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Abstract. We use Beurling estimates and Zdunik’s theorem to prove that the support
of a lamination of the circle corresponding to a connected polynomial Julia set has zero
length, unless f is conjugate to a Chebyshev polynomial. Equivalently, except for the
Chebyshev case, the biaccessible points in the connected polynomial Julia set have zero
harmonic measure.

A connected, locally connected, full, compact subset K of the complex
plane C can be topologically described by a lamination of a circle, which
tells how to pinch the circle to obtain K (see, e.g., [Dou]).

A lamination is an equivalence relation on the unit circle T, identifying
points ¢ and (' if they are mapped to one point in K by the Riemann
uniformization map of the complement of K. To obtain a topological model
of the compact set K, we glue together points of the unit circle, belonging
to one equivalence class. The support of a lamination is defined as the union
of all non-trivial (containing 2 or more points) equivalence classes, i.e. it
includes those points which are identified with some other points.

The laminations so defined are topologically fully characterized (among
all equivalence relations on T, see [Dou]) by the following properties:

(1) the graph {(¢,{’) : ¢ ~ ('} is a closed set in T x T,
(2) the convex hulls of different equivalence classes are disjoint,
(3) each equivalence class is totally disconnected.

There are also analytical properties (e.g. the logarithmic capacity of each
equivalence class is zero) which are not fully understood, and it is a diffi-
cult open question how to characterize laminations analytically among all
equivalence relations on T. It also makes sense to consider laminations cor-
responding to not necessarily locally connected compacta, but those lamina-
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tions satisfy weaker topological conditions (property (2) is lost), and carry
less information about the topological structure of K.

The lamination language turns out to be particularly useful in the study
of polynomial Julia sets (see [Dou] and [Thu]). One reason is that the corre-
sponding laminations are invariant under the dynamics z +— z¢ on the unit
circle. Therefore not every lamination realizable by some compact K can
be realized by a filled-in polynomial Julia set. There is an extensive the-
ory describing the combinatorial structure of the laminations arising from
polynomial dynamics (see [Doul).

The goal of this note is to estimate the size of the support of polynomial
laminations. For the Chebyshev polynomials, whose Julia set is the interval
[—2, 2], the lamination is supported by the whole unit circle without the two
points £1. The following theorem shows that this is the only case when a
polynomial lamination has support of positive Lebesgue measure:

THEOREM. Suppose that a polynomial f has connected Julia set. Then
the support of the corresponding lamination Ay has zero length, unless f is
conjugate to a Chebyshev polynomial.

Harmonic measure. To make our statements more precise, consider a
polynomial f of degree d with connected Julia set J, denote by F. its
domain of attraction to infinity, and by ¢ the Riemann uniformization map

¢:{lz| <1} - F, 0 o0.

Note that ¢ can be chosen so that it conjugates the dynamics T : 2z +—
z¢ in the unit disk with the dynamics f in F. (see [CG] for the basic
facts from complex dynamics). Let m denote the normalized (multiplied
by (27)~1) length on the unit circle T. Then by the Beurling theorem (see
[Pom], Thm. 9.19), ¢ has angular limits nearly everywhere on the unit circle
(i.e. except for a set of logarithmic capacity zero), which is much stronger
than m-almost everywhere. Therefore we can extend the domain of definition
of ¢ to include m-almost all points on T and define harmonic measure w as
the image of m under ¢:

w(X):=m(¢p 1 X).

If A is multiply connected (i.e. for disconnected Julia sets), harmonic mea-
sure can be defined as the equilibrium measure for the logarithmic potential,
since the capacity of the Julia set J is 1 (see [Bro]).

In the dynamical context harmonic measure was first considered by
H. Brolin [Bro|, who proved that it is invariant under f, and moreover
balanced, i.e. its Jacobian is equal to d: if f is 1-to-1 on X, then w(f(X)) =
d - w(X). Brolin also showed that w is ergodic, has the strong mixing prop-
erty, and the preimages f "z are distributed asymptotically uniformly with
respect to w as n tends to infinity. M. Lyubich [Lju] proved that for every
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rational function there exists a unique invariant measure maximizing the en-
tropy; it coincides with the balanced measure, and has entropy log d, which
is the topological entropy of this dynamical system. There is an extensive
literature on the properties of harmonic measure on Julia sets (see references
in the introduction of [Smi)).

Ezxternal rays, accessibility, and laminations. The image Ry, 6 € [0, 27),
of a ray {re? : 0 < r < 1} under the Riemann map ¢ is called the ez-
ternal ray with angle 8. The above-mentioned theorem of A. Beurling im-
plies that for nearly every (and hence almost every) @ the limit ¢(e??) :=
lim, 1 ¢(re'?) exists, in which case one says that the corresponding ray Ry
lands, and its endpoint ¢(e??) is accessible. We call a point z € J biaccessible
if it is a landing point of more than one external ray. By the Beurling theo-
rem w-almost all points are accessible, and, moreover, for nearly every 6 the
bounded parts ¢({re? : 1/2 < r < 1}) of external rays have finite length.
The lamination Ay is defined by identifying angles for which external rays
land at the same point. Clearly, the support of A; is the set of angles of rays
which land at biaccessible points. Hence we can reformulate our Theorem
as follows:

THEOREM. Suppose that a polynomial f has connected Julia set. Then
either f is conjugate to a Chebyshev polynomial, or the set of biaccessible
points has zero harmonic measure.

The set of points with three or more accesses is clearly at most countable
(because the convex hulls of the corresponding equivalence classes on the
unit circle are disjoint with non-empty interiors). Also points z and f(z)
have the same number of accesses unless z is a critical point, so, except for
an at most countable number of points, the point z and all points in its
grand orbit have the same number of accesses. Since countable sets have
zero harmonic measure, we infer that w-almost all points have either one or
two accesses, and, up to zero harmonic measure, the sets of points with one
and two accesses are each invariant under f. They are also clearly F,, and
hence measurable. In fact, to prove that, it is sufficient to consider the rays
with the length of {re? : 1/2 < r < 1} bounded by M and then let M tend
to infinity; a similar argument easily solves all measurability problems which
can arise below. Since w is ergodic, we deduce that the set of biaccessible
points has either zero or full measure. As already mentioned, the latter case
occurs for the Chebyshev polynomials, whose Julia set is the interval [-2, 2],
and we are going to show that this is the only possibility.

The proof, based on a geometric analysis of harmonic measure, has three
steps. First, we assume that the biaccessible points have full harmonic mea-
sure and prove that for many of them (positive harmonic measure), roughly
speaking, w is equally concentrated on opposite approaches. Here we use the
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dynamical structure, and it is essential: for a non-trivial piece of a quasicir-
cle (say, von Koch snowflake or a piece of the Julia set of 22 + ¢), all points
except two are biaccessible, but our proof would not work since harmonic
measures on two opposite sides are mutually singular. Second, we use the
Beurling-type estimate w, (B,.) - w_(B,) < r?, where wy are the “harmonic
measures on two opposite accesses,” and deduce that wi (B;) < w_(B,) S 7.
Therefore harmonic measure is supported on a subset of J of positive length
(1-dimensional Hausdorff measure). Third, we employ the Zdunik dicho-
tomy, which states that the latter is possible only when the Julia set is a
circle or an interval.

Note that if harmonic measures corresponding to two different Fatou
components of a polynomial with connected Julia set are not mutually sin-
gular, one of these components is F.,. Otherwise, there are plenty of points
accessible from both components, which implies that the rays from the cen-
ters of the two components to two of those points bound some domain,
containing a part of the Julia set, and separate it from infinity, which con-
tradicts J = 0Fs. Thus we can repeat the last two steps of the proof,
skipping the unnecessary first one, and arrive at the following

PROPOSITION. Suppose that a polynomial f has connected Julia set.
Then either it is conjugate to 2%, or harmonic measures for any two dif-
ferent Fatou components are mutually singular.

It might be interesting to further investigate the analytical structure of
laminations of the unit circle, arising from polynomial dynamics. Of par-
ticular interest might be to learn whether the support of every polynomial
lamination is of zero logarithmic capacity, or, more generally, to better es-
timate its size. Indeed, any lamination with closed support of zero capacity
can be realized by a conformal map to a domain with locally connected
boundary (it is particularly easy, for a given zero capacity closed subset of
the circle, to construct a conformal map of the disc carrying it to one point),
whereas for a lamination with a larger support the question of realization is
more delicate (and hence there is more to investigate in such laminations,
arising from polynomial dynamics).

Moreover, as it surfaced in the discussion of the author with P. Jones, the
situation turns out to be non-trivial, as is shown by the following example
(which can be generalized):

REMARK. For a real non-hyperbolic Collet—-Eckmann quadratic polyno-
mial the biaccessible angles have positive Hausdorff dimension.

In fact, such a polynomial has only one Fatou component F., and a
locally connected Julia set by [GS]. Thus every point in the Julia set is
accessible, and except for two endpoints all points in the intersection of
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the Julia set with the real line have at least two accesses (from above and
below). By [GS] the domain of attraction to infinity Fo, is a Holder domain,
meaning that for any arc I C T one has

diam ¢(I) < const |I|%,

where o > 0 is the Holder exponent. If a collection {I;} of arcs covers all
biaccessible angles, then its image {¢([;)} covers the interval of intersection
of the Julia set with the real line, so

const < Zdiam o(1;) < constz ||,
J J

implying that the Hausdorff dimension of the set of biaccessible angles is at
least o > 0.

Acknowledgments. The author has learned about this conjectured
Theorem from the recent Stony Brook preprint [Zakl, SZ, Zak2] by S. Zak-
eri and D. Schleicher, who in turn have learned about it from J. Hubbard,
M. Lyubich, and J. Milnor. In the preprint a similar theorem was estab-
lished for locally connected, Siegel, and Cremer quadratics (with a stronger
theorem in the latter cases, namely that only the preimages of the critical
or Cremer point respectively can possibly be biaccessible). The author is
grateful to Saeed Zakeri for helpful remarks on the first draft of this paper.

Some time after this paper was written, the author learned that a dif-
ferent proof of the theorem above was obtained by A. Zdunik [Zdu3].

Proof of the Theorem. We will arrive at a contradiction, assuming
that there is a polynomial f not conjugate to a Chebyshev polynomial, such
that the set of biaccessible points has positive (and hence full) harmonic
measure.

Opposite accesses carry equal harmonic measure. Supposing that for a
point x on the unit circle the point ¢(z) is biaccessible, denote by Z the
point on the circle corresponding to the second approach to ¢(x). Then the
map x + T is measurable, defined almost everywhere on the unit circle, and
commutes with 7. Hence a measure m is well defined by m(X) := m(X),
and has the same Jacobian with respect to 7' as m, namely d. But this
implies that m = m.

For points z, y on the circle denote by |z, y| the length of the shortest
arc joining them. Define E to be the set of all points & on the unit circle for
which z is well defined and

~ 2w
(1) |IL’,.’E| (S [d—-}-l’ﬂ-}

Clearly, for any 2 and y there exists n such that |[T™(z), T"(y)| € [dQ—fl, 7.
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Thus the set of points on the unit circle corresponding to biaccessible points
in the Julia set is covered by preimages of E under T, and hence E has
positive length.

If d = 2, there is only one topological way to put a few pairs of points
satisfying (1) on the circle, since out of any three such pairs one must sep-
arate two others. Hence we can naturally split E into two sets E_, E, so
that x and = belong to different sets, and if z,y € E, then z, § separate
Z, y on the circle. If d > 2, then E will have at most d parts, admitting the
same natural splitting, and we can just denote by E’ one of them having
positive length and work with it instead of E.

The intuitive meaning of this procedure is to distinguish between ap-
proaches to two different “sides” of F' := ¢(FE). Define the corresponding
“harmonic measures” w4 by

wi(X) :=m(Ex N¢ (X)),

where ¢ is defined m-almost everywhere on the unit circle by angular limits.
Clearly E_ = E,, ¢~ 1(X) = ¢~ }(X) and hence for any set X,

(2) wi(X) =w_(X) = Jw(X N E) .

Beurling estimate. The following inequality is essentially contained in
the last section of A. Beurling’s doctoral thesis (see [Beu], pp. 1-107); our
notation is identical to that of [BCGJ], where one can find a self-contained
proof. For any disjoint domains U and V, for any ball B, of sufficiently small
radius r one has the following inequality:

(3) wu(B,) -wy(B,) < A-r?,

where wy, wy denote the harmonic measures with respect to some fixed
points in the corresponding domains, and the constant A depends on those
domains and points only.

For the convenience of the reader we outline the proof, noting that the
domains under consideration need not be locally connected. First one invokes
the classical Beurling estimate

1

(4) wy (Br(z)) < const exp (—WS %) ,

r

where 0y (t) denotes the length of the longest arc in the intersection of U with
the circle of radius ¢ centered at z. It can be deduced by various methods,
and perhaps the most powerful is Beurling’s method of extremal length:
harmonic measure of the ball B, is comparable to exp(—m\), where \ is
the extremal length of the curve family joining B, inside U to some fixed
compact set. Considering a metric whose element is equal to |dz|/0y(t) on
the longest arc in the intersection of U with the circle of radius ¢ centered at
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z, one obtains an estimate of A from below, yielding (4). For more detailed
discussion of extremal length consult the book [Ahl] (particularly pp. 76-78).
Applying (4) to domains U and V, one obtains the desired inequality (3)
after observing that 0y (t) 46y (t) < 27t (the domains U and V' are disjoint),

and hence
1 1 2

ou)  Bv() =t
We note that similar estimates have many applications. For example, Beur-
ling techniques imply the Pommerenke-Levin—Yoccoz inequality on multi-
pliers of cycles for connected polynomial Julia sets.

In our setting we can practically consider approaches to ¢(F) via E_
and E, as two different domains. In fact, adding two slits from J to oo, and
choosing some reference points in the resulting domains Uy, we change the
harmonic measure by a constant:

wi(X)=wr(XNE) xwy (XNE) < wy, (X).

Hence using the same Beurling estimate we arrive at the following version
of (3): for any ball B, of sufficiently small radius r,

wy(By) -w_(B,) <A -r%

But by (2) we know that wy(B,) = w_(B,) = sw(B, N E), and therefore
we conclude that

(5) w(B, NE) <

VA
5T
Zdunik’s dichotomy. In [Zdul] A. Zdunik proved the following theorem
(in the connected case even finer analysis is possible, see [PUZ| and [Zdu2]):

For any rational function f either

(i) f is critically finite with parabolic orbifold, or
(ii) the measure of maximal entropy w is singular with respect to Haus-
dorff measure A, where a« = HDim(w).

One can find the definition and classification of the critically finite ratio-
nal functions with parabolic orbifold in [DH]; in particular, the only polyno-
mials which fall into this category are conjugates of Chebyshev polynomials,
or of z%. In those cases the Julia sets are intervals and circles respectively,
and w is absolutely continuous with respect to length. Chebyshev polyno-
mials are excluded by our assumptions, and circles do not have biaccessible
points, hence the polynomial under consideration falls into the second cat-
egory.

As mentioned before, for polynomials harmonic measure and the measure
of maximal entropy coincide. The Hausdorff dimension HDim(w) of a mea-
sure w is defined as the infimum of the Hausdorff dimensions of the Borel
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sets of full w measure. A. Manning [Man| proved that for any connected
polynomial Julia set the Hausdorff dimension of the harmonic measure is
equal to 1. Moreover, N. Makarov [Mak| showed that this is the case for
any domain bounded by a Jordan curve, which was improved later to any
simply connected domain (with an estimate HDim(w) < 1 holding for any
planar domain).

So for the polynomial under consideration harmonic measure is singular
with respect to Hausdorff measure A; (i.e. length), meaning that there is a
set of full harmonic measure and zero length. In particular, for any € > 0
we can cover w-almost all of J by a collection {B,;} of small balls with
Z r; < E.

Then, using (5), we write

w(E):w(UBTjﬂE) <> w(B,, NE) <Zg-m < g-e.

Since w(E) > 0, whereas ¢ can be taken arbitrarily small, we arrive at a
contradiction, which proves our theorem.
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