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ON DELTA SETS AND THEIR REALIZABLE SUBSETS IN KRULL
MONOIDS WITH CYCLIC CLASS GROUPS
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Abstract. Let M be a commutative cancellative monoid. The set ∆(M), which con-
sists of all positive integers which are distances between consecutive factorization lengths
of elements in M , is a widely studied object in the theory of nonunique factorizations. If
M is a Krull monoid with cyclic class group of order n ≥ 3, then it is well-known that
∆(M) ⊆ {1, . . . , n − 2}. Moreover, equality holds for this containment when each class
contains a prime divisor from M . In this note, we consider the question of determining
which subsets of {1, . . . , n − 2} occur as the delta set of an individual element from M .
We first prove for x ∈ M that if n− 2 ∈ ∆(x), then ∆(x) = {n− 2} (i.e., not all subsets
of {1, . . . , n− 2} can be realized as delta sets of individual elements). We close by proving
an Archimedean-type property for delta sets from Krull monoids with finite cyclic class
group: for every natural number m, there exist a Krull monoid M with finite cyclic class
group such that M has an element x with |∆(x)| ≥ m.

1. Introduction. The arithmetic of Krull monoids is a well-studied area
in the theory of nonunique factorizations. The interested reader can find a
good summary of their known arithmetic properties in the monograph [14,
Chapter 6]. We focus here on Theorem 6.7.1 of [14], where the authors show
that

∆(M) = {1, . . . , n− 2}
for M a Krull monoid with cyclic class group of order n ≥ 3 where each class
contains a prime divisor of M . Here ∆(M) represents the set of all positive
integers which are distances between consecutive factorization lengths of
elements in M .

We ask in this note a question related to the above equality that is
seemingly unasked in the literature: Which subsets T ⊆ {1, . . . , n − 2} are
realized as the delta set of an individual element in M (i.e., for which T
does there exist an x ∈ M such that T = ∆(x))? Based on the structure
theorem for sets of lengths in Krull monoids with finite class group (see [14,
Chapter 4]), it is reasonable to assume that not all subsets of {1, . . . , n− 2}
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will be realized. We verify this in Theorem 3.2 by showing for x ∈ M that
if n− 2 ∈ ∆(x), then ∆(x) = {n− 2}. We contrast this in Theorem 3.5 by
showing that we can construct delta sets of arbitrarily large size (i.e., for
any m ∈ N there exists a Krull monoid M with finite cyclic class group such
that M has an element x with |∆(x)| ≥ m).

2. Definitions and background. We open with some basic definitions
from the theory of nonunique factorizations. For a commutative cancellative
monoid M , let A(M) represent the set of irreducible elements of M , and M×

its set of units. We provide here an informal description of factorizations and
associated notions. From a more formal point of view, factorizations can be
considered as elements in the factorization monoid Z(M), which is defined
as the free abelian monoid with basis A(M/M×); details can be found in
the first chapter of [14].

To simplify our initial discussion, we suppose that M is reduced (i.e.,
has a unique unit). We say that a1 · · · ak is a factorization of x ∈ M if
a1, . . . , ak ∈ A(M) and x = a1 · · · ak in M . Two factorizations are equivalent
if there is a permutation of atoms carrying one factorization to the other.
We denote by Z(x) ⊆ Z(M) the set of all factorizations of x.

If z ∈ Z(x), then let |z| denote the number of atoms in the factorization
z of x. We call |z| the length of z. Now, let x ∈M\M× with factorizations

z = α1 · · ·αtβ1 · · ·βs and z′ = α1 · · ·αtγ1 · · · γu
where for each 1 ≤ i ≤ s and 1 ≤ j ≤ u, βi 6= γj . Define

gcd(z, z′) = α1 · · ·αt
and

d(z, z′) = max{s, u}

to be the distance between z and z′. The basic properties of this distance
function can be found in [14, Proposition 1.2.5].

An N -chain of factorizations from z to z′ is a sequence z0, . . . , zk such
that each zi is a factorization of x, z0 = z, zk = z′, and d(zi, zi+1) ≤ N for
all i. The catenary degree of x, denoted c(x), is the minimal N ∈ N0 ∪ {∞}
such that for any two factorizations z, z′ of x, there is an N -chain from z
to z′. The catenary degree of M , denoted by c(M), is defined by

c(M) = sup{c(x) | x ∈M \M×}.

A review of the known facts concerning the catenary degree can be found
in [14, Chapter 3]. An algorithm which computes the catenary degree of a
finitely generated monoid can be found in [6], and a more specific version
for numerical monoids in [5].
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We shift from considering particular factorizations to analyzing their
lengths. For x ∈M \M×, we define

L(x) = {n | there are α1, . . . , αn ∈ A(M) with x = α1 · · ·αn}.

We refer to L(x) as the set of lengths of x in M . Further, set

L(M) = {L(x) | x ∈M \M×},

which we refer to as the system of sets of lengths of M . The interested reader
can find many recent advances concerning sets of lengths in [11], [18], and
[19]. Given x ∈M \M×, write its length set in the form

L(x) = {n1, . . . , nk}

where ni < ni+1 for 1 ≤ i ≤ k − 1. The delta set of x is defined by ∆(x) =
{ni − ni−1 | 2 ≤ i ≤ k}, and the delta set of M (also called the set of
distances of M) by

∆(M) =
⋃

x∈M\M×
∆(x)

(see again [14, Chapter 1.4]). Computations of delta sets in various types of
monoids can be found in [2]–[4].

A monoidM is called a Krull monoid if there is a monoid homomorphism
ϕ : M → D where D is a free abelian monoid and ϕ satisfies the following
two conditions:

(1) if a, b ∈M and ϕ(a) | ϕ(b) in D, then a | b in M ,
(2) for every α ∈ D there exists a1, . . . , an ∈M with

α = gcd{ϕ(a1), . . . , ϕ(an)}.

Clearly, a monoid M is Krull if and only if the associated reduced monoid is
Krull. The basis elements of D are called the prime divisors of M . The above
properties guarantee that Cl(M) = D/ϕ(M) is an abelian group, which we
call the class group of M (see [14, Section 2.3]). Note that since any Krull
monoid is isomorphic to a submonoid of a free abelian monoid, a Krull
monoid is commutative, cancellative, and atomic. The class of Krull monoids
contains many well-studied types of monoids, such as the multiplicative
monoid of a ring of algebraic integers (see [1, 14, 12]).

Let G be an abelian group and F(G) the free abelian monoid on G. The
elements of F(G), which we write in the form

X = g1 · · · gl =
∏
g∈G

gvg(X),

are called sequences over G. We set −X = (−g1) · · · (−gl). The exponent
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vg(X) is the multiplicity of G in X. The length of X is defined as

|X| = l =
∑
g∈G

vg(X)

(note that as F(G) and Z(x) are both free abelian monoids, there is really no
redundancy in this notation). For every I ⊆ [1, l], the sequence Y =

∏
i∈I gi

is called a subsequence of X. The subsequences are precisely the divisors of
X in the free abelian monoid F(G). The submonoid

B(G) =
{
X ∈ F(G)

∣∣∣ ∑
g∈G

vg(X)g = 0
}

is known as the block monoid on G, and its elements are referred to as
zero-sum sequences or blocks over G ([14, Section 2.5] is a good general
reference on block monoids). If S is a subset of G, then the submonoid

B(G,S) = {X ∈ B(G) | vg(X) = 0 if g 6∈ S}
of B(G) is called the restriction of B(G) to S. Block monoids are impor-
tant examples of Krull monoids and their true relevance in the theory of
nonunique factorizations lies in the following result.

Proposition 2.1 ([14, Theorem 3.4.10.3]). Let M be a Krull monoid
with class group G and let S be the set of classes of G which contain prime
divisors. Then

L(M) = L(B(G,S)).

Hence, to understand the arithmetic of lengths of factorizations in a
Krull monoid, one merely needs to understand the factorization theory of
block monoids. Thus, while we state our results in the context of general
Krull monoids, Proposition 2.1 allows us to write the proofs using block
monoids.

For our purposes, there are two arithmetic properties of the block monoid
B(G), where G is cyclic of order n ≥ 3, which we will use later:

(1) c(B(G)) = n (see [14, Theorem 6.4.7]),
(2) ∆(B(G)) = {1, . . . , c(B(G))− 2} (see [14, Theorem 6.7.1.4]).

Thus ∆(B(G)) = {1, . . . , n−2}. For any finite abelian group G with |G| ≥ 3,
∆(B(G)) is an interval whose minimum equals 1 but whose maximum is not
known in general [13, 16]. We will be interested in the following types of
subsets of ∆(M).

Definition 2.2. Let M be a commutative cancellative monoid and sup-
pose T is a nonempty subset of ∆(M). We call T realizable in ∆(M) if there
is an element x ∈M with ∆(x) = T .

Example 2.3. We illustrate some aspects of the last definition with
several examples.
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(1) Let M be any Krull monoid M with ∆(M) = {c} for c ∈ N. Clearly
any element x ∈ M with |L(x)| > 1 yields ∆(x) = {c} and hence every
subset of ∆(M) is realizable. A large class of Dedekind domains (whose
multiplicative monoids are Krull) with such delta sets are constructed in [9].
Another example of such a monoid is a primitive numerical monoid whose
minimal generating set forms an arithmetic sequence (see [3, Theorem 3.9]).

(2) Let G be any infinite abelian group and S any finite nonempty subset
of {2, 3, 4, . . .}. By a well-known theorem of Kainrath ([17], [14, Section 7.4])
there is a block B ∈ B(G) with L(B) = S. From this, it easily follows that
∆(B(G)) = N. Moreover, it also easily follows that any finite subset T of N
is realizable in ∆(B(G)). In this example we can actually say more. If H is
a monoid, then recall that a submonoid S ⊂ H is divisor-closed if for a ∈ S
and b ∈ H, b |H a implies that b ∈ S. Set

∆∗(H) = {min∆(S) | S ⊂ H is a divisor-closed submonoid and ∆(S) 6= ∅}.

It follows from [8] that ∆∗(B(G)) = N.

(3) In general, there are commutative cancellative monoids M with un-
realizable subsets of ∆(M). For our initial example, we again appeal to
numerical monoids. Let S be the monoid of positive integers under addi-
tion generated by 4, 6, and 15 (i.e., S = 〈4, 6, 15〉). By [3, Example 2.6],
∆(S) = {1, 2, 3}. By [7, Theorem 1], the sequence of sets {∆(n)}n∈S is
eventually periodic, and hence using the periodic bound in that theorem
allows one to check for all realizable subsets of {1, 2, 3} in finite time. Us-
ing programming from the GAP NumericalSgps package [10], one can verify
that {1}, {1, 2}, and {1, 3} are the only realizable subsets of ∆(S).

(4) There are three generated numerical monoids that behave differently
than the two types discussed above. For instance, let S be the numerical
monoid generated by 7, 10, and 12 (i.e., S = 〈7, 10, 12〉). By [3, Example
2.5], ∆(S) = {1, 2}. Again, using the GAP programming [10], we find that
∆(34) = {1}, ∆(42) = {2}, and ∆(56) = {1, 2}. Thus, all nonempty subsets
of ∆(S) are realizable.

(5) If G is cyclic of order n ≥ 3, then by [12, Corollary 2.3.5], for each
1 ≤ i ≤ n− 2, the set {i} is realizable in ∆(B(G)).

(6) Suppose G is an abelian group and S1 ⊆ S2 are subsets of G. By the
properties of the block monoid, if B ∈ B(G,S1), then L(B) is equal in both
B(G,S1) and B(G,S2). Thus, if T is realizable in ∆(B(G,S1)), then T is
realizable in ∆(B(G,S2)). Elementary examples show that this relationship
does not work conversely.

Our eventual goal is to show that in contrast to B(G) where G is infinite
abelian, not all subsets of ∆(B(G)) are realizable when G is finite cyclic.
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3. Main results. Our first lemma will be vital in the proof of Theo-
rem 3.2.

Lemma 3.1. Let G be a cyclic group of order |G| = n ≥ 3, g ∈ G with
ord(g) = n, V = (−g)g, and W = gn. Let u ∈ B(G) and z, z′ ∈ Z(u), say

z = W r(−W )sBV q, where r, s > 0, q ≥ 0,

and B is the product of atoms which are not in the set {W,−W,V }. If
|z′| − |z| = n− 2 and there are no factorizations of u having length between
|z| and |z′|, then B = 0t for some t ∈ N0.

Proof. Since 0 ∈ B(G) is a prime element and L(u) = v0(u)+L(0−v0(u)u),
we may assume that 0 - u, and we have to show that B = 1 (i.e., B is the
empty block). This is obvious for n = 3, and hence we suppose that n ≥ 4.
Assume, by way of contradiction, that A is an atom of B(G) dividing B.
Since 0 - B, it follows that |A| ≥ 2.

Suppose that |A| = 2, say A = (xg)(−xg) with x ∈ {2, . . . , bn/2c}. Then

WA(−W ) = (gx(−xg))((−g)x(xg)V n−x)

has a factorization of length 2+n−x. Since 3 < 2+n−x < n+1, we obtain
a factorization of u with length strictly between |z| and |z′|, a contradiction.

Suppose |A| ≥ 3, say A = (xg)(yg)(wg)A′ with x, y, w ∈ {1, . . . , n − 1}
and A′ ∈ F(G). Then two of the three elements −xg,−yg,−wg are either
in C = {g, 2g, . . . , bn/2c} or in D = {(bn/2c + 1)g, . . . , (n − 1)g}. After
renaming xg, yg and wg and exchanging g and −g if necessary, we may
suppose that −xg = (n − x)g ∈ C and −yg = (n − y)g ∈ C. Then WA is
divisible by the product of two atoms ((xg)gn−x)((yg)gn−y). If (n − x) +
(n − y) = n, then n is even, x = y = n/2, and (xg)(yg) is a zero-sum
subsequence of A, a contradiction. Thus (n − x) + (n − y) < n and WA is
the product of at least three atoms. Since A 6= −W , AW is a product of
at most n − 1 atoms, and thus we obtain a factorization of u with length
strictly between |z| and |z′|, a contradiction.

Lemma 3.1 leads us to our first main result.

Theorem 3.2. Let M be a Krull monoid with cyclic class group G of
order |G| = n ≥ 3. If x ∈M and n− 2 ∈ ∆(x), then ∆(x) = {n− 2}.

Proof. By Proposition 2.1, we need only prove the theorem for B(G,S)
where S ⊆ G is the set of classes which contain prime divisors. By our
comment in Example 2.3(6), it suffices to prove our theorem for S = G (i.e.,
for B(G)).

Let x ∈ B(G) and z, z′ ∈ Z(x) be such that |z′| − |z| = n − 2 and
there are no factorizations of x with length between |z| and |z′|. As in
Lemma 3.1 we may suppose that 0 - x. We shall prove that there exists
an element g ∈ G such that z is divisible by the atoms gn and (−g)n. By
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a previous observation, we know that the catenary degree of B(G) is n.
Therefore, c(x) ≤ n and so there exists an n-chain z = z0, z1, . . . , zk = z′

of factorizations of x from z to z′. We also know, by [14, Lemma 1.6.2],
that

∣∣|zi+1| − |zi|
∣∣ ≤ d(zi, zi+1) − 2 ≤ n − 2. Let j be the least index such

that |zj+1| > |z|. Then |zj | = |z| and |zj+1| = |z′| because there are
no factorizations of x with length between |z| and |z′| and also because∣∣|zi+1| − |zi|

∣∣ ≤ n− 2. It follows that |zj+1| − |zj | = |z′| − |z| = n− 2, and so

d(zj , zj+1) ≥
∣∣|zj+1| − |zj |

∣∣+ 2 = n.

Therefore, by redefining, if necessary, z and z′ as zj and zj+1 respectively,
we can assume that d(z, z′) = n.

Let d be the greatest common divisor of z and z′ in the factorization
monoid Z(B(G)), and define w and w′ such that z = dw and z′ = dw′.
Notice that |w′| − |w| = |z′| − |z| = n− 2. As max{|w|, |w′|} = d(z, z′) = n,
we have |w′| = n and |w| = 2; note that so far | · | referred to the length in
the factorization monoid Z(B(G)) = F(A(B(G))).

It is well known that U ∈ A(B(G)) implies that |U | ≤ n and |U | = n
if and only if U = gn for some g ∈ G (again by [14, Theorem 5.1.10]; now
| · | refers to F(G)). Since w consists of only two atoms, say w = U1U2

with U1, U2 ∈ A(B(G)), we obtain |U1U2| ≤ 2n. Since w′ is a product of
exactly n atoms, say w′ = V1 . . . Vn with V1, . . . , Vn ∈ A(B(G)), we infer
that |V1| = · · · = |Vn| = 2. Then |U1U2| = 2n, and since w′ is divisible by
an atom of length 2, we see that U1 = W = gn and U2 = −W = (−g)n for
some element g ∈ G of order n.

Now we can write z = W r(−W )sBV q where V = (−g)g and B is not
divisible by W,−W or by V . Since there are no factorizations of x having
length between |z| and |z′|, Lemma 3.1 implies that B = 1 ∈ Z(B(G)) and
z = W r(−W )sV q. Now it easily follows that ∆(x) = {n − 2} (see also [14,
Proposition 4.1.2]).

As an immediate consequence of Theorem 3.2, we have the following
result.

Corollary 3.3. Let M be a Krull monoid with cyclic class group G of
order |G| = n ≥ 3. If T is a nonempty subset of {1, . . . , n−2} with n−2 ∈ T
but T 6= {n− 2}, then T is not realizable in ∆(M).

Example 3.4. Let G be a cyclic group of order |G| = 5 and g ∈ G
an element of order 5. We use the last two results to determine all the
realizable sets of ∆(B(G)). Since ∆(B(G)) = {1, 2, 3}, Theorem 3.2 implies
that the only possible realizable sets are {1}, {2}, {3}, and {1, 2}. The
singleton sets are guaranteed by Example 2.3(5). Let B = g8(2g)(−g)5.
We claim that ∆(B) = {1, 2}. If A is an atom with (2g) |A |B, we deduce
that A = (2g)g3 or A = (2g)(−g)2. Since L

(
g5(−g)5) = {2, 5}, we have
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factorizations of B with lengths 3 and 6 when A = (2g)g3. Observe also
that having A = (2g)(−g)2 determines uniquely the factorization of B given
by z = ((2g)(−g)2)(g(−g))3(g5) ∈ Z(B). Therefore, L(B) = {3, 5, 6} and
so ∆(B) = {1, 2}. Hence, {1}, {2}, {3}, and {1, 2} is the complete set of
realizable sets of ∆(B(G)).

Our results to this point have produced delta sets of relatively small
size. However, we now prove that we can have realizable sets of large size
provided we choose an adequate finite cyclic group.

Theorem 3.5. For every m ∈ N there exist a Krull monoid M with
finite cyclic class group and an element x ∈M such that |∆(x)| ≥ m.

Proof. Choose a natural number b0 > m and define b1, . . . , bm recursively
by bk+1 = 2(

∑k
i=0 bi) + 2m if k > 0. Let B = b1 · · · bm ∈ F(Z) be the

sequence over Z, σ(B) its sum, and

Σ(B) =
{∑
i∈I

bi

∣∣∣ ∅ 6= I ⊆ {1, . . . ,m}
}

its set of subsequence sums.
Choose a finite cyclic group G of order |G|=n>σ(B) and set M=B(G).

Let g ∈ G with ord(g) = n, and consider the element

x = g2n−σ(B)(−g)n
m∏
i=1

(big) ∈ B(G).

For every subset I ⊆ {1, . . . ,m}, AI = gn−
∑

i∈I bi
∏
i∈I(big) is an atom of

B(G). Suppose there are subsets I, J ⊆ {1, . . . ,m} such that AIAJ |x. Then
I ∩ J = ∅, I ] J ⊆ {1, . . . ,m}, and(

n−
∑
i∈I

bi

)
+
(
n−

∑
j∈J

bj

)
= vg(AIAJ) ≤ vg(x) = 2n− σ(B).

Therefore I ] J = {1, . . . ,m} and x = AIAJ(−g)n. Let z be a factorization
of x. Then there is a subset I ⊆ {1, . . . ,m} such that AI | z. If AJ - z for
J = {1, . . . ,m} \ I, then

z = AI
∏
j∈J

((bjg)(−g)bj )((−g)g)n−
∑

j∈J bj

and |z| = 1 + |J |+ n−
∑

j∈J bj . Therefore

L(x) = {3} ∪
{

1 + |J |+ n−
∑
j∈J

bj

∣∣∣ J ⊆ {1, . . . ,m}}.
In order to point out that there are m distinct elements in ∆(x), let

Lk =
{

1 + |J |+ n−
∑
j∈J

bj

∣∣∣ J ⊆ {1, . . . ,m} with max J = k
}
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for each k ∈ {0, . . . ,m}, with the usual convention that

L0 =
{

1 + |∅|+ n−
∑
j∈∅

bj = 1 + n
}
.

If k ∈ {1, . . . ,m}, then

minLk−1 = 1 + (k − 1) + n−
k−1∑
j=1

bj > 1 + 1 + n− bk = maxLk,

and so

L(x) = {3} ∪
m⊎
k=1

Lk.

Hence, for each k ∈ {1, . . . ,m}, minLk−1−maxLk = bk−
∑k−1

j=1 bj + (k−2)
is in ∆(x), and the growth condition on the elements b1, . . . , bm guarantees
that these values are pairwise distinct.

Let G be a finite abelian group with |G| ≥ 3. By Theorem 3.2, cyclic
groups have the following property:

• If max∆
(
B(G)

)
− 2 ∈ ∆(B) for some B ∈ B(G), then ∆(B) =

{max∆
(
B(G)

)
− 2}.

It was recently shown in [15] that elementary 2-groups do share this property,
and it is a challenging problem to characterize all such groups. A further
wide open question is to study

Λ(G) = max{|∆(B)| | B ∈ B(G)}.
If G is cyclic of order n ≥ 13, we have shown that 4 ≤ Λ(G) ≤ n− 3.
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