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LINEAR EXTENSIONS OF ORDERS INVARIANT UNDER ABELIAN
GROUP ACTIONS
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ALEXANDER R. PRUSS (Waco, TX)

Abstract. Let G be an abelian group acting on a set X, and suppose that no element
of G has any finite orbit of size greater than one. We show that every partial order on X
invariant under G extends to a linear order on X also invariant under G. We then discuss
extensions to linear preorders when the orbit condition is not met, and show that for any
abelian group acting on a set X, there is a linear preorder ≤ on the powerset PX invariant
under G and such that if A is a proper subset of B, then A < B (i.e., A ≤ B but not
B ≤ A).

1. Linear orders. Szpilrajn’s theorem [S] says that given the Axiom
of Choice, any partial order can be extended to a linear order, where ≤∗
extends ≤ provided that x ≤ y implies x ≤∗ y. There has been much work
on what properties of the partial order can be preserved in the linear order
(see, e.g., [BP, DHLS, Y]) but the preservation of symmetry under a group
acting on a partially ordered set appears to have been neglected.

Suppose a group G acts on a partially ordered set (X,≤) and the order
is G-invariant, where a relation R is G-invariant provided that for all g ∈ G
and x, y ∈ X, we have xRy if and only if (gx)R(gy). It is natural to ask
about the condition under which ≤ extends to a G-invariant linear order.
We shall answer this question in the case where G is abelian. Then we will
discuss extensions where the condition is not met. In the latter case, the
extension will be to a linear preorder (total, reflexive and transitive rela-
tion) but will nonetheless preserve strict comparisons. Finally, we will apply
the results to show that for any abelian group G acting on a set X, there
is a G-invariant linear preorder on the powerset PX preserving strict set
inclusion.

Throughout the paper we will assume the Axiom of Choice and all our
proofs will be elementary and self-contained.

An orbit of g ∈ G is any set of the form {gnx : n ∈ Z}. An obvious neces-
sary condition for X to have a G-invariant linear order is that no element of
G has any finite orbit of size greater than 1. Surprisingly, this is sufficient not
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just for the existence of an invariant linear order, but for invariant partial
orders to have invariant linear extensions.

Theorem 1.1. Let G be an abelian group. The following are equivalent:

(i) No element of G has any finite orbit of size greater than one.
(ii) There is a G-invariant linear order on X.
(iii) Every G-invariant partial order on X extends to a G-invariant linear

order.

We will call (iii) the invariant order extension property.
Theorem 1.1 yields a positive answer to de la Vega’s question [V] whether

given an order automorphism f of a partially ordered set (X,≤), with f
having no finite orbits, ≤ can be extended to a linear order ≤∗ in such a
way that f is an order automorphism of (X,≤∗). Just let G be the group
generated by f .

Both of the non-trivial implications in Theorem 1.1 are false for non-
abelian groups. Any torsion-free group that is non-right-orderable [DPT, P]
acting on itself would provide a counterexample to (i)⇒(ii), while the funda-
mental group of the Klein bottle acting on itself would be a counterexample
to (ii)⇒(iii) [DDHPV].

For the proof of the theorem, define a relation ∼G (or ∼G,X if we need
to make X clear) on X by x ∼G y if and only if there is a g ∈ G such that
gny = y for some n ∈ Z+ and gy = x. Clearly ∼G is reflexive. To see that it
is symmetric observe that if gny = y and gy = x, then

gnx = gn+1g−1x = gn+1y = gy = x,

so g−nx = x and x = g−1y. If G is abelian, ∼G is transitive. For if gmy = y
and gy = x, and hnz = z and hz = y, then (gh)z = x and

(gh)mn+1z = ggmnhhmnz = ggmnhz = ggmny = gy = x.

Also, given a G-invariant partial order ≤, we define the relation ≤G by
x ≤G y if and only if there is a finite sequence (gi)ni=1 in G such that x ≤ giy
and

∏n
i=1 gi = e.

Since in Theorem 1.1, (iii)⇒(ii)⇒(i) is trivial, the theorem follows imme-
diately from applying the following to a maximal G-invariant partial order
on X extending ≤, which exists by Zorn, and obtaining a contradiction if
that order is not linear.

Proposition 1.2. Let G be an abelian group acting freely on X. Let ≤
be a G-invariant partial order. If ≤ is not a linear order and G has no orbits
of finite size greater than one, there exist x and y with y 6≤G x and x 6≤ y.
Moreover, whenever x and y in G are such that y 6≤G x, then there is a
G-invariant partial order ≤∗ extending ≤ such that x ≤∗ y.
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We now need to prove Proposition 1.2. Recall that R is antisymmetric
provided that xRy and yRx implies x = y, so a partial order is an antisym-
metric preorder. We then need:

Lemma 1.3. Suppose G is abelian and ≤ is a G-invariant partial order.
Then:

(i) ≤G is a G-invariant preorder extending ≤.
(ii) For all x, y ∈ X, the following are equivalent:

(a) x ∼G y;
(b) there is a finite sequence (gi)ni=1 in G such that x=giy, 1≤ i≤n,

and
∏n

i=1 gi = e;
(c) x ≤G y and y ≤G x.

(iii) The following are equivalent:

(a) ≤G is antisymmetric;
(b) for all x, y ∈ X, x ∼G y implies x = y;
(c) no element of G has any finite orbit of size greater than one.

Proof. (i) Invariance and reflexivity are clear. Suppose that x ≤ giy,
1 ≤ i ≤ m, and y ≤ hjz, 1 ≤ j ≤ n, with the product of the gi being e
and that of the hj being e as well. Then giy ≤ gihjz by G-invariance of ≤,
so x ≤ gihjz, and it is easy to see that the product of all the gihj is e, so
x ≤G y. Finally, if x ≤ y, then x ≤ ey and so x ≤G y.

(ii)(a)⇒(b). Assume (a). Then gny = y and x = gy for some n ∈ Z+

and g ∈ G, so g−ny = y and x = g1−ny. Let g1 = g1−n, and let gi = g for
2 ≤ i ≤ n. Then x = giy for all i and the product of the gi is e.

(ii)(b)⇒(a). Suppose (gi)ni=1 in G are such that x = giy and
∏n

i=1 gi = e.
Let Gy be the stabilizer of y, i.e., the subgroup {g ∈ G : gy = y}. We have
g−1i gjy = g−1i x = y for all i, j, so the cosets [gi] = giGy and [gj ] = gjGy

in G/Gy are equal for all i, j. Thus, [gn1 ] = [
∏n

i=1 gi] = e, and so gn1 ∈ Gy.
Hence, gn1 y = y and g1y = x, so x ∼G y. (I am grateful to Friedrich Wehrung
for drawing my attention to the stabilizer subgroups in connection with
condition (ii)(b).)

(ii)(b)⇒(c). Suppose x = giy where the product of the gi is e. Thus
x ≤ giy for all i, and x ≤G y. Let hi = g−1i . Then y = hix, so y ≤ hix, and
the product of the hi is e, so y ≤G x.

(ii)(c)⇒(b). Suppose x ≤G y and y ≤G x. Suppose thus that x ≤ giy,
1 ≤ i ≤ m, and y ≤ hix, 1 ≤ i ≤ n, with

∏m
i=1 gi =

∏n
i=1 hi = e. By

invariance, giy ≤ gihjx for i ≤ m and j ≤ n, so

(1.1) x ≤ giy ≤ gihjx.

Fix 1 ≤ i1 ≤ m. Let (ik, jk), 1 ≤ k ≤ mn, enumerate ([1,m]∩Z)×([1, n]∩Z).
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Then by iterating (1.1) and using the invariance of ≤ we get

x ≤ gi1y ≤ gi1hj1x ≤ gi1hj1gi2hj2x ≤ · · · ≤
mn∏
k=1

(gikhjk)x = x.

Thus, x = gi1y. But i1 was arbitrary. Hence, x = giy for all i, and so x ∼G y.
(iii) The equivalence of (a) and (b) follows from (ii). An element g has

an orbit of finite size greater than 1 if and only if there is an x such that
gx 6= x but gnx = x for some n. The equivalence of (b) and (c) follows.

Proof of Proposition 1.2. If ≤ is not a linear order, there are x and y
such that x 6≤ y and y 6≤ x. By the antisymmetry of ≤G (from Lemma 1.3),
at least one of y 6≤G x or x 6≤G y must also hold.

Suppose now that y 6≤G x.
Let a ≤0 b provided that either a ≤ b, or there is a g ∈ G such that

a = gx and b = gy.
Let ≤∗ be the transitive closure of ≤0. Then ≤∗ is G-invariant, reflexive,

transitive and an extension of ≤. We need only show ≤∗ to be antisymmetric.
Since ≤∗ is the transitive closure of ≤0 while ≤ is antisymmetric and

transitive, if ≤∗ fails to be antisymmetric, by definition of ≤0, there will
have to be a loop of the form

g1x ≤0 g1y ≤ g2x ≤0 g2y ≤ · · · ≤ gnx ≤0 gny ≤ g1x.
Let gn+1 = g1. Thus, giy ≤ gi+1x for 1 ≤ i ≤ n. By G-invariance, y ≤
g−1i gi+1x. Let hi = g−1i gi+1, so y ≤ hix, and observe that

∏n
i=1 hi = e.

Therefore, y ≤G x by Lemma 1.3, contrary to what we have assumed.

Proposition 1.2 also yields:

Corollary 1.4. If G is an abelian group acting on a set X with a
G-invariant partial order ≤, and no element of G has a finite orbit of size
greater than one, then ≤G is the intersection of all G-invariant linear orders
extending ≤.

Proof. Proposition 1.2 and Zorn’s lemma show that if y 6≤G x, then
there is a G-invariant linear order ≤∗ extending ≤ and such that x ≤∗ y,
and hence such that y 6≤∗ x. Thus the intersection of all G-invariant linear
orders extending ≤ is contained in ≤G.

For the other inclusion, we need to show that if ≤∗ is a G-invariant linear
order extending ≤, then x ≤G y implies x ≤∗ y.

Suppose x ≤G y, so there are (gi)ni=1 whose product is e and which satisfy
x ≤ giy. To obtain a contradiction, suppose x 6≤∗ y. Since ≤∗ is linear, x 6= y
and y ≤∗ x. Thus, x ≤ giy ≤∗ gix for all i. Hence, using the invariance of
≤∗ and iteratively applying x ≤∗ gix, we get

x ≤ g1y ≤∗ g1x ≤∗ g1g2x ≤∗ · · · ≤∗ g1 · · · gnx = x.
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Thus x = g1y. Reordering the gi as needed, we can prove that x = giy
for all i, and so x ∼G y, and hence x = y by Lemma 1.3, contrary to our
assumptions.

Note that if G is a partially ordered torsion-free abelian group considered
as acting on itself, then it is easy to see that x ≤G y if and only if there
is an n ∈ Z+ such that xn ≤G yn. Thus, if ≤ is a normal order in the
terminology of [F], i.e., one such that 0 ≤ yn implies 0 ≤ y (and hence
xn ≤ yn implies x ≤ y), then ≤G coincides with ≤, and Corollary 1.4 yields
classical results [E, F] on extensions of partial orders on abelian groups.

2. Preorders and orderings of subsets. Even if G’s action on X
lacks the invariant order extension property, we can extend a partial order
to a linear preorder (i.e., a preorder where all elements are comparable). Of
course this is trivially true: just take the preorder such that for all x, y we
have x ≤∗ y and y ≤∗ x. What is not trivially true is that if G is any abelian
group, we can extend the partial order to a preorder while preserving all the
strict inequalities in the partial order. In fact, this is even true if we start off
with ≤ a preorder. Recall that x < y is defined to hold if and only if x ≤ y
and not y ≤ x.

Theorem 2.1. If G is any abelian group acting on a space X, and ≤ is
a G-invariant preorder on X, then there is a G-invariant linear preorder ≤∗
on X that extends ≤ and is such that if x < y, then x <∗ y.

The proof depends on two lemmas.

Lemma 2.2. Suppose G is an abelian group acting on a space X. Let
Y = X/∼G,X and extend the action of g to Y by g[A] = [gA]. This is a well-
defined group action, and G acting on Y has the invariant order extension
property.

Proof. That the group action is well-defined follows from the fact that
x ∼G,X y if and only if gx ∼G,X gy, for any x, y ∈ X and g ∈ G.

Suppose that [x] ∼G,Y [y] for x, y ∈ X. Choose f ∈ G and m ∈ Z+ such
that f [y] = [x] and fm[y] = [y]. Without loss of generality assume m ≥ 3.
Thus, x ∼G,X fy and y ∼G,X fmy. Hence there are g, h ∈ G and n, p ∈ Z+

such that gfy = x, gnfy = fy, hfmy = y and hpfmy = fmy. Without loss
of generality assume n ≥ 3.

Thus, y = g−ny, y = f−mh−1y and y = hpy. Since x = fgy, we have
x = hiy for 1 ≤ i ≤ 4, where

h1 = fg, h2 = fg1−n, h3 = f1−mgh−1, h4 = fghp.

Let n1 = m(n − 1)p − n(p + 1), n2 = mp, n3 = np and n4 = n (the
values were generated by computer). Given that m ≥ 3 and n ≥ 3, we have
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n1 ≥ 0. Straightforwardly, hn1
1 h

n2
2 h

n3
3 h

n4
4 = e. Then let the gi be a sequence

of n1+n2+n3+n4 entries from G, with the first n1 being all equal to h1, the
next n2 being h2, the next n3 being h3 and the rest being h4. Then x = giy,
and the product of the gi is e, so x ∼G,X y. Thus [x] = [y], and so we have
the invariant order extension property.

Lemma 2.3. Suppose G is an abelian group acting on a space X and ≤
is a G-invariant partial order on G.

(i) If x < y, then we do not have x ∼G y.
(ii) If x ∼G x′, y ∼G y′ and x ≤ y, then x′ ≤G y′.
(iii) If x < y and x ∼G x′ and y ∼G y′, then we do not have y′ ≤ x′.

Proof. (i) Suppose x < y. To obtain a contradiction, suppose x ∼G y, so
gy = x and gny = y, for some n and g. By invariance, gky > gkx for all k.
Thus,

y > x = gy > gx = g2y > · · · > gn−1x = gny = y,

a contradiction.
(ii) If x ∼G x′ and y ∼G y′, then by Lemma 1.3 there are (gi)

m
i=1 with

product e, and (hi)
n
i=1 with product e, such that x = gix

′ and y = hjy
′.

Thus, gix′ ≤ hjy
′, and by G-invariance of ≤, we have x′ ≤ g−1i hjy

′. The
product of the g−1i hj , as (i, j) ranges over ([1,m] ∩ Z)× ([1, n] ∩ Z), is e, so
x′ ≤G y′.

(iii) Now suppose that x < y, x ∼G x′ and y ∼G y′. Then x′ ≤G y′ by (ii).
To obtain a contradiction, suppose y′ ≤ x′. So y′ ≤G x′. Thus, x′ ∼G y′ by
Lemma 1.3. Since ∼G is an equivalence relation, x ∼G y, which contradicts
x < y by (i).

Proof of Theorem 2.1. First note that we only need to prove the result
for ≤ a partial order. For if ≤ is a preorder, then we can replace X by X/'
where x ' y if and only if x ≤ y and y ≤ x. Define the natural group action
of G by g[x]' = [gx]', and note that stipulating that [x]' � [y]' if and only
if x ≤ y gives a well-defined G-invariant partial order. The partial order
version of the theorem then yields a linear preorder extending �, which lifts
to a linear preorder on X satisfying the required conditions.

Suppose thus that ≤ is a G-invariant partial order on X. For a, b ∈ Y =
X/∼G,X , let a ≤0 b if and only if there are representatives x ∈ a and y ∈ b
such that x ≤ y.

Clearly, ≤0 is reflexive and G-invariant. Suppose that a ≤0 b and b ≤0 c.
Choose x ∈ a, y1, y2 ∈ b and z ∈ c such that x ≤ y1 and y1 ≤ z. Since
y1 ∼G y2, by Lemma 1.3 we have y1 ≤ y2, so x ≤ z and a ≤0 c.

We now check that ≤0 is antisymmetric. Suppose a ≤0 b and b ≤0 a.
Thus there are representatives x, x′ ∈ a and y, y′ ∈ b such that x ≤ y and
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y′ ≤ x′. If x = y, we have a = b as desired. Otherwise, x < y. Moreover,
x ∼G,X x′ and y ∼G,X y′. But that would contradict Lemma 2.3(iii).

Thus ≤0 is a partial order. By Lemma 2.2 and Theorem 1.1, extend it to
a G-invariant linear order ≤1 on Y . Now let x ≤∗ y if and only if [x] ≤1 [y].
This is a G-invariant linear preorder.

Suppose x < y. We then have [x] ≤1 [y]. Thus x ≤∗ y. To complete our
proof, we must show y 6≤∗ x. By Lemma 2.3(i), we do not have x ∼G,X y,
and so [x] 6= [y]. Since ≤1 is a partial order, [y] 6≤1 [x], and so y 6≤∗ x. Thus
x <∗ y.

Corollary 2.4. Suppose G is an abelian group acting on a space X.
Then there is a G-invariant linear preorder ≤ on the powerset PX such that
if A is a proper subset of B, then A < B.

In particular, there is a translation-invariant “size comparison” for subsets
of Rn for all n as well as a rotationally-invariant “size comparison” for subsets
of the circle T that preserves the intuition that proper subsets are “smaller”.

Corollary 2.4 is not true in general for non-abelian G, even in the case
of isometry groups that are “very close” to abelian. For instance, suppose G
is all isometries on the line R. This has the translations as a subgroup of
index two and is supramenable, i.e., for every non-empty subset A of any
set X that G acts on, there is a finitely-additive G-invariant measure µ of
X with µ(A) = 1 [W, Chapter 12]. But we shall shortly see that there is
no G-invariant preorder ≤ on PR such that A < B whenever A is a proper
subset of B.

To see this, say that a preorder ≤ is strongly G-invariant provided that
x ≤ y if and only if gx ≤ y if and only if x ≤ gy, for all g ∈ G and x, y ∈ X.
Then there is no strongly G-invariant preorder ≤ on PR such that A ⊂ B
implies A < B, since if ≤ were such a preorder, then we would have Z+ < Z+

0

even though 1 + Z+
0 = Z+.

But it turns out that if G is all isometries on R, then invariance implies
strong invariance, and so there is no invariant G-invariant preorder on PR
which preserves strict inclusion. For the isometry group G is generated by
elements of finite order, namely reflections, and elements of finite order have
finite orbits, while:

Proposition 2.5. If ≤ is a G-invariant linear preorder on X, and G
is any group generated by elements all of whose orbits are finite, then ≤ is
strongly G-invariant.

Proof. We only need to prove that if g ∈ G has only finite orbits, then
x ≤ y implies gx ≤ y. Suppose x ≤ y and gnx = x. By linearity, we have
x ≤ gx or gx ≤ x (or both). If x ≤ gx, then gkx ≤ gk+1x for all k by
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invariance, and so

x ≤ gx ≤ g2x ≤ · · · ≤ gnx = x,

hence gx ≤ x. So in either case, gx ≤ x. By transitivity, x ≤ y implies
gx ≤ y.

The following generalizes the remarks about the isometries on R:

Corollary 2.6. If G is any group acting on a set X and there are
g, h ∈ G with only finite orbits, while gh has at least one infinite orbit, then
there is no G-invariant preorder ≤ on PX such that if A is a proper subset
of B, then A < B.

Proof. Without loss of generality, G is generated by g and h. Let A be an
infinite orbit of gh, fix x ∈ A, and let A+ = {(gh)nx : n ∈ Z+

0 }. Then ghA+

is a proper subset of A+, and there is no strongly G-invariant preorder ≤
on PX such that ghA+ < A+. By Proposition 2.5, there is no G-invariant
preorder like that, either.
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