β−1(m−1)1β(α−1N (n)−1))⊗ (β3(β−1(m−1)2) BN α−1N (n)0)⊗m0

(HC1),(HA1)
= β−3(m−11)β

−1(α−1N (n)−1)⊗ (β−2(m−12) BN α−1N (n)0)⊗m0

(HCM1)
= β−3(m−11)β

−2(n−1)⊗ (β−2(m−12) BN α−1N (n0))⊗m0

(HCM2)
= β−2(m−1)β

−2(n−1)⊗ (β−2(m0−1) BN α−1N (n0))⊗ α−1M (m00)
(HA1)
= β−2(m−1n−1)⊗ (β−2(m0−1) BN α−1N (n0))⊗ α−1M (m00)

= (id⊗ cM,N )(β−2(m−1n−1)⊗m0 ⊗ n0)
= (id⊗ cM,N ) ◦ ρM⊗N (m⊗ n).
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Thus cM,N is a morphism of left (H,β)-Hom-modules and left (H,β)-Hom-
comodules.

Remark. The pre-braiding (cM,N ) differs from the one in [16, Proposi-
tion 3.3].

Theorem 4.7. Let (H,β) be a Hom-bialgebra. Then the Hom-Yetter–
Drinfeld category H

HYD is a pre-braided tensor category, with tensor product,
associativity constraints, and pre-braiding defined in Lemmas 4.4, 4.5 and
4.6, respectively, and with the unit I = (K, idK).

Proof. The proof of the pentagon axiom for aM,N,P coincides with the
proof of [16, Theorem 3.4]. Next we prove the hexagonal relation for cM,N .
Let (M,BM , ρ

M , αM ), (N,BN , ρ
N , αN ), (P,BP , ρ

P , αP ) ∈ H
HYD. Then for

all m ∈M , n ∈ N and p ∈ P , we have

((idN ⊗ cM,P ) ◦ (aN,M,P ) ◦ (cM,N ⊗ idP ))((m⊗ n)⊗ p)
= α−1N (β2(m−1) BN α−1N (n))⊗ ((β2(α−1M (m0)−1) BP p)

⊗α−1M (α−1M (m0)0))
(HCM1)

= α−1N (β2(m−1) BN α−1N (n))⊗ ((β(m0−1) BP p)⊗ α−2M (m00))
(HCM2)

= α−1N (β(m−11) BN α−1N (n))⊗ ((β(m−12) BP p)⊗ α−1M (m0))
(HC1)
= α−1N (β(m−1)1 BN α−1N (n))⊗ ((β(m−1)2 BP p)⊗ α−1M (m0))

(HCM1)
= α−1N (β2(α−1M (m)−1)1 BN α−1N (n))

⊗ ((β2(α−1M (m)−1)2 BP p)⊗ α−1M (m)0)

= (aN,P,M ◦ cM,N⊗P ◦ aM,N,P )((m⊗ n)⊗ p),

and

((cM,P ⊗ idN ) ◦ (a−1N,M,P ) ◦ (idM ⊗ cN,P ))(m⊗ (n⊗ p))

= ((β2(αM (m)−1) BP α
−1
P (β2(n−1) BP α

−1
P (p)))⊗ α−1M (αM (m)0))

⊗α−2N (n0)
(HM1)

= ((β2(αM (m)−1) BP (β(n−1) BP α
−2
P (p)))⊗ α−1M (αM (m)0))

⊗α−2N (n0)
(HM2)

= (((β(αM (m)−1)β(n−1)) BP α
−1
P (p))⊗ α−1M (αM (m)0))⊗ α−2N (n0)

(HM1),(HA1)
= (αP ((αM (m)−1n−1)) BP α

−2
P (p))⊗ α−1M (αM (m)0))⊗ α−2N (n0)

= (a−1P,M,N ◦ cM⊗N,P ◦ a
−1
M,N,P )(m⊗ (n⊗ p)),

finishing the proof.

By Theorems 3.3, 3.6 and 4.7, we can get the main result in this paper.
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Theorem 4.8. Let (H,β) be a Hom-bialgebra, (A,α) a left (H,β)-module

Hom-algebra and a left (H,β)-comodule Hom-coalgebra. Then (A\�H,µA\H ,
1A⊗ 1H ,∆A�H , εA⊗ εH , α⊗β) is a Radford biproduct Hom-bialgebra if and
only if (A,α) is a Hom-bialgebra in the Hom-Yetter–Drinfeld category H

HYD.

Proof. This is obvious if we compare conditions (R4) and (R5) in The-
orem 3.3 with condition (HYD) in Definition 4.1 and the definition of the
pre-braiding cM,N in Lemma 4.6, respectively.

Remarks. (1) If α = idA and β = idH in Theorem 4.8, then we get
Majid’s conclusion about the usual Radford biproduct and Yetter–Drinfeld
category.

(2) (A\�H,µA\H , 1A ⊗ 1H ,∆A�H , εA ⊗ εH , α ⊗ β, SA\�H) is a Radford bi-

product Hom-Hopf algebra if and only if (A,α, SA) is a Hom-Hopf algebra
in the Hom-Yetter–Drinfeld category H

HYD.

5. Applications. In this section, we give some applications of the above
results.

Example 5.1. Let KZ2 = K{1, a} be a Hopf group algebra (see [23]).
Then (KZ2, idKZ2) is a Hom-Hopf algebra.

Let T2,−1 = K{1, g, x, y | g2 = 1, x2 = 0, y = gx, gy = −gy = x} be
Taft’s Hopf algebra (see [13]). Its coalgebra structure and antipode are given
by

∆(g) = g ⊗ g, ∆(x) = x⊗ g + 1⊗ x, ∆(y) = y ⊗ 1 + g ⊗ y,
ε(g) = 1, ε(x) = 0, ε(y) = 0,

and

S(g) = g, S(x) = y, S(y) = −x.

Define a linear map α: T2,−1 → T2,−1 by

α(1) = 1, α(g) = g, α(x) = kx, α(y) = ky

where 0 6= k ∈ K. Then α is an automorphism of Hopf algebras.

So we get a Hom-Hopf algebra Hα = (T2,−1, α ◦µT2,−1 , 1T2,−1 ,∆T2,−1 ◦α,
εT2,−1 , α) (see [19]). By a direct computation we get:

Lemma 5.1.1. With the notations above, define a module action B :
KZ2 ⊗Hα → Hα by

1KZ2 B 1Hα = 1Hα , 1KZ2 B g = g,

1KZ2 B x = kx, 1KZ2 B y = ky,

aB 1Hα = 1Hα , aB g = g,

aB x = kx, aB y = ky,
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Then (Hα,B, α) is a (KZ2, idKZ2)-module Hom-algebra. Therefore, (Hα\KZ2,
α⊗ idKZ2) is a smash product Hom-algebra.

Lemma 5.1.2. With the notations above, define a comodule action ρ :
Hα → KZ2 ⊗Hα by

1Hα 7→ 1KZ2 ⊗ 1Hα , g 7→ 1KZ2 ⊗ g, x 7→ ka⊗ x, y 7→ ka⊗ y.

Then (Hα, ρ, α) is a left (KZ2, idKZ2)-comodule Hom-coalgebra. Therefore,
(Hα \ KZ2, α⊗ idKZ2) is a smash coproduct Hom-coalgebra.

From the above two lemmas and a direct computation, we have

Theorem 5.1.3. With the notations above, (Hα
\
�KZ2, µHα\KZ2 , 1Hα⊗

1KZ2 , ∆Hα�KZ2 , εHα ⊗ εKZ2 , α ⊗ idKZ2) is a Radford biproduct Hom-bi-
algebra. Furthermore, (Hα

\
�KZ2, α⊗idKZ2 , SHα\�KZ2

) is a Hom-Hopf algebra,

where S
Hα

\
�KZ2

is defined by

S
Hα

\
�KZ2

(1Hα ⊗ 1KZ2) = 1Hα ⊗ 1KZ2 , S
Hα

\
�KZ2

(1Hα ⊗ a) = 1Hα ⊗ a,

S
Hα

\
�KZ2

(g ⊗ 1KZ2) = g ⊗ 1KZ2 , S
Hα

\
�KZ2

(g ⊗ a) = g ⊗ a,

S
Hα

\
�KZ2

(x⊗ 1KZ2) = y ⊗ a, S
Hα

\
�KZ2

(x⊗ a) = y ⊗ 1KZ2 ,

S
Hα

\
�KZ2

(y ⊗ 1KZ2) = −x⊗ a, S
Hα

\
�KZ2

(y ⊗ a) = −x⊗ 1KZ2 .

Example 5.2. Let KZ2 = K{1, a} be a Hopf group algebra as in Ex-
ample 5.1.

Let A = K{1, z} be a vector space. Define the multiplication µA by

1z = z1 = lz, z2 = 0,

and the automorphism β : A→ A by

β(1) = 1, β(z) = lz,

for some 0 6= l ∈ K. Then (A, β) is a Hom-algebra.

Define the comultiplication ∆A by

∆A(1) = 1⊗ 1, ∆A(z) = lz ⊗ 1 + l1⊗ z, and εA(1) = 1, εA(z) = 0.

Then (A, β) is a Hom-coalgebra. By a direct computation we get:

Lemma 5.2.1. With the notations above, define a module action D :
KZ2 ⊗A→ A by

1KZ2 D 1A = 1A, 1KZ2 D z = lz,

aD 1A = 1A, aD z = −lz.

Then (A,D, β) is a (KZ2, idKZ2)-module Hom-algebra. Therefore, (A\KZ2,
β ⊗ idKZ2) is a smash product Hom-algebra.
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Lemma 5.2.2. With the notations above, define a comodule action ψ :
A→ KZ2 ⊗A by

1A 7→ 1KZ2 ⊗ 1A, z 7→ la⊗ z.
Then (A,ψ, β) is a left (KZ2, idKZ2)-comodule Hom-coalgebra. Therefore,
(A \ KZ2, β ⊗ idKZ2) is a smash coproduct Hom-coalgebra.

By the above two lemmas and a direct computation, we have

Theorem 5.2.3. With the notations above, (A\�KZ2, µA\KZ2,1A⊗1KZ2,
∆A�KZ2, εA ⊗ εKZ2, β ⊗ idKZ2) is a Radford biproduct Hom-bialgebra. Fur-

thermore, (A\�KZ2, β ⊗ idKZ2, S
A\�KZ2

) is a Hom-Hopf algebra, where

S
A\�KZ2

is defined by

S
A\�KZ2

(1A ⊗ 1KZ2) = 1A ⊗ 1KZ2 , S
A\�KZ2

(1A ⊗ a) = 1A ⊗ a,

S
A\�KZ2

(z ⊗ 1KZ2) = z ⊗ a, S
A\�KZ2

(z ⊗ a) = −z ⊗ 1KZ2 .

Remark. If β = idA, i.e., l = 1, then Example 5.2 coincides with the
biproduct B?H (which is isomorphic to Sweedler’s Hopf algebra T2,ω) of [12,
Example 4.3].

In the following, let us recall the definition of a quasitriangular Hom-Hopf
algebra from [26] or [10].

A quasitriangular Hom-Hopf algebra is an octuple (H,µ, 1H ,∆, ε, S, β,R)
(abbr. (H,β,R)) in which (H,µ, 1H ,∆, ε, S, β) is a Hom-Hopf algebra and
R = R1 ⊗ R2 ∈ H ⊗H, satisfying the following axioms (for all h ∈ H and
R = r):

(QHA1) ε(R1)R2 = R1ε(R2) = 1,
(QHA2) R1

1 ⊗R1
2 ⊗ β(R2) = β(R1)⊗ β(r1)⊗R2r2,

(QHA3) β(R1)⊗R2
1 ⊗R2

2 = R1r1 ⊗ β(r2)⊗ β(R2),
(QHA4) h2R

1 ⊗ h1R2 = R1h1 ⊗R2h2,
(QHA5) β(R1)⊗ β(R2) = R1 ⊗R2.

Let (H,β, S) be a Hom-Hopf algebra and R = R1⊗R2 ∈ H ⊗H. Define

ρH : H → H ⊗H, h 7→ h−1 ⊗ h0 = β−3(R2)⊗R1h.

Proposition 5.3. Let (H,β,R) be a quasitriangular Hom-Hopf algebra.
Then (H,β, ρH) is a left (H,β)-comodule Hom-coalgebra and (H,µH , ρ

H , β)
is a Hom-Yetter–Drinfeld module.

Proof. We compute as follows:

β(h−1)⊗ β(h0) = β(β−3(R2))⊗ β(R1h)
(HA1)
= β(β−3(R2))⊗ β(R1)β(h)

(QHA5)
= β−3(R2)⊗R1β(h) = β(h)−1 ⊗ β(h)0,
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so (HCM1) holds. Now,

h−11 ⊗ h−12β(h0) = β−3(R2)1 ⊗ β−3(R2)2 ⊗ β(R1h)
(HC1),(HA1)

= β−3(R2
1)⊗ β−3(R2

2)⊗ β(R1)β(h)
(QHA3)

= β−2(R2)⊗ β−2(r2)⊗ (r1R1)β(h)
(HA2)
= β−2(R2)⊗ β−2(r2)⊗ β(r1)(R1h)

(QHA5)
= β−2(R2)⊗ β−3(r2)⊗ r1(R1h)

= β(h−1)⊗ h0−1 ⊗ h00,
thus we get (HCM2). Next,

β2(h−1)⊗ h01 ⊗ h02 = β−1(R2)⊗ (R1h)1 ⊗ (R1h)2

= β−1(R2)⊗R1
1h1 ⊗R1

2h2
(QHA2)

= β−2(R2r2)⊗ β(R1)h1 ⊗ β(r1)h2
(QHA5),(HA1)

= β−3(R2)β−3(r2)⊗R1h1 ⊗ r1h2
= h1−1h1−1 ⊗ h10 ⊗ h20,

therefore we obtain (HCMC1).
(HCMC2) can be checked by using (QHA1).
Finally, we verify that (HYD) is satisfied:

(β2(h1) B g)−1h2 ⊗ (β2(h1) B g)0 = β−3(R2)h2 ⊗R1(β2(h1)g)
(HA2)
= β−3(R2)h2 ⊗ (β−1(R1)β2(h1))β(g)

(HA1)(HC1)
= β−3(R2β3(h)2)⊗ β−1(R1β3(h)1)β(g)

(QHA4)
= β−3(β3(h)1R

2)⊗ β−1(β3(h)2R
1)β(g)

(HA1)(HC1)
= h1β

−3(R2)⊗ (β2(h2)β
−1(R1))β(g)

(HA2)
= h1β

−3(R2)⊗ β3(h2)(β−1(R1)g)
(QHA5)

= h1β
−2(R2)⊗ β3(h2)(R1g) = h1β(g−1)⊗ (β3(h2) B g0),

finishing the proof.

Proposition 5.4. Let (H,β, S) be a Hom-Hopf algebra, with the nota-
tions as above. If (H,β, ρH) is a left (H,β)-comodule Hom-coalgebra and
(H,µH , ρ

H , β) is a Hom-Yetter–Drinfeld module, then (H,β,R) is a quasi-
triangular Hom-Hopf algebra.

Proof. This is straightforward.

By Propositions 5.3 and 5.4, we have:

Theorem 5.5. With the notations above, (H,β,R) is a quasitriangular
Hom-Hopf algebra if and only if (H,β, ρH) is a left (H,β)-comodule Hom-
coalgebra and (H,µH , ρ

H , β) is a Hom-Yetter–Drinfeld module.
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Dually, we have

Theorem 5.6. Let (H,β, S) be a Hom-Hopf algebra and σ : H⊗H → K
a bilinear map. Define BH : H ⊗H → H by

h⊗ g 7→ hBH g = σ(g1, β
−3(h))g2

for h, g ∈ H. Then (H,β, σ) is a cobraided Hom-Hopf algebra (see [11, 27])
if and only if (H,β,BH) is a left (H,β)-module Hom-algebra and (H,BH ,
∆H , β) is a Hom-Yetter–Drinfeld module.
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