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Abstract. We show that strongly positively recurrent Markov shifts (including shifts
of finite type) are classified up to Borel conjugacy by their entropy, period and their
numbers of periodic points.

1. Introduction. Theorem 1.1 below is one of the results of Mike
Hochman in [10]. In this paper, Markov shift means countable state two-
sided Markov shift. The free part of a Borel system is the subsystem obtained
by restriction to the non-periodic points, and a full subset is an invariant
subset of measure one for every measure (1). Two Borel systems are almost-
Borel isomorphic if they are Borel isomorphic after restriction to full subsets
of their free parts. Detailed definitions are given in the next section.

Theorem 1.1 (Hochman [10]). Two mixing Markov shifts are almost-
Borel isomorphic if and only if (1) they have equal entropy, and (2) one has
a measure of maximum entropy if and only if the other does.

An important observation [10] in this setting is that two Borel systems
that embed each into the other are Borel isomorphic, by a Borel variant
of the Cantor–Bernstein theorem (also called the measurable Schröder–
Bernstein theorem). Consequently, Theorem 1.1 was an immediate corollary
of the following embedding theorem.

Theorem 1.2 (Hochman [10]). Suppose (Y, T ) is a mixing Markov shift
and (X,S) is a Borel system such that h(S, µ) < h(T ) for every ergodic
invariant Borel probability µ on X. Then there is an almost-Borel embedding
of (X,S) into (Y, T ).

This theorem easily leads to a decisive almost-Borel classification of
Markov shifts, and has implications for other systems [10, 2].
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(1) In this paper, unless otherwise indicated, a measure is a Borel probability measure
which is invariant under the dynamics.
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The study of Borel dynamics, adopting weakly wandering sets as the rel-
evant notion of negligible sets, was initiated by Shelah and Weiss [17]–[19].
Note that this notion of isomorphism also preserves the quasi-invariant prob-
abilities (2) (and again it is natural to restrict to free parts). Whether there
is a theorem for Borel dynamics like Theorem 1.2 is a difficult open problem,
discussed in [10].

Our purpose in this paper is to show that a generalization of Theorem 1.1
to this richer category holds within at least one meaningful class: the class
of mixing SPR shifts. These are the mixing Markov shifts which have an
exponentially recurrent measure of maximal entropy (Definition 2.2); they
also respect other significant properties of finite state shifts [3, Sec. 2].

Theorem 1.3. The free parts of mixing SPR Markov shifts are Borel
isomorphic if and only if the shifts have equal entropy.

We note that Hochman [10] has asked if those free parts are in fact
topologically conjugate, at least in the case of shifts of finite type.

As in the almost-Borel case, Theorem 1.3 is an immediate corollary of
an embedding result, stated next.

Theorem 1.4. Suppose (Y, T ) is a mixing SPR Markov shift and (X,S)
is a Markov shift such that h(X) = h(Y ) and X has a unique irreducible
component of full entropy and this component is a mixing SPR Markov shift.
Then there is a Borel embedding of (X,S) into (Y, T ).

The proof is independent of Hochman’s result and techniques. Roughly
speaking, Hochman builds almost-Borel embeddings from the bottom up
with a uniform version of the Krieger Generator Theorem [13]. In our much
more special situation, we can build Borel embeddings with the following
offshoot of the Krieger Embedding Theorem [14].

Theorem 1.5. Suppose (Y, T ) is a mixing Markov shift and (X,S) is a
Markov shift such that h(X) < h(Y ). Then there is a Borel embedding of
the free part of (X,S) into (Y, T ).

Theorem 1.5, though not completely trivial, is completely unsurprising.
(The question of when a Markov shift embeds continuously into a mixing
Markov shift is much harder [5, 6].) The novel feature in the proof of Theo-
rem 1.4 is the use of a “top-down” embedding given by the almost isomor-
phism theorem of [3] to reduce the problem to embeddings of lower entropy
systems.

(2) A Borel probability measure m is quasi-invariant under a transformation T if m
and m ◦ T−1 are Radon–Nikodym equivalent. Note that invariant σ-finite measures give
rise to such quasi-invariant measures.
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At the end of the paper we state the Borel classification of the free parts
of irreducible SPR Markov shifts, which follows from the mixing case.

2. Definitions and background. A Borel system (X,X , T ) is a stan-
dard Borel space (3) (X,X ) (see [11]) together with a Borel automorphism (4)
T : X → X. We often abbreviate (X,X , T ) to (X,T ) or X or T if it does not
create confusion. A Borel factor map is a homomorphism of Borel systems:
a (not necessarily onto) Borel measurable map intertwining the automor-
phisms. An isomorphism or conjugacy of Borel systems is a bijective Borel
factor map; an embedding of Borel systems is an injective Borel factor map.
By an easy exercise in descriptive set theory (see [18, p. 399]), there is a
Borel conjugacy of two systems if and only if there is a Borel conjugacy
between their free parts and for each n their sets of periodic orbits of size n
have equal cardinalities.

Given a Borel system (X,T ), we use Perg(X) ⊃ P′erg(X) respectively

to denote the sets of all ergodic measures (5) and all ergodic non-atomic
measures. Recall from [18] that a set W is wandering if it is Borel and if⋃
k∈Z T

kW is a disjoint union (which we denote
⊔
k∈Z T

kW ). A set is weakly
wandering if it is a Borel subset of a countable union of wandering sets.
Such a set is characterized by having measure zero for all quasi-invariant
(not necessarily invariant) Borel probability measures [17, 18]. To avoid any
mystery, we record a simple remark.

Remark 2.1. Suppose (X,S) and (Y, T ) are Borel systems and each
contains an uncountable weakly wandering set. Then the systems are Borel
isomorphic if and only if they are Borel isomorphic modulo wandering sets.

The basis of the remark is the following. Any weakly wandering set
is contained in the orbit of a wandering set. Under the assumption, such
wandering sets in X and Y can be enlarged to uncountable Borel subsets of
the ambient Polish space. Any two such sets are Borel isomorphic.

A Markov shift (X,S) is a topological system Σ(G) defined by the ac-
tion of the left shift σ : (xn)n∈Z 7→ (xn+1)n∈Z on the set Σ(G) of paths on
some oriented graph G with countably (possibly finitely) many vertices and
edges. We will use the edge shift (rather than the vertex shift) presentation.
The domain X is the set of x = (xn)n∈Z ∈ EZ (where E is the set of ori-
ented edges) such that for all n, the terminal vertex of xn equals the initial
vertex of xn+1. The (Polish) topology on X is the relative topology of the
product of the discrete topologies. When G is finite, Σ(G) is a shift of finite

(3) X is a σ-algebra of subsets of X such that there is a distance on X which turns it
into a complete separable space whose collection of Borel subsets is X .

(4) A bijection such that T−1X := {T−1E : E ∈ X} = TX = X .

(5) Recall that, in this paper, measure means invariant Borel probability measure.
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type (SFT). Σ(G) is irreducible if G contains a unique strongly connected
component, i.e., a maximal set of the vertices such that for any pair there
is a loop containing both. An arbitrary Markov shift is the disjoint union of
a wandering set and countably many disjoint irreducible Markov shifts. An
irreducible Markov shift is mixing if and only if the g.c.d. of the periods of
its periodic points is 1.

The Borel entropy of a system(X,S) is the supremum of theKolmogorov–
Sinai entropies h(S, µ), µ ∈ Perg(X). Markov shifts of positive entropy con-
tain uncountable wandering sets; so, by Remark 2.1, we can neglect weakly
wandering sets in both statements and proofs. A finite entropy irreducible
Markov shift (X,S) (more generally, an irreducible component) has at most
one measure of maximum entropy [7]; if this measure µ exists, then (S, µ) is
measure-preservingly isomorphic to the product of a finite entropy Bernoulli
shift and a finite cyclic rotation (see [2] for a comment and references).

Definition 2.2. A finite entropy irreducible Markov shift (Σ, σ) is
strongly positively recurrent (or stably positive recurrent, or just SPR) if
it admits a measure µ of maximal entropy which is exponentially recurrent :
for every non-empty open subset U ⊂ Σ,

lim sup
n→∞

1

n
logµ

(
Σ \

n−1⋃
k=0

σ−kU
)
< 0.

In the language of [8, 9], the irreducible SPR Markov shifts are the posi-
tively recurrent symbolic Markov chains defined by stably recurrent matrices
(further developed in [9] as the fundamental class of “stably positive” ma-
trices).

Every irreducible SFT is SPR. We refer to [3, 8, 9] for more on SPR
shifts.

Remark 2.3. Suppose for i = 1, 2 that Ti : Xi → Xi is a homeomor-
phism and µi is an invariant ergodic Borel probability. Recall that the sys-
tems (Xi, Ti, µi) are finitarily isomorphic if there are invariant sets X ′i with
µi measure one and (with respect to the relative topology) a homeomor-
phism h : X ′1 → X ′2 such that T2h = hT1 and h∗µ1 = µ2.

For (X,σ) a mixing Markov shift with a measure µ of maximum entropy,
Rudolph (following an observation of Smorodinsky) proved that there is a
finitary isomorphism from the measurable system (X,σ, µ) to a finite state
Bernoulli shift if and only if (X,σ, µ) is exponentially recurrent, i.e., X is
SPR [16]. This theorem is of a quite different nature than Theorem 1.1
or 1.3; it addresses just the support of a single measure, but it contains a
continuity statement.
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3. Embedding a Markov shift with smaller entropy. In this sec-
tion we will prove Theorem 1.5. First we recall and adapt some standard
finite state symbolic dynamics (for more details on this, see [1] or [15]).

Lemma 3.1. Suppose ε > 0 and X is a mixing Markov shift with entropy
h(X) > 0. Then X contains infinitely many mixing SFTs Sn, pairwise dis-
joint, such that h(Sn) > h(X)− ε for all n.

Proof. We know from [7] that X contains an SFT S with entropy greater
than h(X)− ε. Moreover, S is easily enlarged to a mixing SFT S′ in X. The
complement of a given proper subshift of S′ contains a mixing SFT with
entropy arbitrarily close to h(S′) [4, Lemma 26.17]. Thus one can construct
the required family inductively.

Definition 3.2. For a system (X,S) and n ∈ N := {1, 2, . . .}, |P on(X)|
denotes the cardinality of the set of points x such that {Sk(x) : k ∈ Z}, the
orbit of x, contains exactly n points. (So, n is the least period of x.)

Theorem 3.3 (Krieger Embedding Theorem [14]). Let X be a subshift
on a finite alphabet and Y a mixing SFT such that h(X) < h(Y ) and
|P on(X)| ≤ |P on(Y )| for all n. Then there is a continuous embedding of X
into Y .

Proposition 3.4 ([1, Lemma 2.1 and p. 546]). Suppose X is a mixing
SFT and M is a positive integer. Let O1, . . . ,Or be distinct periodic orbits
in X. Let Wi be the set of points whose positive iterates are positively asymp-
totic to Oi, and let W =

⋃
iWi. Then there exist a mixing SFT Z and a

continuous surjection p : Z → X with p ◦ σ = σ ◦ p and such that:

(1) |p−1(x)| = 1 for all x outside W .

(2) The preimage of Oi is an orbit Õi of cardinality M |Oi|.
(3) p−1(Wi) is the set of points positively asymptotic to Õi.

Corollary 3.5. Let X and Y be SFTs such that h(X) < h(Y ) and Y
is mixing. Then there is a continuous embedding of X \X0 into Y where X0

is the union of a weakly wandering set and a finite set of periodic points.

Proof. According to well-known estimates for SFTs, there is some C<∞
such that |P on(X)| ≤ Cenh(X) for all n ≥ 1, and |P on(Y )| ≥ C−1enh(Y )

for all large enough n. Thus for large enough M , Proposition 3.4 yields Z
such that |P on(Z)| ≤ |P on(Y )| for all n ≥ 1. So, by Theorem 3.3, Z embeds
into Y . To conclude, note that the map p of Proposition 3.4 restricts to a
homeomorphism Z \ p−1(W )→ X \W . Set X0 = W .

To reduce Theorem 1.5 to this corollary, we use the following two lemmas.
A loop system is a Markov shift defined by a loop graph: a graph made of
simple loops which are based at a common vertex and otherwise do not
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intersect. Given a power series f =
∑∞

n=1 fnz
n with coefficients in Z+, we

let Σf denote the loop system with exactly fn simple loops of length n in
the loop graph. If 0 < h(Σf ) = log λ <∞, then

(1) 0 < f(1/λ) ≤ 1,
(2) 0 < α < λ⇒ f(1/α) =∞, and
(3) f(1/λ) = 1 if Σf has a measure of maximum entropy (i.e. is positive

recurrent).

For more on loop systems and Markov shifts, see [3, 9, 12] and their refer-
ences.

Lemma 3.6. Any Markov shift X is Borel isomorphic to a Borel system

W t
⊔
n∈N

Σ(Ln)

where W is weakly wandering and Ln is a loop graph for each n.

Lemma 3.7. Let Σ be a loop system and h ∈ (h(Σ),∞). Then there is
an SFT S with h(S) < h such that Σ has a continuous embedding into S.

Before proving the lemmas, we deduce the lower-entropy embedding the-
orem from them.

Proof of Theorem 1.5. According to Remark 2.1 and Lemma 3.6, we
may assume that X is a disjoint union of loop systems Σ(Ln) (Y contains
an uncountable weakly wandering set as a positive entropy Markov shift).
Let h = (h(Y ) + h(X))/2 > h(X). By Lemma 3.7, each loop system Σ(Ln)
can be (continuously) embedded into some SFTWn with entropy less than h.
Let ε = h(Y ) − h > 0. By Lemma 3.1 (with ε = (h(Y ) − h)/2), there are
pairwise disjoint mixing SFTs Yn in Y with h(Yn) > h. Finally, Corollary
3.5 shows that each Wn (apart from finitely many periodic points) can be
Borel embedded into Yn ⊂ Y . Altogether, apart from a countable set of
periodic points, X has been Borel embedded into Y .

We now prove the lemmas.

Proof of Lemma 3.6. Let G be some graph presenting X. For conve-
nience, identify its vertices with 1, 2, . . . . Observe that each W ε

n := {x ∈ X :
x0 = n and ∀i > 0 xεi 6= n} (n ∈ N, ε ∈ {−1,+1}) is wandering. Consider
the loop graphs Ln defined by the first return loops of G at vertex n which
avoid the vertices k < n.

For each x ∈ X, let N := inf{n ≥ 1 : ∃ak, bk →∞ x−ak = xbk = n} (i.e.,
N is the smallest birecurrent symbol). We have the following two cases:

(1) N <∞ and x ∈ Σ(LN ).
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(2) Otherwise, some symbol 1 ≤ k < N occurs in x but is not birecur-
rent: {xm : m ∈ Z}∩ [1, N) 6= ∅; then there exists ε ∈ {−1,+1} such
that j := ε sup{εi ∈ Z : xi = k} ∈ Z, so x ∈ σ−jW ε

k .

To conclude, observe that
⋃
k∈N, j∈Z, ε∈{−1,+1} σ

−jW ε
k is a weakly wandering

set.

Proof of Lemma 3.7. Let Σ = Σf , a loop system described by a power
series f =

∑∞
n=1 fnz

n. If f is a polynomial, then Σf is itself an SFT. From
now on, we assume f to have infinitely many non-zero terms.

We are going to build the SFT as a finite loop system Σp, with a poly-
nomial p obtained by truncating the power series f and then adding some
monomials to ensure enough space for the embedding while keeping the
entropy < h.

Let β ∈ (h(Σ), h). Given a positive integer N , let f (N) denote the trun-
cation of f to the polynomial f1z + f2z

2 + · · · + fNz
N . As f(e−h(Σ)) ≤ 1

and h(Σ) < β we have fn < enβ for all n ≥ 1. Let g〈N〉 denote the polyno-
mial gN+1z

N+1 + gN+2z
N+2 + · · ·+ g2Nz

2N , where gn = denβe (the integer
ceiling). Then

|g〈N〉(z)| ≤
[
(e(N+1)β + 1) + · · ·+ (e2Nβ + 1)|z|N−1

]
|z|N+1

= e(N+1)β|z|N+1

[
1− (eβ|z|)N

1− eβ|z|

]
+ |z|N+1

[
1− |z|N

1− |z|

]
.

As β > 0, we see that limN→∞ g
〈N〉(z) = 0 uniformly for |z| fixed, smaller

than e−β.

For 0 < r < e−h(Σ) we have f(r) < 1 and f (N)(r) < f(r) < 1, and for
|z| = r we see that |1− f (N)(z)| ≥ 1− f (N)(r) > 1− f(r) > 0. Thus, fixing
γ ∈ (β, h) and then N sufficiently large, the following hold for |z| = e−γ :

(1) |2g〈N〉(z)| < 1− f(e−γ) < 1− f (N)(e−γ) ≤ |1− f (N)(z)|;
(2) both 1− f (N)(z) and 1− f (N)(z)− 2g〈N〉(z) are non-zero.

It follows from Rouché’s Theorem that 1− f (N) and 1− f (N) − 2g〈N〉 have
the same number of zeros inside the circle |z| = e−γ , i.e. no zeros. Thus,
setting p := f (N) + 2g〈N〉, we get h(σp) < γ < h.

Now, set k = g〈N〉 and split p as p = (f (N) + g〈N〉) + g〈N〉 =: l + k,
and let q := l(1 + k + k2 + · · · ). Then σq is the loop system defined from
σl+k by replacing the loops from k by all the loops made by concatenating
a copy of a non-trivial loop from l with an arbitrary positive number of
copies of loops from k (see [3, Lemma 5.1] for details). It follows that σq can
be identified with the subset of σp obtained by removing a copy of σk with
the points asymptotic to it. Hence, there is a continuous embedding of σq
into σp.
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Note that for n ≤ N we have fn = pn = qn. Also, for n > N , we have
fn < enβ ≤ (1 +k+k2 + · · · )n ≤ qn. This yields an embedding σf → σq and
concludes the proof.

4. Embedding of an SPR Markov shift with equal entropy. We
now give the proof of Theorem 1.4. Let X ′ be the mixing SPR component
of X with h(X) = h(Y ) (other components have smaller entropy). Equal
entropy mixing SPR Markov shifts are almost isomorphic as defined and
proved in [3]. Consequently, there will be a word w and a subsystem Σw of
X ′ (consisting of the points which see w infinitely often in the past and in
the future) such that there is a continuous embedding ψ0 from X0 = Σw

onto a subsystem Y0 of Y and ε > 0 such that the complements X \X0 and
Y \ Y0 have Borel entropy less than h(Y )− ε.

The Borel subsystem X \X0 is (after passing to a higher block presen-
tation) the union of a Markov shift X1 (the subsystem of X avoiding the
word w) and a weakly wandering set W (defined by the occurrence of w,
with a failure of infinite recurrence in the past or future). By Remark 2.1,
we can forget about W . We cannot expect X1 to have entropy less than
h(Y \ Y0), and therefore we cannot apply Theorem 1.5 to embed X1 into a
subsystem of Y \ Y0. Instead, we will push X1 into the image of X0, and
adjust the definition on X0 to keep injectivity.

For L large enough,

Σw,L := {x ∈ Σw : ∀n ∈ Z ∃k ∈ {0, . . . , L} xn+k . . . xn+k+|w|−1 = w}

is a mixing Markov subshift of X ′ with h(Σw,L) > h(X1). We apply Lemma
3.1 to get pairwise disjoint mixing SFTs W1,W2, . . . in Σw,L satisfying
h(Wi) > h(X1) for all i ∈ N.

Let C denote the complement in X1 of the periodic points. Theorem 1.5
gives Borel embeddings γi : C → Wi. Let Zi := γi(C) ⊂ Wi ⊂ X0, and let
φi be the conjugacy γi+1 ◦ γ−1i : Zi → Zi+1. We define φ : X0 ∪ C → X0 by

φ : x 7→


γ1(x) ∈ Z1 if x ∈ C,
φi(x) ∈ Zi+1 if x ∈ Zi,
x otherwise.

This φ is a Borel embedding. Setting ψ := ψ0 ◦ φ gives an embedding of
X0 ∪ C into Y , hence finishes the proof of Theorem 1.4.

Lastly we record an obvious corollary of Theorem 1.3.

Theorem 4.1. The free parts of two irreducible SPR Markov shifts are
Borel isomorphic if and only if they have the same entropy and period.
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