VOL. 93

2002

NO. 1

$L^{p}(\mathbb{R}^{n})$ BOUNDS FOR COMMUTATORS OF CONVOLUTION OPERATORS

ВY

GUOEN HU (Zhengzhou), QIYU SUN (Singapore) and XIN WANG (Zhengzhou)

Abstract. The $L^p(\mathbb{R}^n)$ boundedness is established for commutators generated by $BMO(\mathbb{R}^n)$ functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the $L^p(\mathbb{R}^n)$ boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos–Stefanov condition.

1. Introduction. We will work in \mathbb{R}^n , $n \geq 1$. Let T be a standard Calderón–Zygmund operator and $b \in BMO(\mathbb{R}^n)$. Define the first order commutator of T and b by

$$T_b f(x) = b(x)Tf(x) - T(bf)(x).$$

In the remarkable work [3], Coifman and Meyer observed that the $L^p(\mathbb{R}^n)$ $(1 boundedness of <math>T_b$ can be obtained from the weighted $L^p(\mathbb{R}^n)$ estimates with A_p weights for the operator T, where A_p denotes the weight function class of Muckenhoupt (see [7, Chapter V] for definition and properties of A_p). Alvarez, Bagby, Kurtz and Pérez [2] developed the idea of Coifman and Meyer, and established a generalized boundedness result for commutators of linear operators. They showed that if $1 < p, q < \infty$, and the linear operator T is bounded on $L^p(\mathbb{R}^n, w(x)dx)$ with bound independent of w for any $w \in A_q$, then for any positive integer k and $b \in BMO(\mathbb{R}^n)$, the kth order commutator of T defined by

$$T_{b,k}f(x) = b(x)T_{b,k-1}f(x) - T_{b,k-1}(bf)(x), \quad T_{b,0}f(x) = Tf(x)$$

is bounded on $L^p(\mathbb{R}^n)$ with bound $C(n,k,p)\|b\|_{BMO(\mathbb{R}^n)}^k$. In [5], Hu considered the $L^2(\mathbb{R}^n)$ boundedness for commutators of convolution operators and proved the following result.

²⁰⁰⁰ Mathematics Subject Classification: Primary 42B20.

Key words and phrases: commutator, singular integral, ${\rm BMO}(\mathbb{R}^n),$ Fourier transform estimate.

The research was supported by the NSF of Henan Province.

THEOREM H. Let k be a positive integer, K(x) be a function on $\mathbb{R}^n \setminus \{0\}$ and $K(x) = \sum_{j \in \mathbb{Z}} K_j(x)$. Suppose that there are some constants C > 0, $0 < A \leq 1/2$ and $\alpha > k + 1$ such that for each $j \in \mathbb{Z}$,

$$||K_j||_1 \le C, \qquad ||\nabla K_j||_{\infty} \le C2^j,$$
$$|\widehat{K}_j(\xi)| \le C \min\{A|2^j\xi|, \log^{-\alpha}(2+|2^j\xi|)\}.$$

Then for $b \in BMO(\mathbb{R}^n)$ and $0 < \nu < 1$ such that $\alpha \nu > k+1$, the commutator

$$T_{b,k}f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^k K(x - y)f(y) \, dy, \quad f \in C_0^\infty(\mathbb{R}^n)$$

is bounded on $L^2(\mathbb{R}^n)$ with bound $C(n,k,\alpha,\nu)\log^{-\alpha\nu+k+1}(1/A)\|b\|_{BMO(\mathbb{R}^n)}^k$.

In this paper, we will continue the study begun in [5]. By Fourier transform estimates and approximation of the identity, we will establish the $L^p(\mathbb{R}^n)$ boundedness for commutators of convolution operators. We remark that in this paper, we are very much motivated by the work of Watson [8]; some ideas are from Pérez's paper [6]. For a function f on \mathbb{R}^n , denote by \hat{f} the Fourier transform of f. For a nonnegative integer m, let $\Phi_m(t) =$ $t \log^m(2+t)$. For a locally integrable function f and a bounded measurable set E with Lebesgue measure |E|, define

$$\|f\|_{L(\log L)^m,E} = \inf\left\{\lambda > 0: \frac{1}{|E|} \int_E \Phi_m\left(\frac{|f(y)|}{\lambda}\right) dy \le 1\right\}$$

and

$$\|f\|_{\exp(L^{1/m}),E} = \inf\left\{\lambda > 0: \frac{1}{|E|} \int_{E} \exp\left(\frac{|f(y)|}{\lambda}\right)^{1/m} dy \le 2\right\}.$$

Our main result is

THEOREM 1. Let k be a positive integer, K(x) be a function on $\mathbb{R}^n \setminus \{0\}$ and $K_j(x) = K(x)\chi_{\{2^j \le |x| < 2^{j+1}\}}(x)$ for $j \in \mathbb{Z}$, where χ_A is the characteristic function of the set A. Suppose that there exist constants C > 0 and $\alpha > k + 1$ such that for each $j \in \mathbb{Z}$,

(1)
$$\|K_j\|_1 \le C, \quad |\widehat{K}_j(\xi)| \le C \min\{|2^j\xi|, \log^{-\alpha}(2+|2^j\xi|)\}, \\ \|\nabla \widehat{K}_j\|_{\infty} \le C 2^j.$$

Then for $b \in BMO(\mathbb{R}^n)$ and $2\alpha/(2\alpha - (k+1)) , the commutator$

(2)
$$T_{b,k}f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^k K(x - y)f(y) \, dy, \quad f \in C_0^\infty(\mathbb{R}^n),$$

is bounded on $L^p(\mathbb{R}^n)$ with bound $C(n,k,p,\alpha) \|b\|_{BMO(\mathbb{R}^n)}^k$.

As an application of Theorem 1, we will obtain

THEOREM 2. Let k be a positive integer and $b \in BMO(\mathbb{R}^n)$, Ω be homogeneous of degree zero and have mean value zero. Suppose that for some $\alpha > k + 1$,

(3)
$$\sup_{\zeta \in S^{n-1}} \int_{S^{n-1}} \Omega(\theta) \left(\log \frac{1}{|\theta \cdot \zeta|} \right)^{\alpha} d\theta < \infty.$$

Then for $2\alpha/(2\alpha - (k+1)) , the commutator defined by$

$$\overline{T}_{b,k}f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^k \frac{\Omega(x-y)}{|x-y|^n} f(y) \, dy$$

is bounded on $L^p(\mathbb{R}^n)$ with bound $C(n,k,p,\alpha) \|b\|_{BMO(\mathbb{R}^n)}^k$.

REMARK. The size condition (3) for $\alpha \geq 1$ was introduced by Grafakos and Stefanov [4] in order to study the $L^p(\mathbb{R}^n)$ boundedness for the homogeneous singular integral operator defined by

$$\overline{T}f(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) \, dy.$$

It has been proved in [4] that there exist integrable functions on S^{n-1} which are not in $H^1(S^{n-1})$, but satisfy (3) for all $\alpha > 1$. Thus our Theorem 2 shows that there exists $\Omega \in L^1(S^{n-1}) \setminus H^1(S^{n-1})$ such that the corresponding commutator $\overline{T}_{b,k}$ is bounded on $L^p(\mathbb{R}^n)$ for all 1 and a positiveinteger <math>k.

2. Proof of theorems. By the estimates used in [4], it is easy to see that Theorem 2 follows from Theorem 1 directly, so we only prove Theorem 1. We begin with some preliminary lemmas.

LEMMA 1. Let m and k be integers such that $0 \le m \le k$. Suppose that f and g are functions on \mathbb{R}^n with compact support. Then for any bounded measurable set E,

$$\begin{split} \|f * g\|_{L(\log L)^{k}, E} &\leq C|E| \inf \left\{ \lambda > 0 : \frac{1}{|E|} \int_{\mathbb{R}^{n}} \varPhi_{k-m} \left(\frac{|f(x)|}{\lambda} \right) dx \leq 1 \right\} \\ & \times \inf \left\{ \lambda > 0 : \frac{1}{|E|} \int_{\mathbb{R}^{n}} \varPhi_{m} \left(\frac{|g(x)|}{\lambda} \right) dx \leq 1 \right\}. \end{split}$$

Proof. Without loss of generality, we may assume that

$$\inf\left\{\lambda > 0: \frac{1}{|E|} \int_{\mathbb{R}^n} \Phi_{k-m}\left(\frac{|f(x)|}{\lambda}\right) dx \le 1\right\} = \frac{1}{2||g||_1}.$$

Thus, by homogeneity,

$$\inf\left\{\lambda > 0: \frac{1}{|E|} \int_{\mathbb{R}^n} \Phi_{k-m}\left(\frac{|f(x)| \cdot ||g||_1}{\lambda}\right) dx \le 1\right\} = \frac{1}{2}$$

Therefore,

$$\frac{1}{|E|} \int_{\mathbb{R}^n} \Phi_{k-m}(|f(x)| \cdot ||g||_1) \, dx \le 1.$$

Suppose that $\operatorname{supp} g$ is contained in some ball B. By the Jensen inequality,

$$\begin{split} \Phi_{k-m}(|f * g(x)|) &\leq \Phi_{k-m} \left(\int_{B} |f(x-y)| \cdot \|g\|_{1} \, \frac{|g(y)|}{\|g\|_{1}} \, dy \right) \\ &\leq \int_{B} \Phi_{k-m}(|f(x-y)| \cdot \|g\|_{1}) \, \frac{|g(y)|}{\|g\|_{1}} \, dy. \end{split}$$

Let \overline{B} be the support of f. Invoking the Jensen inequality again, we obtain $\Phi_m(\Phi_{k-m}(|f * g(x)|))$

$$\leq \Phi_m \left(\int_{\overline{B}} \frac{|g(x-y)| \int_{\mathbb{R}^n} \Phi_{k-m}(|f(z)| \cdot ||g||_1) dz}{||g||_1} \cdot \frac{\Phi_{k-m}(|f(y)| \cdot ||g||_1) dy}{\int_{\mathbb{R}^n} \Phi_{k-m}(|f(z)| \cdot ||g||_1) dz} \right)$$

$$\leq \int_{\mathbb{R}^n} \Phi_m \left(\frac{|g(x-y)| \cdot |E|}{||g||_1} \right) \frac{\Phi_{k-m}(|f(y)| \cdot ||g||_1)}{\int_{\mathbb{R}^n} \Phi_{k-m}(|f(z)| \cdot ||g||_1) dz} dy,$$

which via the Young inequality gives

$$\int_{E} \Phi_m(\Phi_{k-m}(|f \ast g(x)|)) \, dx \le \int_{\mathbb{R}^n} \Phi_m\left(\frac{|g(y)| \cdot |E|}{\|g\|_1}\right) \, dy.$$

Note that for each t > 0, $\Phi_k(t) \le \Phi_m(\Phi_{k-m}(t))$. Thus,

$$\begin{split} \|f * g\|_{L(\log L)^{k},E} &\leq \inf\left\{\lambda > 0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \varPhi_{m}\left(\frac{|g(x)| \cdot |E|}{\|g\|_{1}\lambda}\right) dx \leq 1\right\} \\ &= |E| \cdot \|g\|_{1}^{-1} \inf\left\{\lambda > 0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \varPhi_{m}\left(\frac{|g(x)|}{\lambda}\right) dx \leq 1\right\}. \end{split}$$

This leads to our desired estimate. \blacksquare

LEMMA 2. Let k be a positive integer and $b \in BMO(\mathbb{R}^n)$, K(x) be a function on $\mathbb{R}^n \setminus \{0\}$ such that for all R > 0 and |y| < R/2,

$$\sum_{d\geq 1} d^k \int_{B(0,2^{d+1}R)\setminus B(0,2^dR)} |K(x-y) - K(x)| dx + \sum_{d\geq 1} |B(0,2^dR)| \cdot ||K(\cdot-y) - K(\cdot)||_{L(\log L)^k, B(0,2^{d+1}R)\setminus B(0,2^dR)} \leq A.$$

Suppose that for each $0 \le m \le k$, the operator

$$T_{b,m}f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^m K(x - y) f(y) \, dy$$

is bounded on $L^2(\mathbb{R}^n)$ with bound $C_m \|b\|_{BMO(\mathbb{R}^n)}^m$. Then the commutator $T_{b,k}$ is a bounded operator on $L^p(\mathbb{R}^n)$ with bound $C(A + \sum_{m=0}^k C_m) \|b\|_{BMO(\mathbb{R}^n)}^k$ for all 1 .

Proof. Without loss of generality, we may assume that $||b||_{BMO(\mathbb{R}^n)} = 1$. By duality, it suffices to prove that for $0 \le m \le k$ and 1 ,

(4)
$$||T_{b,m}f||_p \le C\Big(A + \sum_{l=0}^m C_l\Big)||f||_p$$

We shall carry out the argument by induction on the order m. For m = 0, it is obvious that the operator $T_{b,0}$ is bounded from $L^1(\mathbb{R}^n)$ to weak $L^1(\mathbb{R}^n)$ with bound $C(C_0 + A)$, and the estimate (4) holds for m = 0. Now let m be a positive integer and $m \leq k$. We assume that (4) holds for all $0 \leq l \leq m-1$. By the Marcinkiewicz interpolation theorem, it is enough to show that for each $1 and <math>\lambda > 0$,

(5)
$$|\{x: T_{b,m}f(x) > \lambda\}| \le C\lambda^{-p} \Big(A + \sum_{l=0}^{m} C_l\Big) ||f||_p^p.$$

For given $f \in L^p(\mathbb{R}^n)$ and $\lambda > 0$, applying the Calderón–Zygmund decomposition of $|f|^p$ at the level λ^p , we can write f(x) = g(x) + h(x), where $||g||_{\infty} \leq C\lambda$, $||g||_p \leq C||f||_p$; $h(x) = \sum_j h_j(x)$, h_j is supported on Q_j , $\int_{\mathbb{R}^n} h_j(x) dx = 0$, $\int |h_j(x)|^p dx \leq C\lambda^p |Q_j|$ and $\sum_j |Q_j| \leq C\lambda^{-p} ||f||_p^p$. The $L^2(\mathbb{R}^n)$ boundedness of $T_{b,m}$ states that

$$|\{x: T_{b,m}g(x) > \lambda\}| \le \lambda^{-2} ||T_{b,m}g||_2^2 \le C\lambda^{-p} ||f||_p^p.$$

For each fixed j, let y_j^0 and r_j be the center and the side length of Q_j . Set $B_j = B(y_j^0, 4nr_j)$ and $E = \bigcup_j B_j$. It is obvious that

$$|E| \le C \sum_{j} |Q_j| \le C \lambda^{-p} ||f||_p^p.$$

Thus, the proof of (5) can be reduced to proving that for $\lambda > 0$,

$$|\{x \in \mathbb{R}^n \setminus E : |T_{b,m}h(x)| > \lambda\}| \le C\lambda^{-p} ||f||_p^p$$

For each fixed j, denote by $m_{B_j}(b)$ the mean value of b on B_j . With the aid of the formula

$$(b(x) - b(y))^m = (b(x) - m_{B_j}(b))^m - \sum_{l=0}^{m-1} C_m^l (b(x) - b(y))^l (b(y) - m_{B_j}(b))^{m-l}, \quad x, y \in \mathbb{R}^n,$$

we have

$$T_{b,m}h(x) = \sum_{j} (b(x) - m_{B_j}(b))^m Th_j(x) - \sum_{l=0}^{m-1} C_m^l T_{b,l} \Big(\sum_{j} (b(\cdot) - m_{B_j}(b))^{m-l} h_j \Big)(x).$$

Let $1 < p_0 < p$ and $r = p/p_0$. For each fixed $0 \le l \le m - 1$, our inductive hypothesis together with the Hölder inequality tells us that

$$\begin{split} \left\{ x \in \mathbb{R}^{n} : \left| T_{b,l} \left(\sum_{j} (b(\cdot) - m_{B_{j}}(b))^{m-l} h_{j} \right)(x) \right| > \lambda \right\} \right| \\ & \leq \lambda^{-p_{0}} \left\| T_{b,l} \left(\sum_{j} (b(\cdot) - m_{B_{j}}(b))^{m-l} h_{j} \right) \right\|_{p_{0}}^{p_{0}} \\ & \leq C \left(A + \sum_{i=0}^{l-1} C_{i} \right) \lambda^{-p_{0}} \sum_{j} \int_{B_{j}} |b(y) - m_{B_{j}}(b)|^{(m-l)p_{0}} |h_{j}(y)|^{p_{0}} dy \\ & \leq C \left(A + \sum_{i=0}^{l-1} C_{i} \right) \lambda^{-p_{0}} \\ & \times \sum_{j} \left(\int_{B_{j}} |b(y) - m_{B_{j}}(b)|^{(m-l)p_{0}r'} dy \right)^{1/r'} \left(\int_{B_{j}} |h_{j}|^{p} dy \right)^{1/r} \\ & \leq C \left(A + \sum_{i=0}^{l-1} C_{i} \right) \sum_{j} |B_{j}| \leq C \left(A + \sum_{i=0}^{l-1} C_{i} \right) \lambda^{-p} \|f\|_{p}^{p}. \end{split}$$

Observe that $\Phi_m(t) = t \log^m (2+t)$ is a Young function and its complementary Young function is $\Psi_m(t) \approx e^{t^{1/m}}$. For $y \in Q_j$ and positive integer d, it follows from the generalized Hölder inequality (see [1, Chapter 8] or [6, p. 168]) that

$$\begin{split} & \int_{2^{d}B_{j}\setminus2^{d-1}B_{j}}|K(x-y)-k(x-y_{0}^{j})|\cdot|b(x)-m_{B_{j}}(b)|^{m}\,dx\\ &\leq C|m_{B_{j}}-m_{2^{d}B_{j}}(b)|^{m}\int_{2^{d}B_{j}\setminus2^{d-1}B_{j}}|K(x-y)-K(x-y_{0}^{j})|\,dx\\ &+C\int_{2^{d}B_{j}\setminus2^{d-1}B_{j}}|b(x)-m_{2^{d}B_{j}}(b)|^{m}|K(x-y)-K(x-y_{0}^{j})|\,dx\\ &\leq Cd^{m}\int_{2^{d}B_{j}\setminus2^{d-1}B_{j}}|K(x-y)-K(x-y_{0}^{j})|\,dx \end{split}$$

$$\begin{split} &+ C |2^{d}B_{j}| \cdot \|(b(x) - m_{2^{d}B_{j}}(b))^{m}\|_{\exp(L^{1/m}), 2^{d}B_{j}} \\ &\times \|K(\cdot - y) - K(\cdot - y_{0}^{j})\|_{L(\log L)^{m}, 2^{d}B_{j} \setminus 2^{d-1}B_{j}} \\ &\leq Cd^{m} \int_{2^{d}B_{j} \setminus 2^{d-1}B_{j}} |K(x - y) - K(x - y_{0}^{j})| \, dx \\ &+ C |2^{d}B_{j}| \cdot \|K(\cdot - y) - K(\cdot - y_{0}^{j})\|_{L(\log L)^{m}, 2^{d}B_{j} \setminus 2^{d-1}B_{j}}, \end{split}$$

where in the last but one inequality, we have invoked the fact that

$$|m_{B_j}(b) - m_{2^d B_j}(b)| \le Cd ||b||_{BMO(\mathbb{R}^n)},$$

and in the last inequality, we have used the John–Nirenberg inequality which states that for some positive constants λ_1, λ_2 ,

$$\frac{1}{|2^d B_j|} \int_{2^d B_j} \exp\left(\frac{|b(z) - m_{2^d B_j}(b)|}{\lambda_1 ||b||_{\text{BMO}(\mathbb{R}^n)}}\right) dz \le \lambda_2.$$

By the vanishing mean value of h_j , we see that for each fixed j,

$$\begin{split} & \int_{\mathbb{R}^n \setminus B_j} |b(x) - m_{B_j}(b)|^m |Th_j(x)| \, dx \\ &= \int_{\mathbb{R}^n \setminus B_j} |b(x) - m_{B_j}(b)|^m \Big| \int_{\mathbb{R}^n} [K(x-y) - K(x-y_0)] h_j(y) \, dy \Big| \, dx \\ &\leq C \sum_{d=1}^\infty \int_{B_j} |h_j(y)| \\ & \times \int_{2^d B_j \setminus 2^{d-1} B_j} |b(x) - m_{B_j}(b)|^m |K(x-y) - K(x-y_0)| \, dx \, dy \\ &\leq C A \int_{B_j} |h_j(y)| \, dy \leq C A |B_j|^{1-1/p} \|h_j\|_p \leq C A \lambda |Q_j|, \end{split}$$

which in turn implies

$$\left|\left\{x \in \mathbb{R}^n \setminus E : \sum_j |b(x) - m_{B_j}(b)|^m |Th_j(x)| > \lambda\right\}\right|$$

$$\leq \lambda^{-1} \sum_j \int_{\mathbb{R}^n \setminus E} |b(x) - m_{B_j}(b)|^m |Th_j(x)| \, dx \leq CA \sum_j |Q_j| \leq CA\lambda^{-p} ||f||_p^p.$$

Combining the estimates above yields the desired estimate. \blacksquare

Proof of Theorem 1. By duality, it suffices to consider the case $2 . As in the proof of [8, Theorem 1], let <math>\phi \in C_0^{\infty}(\mathbb{R}^n)$ be a radial nonnegative function such that $\int_{\mathbb{R}^n} \phi(x) dx = 1$, supp $\phi \subset \{x : |x| \le 1/4\}$.

For $l \in \mathbb{Z}$, set $\phi_l(x) = 2^{-nl}\phi(2^{-l}x)$. For a positive integer j, define

$$\widetilde{K}_j(x) = \sum_{l=-\infty}^{\infty} K_l * \phi_{l-j}(x).$$

Let S_j be the convolution operator whose kernel is \widetilde{K}_j . Note that

$$|\widehat{\phi}_{l-j}(\xi) - 1| \le C \min\{|2^{l-j}\xi|, 1\}, \quad \|\nabla\widehat{\phi}_{l-j}(\xi)\|_{\infty} \le C 2^{l-j}.$$

Now the Fourier transform estimate of K_l gives

$$\widehat{K}_{l}(\xi)\widehat{\phi}_{l-j}(\xi) - \widehat{K}_{l}(\xi)| \le C \min\{2^{-j}|2^{l}\xi|, \log^{-\alpha}(2+|2^{l}\xi|)\},\$$

and

$$\|\nabla(\widehat{K}_{l}\widehat{\phi}_{l-j}) - \nabla\widehat{K}_{l}\|_{\infty} \leq \|\nabla\widehat{K}_{l}\|_{\infty} \|\widehat{\phi}_{l-j} - 1\|_{\infty} + \|\widehat{K}_{l}\|_{\infty} \|\nabla\widehat{\phi}_{l-j}\|_{\infty} \leq C2^{l}.$$

This together with Theorem H says that for $0 \leq m \leq k, b \in BMO(\mathbb{R}^{n})$ and $0 < \nu < 1$ such that $\alpha\nu > k+1$,

$$||T_{b,m}f - S_{j;b,m}f||_2 \le C(n,m) ||b||_{BMO(\mathbb{R}^n)}^m j^{-\alpha\nu+m+1} ||f||_2, \quad 0 \le m \le k.$$

By the $L^2(\mathbb{R}^n)$ boundedness of $T_{b,m}$, we know that for all positive integers jand $0 \leq m \leq k$, $S_{j;b,m}$ is also bounded on $L^2(\mathbb{R}^n)$ with bound $C \|b\|_{BMO(\mathbb{R}^n)}^m$. Note that

(6)
$$\|S_{2^{j+1};b,k}f - S_{2^{j};b,k}f\|_2 \le C2^{(-\alpha\nu+k+1)j}\|f\|_2.$$

Therefore, the series

(7)
$$T_{b,k} = S_{1;b,k} + \sum_{j=0}^{\infty} (S_{2^{j+1};b,k} - S_{2^j;b,k})$$

converges in the $L^2(\mathbb{R}^n)$ operator norm.

Now we turn to the $L^p(\mathbb{R}^n)$ boundedness of $S_{2^j;b,k}$. For $y \in \mathbb{R}^n$, it is easy to verify that

$$\begin{aligned} \|\phi_{l-j}(\cdot - y) - \phi_{l-j}(\cdot)\|_1 &\leq C \min\{1, 2^{j-l} | y | \}, \\ \|\phi_{l-j}(\cdot - y) - \phi_{l-j}(\cdot)\|_\infty &\leq C 2^{-(n+1)(l-j)} | y |. \end{aligned}$$

Set $\lambda_0 = R^{-n} j^k \min\{1, 2^j |y|/R\}$. Straightforward computation shows that if |y| < R/2 and $R \approx 2^l$, then

$$CR^{-n} \int_{\mathbb{R}^{n}} \frac{|\phi_{l-j}(z-y) - \phi_{l-j}(z)|}{\lambda_{0}} \log^{k} \left(2 + \frac{|\phi_{l-j}(z-y) - \phi_{l-j}(z)|}{\lambda_{0}}\right) dz$$

$$\leq Cj^{-k} \log^{k} \left(2 + \frac{2^{-(n+1)(l-j)}|y|}{R^{-n} \min\{1, 2^{j}|y|/R\}}\right)$$

$$\leq Cj^{-k} \max\left\{\log^{k} \left(2 + \frac{2^{(n+1)j}|y|}{2^{(n+1)l}R^{-n}}\right), \log^{k} \left(2 + \frac{2^{(n+1)j}R}{2^{(n+1)l}2^{j}R^{-n}}\right)\right\} \leq C_{n}$$

Thus,

$$\inf\left\{\lambda > 0: \frac{1}{|B(0,2R)\setminus B(0,R)|} \int_{\mathbb{R}^n} \Phi_k\left(\frac{|\phi_{l-j}(z-y) - \phi_{l-j}(z)|}{\lambda}\right) dz \le 1\right\}$$
$$\le CR^{-n}j^k \min\{1, 2^j|y|/R\}.$$

Note that for R > 0 and |y| < R/2,

$$\begin{split} \|\widetilde{K}_{j}(\cdot-y) - \widetilde{K}_{j}(\cdot)\|_{L(\log L)^{k}, B(0,2R)\setminus B(0,R)} \\ &\leq \sum_{2^{l}\approx R} \|K_{l}*\phi_{l-j}(\cdot-y) - K_{l}*\phi_{l-j}(\cdot)\|_{L(\log L)^{k}, B(0,2R)\setminus B(0,R)}. \end{split}$$

Applying Lemma 1, we find that for $l \in \mathbb{Z}$ such that $2^l \approx R$,

$$\begin{split} \|K_{l} * \phi_{l-j}(\cdot - y) - K_{l} * \phi_{l-j}(\cdot)\|_{L(\log L)^{k}, B(0, 2R) \setminus B(0, R)} \\ &\leq C \inf \left\{ \lambda > 0 : \frac{1}{|B(0, 2R) \setminus B(0, R)|} \\ &\times \int_{\mathbb{R}^{n}} \Phi_{k} \left(\frac{|\phi_{l-j}(z - y) - \phi_{l-j}(z)|}{\lambda} \right) dz \leq 1 \right\} \|K_{l}\|_{1} \\ &\leq C R^{-n} j^{k} \min\{1, 2^{j}|y|/R\}. \end{split}$$

On the other hand, it is easy to verify that

$$\int_{R < |x| \le 2R} |\widetilde{K}_{j}(x-y) - \widetilde{K}_{j}(x)| \, dx \le \sum_{2^{l} \approx R} ||K_{l} * \phi_{l-j}(\cdot - y) - K_{l} * \phi_{l-j}(\cdot)||_{1} \\
\le \sum_{2^{l} \approx R} ||K_{l}||_{1} ||\phi_{l-j}(\cdot - y) - \phi_{l-j}(\cdot)||_{1} \\
\le C \min\{1, 2^{j}|y|/R\}.$$

This leads to

$$\begin{split} \sum_{d=1}^{\infty} d^k & \int_{B(0,2^{d+1}R)\setminus B(0,2^dR)} |\widetilde{K}_j(x-y) - \widetilde{K}_j(x)| \, dx \\ &+ \sum_{d=1}^{\infty} |B(0,2^dR)| \cdot \|\widetilde{K}_j(\cdot-y) - \widetilde{K}_j(\cdot)\|_{L(\log L)^k, B(0,2^{d+1}R)\setminus B(0,2^dR)} \\ &\leq Cj^k \sum_{d=1}^{\infty} (2^dR)^n \min\{1,2^{j-d}|y|/R\} (2^dR)^{-n} + \sum_{d=1}^{\infty} d^k \min\{1,2^{j-d}|y|/R\} \\ &\leq Cj^{k+1}. \end{split}$$

Lemma 2 now shows that for 1 ,

(8)
$$\|S_{2^{j+1};b,k}f - S_{2^{j};b,k}f\|_{p} \le C2^{(k+1)j} \|b\|_{BMO(\mathbb{R}^{n})}^{k} \|f\|_{p}.$$

By the Riesz-Thorin interpolation theorem, it follows from the inequalities (6) and (8) that for $2 and any <math>\theta_0 > 0$,

(9) $\|S_{2^{j+1};b,k}f - S_{2^{j};b,k}f\|_{p} \leq C(n,k,p,\alpha,\nu,\theta_{0})2^{(-2\alpha\nu/p+k+1+\theta_{0})j}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k}\|f\|_{p}.$

For each fixed $2 , we can choose <math>\theta_0 > 0$ small enough and $0 < \nu < 1$ such that $-2\alpha\nu/p+k+1+\theta_0 < 0$. So summing up the inequalities (9) over all nonnegative integers j shows that the series (7) converges in the $L^p(\mathbb{R}^n)$ operator norm. This completes the proof of Theorem 1.

Acknowledgements. The authors would like to thank the referee for some valuable suggestions and corrections.

REFERENCES

- [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] J. Alvarez, R. Bagby, D. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195–209.
- [3] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978), 185 pp.
- [4] L. Grafakos and A. Stefanov, L^p bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), 455–469.
- [5] G. Hu, $L^2(\mathbb{R}^n)$ boundedness for the commutators of convolution operators, Nagoya Math. J. 163 (2001), 55–70.
- C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163–185.
- [7] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- [8] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389–399.

Department of Applied Mathematics	Department of Mathematics
University of Information Engineering	The National University of Singapore
P.O. Box 1001-747	Lower Kent Ridge Road
Zhengzhou 450002, China	119260 Singapore
E-mail: huguoen@371.net	E-mail: matsunqy@nus.edu.sg
wangxinwsi@sina.com	

Received 23 February 2001

(4035)