COLLOQUIUM MATHEMATICUM

$L^{p}\left(\mathbb{R}^{n}\right)$ BOUNDS FOR
 COMMUTATORS OF CONVOLUTION OPERATORS

BY
GUOEN HU (Zhengzhou), QIYU SUN (Singapore)
and XIN WANG (Zhengzhou)

Abstract

The $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness is established for commutators generated by $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos-Stefanov condition.

1. Introduction. We will work in $\mathbb{R}^{n}, n \geq 1$. Let T be a standard Calderón-Zygmund operator and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. Define the first order commutator of T and b by

$$
T_{b} f(x)=b(x) T f(x)-T(b f)(x)
$$

In the remarkable work [3], Coifman and Meyer observed that the $L^{p}\left(\mathbb{R}^{n}\right)$ $(1<p<\infty)$ boundedness of T_{b} can be obtained from the weighted $L^{p}\left(\mathbb{R}^{n}\right)$ estimates with A_{p} weights for the operator T, where A_{p} denotes the weight function class of Muckenhoupt (see [7, Chapter V] for definition and properties of A_{p}). Alvarez, Bagby, Kurtz and Pérez [2] developed the idea of Coifman and Meyer, and established a generalized boundedness result for commutators of linear operators. They showed that if $1<p, q<\infty$, and the linear operator T is bounded on $L^{p}\left(\mathbb{R}^{n}, w(x) d x\right)$ with bound independent of w for any $w \in A_{q}$, then for any positive integer k and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, the k th order commutator of T defined by

$$
T_{b, k} f(x)=b(x) T_{b, k-1} f(x)-T_{b, k-1}(b f)(x), \quad T_{b, 0} f(x)=T f(x)
$$

is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, p)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$. In [5], Hu considered the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness for commutators of convolution operators and proved the following result.

[^0]Theorem H. Let k be a positive integer, $K(x)$ be a function on $\mathbb{R}^{n} \backslash\{0\}$ and $K(x)=\sum_{j \in \mathbb{Z}} K_{j}(x)$. Suppose that there are some constants $C>0$, $0<A \leq 1 / 2$ and $\alpha>k+1$ such that for each $j \in \mathbb{Z}$,

$$
\begin{gathered}
\left\|K_{j}\right\|_{1} \leq C, \quad\left\|\nabla \widehat{K}_{j}\right\|_{\infty} \leq C 2^{j}, \\
\left|\widehat{K}_{j}(\xi)\right| \leq C \min \left\{A\left|2^{j} \xi\right|, \log ^{-\alpha}\left(2+\left|2^{j} \xi\right|\right)\right\} .
\end{gathered}
$$

Then for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and $0<\nu<1$ such that $\alpha \nu>k+1$, the commutator

$$
T_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} K(x-y) f(y) d y, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right),
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, \alpha, \nu) \log ^{-\alpha \nu+k+1}(1 / A)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.
In this paper, we will continue the study begun in [5]. By Fourier transform estimates and approximation of the identity, we will establish the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for commutators of convolution operators. We remark that in this paper, we are very much motivated by the work of Watson [8]; some ideas are from Pérez's paper [6]. For a function f on \mathbb{R}^{n}, denote by \widehat{f} the Fourier transform of f. For a nonnegative integer m, let $\Phi_{m}(t)=$ $t \log ^{m}(2+t)$. For a locally integrable function f and a bounded measurable set E with Lebesgue measure $|E|$, define

$$
\|f\|_{L(\log L)^{m}, E}=\inf \left\{\lambda>0: \frac{1}{|E|} \int_{E} \Phi_{m}\left(\frac{|f(y)|}{\lambda}\right) d y \leq 1\right\}
$$

and

$$
\|f\|_{\exp \left(L^{1 / m}\right), E}=\inf \left\{\lambda>0: \frac{1}{|E|} \int_{E} \exp \left(\frac{|f(y)|}{\lambda}\right)^{1 / m} d y \leq 2\right\}
$$

Our main result is
Theorem 1. Let k be a positive integer, $K(x)$ be a function on $\mathbb{R}^{n} \backslash\{0\}$ and $K_{j}(x)=K(x) \chi_{\left\{2^{j} \leq|x|<2^{j+1}\right\}}(x)$ for $j \in \mathbb{Z}$, where χ_{A} is the characteristic function of the set A. Suppose that there exist constants $C>0$ and $\alpha>k+1$ such that for each $j \in \mathbb{Z}$,

$$
\begin{gather*}
\left\|K_{j}\right\|_{1} \leq C, \quad\left|\widehat{K}_{j}(\xi)\right| \leq C \min \left\{\left|2^{j} \xi\right|, \log ^{-\alpha}\left(2+\left|2^{j} \xi\right|\right)\right\} \\
\left\|\nabla \widehat{K}_{j}\right\|_{\infty} \leq C 2^{j} \tag{1}
\end{gather*}
$$

Then for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and $2 \alpha /(2 \alpha-(k+1))<p<2 \alpha /(k+1)$, the commutator

$$
\begin{equation*}
T_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} K(x-y) f(y) d y, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{2}
\end{equation*}
$$

is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, p, \alpha)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.
As an application of Theorem 1, we will obtain

Theorem 2. Let k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right), \Omega$ be homogeneous of degree zero and have mean value zero. Suppose that for some $\alpha>k+1$,

$$
\begin{equation*}
\sup _{\zeta \in S^{n-1}} \int_{S^{n-1}} \Omega(\theta)\left(\log \frac{1}{|\theta \cdot \zeta|}\right)^{\alpha} d \theta<\infty \tag{3}
\end{equation*}
$$

Then for $2 \alpha /(2 \alpha-(k+1))<p<2 \alpha /(k+1)$, the commutator defined by

$$
\bar{T}_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, p, \alpha)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.
REmark. The size condition (3) for $\alpha \geq 1$ was introduced by Grafakos and Stefanov [4] in order to study the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the homogeneous singular integral operator defined by

$$
\bar{T} f(x)=\int_{\mathbb{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

It has been proved in [4] that there exist integrable functions on S^{n-1} which are not in $H^{1}\left(S^{n-1}\right)$, but satisfy (3) for all $\alpha>1$. Thus our Theorem 2 shows that there exists $\Omega \in L^{1}\left(S^{n-1}\right) \backslash H^{1}\left(S^{n-1}\right)$ such that the corresponding commutator $\bar{T}_{b, k}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$ and a positive integer k.
2. Proof of theorems. By the estimates used in [4], it is easy to see that Theorem 2 follows from Theorem 1 directly, so we only prove Theorem 1. We begin with some preliminary lemmas.

Lemma 1. Let m and k be integers such that $0 \leq m \leq k$. Suppose that f and g are functions on \mathbb{R}^{n} with compact support. Then for any bounded measurable set E,

$$
\begin{aligned}
\|f * g\|_{L(\log L)^{k}, E} \leq & C|E| \inf \left\{\lambda>0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{k-m}\left(\frac{|f(x)|}{\lambda}\right) d x \leq 1\right\} \\
& \times \inf \left\{\lambda>0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{m}\left(\frac{|g(x)|}{\lambda}\right) d x \leq 1\right\}
\end{aligned}
$$

Proof. Without loss of generality, we may assume that

$$
\inf \left\{\lambda>0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{k-m}\left(\frac{|f(x)|}{\lambda}\right) d x \leq 1\right\}=\frac{1}{2\|g\|_{1}}
$$

Thus, by homogeneity,

$$
\inf \left\{\lambda>0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{k-m}\left(\frac{|f(x)| \cdot\|g\|_{1}}{\lambda}\right) d x \leq 1\right\}=\frac{1}{2}
$$

Therefore,

$$
\frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{k-m}\left(|f(x)| \cdot\|g\|_{1}\right) d x \leq 1
$$

Suppose that $\operatorname{supp} g$ is contained in some ball B. By the Jensen inequality,

$$
\begin{aligned}
\Phi_{k-m}(|f * g(x)|) & \leq \Phi_{k-m}\left(\int_{B}|f(x-y)| \cdot\|g\|_{1} \frac{|g(y)|}{\|g\|_{1}} d y\right) \\
& \leq \int_{B} \Phi_{k-m}\left(|f(x-y)| \cdot\|g\|_{1}\right) \frac{|g(y)|}{\|g\|_{1}} d y
\end{aligned}
$$

Let \bar{B} be the support of f. Invoking the Jensen inequality again, we obtain

$$
\begin{aligned}
& \Phi_{m}\left(\Phi_{k-m}(|f * g(x)|)\right) \\
& \leq \Phi_{m}\left(\int_{\bar{B}} \frac{|g(x-y)| \int_{\mathbb{R}^{n}} \Phi_{k-m}\left(|f(z)| \cdot\|g\|_{1}\right) d z}{\|g\|_{1}} \cdot \frac{\Phi_{k-m}\left(|f(y)| \cdot\|g\|_{1}\right) d y}{\int_{\mathbb{R}^{n}} \Phi_{k-m}\left(|f(z)| \cdot\|g\|_{1}\right) d z}\right) \\
& \leq \int_{\mathbb{R}^{n}} \Phi_{m}\left(\frac{|g(x-y)| \cdot|E|}{\|g\|_{1}}\right) \frac{\Phi_{k-m}\left(|f(y)| \cdot\|g\|_{1}\right)}{\int_{\mathbb{R}^{n}} \Phi_{k-m}\left(|f(z)| \cdot\|g\|_{1}\right) d z} d y
\end{aligned}
$$

which via the Young inequality gives

$$
\int_{E} \Phi_{m}\left(\Phi_{k-m}(|f * g(x)|)\right) d x \leq \int_{\mathbb{R}^{n}} \Phi_{m}\left(\frac{|g(y)| \cdot|E|}{\|g\|_{1}}\right) d y
$$

Note that for each $t>0, \Phi_{k}(t) \leq \Phi_{m}\left(\Phi_{k-m}(t)\right)$. Thus,

$$
\begin{aligned}
\|f * g\|_{L(\log L)^{k}, E} & \leq \inf \left\{\lambda>0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{m}\left(\frac{|g(x)| \cdot|E|}{\|g\|_{1} \lambda}\right) d x \leq 1\right\} \\
& =|E| \cdot\|g\|_{1}^{-1} \inf \left\{\lambda>0: \frac{1}{|E|} \int_{\mathbb{R}^{n}} \Phi_{m}\left(\frac{\mid g(x)}{\lambda}\right) d x \leq 1\right\}
\end{aligned}
$$

This leads to our desired estimate.
Lemma 2. Let k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right), K(x)$ be a function on $\mathbb{R}^{n} \backslash\{0\}$ such that for all $R>0$ and $|y|<R / 2$,

$$
\begin{aligned}
\sum_{d \geq 1} d^{k} & \int_{B\left(0,2^{d+1} R\right) \backslash B\left(0,2^{d} R\right)}|K(x-y)-K(x)| d x \\
& +\sum_{d \geq 1}\left|B\left(0,2^{d} R\right)\right| \cdot\|K(\cdot-y)-K(\cdot)\|_{L(\log L)^{k}, B\left(0,2^{d+1} R\right) \backslash B\left(0,2^{d} R\right)} \leq A
\end{aligned}
$$

Suppose that for each $0 \leq m \leq k$, the operator

$$
T_{b, m} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{m} K(x-y) f(y) d y
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with bound $C_{m}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{m}$. Then the commutator $T_{b, k}$ is a bounded operator on $L^{p}\left(\mathbb{R}^{n}\right)$ with bound $C\left(A+\sum_{m=0}^{k} C_{m}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$ for all $1<p<\infty$.

Proof. Without loss of generality, we may assume that $\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}=1$. By duality, it suffices to prove that for $0 \leq m \leq k$ and $1<p<2$,

$$
\begin{equation*}
\left\|T_{b, m} f\right\|_{p} \leq C\left(A+\sum_{l=0}^{m} C_{l}\right)\|f\|_{p} \tag{4}
\end{equation*}
$$

We shall carry out the argument by induction on the order m. For $m=0$, it is obvious that the operator $T_{b, 0}$ is bounded from $L^{1}\left(\mathbb{R}^{n}\right)$ to weak $L^{1}\left(\mathbb{R}^{n}\right)$ with bound $C\left(C_{0}+A\right)$, and the estimate (4) holds for $m=0$. Now let m be a positive integer and $m \leq k$. We assume that (4) holds for all $0 \leq l \leq m-1$. By the Marcinkiewicz interpolation theorem, it is enough to show that for each $1<p<2$ and $\lambda>0$,

$$
\begin{equation*}
\left|\left\{x: T_{b, m} f(x)>\lambda\right\}\right| \leq C \lambda^{-p}\left(A+\sum_{l=0}^{m} C_{l}\right)\|f\|_{p}^{p} \tag{5}
\end{equation*}
$$

For given $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $\lambda>0$, applying the Calderón-Zygmund decomposition of $|f|^{p}$ at the level λ^{p}, we can write $f(x)=g(x)+h(x)$, where $\|g\|_{\infty} \leq C \lambda,\|g\|_{p} \leq C\|f\|_{p} ; h(x)=\sum_{j} h_{j}(x), h_{j}$ is supported on Q_{j}, $\int_{\mathbb{R}^{n}} h_{j}(x) d x=0, \int\left|h_{j}(x)\right|^{p} d x \leq C \lambda^{p}\left|Q_{j}\right|$ and $\sum_{j}\left|Q_{j}\right| \leq C \lambda^{-p}\|f\|_{p}^{p}$. The $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness of $T_{b, m}$ states that

$$
\left|\left\{x: T_{b, m} g(x)>\lambda\right\}\right| \leq \lambda^{-2}\left\|T_{b, m} g\right\|_{2}^{2} \leq C \lambda^{-p}\|f\|_{p}^{p}
$$

For each fixed j, let y_{j}^{0} and r_{j} be the center and the side length of Q_{j}. Set $B_{j}=B\left(y_{j}^{0}, 4 n r_{j}\right)$ and $E=\bigcup_{j} B_{j}$. It is obvious that

$$
|E| \leq C \sum_{j}\left|Q_{j}\right| \leq C \lambda^{-p}\|f\|_{p}^{p}
$$

Thus, the proof of (5) can be reduced to proving that for $\lambda>0$,

$$
\left|\left\{x \in \mathbb{R}^{n} \backslash E:\left|T_{b, m} h(x)\right|>\lambda\right\}\right| \leq C \lambda^{-p}\|f\|_{p}^{p}
$$

For each fixed j, denote by $m_{B_{j}}(b)$ the mean value of b on B_{j}. With the aid of the formula

$$
\begin{aligned}
(b(x)-b(y))^{m}= & \left(b(x)-m_{B_{j}}(b)\right)^{m} \\
& -\sum_{l=0}^{m-1} C_{m}^{l}(b(x)-b(y))^{l}\left(b(y)-m_{B_{j}}(b)\right)^{m-l}, \quad x, y \in \mathbb{R}^{n}
\end{aligned}
$$

we have

$$
\begin{aligned}
T_{b, m} h(x)= & \sum_{j}\left(b(x)-m_{B_{j}}(b)\right)^{m} T h_{j}(x) \\
& -\sum_{l=0}^{m-1} C_{m}^{l} T_{b, l}\left(\sum_{j}\left(b(\cdot)-m_{B_{j}}(b)\right)^{m-l} h_{j}\right)(x)
\end{aligned}
$$

Let $1<p_{0}<p$ and $r=p / p_{0}$. For each fixed $0 \leq l \leq m-1$, our inductive hypothesis together with the Hölder inequality tells us that

$$
\begin{aligned}
\mid\{x \in & \left.\mathbb{R}^{n}:\left|T_{b, l}\left(\sum_{j}\left(b(\cdot)-m_{B_{j}}(b)\right)^{m-l} h_{j}\right)(x)\right|>\lambda\right\} \mid \\
\leq & \lambda^{-p_{0}}\left\|T_{b, l}\left(\sum_{j}\left(b(\cdot)-m_{B_{j}}(b)\right)^{m-l} h_{j}\right)\right\|_{p_{0}}^{p_{0}} \\
\leq & C\left(A+\sum_{i=0}^{l-1} C_{i}\right) \lambda^{-p_{0}} \sum_{j} \int_{B_{j}}\left|b(y)-m_{B_{j}}(b)\right|^{(m-l) p_{0}}\left|h_{j}(y)\right|^{p_{0}} d y \\
\leq & C\left(A+\sum_{i=0}^{l-1} C_{i}\right) \lambda^{-p_{0}} \\
& \times \sum_{j}\left(\int_{B_{j}}\left|b(y)-m_{B_{j}}(b)\right|^{(m-l) p_{0} r^{\prime}} d y\right)^{1 / r^{\prime}}\left(\int_{B_{j}}\left|h_{j}\right|^{p} d y\right)^{1 / r} \\
\leq & C\left(A+\sum_{i=0}^{l-1} C_{i}\right) \sum_{j}\left|B_{j}\right| \leq C\left(A+\sum_{i=0}^{l-1} C_{i}\right) \lambda^{-p}\|f\|_{p}^{p}
\end{aligned}
$$

Observe that $\Phi_{m}(t)=t \log ^{m}(2+t)$ is a Young function and its complementary Young function is $\Psi_{m}(t) \approx e^{t^{1 / m}}$. For $y \in Q_{j}$ and positive integer d, it follows from the generalized Hölder inequality (see [1, Chapter 8] or [6, p. 168]) that

$$
\begin{aligned}
& \quad \int_{2^{d} B_{j} \backslash 2^{d-1} B_{j}}\left|K(x-y)-k\left(x-y_{0}^{j}\right)\right| \cdot\left|b(x)-m_{B_{j}}(b)\right|^{m} d x \\
& \leq C\left|m_{B_{j}}-m_{2^{d} B_{j}}(b)\right|^{m} \int_{2^{d} B_{j} \backslash 2^{d-1} B_{j}}\left|K(x-y)-K\left(x-y_{0}^{j}\right)\right| d x \\
& \quad+C \int_{2^{d} B_{j} \backslash 2^{d-1} B_{j}}\left|b(x)-m_{2^{d} B_{j}}(b)\right|^{m}\left|K(x-y)-K\left(x-y_{0}^{j}\right)\right| d x \\
& \quad \leq C d^{m} \int_{2^{d} B_{j} \backslash 2^{d-1} B_{j}}\left|K(x-y)-K\left(x-y_{0}^{j}\right)\right| d x
\end{aligned}
$$

$$
\begin{aligned}
& +C\left|2^{d} B_{j}\right| \cdot\left\|\left(b(x)-m_{2^{d} B_{j}}(b)\right)^{m}\right\|_{\exp \left(L^{1 / m}\right), 2^{d} B_{j}} \\
& \times\left\|K(\cdot-y)-K\left(\cdot-y_{0}^{j}\right)\right\|_{L(\log L)^{m}, 2^{d} B_{j} \backslash 2^{d-1} B_{j}} \\
\leq & C d^{m} \int_{2^{d} B_{j} \backslash 2^{d-1} B_{j}}\left|K(x-y)-K\left(x-y_{0}^{j}\right)\right| d x \\
& +C\left|2^{d} B_{j}\right| \cdot\left\|K(\cdot-y)-K\left(\cdot-y_{0}^{j}\right)\right\|_{L(\log L)^{m}, 2^{d} B_{j} \backslash 2^{d-1} B_{j}}
\end{aligned}
$$

where in the last but one inequality, we have invoked the fact that

$$
\left|m_{B_{j}}(b)-m_{2^{d} B_{j}}(b)\right| \leq C d\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}
$$

and in the last inequality, we have used the John-Nirenberg inequality which states that for some positive constants λ_{1}, λ_{2},

$$
\frac{1}{\left|2^{d} B_{j}\right|} \int_{2^{d} B_{j}} \exp \left(\frac{\left|b(z)-m_{2^{d} B_{j}}(b)\right|}{\left.\lambda_{1}\|b\|_{\operatorname{BMO}\left(\mathbb{R}^{n}\right)}\right) d z \leq \lambda_{2}}\right.
$$

By the vanishing mean value of h_{j}, we see that for each fixed j,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash B_{j}}\left|b(x)-m_{B_{j}}(b)\right|^{m}\left|T h_{j}(x)\right| d x \\
& \quad= \int_{\mathbb{R}^{n} \backslash B_{j}}\left|b(x)-m_{B_{j}}(b)\right|^{m}\left|\int_{\mathbb{R}^{n}}\left[K(x-y)-K\left(x-y_{0}\right)\right] h_{j}(y) d y\right| d x \\
& \quad \leq C \sum_{d=1}^{\infty} \int_{B_{j}}\left|h_{j}(y)\right| \\
& \quad \times \int_{2^{d} B_{j} \backslash 2^{d-1} B_{j}}\left|b(x)-m_{B_{j}}(b)\right|^{m}\left|K(x-y)-K\left(x-y_{0}\right)\right| d x d y \\
& \quad \leq C A \int_{B_{j}}\left|h_{j}(y)\right| d y \leq C A\left|B_{j}\right|^{1-1 / p}\left\|h_{j}\right\|_{p} \leq C A \lambda\left|Q_{j}\right|
\end{aligned}
$$

which in turn implies

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n} \backslash E: \sum_{j}\left|b(x)-m_{B_{j}}(b)\right|^{m}\left|T h_{j}(x)\right|>\lambda\right\}\right| \\
& \leq \lambda^{-1} \sum_{j} \int_{\mathbb{R}^{n} \backslash E}\left|b(x)-m_{B_{j}}(b)\right|^{m}\left|T h_{j}(x)\right| d x \leq C A \sum_{j}\left|Q_{j}\right| \leq C A \lambda^{-p}\|f\|_{p}^{p}
\end{aligned}
$$

Combining the estimates above yields the desired estimate.
Proof of Theorem 1. By duality, it suffices to consider the case $2<p<$ $2 \alpha /(k+1)$. As in the proof of [8, Theorem 1], let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be a radial nonnegative function such that $\int_{\mathbb{R}^{n}} \phi(x) d x=1, \operatorname{supp} \phi \subset\{x:|x| \leq 1 / 4\}$.

For $l \in \mathbb{Z}$, set $\phi_{l}(x)=2^{-n l} \phi\left(2^{-l} x\right)$. For a positive integer j, define

$$
\widetilde{K}_{j}(x)=\sum_{l=-\infty}^{\infty} K_{l} * \phi_{l-j}(x)
$$

Let S_{j} be the convolution operator whose kernel is \widetilde{K}_{j}. Note that

$$
\left|\widehat{\phi}_{l-j}(\xi)-1\right| \leq C \min \left\{\left|2^{l-j} \xi\right|, 1\right\}, \quad\left\|\nabla \widehat{\phi}_{l-j}(\xi)\right\|_{\infty} \leq C 2^{l-j}
$$

Now the Fourier transform estimate of K_{l} gives

$$
\left|\widehat{K}_{l}(\xi) \widehat{\phi}_{l-j}(\xi)-\widehat{K}_{l}(\xi)\right| \leq C \min \left\{2^{-j}\left|2^{l} \xi\right|, \log ^{-\alpha}\left(2+\left|2^{l} \xi\right|\right)\right\}
$$

and

$$
\left\|\nabla\left(\widehat{K}_{l} \widehat{\phi}_{l-j}\right)-\nabla \widehat{K}_{l}\right\|_{\infty} \leq\left\|\nabla \widehat{K}_{l}\right\|_{\infty}\left\|\widehat{\phi}_{l-j}-1\right\|_{\infty}+\left\|\widehat{K}_{l}\right\|_{\infty}\left\|\nabla \widehat{\phi}_{l-j}\right\|_{\infty} \leq C 2^{l}
$$

This together with Theorem H says that for $0 \leq m \leq k, b \in \mathrm{BMO}\left(\mathbb{R}^{n}\right)$ and $0<\nu<1$ such that $\alpha \nu>k+1$,

$$
\left\|T_{b, m} f-S_{j ; b, m} f\right\|_{2} \leq C(n, m)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{m} j^{-\alpha \nu+m+1}\|f\|_{2}, \quad 0 \leq m \leq k
$$

By the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness of $T_{b, m}$, we know that for all positive integers j and $0 \leq m \leq k, S_{j ; b, m}$ is also bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with bound $C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{m}$. Note that

$$
\begin{equation*}
\left\|S_{2^{j+1} ; b, k} f-S_{2^{j} ; b, k} f\right\|_{2} \leq C 2^{(-\alpha \nu+k+1) j}\|f\|_{2} \tag{6}
\end{equation*}
$$

Therefore, the series

$$
\begin{equation*}
T_{b, k}=S_{1 ; b, k}+\sum_{j=0}^{\infty}\left(S_{2^{j+1} ; b, k}-S_{2^{j} ; b, k}\right) \tag{7}
\end{equation*}
$$

converges in the $L^{2}\left(\mathbb{R}^{n}\right)$ operator norm.
Now we turn to the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness of $S_{2^{j} ; b, k}$. For $y \in \mathbb{R}^{n}$, it is easy to verify that

$$
\begin{aligned}
\left\|\phi_{l-j}(\cdot-y)-\phi_{l-j}(\cdot)\right\|_{1} & \leq C \min \left\{1,2^{j-l}|y|\right\} \\
\left\|\phi_{l-j}(\cdot-y)-\phi_{l-j}(\cdot)\right\|_{\infty} & \leq C 2^{-(n+1)(l-j)}|y|
\end{aligned}
$$

Set $\lambda_{0}=R^{-n} j^{k} \min \left\{1,2^{j}|y| / R\right\}$. Straightforward computation shows that if $|y|<R / 2$ and $R \approx 2^{l}$, then

$$
\begin{aligned}
& C R^{-n} \int_{\mathbb{R}^{n}} \frac{\left|\phi_{l-j}(z-y)-\phi_{l-j}(z)\right|}{\lambda_{0}} \log ^{k}\left(2+\frac{\left|\phi_{l-j}(z-y)-\phi_{l-j}(z)\right|}{\lambda_{0}}\right) d z \\
& \quad \leq C j^{-k} \log ^{k}\left(2+\frac{2^{-(n+1)(l-j)}|y|}{R^{-n} \min \left\{1,2^{j}|y| / R\right\}}\right) \\
& \quad \leq C j^{-k} \max \left\{\log ^{k}\left(2+\frac{2^{(n+1) j}|y|}{2^{(n+1) l} R^{-n}}\right), \log ^{k}\left(2+\frac{2^{(n+1) j} R}{2^{(n+1) l} 2^{j} R^{-n}}\right)\right\} \leq C
\end{aligned}
$$

Thus,

$$
\begin{array}{r}
\inf \left\{\lambda>0: \frac{1}{|B(0,2 R) \backslash B(0, R)|} \int_{\mathbb{R}^{n}} \Phi_{k}\left(\frac{\left|\phi_{l-j}(z-y)-\phi_{l-j}(z)\right|}{\lambda}\right) d z \leq 1\right\} \\
\leq C R^{-n} j^{k} \min \left\{1,2^{j}|y| / R\right\}
\end{array}
$$

Note that for $R>0$ and $|y|<R / 2$,

$$
\begin{aligned}
& \left\|\widetilde{K}_{j}(\cdot-y)-\widetilde{K}_{j}(\cdot)\right\|_{L(\log L)^{k}, B(0,2 R) \backslash B(0, R)} \\
& \quad \leq \sum_{2^{l} \approx R}\left\|K_{l} * \phi_{l-j}(\cdot-y)-K_{l} * \phi_{l-j}(\cdot)\right\|_{L(\log L)^{k}, B(0,2 R) \backslash B(0, R)}
\end{aligned}
$$

Applying Lemma 1 , we find that for $l \in \mathbb{Z}$ such that $2^{l} \approx R$,

$$
\begin{aligned}
\| K_{l} * \phi_{l-j}(\cdot-y)- & K_{l} * \phi_{l-j}(\cdot) \|_{L(\log L)^{k}, B(0,2 R) \backslash B(0, R)} \\
\leq & C \inf \left\{\lambda>0: \frac{1}{|B(0,2 R) \backslash B(0, R)|}\right. \\
& \left.\times \int_{\mathbb{R}^{n}} \Phi_{k}\left(\frac{\left|\phi_{l-j}(z-y)-\phi_{l-j}(z)\right|}{\lambda}\right) d z \leq 1\right\}\left\|K_{l}\right\|_{1} \\
\leq & C R^{-n} j^{k} \min \left\{1,2^{j}|y| / R\right\}
\end{aligned}
$$

On the other hand, it is easy to verify that

$$
\begin{aligned}
\int_{R<|x| \leq 2 R}\left|\widetilde{K}_{j}(x-y)-\widetilde{K}_{j}(x)\right| d x & \leq \sum_{2^{l} \approx R}\left\|K_{l} * \phi_{l-j}(\cdot-y)-K_{l} * \phi_{l-j}(\cdot)\right\|_{1} \\
& \leq \sum_{2^{l} \approx R}\left\|K_{l}\right\|_{1}\left\|\phi_{l-j}(\cdot-y)-\phi_{l-j}(\cdot)\right\|_{1} \\
& \leq C \min \left\{1,2^{j}|y| / R\right\} .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
& \sum_{d=1}^{\infty} d^{k} \int_{B\left(0,2^{d+1} R\right) \backslash B\left(0,2^{d} R\right)}\left|\widetilde{K}_{j}(x-y)-\widetilde{K}_{j}(x)\right| d x \\
& \quad+\sum_{d=1}^{\infty}\left|B\left(0,2^{d} R\right)\right| \cdot\left\|\widetilde{K}_{j}(\cdot-y)-\widetilde{K}_{j}(\cdot)\right\|_{L(\log L)^{k}, B\left(0,2^{d+1} R\right) \backslash B\left(0,2^{d} R\right)} \\
& \quad \leq C j^{k} \sum_{d=1}^{\infty}\left(2^{d} R\right)^{n} \min \left\{1,2^{j-d}|y| / R\right\}\left(2^{d} R\right)^{-n}+\sum_{d=1}^{\infty} d^{k} \min \left\{1,2^{j-d}|y| / R\right\} \\
& \leq C j^{k+1}
\end{aligned}
$$

Lemma 2 now shows that for $1<p<\infty$,

$$
\begin{equation*}
\left\|S_{2^{j+1} ; b, k} f-S_{2^{j} ; b, k} f\right\|_{p} \leq C 2^{(k+1) j}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p} \tag{8}
\end{equation*}
$$

By the Riesz-Thorin interpolation theorem, it follows from the inequalities
(6) and (8) that for $2<p<\infty$ and any $\theta_{0}>0$,

$$
\begin{align*}
\| S_{2^{j+1} ; b, k} f- & S_{2^{j} ; b, k} f \|_{p} \tag{9}\\
& \leq C\left(n, k, p, \alpha, \nu, \theta_{0}\right) 2^{\left(-2 \alpha \nu / p+k+1+\theta_{0}\right) j}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
\end{align*}
$$

For each fixed $2<p<2 \alpha /(k+1)$, we can choose $\theta_{0}>0$ small enough and $0<\nu<1$ such that $-2 \alpha \nu / p+k+1+\theta_{0}<0$. So summing up the inequalities (9) over all nonnegative integers j shows that the series (7) converges in the $L^{p}\left(\mathbb{R}^{n}\right)$ operator norm. This completes the proof of Theorem 1.

Acknowledgements. The authors would like to thank the referee for some valuable suggestions and corrections.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] J. Alvarez, R. Bagby, D. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195-209.
[3] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978), 185 pp .
[4] L. Grafakos and A. Stefanov, L^{p} bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), 455-469.
[5] G. $\mathrm{Hu}, L^{2}\left(\mathbb{R}^{n}\right)$ boundedness for the commutators of convolution operators, Nagoya Math. J. 163 (2001), 55-70.
[6] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185.
[7] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[8] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399.

Department of Applied Mathematics
University of Information Engineering
P.O. Box 1001-747

Zhengzhou 450002, China
E-mail: huguoen@371.net wangxinwsj@sina.com

Department of Mathematics
The National University of Singapore
Lower Kent Ridge Road 119260 Singapore
E-mail: matsunqy@nus.edu.sg

[^0]: 2000 Mathematics Subject Classification: Primary 42B20.
 Key words and phrases: commutator, singular integral, $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$, Fourier transform estimate.

 The research was supported by the NSF of Henan Province.

