# COLLOQUIUM MATHEMATICUM <br> VOL. 137 

# LINEAR EXTENSIONS OF ORDERS INVARIANT UNDER ABELIAN GROUP ACTIONS 

BY
ALEXANDER R. PRUSS (Waco, TX)


#### Abstract

Let $G$ be an abelian group acting on a set $X$, and suppose that no element of $G$ has any finite orbit of size greater than one. We show that every partial order on $X$ invariant under $G$ extends to a linear order on $X$ also invariant under $G$. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set $X$, there is a linear preorder $\leq$ on the powerset $\mathcal{P} X$ invariant under $G$ and such that if $A$ is a proper subset of $B$, then $A<B$ (i.e., $A \leq B$ but not $B \leq A$ ).


1. Linear orders. Szpilrajn's theorem [S] says that given the Axiom of Choice, any partial order can be extended to a linear order, where $\leq^{*}$ extends $\leq$ provided that $x \leq y$ implies $x \leq^{*} y$. There has been much work on what properties of the partial order can be preserved in the linear order (see, e.g., [BP, DHLS, Y]) but the preservation of symmetry under a group acting on a partially ordered set appears to have been neglected.

Suppose a group $G$ acts on a partially ordered set $(X, \leq)$ and the order is $G$-invariant, where a relation $R$ is $G$-invariant provided that for all $g \in G$ and $x, y \in X$, we have $x R y$ if and only if $(g x) R(g y)$. It is natural to ask about the condition under which $\leq$ extends to a $G$-invariant linear order. We shall answer this question in the case where $G$ is abelian. Then we will discuss extensions where the condition is not met. In the latter case, the extension will be to a linear preorder (total, reflexive and transitive relation) but will nonetheless preserve strict comparisons. Finally, we will apply the results to show that for any abelian group $G$ acting on a set $X$, there is a $G$-invariant linear preorder on the powerset $\mathcal{P} X$ preserving strict set inclusion.

Throughout the paper we will assume the Axiom of Choice and all our proofs will be elementary and self-contained.

An orbit of $g \in G$ is any set of the form $\left\{g^{n} x: n \in \mathbb{Z}\right\}$. An obvious necessary condition for $X$ to have a $G$-invariant linear order is that no element of $G$ has any finite orbit of size greater than 1. Surprisingly, this is sufficient not

[^0]just for the existence of an invariant linear order, but for invariant partial orders to have invariant linear extensions.

Theorem 1.1. Let $G$ be an abelian group. The following are equivalent:
(i) No element of $G$ has any finite orbit of size greater than one.
(ii) There is a $G$-invariant linear order on $X$.
(iii) Every $G$-invariant partial order on $X$ extends to a $G$-invariant linear order.

We will call (iii) the invariant order extension property.
Theorem 1.1 yields a positive answer to de la Vega's question [ $]$ whether given an order automorphism $f$ of a partially ordered set $(X, \leq)$, with $f$ having no finite orbits, $\leq$ can be extended to a linear order $\leq^{*}$ in such a way that $f$ is an order automorphism of ( $X, \leq^{*}$ ). Just let $G$ be the group generated by $f$.

Both of the non-trivial implications in Theorem 1.1 are false for nonabelian groups. Any torsion-free group that is non-right-orderable [DPT, (P] acting on itself would provide a counterexample to (i) $\Rightarrow$ (ii), while the fundamental group of the Klein bottle acting on itself would be a counterexample to (ii) $\Rightarrow$ (iii) DDHPV.

For the proof of the theorem, define a relation $\sim_{G}$ (or $\sim_{G, X}$ if we need to make $X$ clear) on $X$ by $x \sim_{G} y$ if and only if there is a $g \in G$ such that $g^{n} y=y$ for some $n \in \mathbb{Z}^{+}$and $g y=x$. Clearly $\sim_{G}$ is reflexive. To see that it is symmetric observe that if $g^{n} y=y$ and $g y=x$, then

$$
g^{n} x=g^{n+1} g^{-1} x=g^{n+1} y=g y=x,
$$

so $g^{-n} x=x$ and $x=g^{-1} y$. If $G$ is abelian, $\sim_{G}$ is transitive. For if $g^{m} y=y$ and $g y=x$, and $h^{n} z=z$ and $h z=y$, then $(g h) z=x$ and

$$
(g h)^{m n+1} z=g g^{m n} h h^{m n} z=g g^{m n} h z=g g^{m n} y=g y=x .
$$

Also, given a $G$-invariant partial order $\leq$, we define the relation $\leq_{G}$ by $x \leq_{G} y$ if and only if there is a finite sequence $\left(g_{i}\right)_{i=1}^{n}$ in $G$ such that $x \leq g_{i} y$ and $\prod_{i=1}^{n} g_{i}=e$.

Since in Theorem 1.1, (iii) $\Rightarrow$ (ii $) \Rightarrow$ (i) is trivial, the theorem follows immediately from applying the following to a maximal $G$-invariant partial order on $X$ extending $\leq$, which exists by Zorn, and obtaining a contradiction if that order is not linear.

Proposition 1.2. Let $G$ be an abelian group acting freely on $X$. Let $\leq$ be a $G$-invariant partial order. If $\leq$ is not a linear order and $G$ has no orbits of finite size greater than one, there exist $x$ and $y$ with $y \mathbb{Z}_{G} x$ and $x \not \leq y$. Moreover, whenever $x$ and $y$ in $G$ are such that $y \mathcal{Z}_{G} x$, then there is a $G$-invariant partial order $\leq^{*}$ extending $\leq$ such that $x \leq^{*} y$.

We now need to prove Proposition 1.2. Recall that $R$ is antisymmetric provided that $x R y$ and $y R x$ implies $x=y$, so a partial order is an antisymmetric preorder. We then need:

Lemma 1.3. Suppose $G$ is abelian and $\leq$ is a $G$-invariant partial order. Then:
(i) $\leq_{G}$ is a $G$-invariant preorder extending $\leq$.
(ii) For all $x, y \in X$, the following are equivalent:
(a) $x \sim_{G} y$;
(b) there is a finite sequence $\left(g_{i}\right)_{i=1}^{n}$ in $G$ such that $x=g_{i} y, 1 \leq i \leq n$, and $\prod_{i=1}^{n} g_{i}=e$;
(c) $x \leq_{G} y$ and $y \leq_{G} x$.
(iii) The following are equivalent:
(a) $\leq_{G}$ is antisymmetric;
(b) for all $x, y \in X, x \sim_{G} y$ implies $x=y$;
(c) no element of $G$ has any finite orbit of size greater than one.

Proof. (i) Invariance and reflexivity are clear. Suppose that $x \leq g_{i} y$, $1 \leq i \leq m$, and $y \leq h_{j} z, 1 \leq j \leq n$, with the product of the $g_{i}$ being $e$ and that of the $h_{j}$ being $e$ as well. Then $g_{i} y \leq g_{i} h_{j} z$ by $G$-invariance of $\leq$, so $x \leq g_{i} h_{j} z$, and it is easy to see that the product of all the $g_{i} h_{j}$ is $e$, so $x \leq_{G} y$. Finally, if $x \leq y$, then $x \leq e y$ and so $x \leq_{G} y$.
(ii)(a) $\Rightarrow(\mathrm{b})$. Assume (a). Then $g^{n} y=y$ and $x=g y$ for some $n \in \mathbb{Z}^{+}$ and $g \in G$, so $g^{-n} y=y$ and $x=g^{1-n} y$. Let $g_{1}=g^{1-n}$, and let $g_{i}=g$ for $2 \leq i \leq n$. Then $x=g_{i} y$ for all $i$ and the product of the $g_{i}$ is $e$.
(ii) $(\mathrm{b}) \Rightarrow(\mathrm{a})$. Suppose $\left(g_{i}\right)_{i=1}^{n}$ in $G$ are such that $x=g_{i} y$ and $\prod_{i=1}^{n} g_{i}=e$. Let $G_{y}$ be the stabilizer of $y$, i.e., the subgroup $\{g \in G: g y=y\}$. We have $g_{i}^{-1} g_{j} y=g_{i}^{-1} x=y$ for all $i, j$, so the cosets $\left[g_{i}\right]=g_{i} G_{y}$ and $\left[g_{j}\right]=g_{j} G_{y}$ in $G / G_{y}$ are equal for all $i, j$. Thus, $\left[g_{1}^{n}\right]=\left[\prod_{i=1}^{n} g_{i}\right]=e$, and so $g_{1}^{n} \in G_{y}$. Hence, $g_{1}^{n} y=y$ and $g_{1} y=x$, so $x \sim_{G} y$. (I am grateful to Friedrich Wehrung for drawing my attention to the stabilizer subgroups in connection with condition (ii)(b).)
(ii)(b) $\Rightarrow$ (c). Suppose $x=g_{i} y$ where the product of the $g_{i}$ is $e$. Thus $x \leq g_{i} y$ for all $i$, and $x \leq_{G} y$. Let $h_{i}=g_{i}^{-1}$. Then $y=h_{i} x$, so $y \leq h_{i} x$, and the product of the $h_{i}$ is $e$, so $y \leq_{G} x$.
(ii)(c) $\Rightarrow$ (b). Suppose $x \leq_{G} y$ and $y \leq_{G} x$. Suppose thus that $x \leq g_{i} y$, $1 \leq i \leq m$, and $y \leq h_{i} x, 1 \leq i \leq n$, with $\prod_{i=1}^{m} g_{i}=\prod_{i=1}^{n} h_{i}=e$. By invariance, $g_{i} y \leq g_{i} h_{j} x$ for $i \leq m$ and $j \leq n$, so

$$
\begin{equation*}
x \leq g_{i} y \leq g_{i} h_{j} x \tag{1.1}
\end{equation*}
$$

Fix $1 \leq i_{1} \leq m$. Let $\left(i_{k}, j_{k}\right), 1 \leq k \leq m n$, enumerate $([1, m] \cap \mathbb{Z}) \times([1, n] \cap \mathbb{Z})$.

Then by iterating (1.1) and using the invariance of $\leq$ we get

$$
x \leq g_{i_{1}} y \leq g_{i_{1}} h_{j_{1}} x \leq g_{i_{1}} h_{j_{1}} g_{i_{2}} h_{j_{2}} x \leq \cdots \leq \prod_{k=1}^{m n}\left(g_{i_{k}} h_{j_{k}}\right) x=x
$$

Thus, $x=g_{i_{1}} y$. But $i_{1}$ was arbitrary. Hence, $x=g_{i} y$ for all $i$, and so $x \sim_{G} y$.
(iii) The equivalence of (a) and (b) follows from (ii). An element $g$ has an orbit of finite size greater than 1 if and only if there is an $x$ such that $g x \neq x$ but $g^{n} x=x$ for some $n$. The equivalence of (b) and (c) follows.

Proof of Proposition 1.2. If $\leq$ is not a linear order, there are $x$ and $y$ such that $x \not \leq y$ and $y \not \leq x$. By the antisymmetry of $\leq_{G}$ (from Lemma 1.3), at least one of $y \not \mathbb{Z}_{G} x$ or $x \not \mathbb{L}_{G} y$ must also hold.

Suppose now that $y \not \leq_{G} x$.
Let $a \leq^{0} b$ provided that either $a \leq b$, or there is a $g \in G$ such that $a=g x$ and $b=g y$.

Let $\leq^{*}$ be the transitive closure of $\leq^{0}$. Then $\leq^{*}$ is $G$-invariant, reflexive, transitive and an extension of $\leq$. We need only show $\leq^{*}$ to be antisymmetric.

Since $\leq^{*}$ is the transitive closure of $\leq^{0}$ while $\leq$ is antisymmetric and transitive, if $\leq^{*}$ fails to be antisymmetric, by definition of $\leq^{0}$, there will have to be a loop of the form

$$
g_{1} x \leq^{0} g_{1} y \leq g_{2} x \leq^{0} g_{2} y \leq \cdots \leq g_{n} x \leq^{0} g_{n} y \leq g_{1} x
$$

Let $g_{n+1}=g_{1}$. Thus, $g_{i} y \leq g_{i+1} x$ for $1 \leq i \leq n$. By $G$-invariance, $y \leq$ $g_{i}^{-1} g_{i+1} x$. Let $h_{i}=g_{i}^{-1} g_{i+1}$, so $y \leq h_{i} x$, and observe that $\prod_{i=1}^{n} h_{i}=e$. Therefore, $y \leq_{G} x$ by Lemma 1.3, contrary to what we have assumed.

Proposition 1.2 also yields:
Corollary 1.4. If $G$ is an abelian group acting on a set $X$ with a $G$-invariant partial order $\leq$, and no element of $G$ has a finite orbit of size greater than one, then $\leq_{G}$ is the intersection of all $G$-invariant linear orders extending $\leq$.

Proof. Proposition 1.2 and Zorn's lemma show that if $y \not \Sigma_{G} x$, then there is a $G$-invariant linear order $\leq^{*}$ extending $\leq$ and such that $x \leq^{*} y$, and hence such that $y \mathbb{Z}^{*} x$. Thus the intersection of all $G$-invariant linear orders extending $\leq$ is contained in $\leq_{G}$.

For the other inclusion, we need to show that if $\leq^{*}$ is a $G$-invariant linear order extending $\leq$, then $x \leq_{G} y$ implies $x \leq^{*} y$.

Suppose $x \leq_{G} y$, so there are $\left(g_{i}\right)_{i=1}^{n}$ whose product is $e$ and which satisfy $x \leq g_{i} y$. To obtain a contradiction, suppose $x \not \mathbb{Z}^{*} y$. Since $\leq^{*}$ is linear, $x \neq y$ and $y \leq^{*} x$. Thus, $x \leq g_{i} y \leq^{*} g_{i} x$ for all $i$. Hence, using the invariance of $\leq^{*}$ and iteratively applying $x \leq^{*} g_{i} x$, we get

$$
x \leq g_{1} y \leq^{*} g_{1} x \leq^{*} g_{1} g_{2} x \leq^{*} \cdots \leq^{*} g_{1} \cdots g_{n} x=x
$$

Thus $x=g_{1} y$. Reordering the $g_{i}$ as needed, we can prove that $x=g_{i} y$ for all $i$, and so $x \sim_{G} y$, and hence $x=y$ by Lemma 1.3, contrary to our assumptions.

Note that if $G$ is a partially ordered torsion-free abelian group considered as acting on itself, then it is easy to see that $x \leq_{G} y$ if and only if there is an $n \in \mathbb{Z}^{+}$such that $x^{n} \leq_{G} y^{n}$. Thus, if $\leq$ is a normal order in the terminology of [F], i.e., one such that $0 \leq y^{n}$ implies $0 \leq y$ (and hence $x^{n} \leq y^{n}$ implies $x \leq y$ ), then $\leq_{G}$ coincides with $\leq$, and Corollary 1.4 yields classical results [E, F] on extensions of partial orders on abelian groups.
2. Preorders and orderings of subsets. Even if $G$ 's action on $X$ lacks the invariant order extension property, we can extend a partial order to a linear preorder (i.e., a preorder where all elements are comparable). Of course this is trivially true: just take the preorder such that for all $x, y$ we have $x \leq^{*} y$ and $y \leq^{*} x$. What is not trivially true is that if $G$ is any abelian group, we can extend the partial order to a preorder while preserving all the strict inequalities in the partial order. In fact, this is even true if we start off with $\leq$ a preorder. Recall that $x<y$ is defined to hold if and only if $x \leq y$ and not $y \leq x$.

Theorem 2.1. If $G$ is any abelian group acting on a space $X$, and $\leq$ is a $G$-invariant preorder on $X$, then there is a $G$-invariant linear preorder $\leq *$ on $X$ that extends $\leq$ and is such that if $x<y$, then $x<^{*} y$.

The proof depends on two lemmas.
Lemma 2.2. Suppose $G$ is an abelian group acting on a space $X$. Let $Y=X / \sim_{G, X}$ and extend the action of $g$ to $Y$ by $g[A]=[g A]$. This is a welldefined group action, and $G$ acting on $Y$ has the invariant order extension property.

Proof. That the group action is well-defined follows from the fact that $x \sim_{G, X} y$ if and only if $g x \sim_{G, X} g y$, for any $x, y \in X$ and $g \in G$.

Suppose that $[x] \sim_{G, Y}[y]$ for $x, y \in X$. Choose $f \in G$ and $m \in \mathbb{Z}_{+}$such that $f[y]=[x]$ and $f^{m}[y]=[y]$. Without loss of generality assume $m \geq 3$. Thus, $x \sim_{G, X} f y$ and $y \sim_{G, X} f^{m} y$. Hence there are $g, h \in G$ and $n, p \in \mathbb{Z}^{+}$ such that $g f y=x, g^{n} f y=f y, h f^{m} y=y$ and $h^{p} f^{m} y=f^{m} y$. Without loss of generality assume $n \geq 3$.

Thus, $y=g^{-n} y, y=f^{-m} h^{-1} y$ and $y=h^{p} y$. Since $x=f g y$, we have $x=h_{i} y$ for $1 \leq i \leq 4$, where

$$
h_{1}=f g, \quad h_{2}=f g^{1-n}, \quad h_{3}=f^{1-m} g h^{-1}, \quad h_{4}=f g h^{p} .
$$

Let $n_{1}=m(n-1) p-n(p+1), n_{2}=m p, n_{3}=n p$ and $n_{4}=n$ (the values were generated by computer). Given that $m \geq 3$ and $n \geq 3$, we have
$n_{1} \geq 0$. Straightforwardly, $h_{1}^{n_{1}} h_{2}^{n_{2}} h_{3}^{n_{3}} h_{4}^{n_{4}}=e$. Then let the $g_{i}$ be a sequence of $n_{1}+n_{2}+n_{3}+n_{4}$ entries from $G$, with the first $n_{1}$ being all equal to $h_{1}$, the next $n_{2}$ being $h_{2}$, the next $n_{3}$ being $h_{3}$ and the rest being $h_{4}$. Then $x=g_{i} y$, and the product of the $g_{i}$ is $e$, so $x \sim_{G, X} y$. Thus $[x]=[y]$, and so we have the invariant order extension property.

Lemma 2.3. Suppose $G$ is an abelian group acting on a space $X$ and $\leq$ is a $G$-invariant partial order on $G$.
(i) If $x<y$, then we do not have $x \sim_{G} y$.
(ii) If $x \sim_{G} x^{\prime}, y \sim_{G} y^{\prime}$ and $x \leq y$, then $x^{\prime} \leq{ }_{G} y^{\prime}$.
(iii) If $x<y$ and $x \sim_{G} x^{\prime}$ and $y \sim_{G} y^{\prime}$, then we do not have $y^{\prime} \leq x^{\prime}$.

Proof. (i) Suppose $x<y$. To obtain a contradiction, suppose $x \sim_{G} y$, so $g y=x$ and $g^{n} y=y$, for some $n$ and $g$. By invariance, $g^{k} y>g^{k} x$ for all $k$. Thus,

$$
y>x=g y>g x=g^{2} y>\cdots>g^{n-1} x=g^{n} y=y
$$

a contradiction.
(ii) If $x \sim_{G} x^{\prime}$ and $y \sim_{G} y^{\prime}$, then by Lemma 1.3 there are $\left(g_{i}\right)_{i=1}^{m}$ with product $e$, and $\left(h_{i}\right)_{i=1}^{n}$ with product $e$, such that $x=g_{i} x^{\prime}$ and $y=h_{j} y^{\prime}$. Thus, $g_{i} x^{\prime} \leq h_{j} y^{\prime}$, and by $G$-invariance of $\leq$, we have $x^{\prime} \leq g_{i}^{-1} h_{j} y^{\prime}$. The product of the $g_{i}^{-1} h_{j}$, as $(i, j)$ ranges over $([1, m] \cap \mathbb{Z}) \times([1, n] \cap \mathbb{Z})$, is $e$, so $x^{\prime} \leq_{G} y^{\prime}$.
(iii) Now suppose that $x<y, x \sim_{G} x^{\prime}$ and $y \sim_{G} y^{\prime}$. Then $x^{\prime} \leq_{G} y^{\prime}$ by (ii). To obtain a contradiction, suppose $y^{\prime} \leq x^{\prime}$. So $y^{\prime} \leq_{G} x^{\prime}$. Thus, $x^{\prime} \sim_{G} y^{\prime}$ by Lemma 1.3. Since $\sim_{G}$ is an equivalence relation, $x \sim_{G} y$, which contradicts $x<y$ by (i).

Proof of Theorem 2.1. First note that we only need to prove the result for $\leq$ a partial order. For if $\leq$ is a preorder, then we can replace $X$ by $X / \simeq$ where $x \simeq y$ if and only if $x \leq y$ and $y \leq x$. Define the natural group action of $G$ by $g[x]_{\simeq}=[g x]_{\simeq}$, and note that stipulating that $[x]_{\simeq} \preceq[y]_{\simeq}$ if and only if $x \leq y$ gives a well-defined $G$-invariant partial order. The partial order version of the theorem then yields a linear preorder extending $\preceq$, which lifts to a linear preorder on $X$ satisfying the required conditions.

Suppose thus that $\leq$ is a $G$-invariant partial order on $X$. For $a, b \in Y=$ $X / \sim_{G, X}$, let $a \leq^{0} b$ if and only if there are representatives $x \in a$ and $y \in b$ such that $x \leq y$.

Clearly, $\leq^{0}$ is reflexive and $G$-invariant. Suppose that $a \leq^{0} b$ and $b \leq^{0} c$. Choose $x \in a, y_{1}, y_{2} \in b$ and $z \in c$ such that $x \leq y_{1}$ and $y_{1} \leq z$. Since $y_{1} \sim_{G} y_{2}$, by Lemma 1.3 we have $y_{1} \leq y_{2}$, so $x \leq z$ and $a \leq^{0} c$.

We now check that $\leq^{0}$ is antisymmetric. Suppose $a \leq^{0} b$ and $b \leq^{0} a$. Thus there are representatives $x, x^{\prime} \in a$ and $y, y^{\prime} \in b$ such that $x \leq y$ and
$y^{\prime} \leq x^{\prime}$. If $x=y$, we have $a=b$ as desired. Otherwise, $x<y$. Moreover, $x \sim_{G, X} x^{\prime}$ and $y \sim_{G, X} y^{\prime}$. But that would contradict Lemma 2.3(iii).

Thus $\leq^{0}$ is a partial order. By Lemma 2.2 and Theorem 1.1, extend it to a $G$-invariant linear order $\leq^{1}$ on $Y$. Now let $x \leq^{*} y$ if and only if $[x] \leq^{1}[y]$. This is a $G$-invariant linear preorder.

Suppose $x<y$. We then have $[x] \leq^{1}[y]$. Thus $x \leq^{*} y$. To complete our proof, we must show $y \not \not^{*} x$. By Lemma $2.3(\mathrm{i})$, we do not have $x \sim_{G, X} y$, and so $[x] \neq[y]$. Since $\leq^{1}$ is a partial order, $[y] \not \mathbb{Z}^{1}[x]$, and so $y \not 一 ⿻^{*} x$. Thus $x<* y$.

Corollary 2.4. Suppose $G$ is an abelian group acting on a space $X$. Then there is a $G$-invariant linear preorder $\leq$ on the powerset $\mathcal{P} X$ such that if $A$ is a proper subset of $B$, then $A<B$.

In particular, there is a translation-invariant "size comparison" for subsets of $\mathbb{R}^{n}$ for all $n$ as well as a rotationally-invariant "size comparison" for subsets of the circle $\mathbb{T}$ that preserves the intuition that proper subsets are "smaller".

Corollary 2.4 is not true in general for non-abelian $G$, even in the case of isometry groups that are "very close" to abelian. For instance, suppose $G$ is all isometries on the line $\mathbb{R}$. This has the translations as a subgroup of index two and is supramenable, i.e., for every non-empty subset $A$ of any set $X$ that $G$ acts on, there is a finitely-additive $G$-invariant measure $\mu$ of $X$ with $\mu(A)=1$ W, Chapter 12]. But we shall shortly see that there is no $G$-invariant preorder $\leq$ on $\mathcal{P} \mathbb{R}$ such that $A<B$ whenever $A$ is a proper subset of $B$.

To see this, say that a preorder $\leq$ is strongly $G$-invariant provided that $x \leq y$ if and only if $g x \leq y$ if and only if $x \leq g y$, for all $g \in G$ and $x, y \in X$. Then there is no strongly $G$-invariant preorder $\leq$ on $\mathcal{P} \mathbb{R}$ such that $A \subset B$ implies $A<B$, since if $\leq$ were such a preorder, then we would have $\mathbb{Z}^{+}<\mathbb{Z}_{0}^{+}$ even though $1+\mathbb{Z}_{0}^{+}=\mathbb{Z}^{+}$.

But it turns out that if $G$ is all isometries on $\mathbb{R}$, then invariance implies strong invariance, and so there is no invariant $G$-invariant preorder on $\mathcal{P} \mathbb{R}$ which preserves strict inclusion. For the isometry group $G$ is generated by elements of finite order, namely reflections, and elements of finite order have finite orbits, while:

Proposition 2.5. If $\leq$ is a $G$-invariant linear preorder on $X$, and $G$ is any group generated by elements all of whose orbits are finite, then $\leq$ is strongly $G$-invariant.

Proof. We only need to prove that if $g \in G$ has only finite orbits, then $x \leq y$ implies $g x \leq y$. Suppose $x \leq y$ and $g^{n} x=x$. By linearity, we have $x \leq g x$ or $g x \leq x$ (or both). If $x \leq g x$, then $g^{k} x \leq g^{k+1} x$ for all $k$ by
invariance, and so

$$
x \leq g x \leq g^{2} x \leq \cdots \leq g^{n} x=x
$$

hence $g x \leq x$. So in either case, $g x \leq x$. By transitivity, $x \leq y$ implies $g x \leq y$.

The following generalizes the remarks about the isometries on $\mathbb{R}$ :
Corollary 2.6. If $G$ is any group acting on a set $X$ and there are $g, h \in G$ with only finite orbits, while gh has at least one infinite orbit, then there is no $G$-invariant preorder $\leq$ on $\mathcal{P} X$ such that if $A$ is a proper subset of $B$, then $A<B$.

Proof. Without loss of generality, $G$ is generated by $g$ and $h$. Let $A$ be an infinite orbit of $g h$, fix $x \in A$, and let $A^{+}=\left\{(g h)^{n} x: n \in \mathbb{Z}_{0}^{+}\right\}$. Then $g h A^{+}$ is a proper subset of $A^{+}$, and there is no strongly $G$-invariant preorder $\leq$ on $\mathcal{P} X$ such that $g h A^{+}<A^{+}$. By Proposition 2.5, there is no $G$-invariant preorder like that, either.

Acknowledgements. I am grateful to David Arnold, Dietrich Burde, Ramiro de la Vega, Trent Dougherty, A. Paul Pedersen and Friedrich Wehrung for discussions.

## REFERENCES

[BP] R. Bonnet and M. Pouzet, Linear extensions of ordered sets, in: I. Rival (ed.), Ordered Sets, Reidel, Boston, 1982, 125-170.
[DDHPV] M. A. Dąbkowska, M. K. Dąbkowski, V. S. Harizanov, J. H. Przytycki and M. A. Veve, Compactness of the space of left orders, J. Knot Theory Ramif. 16 (2007), 257-266.
[DPT] M. K. Dąbkowski, J. H. Przytycki and A. A. Togha, Non-left-orderable 3-manifold groups, Canad. Math. Bull. 48 (2005), 32-40.
[DHLS] R. G. Downey, D. R. Hirschfeldt, S. Lempp and R. Solomon, Computabilitytheoretic and proof-theoretic aspects of partial and linear orderings, Israel J. Math. 138 (2003), 271-289.
[E] C. J. Everett, Note on a result of L. Fuchs on ordered groups, Amer. J. Math. 72 (1950), 216.
[F] L. Fuchs, On the extension of the partial order of groups, Amer. J. Math. 72 (1950), 191-194.
[P] S. D. Promislow, A simple example of a torsion-free, non unique product group, Bull. London Math. Soc. 20 (1988), 302-304.
[S] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386389.
[V] R. de la Vega, Extending a partial order while preserving an automorphism, MathOverflow, 2013, http://mathoverflow.net/questions/141979.
[W] S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, Cambridge, 1993.
[Y] Z.-Q. Yang, Every self-dual ordering has a self-dual linear extension, Order 4 (1987), 97-100.

Alexander R. Pruss
Department of Philosophy
Baylor University
One Bear Place \#97273
Waco, TX 76798-7273, U.S.A.
E-mail: alexander_pruss@baylor.edu

> Received 26 October 2013; revised 14 August 2014


[^0]:    2010 Mathematics Subject Classification: Primary 06A05; Secondary 06A06, 06F99. Key words and phrases: linear orders, abelian groups, group actions, linear preorders.

