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ON mTH ORDER BERNOULLI POLYNOMIALS OF DEGREE m

THAT ARE EISENSTEIN

BY
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Abstract. This paper deals with the irreducibility of the mth order Bernoulli poly-
nomials of degree m. As m tends to infinity, Eisenstein’s criterion is shown to imply
irreducibility for asymptotically > 1/5 of these polynomials.

1. Introduction. The higher order Bernoulli polynomials Blm(x) are
defined by

(

t

et − 1

)l

etx =

∞
∑

m=0

B(l)m (x)
tm

m!
.

The polynomial B
(l)
m (x) is of degree m and l is its order. This paper is con-

cerned with an estimate for the number of polynomials B
(m)
m (x) (i.e. the

case when l = m above) that satisfy Eisenstein’s criterion. More precisely,
for t large, we seek to determine a lower bound for the number of positive
integers m ≤ t for which there is a prime p (depending on m) such that p
divides neither the numerator nor the denominator of the leading coefficient

of B
(m)
m (x), p divides the numerator but not the denominator of each of

the other coefficients, and p2 does not divide the numerator of the constant
term. (Here we are viewing the coefficients as reduced fractions.) Eisenstein’s
criterion would imply that all such polynomials are irreducible over the ra-
tionals. Even though irreducibility is not an uncommon phenomenon among
all polynomials with rational coefficients, polynomials satisfying Eisenstein’s
criterion are rare. We show that nevertheless a positive proportion of the

polynomials B
(m)
m (x) satisfy Eisenstein’s criterion. Specifically, we establish

Theorem 1. Asymptotically more than one-fifth of the polynomials

B
(m)
m (x) are irreducible (and in fact Eisenstein). More precisely ,

lim inf
t→∞

|{m ≤ t : B
(m)
m (x) Eisenstein }|

t
>
1

5
.
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One can show that x − m/2 is a factor of B
(m)
m (x) when m is odd;

in particular, the number 1/5 cannot be replaced by 1/2 above. The first

author [2] has conjectured that B
(m)
m (x) is irreducible if m is even and is

x−m/2 times an irreducible polynomial if m is odd.

Our demonstration of the above result in the next section is fairly simple.

We refer to Bm = B
(1)
m (0) as themth Bernoulli number. For p a prime andm

a nonnegative integer, define σ = σ(p,m) as the unique nonnegative integer
< p − 1 satisfying m ≡ σ (modp − 1). We make use of the following result
by the first author [1].

Theorem 2. Let p be a prime, and let l and m be positive integers with
m < p2, σ > 1 and p ‖ l. Suppose further that the sum of the base p digits
of m is equal to σ. If m is even and

Bσ 6≡ 0 (modp),(1)

then B
(l)
m (x) satisfies Eisenstein’s criterion (with prime p).

For our purposes, we consider p large and take l = m = 2kp for some
positive integer k satisfying 2k < p − 1. One checks that σ = 2k and the
conditions of Theorem 2 are each satisfied except possibly (1). We use the
classical von Staudt–Clausen theorem and a formula for the Bernoulli num-
bers in terms of the Riemann zeta-function ζ(s) to obtain an upper bound
on the number of pairs (k, p) with 2kp ≤ t, 2k < p−1, and condition (1) not
holding. It is well known (and we demonstrate) that a positive proportion
of numbers m ≤ t can be written in the form m = 2kp with 2k < p − 1.
Combining these estimates will be sufficient to give us Theorem 1 above.

2. Details of the proof. We make use of the following two classical
results.

Theorem 3. The Bernoulli number Bn is given explicitly by the follow-
ing :

• B1 = −1/2 and B0 = 1.

• Bn = 0 if n = 2m+ 1 for m > 0.

• Bn = (−1)
m−1 2(2m)!

(2π)2m
ζ(2m) if n = 2m > 0.

Theorem 4 (the von Staudt–Clausen theorem). Let Bm be the mth
Bernoulli number with m an even integer >0, and let Bm = Nm/Dm where
Nm and Dm are relatively prime integers with Dm > 0.

(i) If p is a prime such that (p − 1) |m, then p ‖Dm and pBm ≡ −1
(modp).

(ii) If p is a prime such that (p− 1) ∤m, then p ∤Dm.
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These results can be found in, for example, [3] and [4].

We will make use of the notation Bm = Nm/Dm above as well as the
notation given at the end of the Introduction. Observe that 2k < p−1 implies
from (ii) that p ∤D2k. Since σ = 2k, we are assured that the expression on
the left of (1) is defined modulo p. This condition, in our case, can therefore
be replaced by p ∤N2k.

Now we will formulate some lemmas, in order to examine those p such

that p ∤N2k and obtain an estimate on how manyB
(m)
m (x) satisfy Eisenstein’s

criterion (using this same prime p).

Lemma 1. The number 2(22k − 1)B2k is an integer.

Proof. Let q denote a prime. By Theorem 4, we have q|D2k if and
only if (q− 1) | (2k). Also, q |D2k implies q ‖D2k. We need only show that if
(q − 1) | (2k), then q | (2(22k − 1)). Let q be a prime with q − 1 dividing 2k.
If q = 2, then clearly q | (2(22k− 1)). If q 6= 2, then Fermat’s Little Theorem
implies that q divides 22k − 1 as (q − 1) | (2k). Thus, q | (2(22k − 1)).

Lemma 2. For each positive integer k, |N2k| < (2k)
2k.

Proof. First, by Theorem 3, we have

|B2k| =
2(2k)!

(2π)2k
ζ(2k).

Observe that

ζ(2k) =

∞
∑

n=1

1

n2k
≤ ζ(2) =

π2

6
< 2.

Thus,

|B2k| =
2(2k)!

(2π)2k
ζ(2k) <

4(2k)!

(2π)2k
=
4(2k)!

22k · π2k

≤
4(2k)!

22k · π2
<
4(2k)!

8 · 22k
<
(2k)!

2 · 22k
.

From Lemma 1, we obtain

|N2k| ≤ 2(2
2k − 1)|B2k| <

2(22k − 1)

2 · 22k
(2k)! < (2k)! < (2k)2k.

We now use Theorem 2 to find a lower bound on the number of m ≤ t

for which B
(m)
m (x) is Eisenstein. We view t as being sufficiently large. Fix

ε ∈ (0, 1/3). Set θ = 2/3 + ε. Consider a positive integer k for which 2k <
t1−θ. Let P2k denote the set of primes p dividing N2k such that

tθ < p ≤
t

2k
.(2)
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From Lemma 2, we obtain

(tθ)|P2k| ≤
∏

p∈P2k

p ≤ |N2k| ≤ (2k)
2k ≤ t(1−θ)t

1−θ

.

Taking logarithms of both sides we get

(θ|P2k|) log t ≤ (1− θ)t
1−θ log t,

and so

|P2k| ≤
1− θ

θ
t1−θ < t1−θ.

Let

P =
⋃

k≤t1−θ/2

P2k.

Then P has the following properties:

(A) If p 6∈ P and (2) holds, then p ∤N2k.

(B) |P| ≤
∑

k≤t1−θ/2 |P2k| ≤ t
2−2θ.

We consider the m ≤ t of the form 2kp with p > tθ. Since θ > 2/3
and p |m, there is exactly one such p corresponding to a given m. Also,
2kp ≤ t and p > tθ implies p ≤ t/(2k) and 2k ≤ t1−θ < t1/3 − 1 < p− 1. In

particular, (2) holds. Also, from (A) and Theorem 4, if p 6∈ P, then B
(m)
m (x)

is Eisenstein. Again noting the uniqueness of p for a given m, we deduce

that the number of m ≤ t for which B
(m)
m (x) is Eisenstein is at least

∑

m≤t
m even

∑

p|m
p>tθ

p6∈P

1 =
∑

tθ<p≤t
p6∈P

∑

m≤t

(2p)|m

1.

Define Ep by
[

t

2p

]

=
t

2p
+ Ep.

Hence, −1 < Ep ≤ 0. Making use of this notation, we obtain

∑

tθ<p≤t
p6∈P

∑

m≤t

(2p)|m

1 =
∑

tθ<p≤t
p6∈P

[

t

2p

]

=
∑

tθ<p≤t
p6∈P

(

t

2p
+ Ep

)

.

Observe that
∑

tθ<p≤t
p6∈P

|Ep| ≤
∑

p≤t

1≪
t

log t
.
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Also,
∑

tθ<p≤t
p∈P

t

2p
≤
1

2
t1−θ|P|,

the latter being an upper bound on the number of terms times an upper
bound on the size of a term. From (B), we deduce

∑

tθ<p≤t
p∈P

t

2p
< t3−3θ = t1−3ε.

Using the asymptotic formula
∑

p≤z

1

p
= log log z + C +O(1/log z),

we obtain
∑

tθ<p≤t

t

2p
=
t

2
(log log t− log log tθ +O(1/log t))

=
log(1/θ)

2
t+O(t/log t).

Using the fact that
∑

tθ<p≤t
p6∈P

(

t

2p
+ Ep

)

=
∑

tθ<p≤t

t

2p
−
∑

tθ<p≤t
p∈P

t

2p
+
∑

tθ<p≤t
p6∈P

Ep,

we conclude that the number of m ≤ t for which B
(m)
m (x) is Eisenstein is at

least
log(1/θ)

2
t+O(t1−3ε) +O(t/log t).

The first term dominates the above for any ε > 0. By allowing ε to approach
0 and noting

log(3/2)

2
= 0.2027. . . ,

we deduce that, for t sufficiently large, more than one-fifth of the integers

m ≤ t are such that B
(m)
m (x) is Eisenstein. Hence, Theorem 1 is established.
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