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WEAKER FORMS OF CONTINUITY AND VECTOR-VALUED
RIEMANN INTEGRATION

BY

M. A. SOFI (Srinagar)

Abstract. It was proved by Kadets that a weak∗-continuous function on [0, 1] taking
values in the dual of a Banach space X is Riemann-integrable precisely when X is finite-
dimensional. In this note, we prove a Fréchet-space analogue of this result by showing that
the Riemann integrability holds exactly when the underlying Fréchet space is Montel.

1. Introduction. It is folklore that given a Banach space X, each con-
tinuous function f : [0, 1] → X is Riemann-integrable. More generally, for
a given (sequentially complete) topological vector space X, Riemann inte-
grability of each continuous function f : [0, 1] → X forces X to be locally
convex (and conversely) (see [6, Theorem 3.5.1]). On the other hand, weak
continuity of f is not sufficient to guarantee the Riemann integrability of f ,
unless X is a Schur space, i.e. weakly convergent sequences in X are already
norm-convergent ([7]).

For functions taking values in a dual Banach space, it was shown by
V. M. Kadets [3] that for each infinite-dimensional Banach space X, there
always exists an X∗-valued function on [0, 1] which is weak∗-continuous but
not Riemann-integrable. We produce an alternative proof of this statement
which follows as a special case of our main result stating that for each weak∗-
continuous function into X∗, the (strong) dual of the Fréchet space X, to be
Riemann-integrable, it is both necessary and sufficient that X be a Montel
space.

The main idea of the proof of the sufficiency part of the main theorem is
inspired by the argument of Wang and Yang [7] which is suitably modified
to fit the framework of Fréchet spaces as treated in this paper. Recalling
that the classes of Banach and Montel spaces intersect precisely in the class
of finite-dimensional spaces, Kadets’ result quoted above follows as an easy
consequence.

In what follows, we shall let X denote a Fréchet space and shall denote
by I the closed interval [0, 1]. By a tagged partition of [0, 1], we shall mean
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DOI: 10.4064/cm129-1-1 [1] c© Instytut Matematyczny PAN, 2012



2 M. A. SOFI

a set of the type {(si, [ti−1, ti]); 1 ≤ i ≤ j} where 0 = t0 < t1 < · · · < tj = 1
and si ∈ [ti−1, ti], 1 ≤ i ≤ j.

We shall say that a function f : I → X is Riemann-integrable (R-
integrable) if the following holds: there exists x ∈ X such that for all ε > 0
and n ≥ 1, there exists δ = δ(ε, n) > 0 such that for each tagged partition
P = {(si, [ti−1, ti]); 1 ≤ i ≤ j} of [0, 1] with

‖P‖ = max
1≤i≤j

(ti − ti−1) < δ,

we have pn(S(f, P )− x) < ε, where S(f, P ) is the Riemann sum of f corre-
sponding to the partition P ,

S(f, P ) =

j∑
i=1

f(si)(ti − ti−1).

Here {pn}∞n=1 denotes a sequence of seminorms generating the (Fréchet)

topology of X. The (unique) vector x, to be denoted by
	1
0 f(t) dt, will be

called the Riemann integral of f on [0, 1]. For locally convex spaces X which
are not metrizable, the definition of Riemann integrability of X-valued func-
tions will be the same as given above except that the sequence {pn}∞n=1 will
now be replaced by a family {pα}α∈λ of seminorms generating the topology
of X.

We shall also say that a sequence x∗n ⊂ X∗ is weak∗-convergent to x∗ ∈X∗

(in symbols, x∗n
w∗
→ x∗) if x∗n(x)→ x∗(x) for all x ∈ X. Let us call a (metriz-

able) locally convex space X Montel if closed and bounded subsets of X
are compact. Besides finite-dimensional spaces, the class of Fréchet–Montel
spaces includes all nuclear Fréchet spaces and, more generally, all Fréchet
Schwartz spaces. In particular, the space ω (the countable product of the
line), s (the space of rapidly decreasing sequences) and H(C) (the space of
entire functions with compact-open topology) are some of the well-known
examples of Fréchet–Montel spaces. For basic definitions and a comprehen-
sive treatment of these and related issues involving locally convex spaces
and nuclear Fréchet spaces, see [4] and [8].

2. Main Theorem

Theorem 2.1. A Fréchet space X is Montel if and only if each weak∗-
continuous function f : I → X∗ is R-integrable.

In our proof of this theorem, we shall make use of the so-called ‘fat’
Cantor set in [0, 1] which is nowhere dense and has a positive Lebesgue
measure. It is constructed exactly as Cantor’s ternary set except that after
the first step when the middle third part of the interval [0, 1] has been taken
away, the construction at the nth stage consists in knocking out 2n−1 open
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subintervals from the middle of the remaining 2n−1 closed subintervals so
that the length of each of the subintervals is equal to 1

2n−1
1
3n . Precisely, the

fat Cantor set C is defined by

C = [0, 1] \G, where G =
∞⋃
k=1

2k−1⋃
i=1

A
(i)
k

and A
(i)
k = (a

(i)
k , b

(i)
k ) is the ith subinterval taken away from B

(i)
k , the middle

of the ith closed subinterval left behind at the (k− 1)th stage. Let us write

B
(1)
1 = [0, 1]. Clearly, A

(i)
k ⊂ B

(i)
k and for i = 1, 2, . . . , 2k−1, k ≥ 1, we have

d(B
(i)
k ) =

1

2k−1

(
1−

k−1∑
j=1

1

3j

)
and d(A

(i)
k ) =

1

2k−1
1

3k
.

It is easily seen that C has Lebesgue measure equal to 1/2. Let the midpoint

of A
(i)
k be denoted by c

(i)
k . With this background, we are now ready for

Proof of Theorem 2.1. In our proof, we shall make use of the following
characterisation of Fréchet–Montel spaces which is the Fréchet analogue of
the Josefson–Nissenzweig theorem for Banach spaces.

Theorem 2.2 (Bonet, Lindström and Valdivia [1]). A Fréchet space X
is Montel if and only if each weak∗-null sequence in X∗ is strong∗-null.

Let us recall that the strong∗-topology (denoted by β∗(X∗, X)) on the
dual X∗ of the locally convex space X is defined by the family of seminorms
{pB; B ⊂ X an absolutely convex bounded set} where

pB(f) = sup
x∈B
|f(x)|, f ∈ X∗.

For a Banach space X, the locally convex topology β∗(X∗, X) coincides with
the norm topology given by the dual norm on X∗:

‖f‖ = sup
‖x‖≤1

|f(x)|, f ∈ X∗.

Unless otherwise stated, X∗ shall denote the topological dual of X equipped
with the β∗(X∗, X)-topology. We shall also write X∗σ for (X∗, σ(X∗, X))
where σ(X∗, X) is the weak∗-topology on X∗ generated by the family of
seminorms {px; x ∈ X} where

px(f) = |f(x)|, f ∈ X∗.
Necessity. Assume that X is Fréchet–Montel and let f : I → X∗σ be a

continuous function. By sequential completeness of X∗σ as the weak∗-dual of
a barrelled space (see [8, Chapter 10]), f is weak∗-Riemann-integrable (with
X∗ equipped with its weak∗-topology). Let {Pn}∞n=1 be a sequence of parti-
tions of I such that ‖Pn‖ → 0 as n→∞. Now weak∗-Riemann integrability
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of f implies that S(f, Pn)
w∗
→ x∗ for some x∗ ∈ X∗, where, as usual, S(f, Pn)

denotes the Riemann sum of f corresponding to the partition Pn. Recalling
that weak∗ and strong∗-convergence of sequences coincide in the dual of a
Fréchet–Montel space (Theorem 2.1), it follows that S(f, Pn)→ x∗ in X∗. In
other words, f is Riemann-integrable (with respect to the strong∗-topology
of X∗).

Sufficiency. For each k ≥ 1 and i = 1, 2, . . . , 2k−1, define

φ
(i)
k : [0, 1]→ R

so that it vanishes outside of A
(i)
k = [a

(i)
k , b

(i)
k ] and is piecewise linear on A

(i)
k .

More precisely, we can choose φ
(i)
k so that

φ
(i)
k (t) =


(1/c

(i)
k )(t− a(i)k ), t ∈ [a

(i)
k , c

(i)
k ],

(1/c
(i)
k )(b

(i)
k − t), t ∈ [c

(i)
k , b

(i)
k ],

0, otherwise.

Noting that c
(i)
k = a

(i)
k + (b

(i)
k − a

(i)
k )/2, it follows that φ

(i)
k is continuous

and so is hk : [0, 1] → R where hk(t) =
∑2k−1

i=1 φ
(i)
k (t). To show that X is a

Fréchet–Montel space, it suffices, by the Bonet–Lindström–Valdivia theorem
quoted above, to prove that each weak∗-null sequence in X∗ is strong∗-null
(see also [2]).

Assume, on the contrary, that there exists a sequence {x∗n} ⊂ X∗ which
is weak∗-null but not strong∗-null. Let us define

(∗) f(t) =
∞∑
k=1

hk(t)x
∗
k, t ∈ [0, 1].

The above formula gives a well-defined function f : [0, 1] → X∗; after all
the series defining f is actually a finite sum in X∗. This follows from the
observation that f(t) = 0 for t ∈ C and and that for t /∈ C, there exists

k0 ≥ 1 such that t ∈ (a
(i)
k0
, b

(i)
k0

) for some i where 1 ≤ i ≤ 2k0−1. In this case,
the above series reduces to hk0(t)x∗k0 .

Claim 1. f is weak∗-continuous.

Since hk is continuous for all k ≥ 1, it suffices to show that the series
defining f is uniformly convergent in (X∗, σ(X∗, X)).

To this end, fix ε > 0 and x ∈ X. We can chooseK0 such that |〈x∗k, x〉| < ε
for all k ≥ K0. By the definition of hk(t), it follows that

∞∑
k=K0+1

hk(t)x
∗
k = 0 for t ∈

K0⋃
k=1

2k−1⋃
i=1

A
(i)
k
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and that we can choose k0 > K0 such that
∞∑

k=K0+1

hk(t)x
∗
k = hk0(t)x∗k0 for t ∈

∞⋃
k=K0+1

2k−1⋃
i=1

A
(i)
k .

Noting that |〈hk0(t)x∗k0 , x〉| = |hk0(t)| |〈x∗k0 , x〉| < ε (because |hk(t)| ≤ 1 for
all t ∈ [0, 1] and k ≥ 1), it follows that for all t ∈ [0, 1], we have∣∣∣〈f(t)−

K0∑
k=1

hk(t)x
∗
k, x
〉∣∣∣ =

∣∣∣〈 ∞∑
k=K0+1

hk(t)x
∗
k, x
〉∣∣∣ < ε.

Claim 2. f is not Riemann-integrable.

By the Cauchy criterion for R-integrability, it suffices to verify the fol-
lowing: there exists a bounded set B ⊂ X such that for all δ > 0, there exist
partitions P1, P2 of [0, 1] with ‖P1‖ < δ, ‖P2‖ < δ, such that

pB(S(f, P1)− S(f, P2)) >
1

2
.

Since x∗n 9 0 in (X∗, β(X∗, X)), there exists a bounded set B ⊂ X such
that, passing to a subsequence if necessary, pB(x∗n) > 1 for all n ≥ 1. Now

fix δ > 0 and choose m ≥ 1 such that 1/2m−1 < δ. Note that d(B
(i)
m ) <

1/2m−1 for m ≥ 1 and 1 ≤ i ≤ 2m−1. Let us choose partitions P1, P2 of
[0, 1] with ‖P1‖ < δ, ‖P2‖ < δ where P1 = {(sj , [tj−1, tj ]); 1 ≤ j ≤ Nm},
P2 = {(s′j , [tj−1, tj ]); 1 ≤ j ≤ Nm}, satisfying the following properties:

(a) Both P1 and P2 contain the sets B
(i)
m for i = 1, . . . , 2m−1.

(b) tj − tj−1 < 1/2m−1, for 1 ≤ j ≤ Nm.

(c) sj = s′j if [tj−1, tj ] 6= B
(i)
m , i = 1, . . . , 2m−1.

(d) sj = c
(i)
m and s′j = a

(i)
m if [tj−1, tj ] = B

(i)
m , i = 1, . . . , 2m−1.

Now (c) gives f(sj) = f(s′j) if [tj−1, tj ] 6= (B
(i)
m ), and (d) yields

f(sj) = hm(sj)x
∗
m, f(s′j) = 0 if [tj−1, tj ] = B(i)

m .

Further, since hm(sj) = φ
(i)
m (c

(i)
m ) = 1, we get

pB(S(f, P1)−S(f, P2)) = pB

( Nm∑
j=1

(f(sj)− f(s′j))(tj − tj−1)
)

= pB

(2m−1∑
i=1

hm(sj)x
∗
md(B(i)

m )
)

= pB(x∗m)

2m−1∑
i=1

d(B(i)
m )

= pB(x∗m)2m−1
[

1

2m−1

(
1−

k−1∑
j=1

1

3j

)]
>

1

2
,
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which means that f is not Riemann-integrable. This contradicts the given
hypothesis and completes the proof.

Since a Banach space is Montel if and only if it is finite-dimensional,
we recover Kadets’ theorem [3] mentioned in the Introduction as a simple
consequence:

Corollary 2.3. Given an infinite-dimensional Banach space X, there
always exists a weak∗-continuous function f : [0, 1] → X∗ which is not
Riemann-integrable.

We conclude with the following problem which appears to be open.

Problem. Does the set of functions as guaranteed by Corollary 2.3
contain an infinite-dimensional vector space of dimension at least c, the
cardinality of the continuum?

Some of the problems belonging to this circle of ideas arising in the
theory of vector-valued measurability and integration have been treated in
a recent joint work of the author with F. J. G. Pacheco [5].
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