ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF SOME SETS IN ℓ_1

BY

TARAS BANAKH (Lviv and Kielce), ARTUR BARTOSZEWICZ (Łódź), SZYMON GŁĄB (Łódź) and EMILIA SZYMONIK (Łódź)

Abstract. For a sequence $x \in \ell_1 \setminus c_{00}$, one can consider the set $E(x)$ of all subsums of the series $\sum_{n=1}^{\infty} x(n)$. Guthrie and Nymann proved that $E(x)$ is one of the following types of sets: (I) a finite union of closed intervals; (C) homeomorphic to the Cantor set; (MC) homeomorphic to the set T of subsums of $\sum_{n=1}^{\infty} b(n)$ where $b(2n-1) = 3/4^n$ and $b(2n) = 2/4^n$. Denote by I, C and MC the sets of all sequences $x \in \ell_1 \setminus c_{00}$ such that $E(x)$ has the property (I), (C) and (MC), respectively. We show that I and C are strongly c-algebrable and MC is c-lineable. We also show that C is a dense G_δ-set in ℓ_1 and I is a true F_σ-set. Finally we show that I is spaceable while C is not.

1. Introduction

1.1. Subsums of series. Let $x \in \ell_1$. The set of all subsums of $\sum_{n=1}^{\infty} x(n)$, meaning the set of sums of all subseries of $\sum_{n=1}^{\infty} x(n)$, is defined by

$$E(x) = \{ a \in \mathbb{R} : \exists A \subset \mathbb{N} \sum_{n \in A} x(n) = a \}.$$

Some authors call it the achievement set of x. The following theorem is due to Kakeya.

Theorem 1.1 ([Ka]). Let $x \in \ell_1$.

1. If $x \notin c_{00}$, then $E(x)$ is a perfect compact set.
2. If

$$|x(n)| > \sum_{i>n} |x(i)|$$

for almost all n,

then $E(x)$ is homeomorphic to the Cantor set.
3. If

$$|x(n)| \leq \sum_{i>n} |x(i)|$$

for n sufficiently large,

then $E(x)$ is a finite union of closed intervals. If x is non-increasing, the converse also holds.

2010 Mathematics Subject Classification: Primary 40A05; Secondary 15A03.

Key words and phrases: subsums of series, achievement set of sequence, algebrability, strong algebrability, lineability, spaceability.

DOI: 10.4064/cm129-1-5 [75] © Instytut Matematyczny PAN, 2012
Moreover, Kakeya conjectured that $E(x)$ is either nowhere dense or a finite union of intervals. Probably, the first counterexample to this conjecture was given (without proof) by Weinstein and Shapiro [WS] and, with a correct proof, by Ferens [F]. Guthrie and Nymann [GN] showed that, for the sequence b given by the formulas $b(2n - 1) = 3/4^n$ and $b(2n) = 2/4^n$, the set $T = E(b)$ is not a finite union of intervals but it has nonempty interior. In the same paper they formulated the following theorem:

Theorem 1.2 ([GN]). Let $x \in \ell_1 \setminus c_{00}$. Then $E(x)$ is of one of the following types:

(i) a finite union of closed intervals;

(ii) homeomorphic to the Cantor set;

(iii) homeomorphic to the set T.

A correct proof of the Guthrie and Nymann trichotomy was given by Nymann and Sáenz [NS]. The sets homeomorphic to T are called Cantorvals (more precisely: M-Cantorvals). Note that Theorem 1.2 can be formulated as follows: The space ℓ_1 is a disjoint union of c_{00}, I, C and MC where I consists of all sequences x with $E(x)$ equal to a finite union of intervals, C consists of all x with $E(x)$ homeomorphic to the Cantor set, and MC of all x with $E(x)$ being an M-Cantorval.

For $x \in \ell_1$, let x' be an arbitrary finite modification of x, and let $|x|$ denote the sequence $y \in \ell_1$ such that $y(n) = |x(n)|$. Then $x \in I \iff |x| \in I \iff x' \in I$. The same equivalences hold for C and MC.

1.2. Lineability, algebraicity and spaceability. Having an algebra A and its subset $E \subset A$ one can ask if $E \cup \{0\}$ contains a subalgebra A' of A. Roughly speaking, if the answer is positive, then E is algebraable. It is a recent trend in mathematical analysis to establish the algebraability of sets E which are far from being linear, that is, $x, y \in E$ does not generally imply $x + y \in E$. Such algebraability results were obtained in sequence spaces (see [BG1], [BGP], [BG2]) and in function spaces (see [ACPS], [AS], [APGS], [GMS] and [GPS]).

Assume that V is a linear space (resp. an algebra). A subset $E \subset V$ is called lineable (resp. algebraable) whenever $E \cup \{0\}$ contains an infinite-dimensional linear space (infinitely generated algebra, respectively) (see [AGS], [B] and [GQ]). For a cardinal $\kappa > \omega$, the set E is κ-algebraable (i.e. it contains a κ-generated algebra) if and only if it contains an algebra which is a κ-dimensional linear space (see [BG1]). Moreover, we say that a subset E of a commutative algebra V is strongly κ-algebraable ([BG1]) if there exists a κ-generated free algebra A contained in $E \cup \{0\}$.

Note that $X = \{x_\alpha : \alpha < \kappa\} \subset E$ is a set of free generators of a free algebra $A \subset E$ if and only if the set X' of elements of the form $x_{\alpha_1}^{k_1} \ldots x_{\alpha_n}^{k_n}$
is linearly independent and all linear combinations of elements from X' are in $E \cup \{0\}$. It is easy to see that free algebras have no divisors of zero.

In practice, to prove κ-algebrability of a set $E \subset V$ we have to find $X \subseteq E$ of cardinality κ such that for any polynomial P in n variables and any distinct $x_1, \ldots, x_n \in X$ we have either $P(x_1, \ldots, x_n) \in E$ or $P(x_1, \ldots, x_n) = 0$. To prove the strong κ-algebrability of E we have to find $X \subseteq E$, $|X| = \kappa$, such that for any non-zero polynomial P and distinct $x_1, \ldots, x_n \in X$ we have $P(x_1, \ldots, x_n) \in E$.

In general, there are subsets of algebras which are algebrable but not strongly algebrable. Let c_{00} be the subset of c_0 consisting of all sequences with real terms that are eventually zero. Then the set c_{00} is algebrable in c_0 but is not strongly 1-algebrable [BG1].

Let X be a Banach space. A subset M of X is spaceable if $M \cup \{0\}$ contains an infinite-dimensional closed subspace Y of X. Since every infinite-dimensional Banach space contains a linearly independent set of cardinality continuum, spaceability implies c-lineability. However, spaceability is a much stronger property. The notions of spaceability and c-algebrability are incomparable. We will show that even c-algebraeble dense G_δ-sets in ℓ_1 may not be spaceable. On the other hand, there are sets in c_0 which are spaceable but not 1-algebraeble (see [BG1]).

2. Algebraic substructures in C, I and MC. In a very nice paper [J] Jones gives the following example. Let $x(n) = 1/2^n$ and $y(n) = 1/3^n$. Then clearly $x \in I$ and $y \in C$. Moreover, $x + y \in C$ and $x - y \in I$. Since $x = (x + y) - y$ and $y = -(x - y) + x$, neither I nor C is closed under pointwise addition. However, in the present paper we show that the sets C, I and MC each contain large (c-generated) algebraic structures. To prove the strong c-algebraeble of C and I, we will combine Theorem 1.1 and the method of linearly independent exponents, which was successful in [BGP] and [BG1]. In the next theorem we construct generators as powers of one geometric series x_q ($x_q(n) = q^n$) for $0 < q < 1/2$. Clearly, $x_q \in C$ by Theorem 1.1.

Theorem 2.1. C is strongly c-algebraeble.

Proof. Fix $q \in (0, 1/2)$. Let $\{r_\alpha : \alpha < c\}$ be a linearly independent (over the rationals) set of reals greater than 1. Let $x_\alpha(n) = q^{r_\alpha n}$. We will show that the set $\{x_\alpha : \alpha < c\}$ generates a free algebra A which, except for the null sequence, is contained in C.

To do this, we will show that for any $\beta_1, \ldots, \beta_m \in \mathbb{R} \setminus \{0\}$, any matrix $[k_{il}]_{i \leq m, l \leq j}$ of natural numbers with nonzero distinct rows, and any $\alpha_1 < \cdots < \alpha_j < c$, the sequence x given by

$$x(n) = P(x_{\alpha_1}, \ldots, x_{\alpha_j})(n),$$
where
\[P(z_1, \ldots, z_j) = \beta_1 z_1^{k_{11}} \cdots z_j^{k_{1j}} + \cdots + \beta_m z_1^{k_{m1}} \cdots z_j^{k_{mj}}, \]

is in \(C \). We have
\[x(n) = \beta_1 q^{n(r_{\alpha_1}k_{11} + \cdots + r_{\alpha_j}k_{1j})} + \cdots + \beta_m q^{n(r_{\alpha_1}k_{m1} + \cdots + r_{\alpha_j}k_{mj})}. \]

Since \(r_{\alpha_1}, \ldots, r_{\alpha_j} \) are linearly independent and the rows of \([k_{il}]_{i \leq m, l \leq j} \) are distinct, the numbers \(r_1 := r_{\alpha_1}k_{11} + \cdots + r_{\alpha_j}k_{1j}, \ldots, r_m := r_{\alpha_1}k_{m1} + \cdots + r_{\alpha_j}k_{mj} \) are distinct. We may assume that \(r_1 < \cdots < r_m \). Then
\[
\frac{|x(n)|}{\sum_{i>n} |x(i)|} = \frac{|\beta_1 q^{nr_1} + \cdots + \beta_m q^{nr_m}|}{\sum_{i>n} (|\beta_1 q^{ir_1} + \cdots + |\beta_m q^{ir_m}|)} \geq \frac{|\beta_1 q^{nr_1} + \cdots + \beta_m q^{nr_m}|}{\sum_{i>n} (|\beta_1 q^{ir_1} + \cdots + |\beta_m q^{ir_m}|)} = \frac{|\beta_1 q^{(n+1)r_1}|}{1-q^1} + \cdots + \frac{|\beta_m q^{(n+1)r_m}|}{1-q^1} \to \frac{1-q^1}{q^1} > 1.
\]

Therefore there is \(n_0 \) such that \(|x(n)| > \sum_{i>n} |x(i)| \) for all \(n \geq n_0 \). Hence, by Theorem 1.1 we conclude that \(x \in C \).

It is obvious that the geometric sequence \(x_q \), even for \(q > 1/2 \), is not useful to construct the generators of an algebra contained in \(\mathcal{I} \). Indeed, for a sufficiently large exponent \(k \), the sequence \(x_q^k \) belongs to \(C \). So, in the next theorem we use the harmonic series.

Theorem 2.2. \(\mathcal{I} \) is strongly \(\mathcal{C} \)-algebraable.

Proof. Let \(K \) be a linearly independent subset of \((1, \infty)\) of cardinality \(\mathfrak{c} \). For \(\alpha \in K \), let \(x_\alpha \) be the sequence given by \(x_\alpha(n) = 1/n^\alpha \). We will show that the set \(\{x_\alpha : \alpha \in K\} \) generates a free algebra \(\mathcal{A} \) which is contained in \(\mathcal{I} \cup \{0\} \). To do this, we will show that for any \(\beta_1, \ldots, \beta_m \in \mathbb{R} \setminus \{0\} \), any matrix \([k_{il}]_{i \leq m, l \leq j} \) of natural numbers with nonzero distinct rows, and any \(\alpha_1 < \cdots < \alpha_j \), the sequence \(x \) defined by
\[
x = P(x_{\alpha_1}, \ldots, x_{\alpha_j})
\]
\[= \beta_1 x_{\alpha_1}^{k_{11}} \cdots x_{\alpha_j}^{k_{1j}} + \beta_2 x_{\alpha_1}^{k_{21}} \cdots x_{\alpha_j}^{k_{2j}} + \cdots + \beta_m x_{\alpha_1}^{k_{m1}} \cdots x_{\alpha_j}^{k_{mj}}
\]
belongs to \(\mathcal{I} \). We have
\[
x(n) = P(x_{\alpha_1}, \ldots, x_{\alpha_j})(n)
\]
\[= \frac{1}{n^{\alpha_1 k_{11} + \cdots + \alpha_j k_{1j}}} + \cdots + \frac{1}{n^{\alpha_1 k_{m1} + \cdots + \alpha_j k_{mj}}}
\]
\[= \frac{1}{n^{\beta_1}} + \cdots + \beta_j \frac{1}{n^{\beta_m}}.
\]
Note that \(p_1, \ldots, p_m \) are distinct. Assume that \(p_1 < \cdots < p_m \). We have

\[
\frac{|x(n)|}{\sum_{k>n} |x(k)|} = \frac{\left| \beta_1 \frac{1}{np_1} + \beta_2 \frac{1}{np_2} + \cdots + \beta_m \frac{1}{np_m} \right|}{\sum_{k>n} \left| \beta_1 \frac{1}{kp_1} + \beta_2 \frac{1}{kp_2} + \cdots + \beta_m \frac{1}{kp_m} \right|} \\
\leq \frac{\sum_{k>n} \left(\left| \beta_1 \frac{1}{kp_1} \right| - \left| \beta_2 \frac{1}{kp_2} \right| - \cdots - \left| \beta_m \frac{1}{kp_m} \right| \right)}{\beta_1 \frac{1}{np_1} + \beta_2 \frac{1}{np_2} + \cdots + \beta_m \frac{1}{np_m}} \\
= \frac{\beta_1 \int_{n+1}^{\infty} \frac{1}{xp_1} \, dx - \beta_2 \int_{n}^{\infty} \frac{1}{xp_2} \, dx - \cdots - \beta_m \int_{n}^{\infty} \frac{1}{xp_m} \, dx}{n \left[\beta_1 \frac{np_1 - 1}{p_1-1} \left(\frac{1}{np_1} \right) - \beta_2 \frac{np_2 - 1}{p_2-1} \left(\frac{1}{np_2} \right) - \cdots - \beta_m \frac{np_m - 1}{p_m-1} \left(\frac{1}{np_m} \right) \right]} \\
\quad \quad \quad \xrightarrow{n \to \infty} 0 < 1.
\]

Observe that the first inequality holds for \(n \) large enough. Therefore there is \(n_0 \) such that \(|x(n)| \leq \sum_{i>n} |x(i)| \) for any \(n \geq n_0 \). Hence, by Theorem 1.1 we conclude that \(x \in \mathcal{I} \). \(\blacksquare \)

The method described in the next lemma belongs to the mathematical folklore and was used to construct sequences \(x \) with \(E(x) \) being Cantorvals. We present its proof since we have not found it explicitly formulated in the literature.

Lemma 2.3. Let \(x \in \ell_1 \) be such that

(i) \(E(x) \) contains an interval;
(ii) \(|x(n)| > \sum_{i>n} |x(i)| \) for infinitely many \(n \);
(iii) \(|x_n| \geq |x_{n+1}| \) for almost all \(n \).

Then \(x \in \mathcal{MC} \).

Proof. By (ii)–(iii), the point \(x \) does not belong to \(\mathcal{I} \). By (i), the point \(x \) does not belong to \(\mathcal{C} \). Hence, by Theorem 1.2 we get \(x \in \mathcal{MC} \). \(\blacksquare \)

Until quite recently, only a few examples were known of sequences belonging to \(\mathcal{MC} \). These examples were not very useful to construct a large number of linearly independent sequences. Recently, Jones \(\llbracket \) has constructed a one-parameter family of sequences in \(\mathcal{MC} \). We shall use a modification of his example in the proof of our next theorem.

Theorem 2.4. \(\mathcal{MC} \) is \(\mathfrak{c} \)-lineable.

Proof. Let

\[
x_q = (4, 3, 2, 4q, 3q, 2q, 4q^2, 3q^2, 2q^2, 4q^3, \ldots)
\]

and

\[
y_q = (1, 1, 1, 1, q, q, q, q, q^2, q^2, q^2, q^2, q^2, q^2, q^2, q^2, q^2, \ldots)
\]
for $q \in [1/6, 2/11)$. Observe that the sequences x_q, $q \in [1/6, 2/11)$, are linearly independent. We need to show that each non-zero linear combination of these sequences x_q satisfies assumptions (i)–(iii) of Lemma 2.3 and therefore it is in $\mathcal{M}C$. To prove this, let us fix $q_1 > \cdots > q_m \in [1/6, 2/11)$, $\beta_1, \ldots, \beta_m \in \mathbb{R}$ and define sequences x and y by

$$x(n) = \beta_1 x_{q_1}(n) + \cdots + \beta_m x_{q_m}(n)$$

and

$$y(n) = \beta_1 y_{q_1}(n) + \cdots + \beta_m y_{q_m}(n).$$

First, we will check that for almost all n,

$$2 |\beta_1 q_1^n + \cdots + \beta_m q_m^n| > 9 \sum_{k>n} |\beta_1 q_1^k + \cdots + \beta_m q_m^k|.$$

We have

$$\frac{2 |\beta_1 q_1^n + \cdots + \beta_m q_m^n|}{9 \sum_{k>n} (|\beta_1 q_1^k + \cdots + \beta_m q_m^k|)} \geq \frac{2 |\beta_1 q_1^n + \cdots + \beta_m q_m^n|}{9 \sum_{k>n} (|\beta_1 q_1^k| + \cdots + |\beta_m q_m^k|)}$$

$$= \frac{2 |\beta_1 q_1^n + \cdots + \beta_m q_m^n|}{9 (|\beta_1 (q_1^{n+1} - q_1^n) + \cdots + |\beta_m (q_m^{n+1} - q_m^n)|)} \rightarrow \frac{2}{9} \cdot \frac{1 - q_1}{q_1} \geq \frac{2}{9} \cdot \frac{1 - 2/11}{2/11} = 1.$$

Note that if n is not divisible by 3, then $|x(n)| \geq |x(n + 1)|$. On the other hand, if $n = 3l$, then

$$|x(n)| = 2 |\beta_1 q_1^l + \cdots + \beta_m q_m^l|$$

and

$$|x(n + 1)| = 3 |\beta_1 q_1^{l+1} + \cdots + \beta_m q_m^{l+1}| \leq 9 \sum_{k>l} |\beta_1 q_1^k + \cdots + \beta_m q_m^k|.$$

Hence by (2.1) we obtain $|x(n)| \geq |x(n + 1)|$ for almost all n. By (2.1) we also have $|x(n)| > \sum_{i>n} |x(i)|$ for infinitely many n.

Now we will show that

$$|\beta_1 q_1^n + \cdots + \beta_m q_m^n| \leq 5 \sum_{k>n} |\beta_1 q_1^k + \cdots + \beta_m q_m^k|.$$

We have

$$\frac{|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|}{5 \sum_{k>n} |\beta_1 q_1^k + \beta_2 q_2^k + \cdots + \beta_m q_m^k|} \leq \frac{|\beta_1 + \beta_2 (\frac{q_2}{q_1})^n + \cdots + \beta_m (\frac{q_m}{q_1})^n|}{5 |\sum_{i>0} q_1^i + \beta_2 (\frac{q_2}{q_1})^n \sum_{i>0} q_2^i + \cdots + \beta_m (\frac{q_m}{q_1})^n \sum_{i>0} q_m^i|}$$

$$= \frac{1}{5} \cdot \frac{1 - q_1}{q_1} \leq \frac{1}{5} \cdot \frac{1 - 1/6}{1/6} = 1.$$
By (2.2) we find that $|y(n)| \leq \sum_{k>n} |y(k)|$ for almost all n. Therefore by Theorem 1.1, the set $E(y)$ is a finite union of closed intervals. Thus $E(y)$ has non-empty interior.

To end the proof we need to show that $E(x)$ has non-empty interior. We will prove that

$$2 \sum_{n=0} (\beta_1 q_1^n + \cdots + \beta_m q_m^n) + E(y) \subseteq E(x).$$

Let

$$t \in 2 \sum_{n=0} (\beta_1 q_1^n + \cdots + \beta_m q_m^n) + E(y).$$

Note that any element s of $E(y)$ is of the form

$$s = k_0(\beta_1 + \cdots + \beta_m) + k_1(\beta_1 q_1 + \cdots + \beta_m q_m)$$

$$+ k_2(\beta_1 q_1^2 + \cdots + \beta_m q_m^2) + \cdots$$

where $k_n \in \{0, 1, 2, 3, 4, 5\}$. Thus t is of the form

$$t = 2 \sum_{n=0} (\beta_1 q_1^n + \cdots + \beta_m q_m^n)$$

$$+ [k_0(\beta_1 + \cdots + \beta_m) + k_1(\beta_1 q_1 + \cdots + \beta_m q_m)$$

$$+ k_2(\beta_1 q_1^2 + \cdots + \beta_m q_m^2) + \cdots]$$

$$= (2 + k_0)(\beta_1 + \cdots + \beta_m) + (2 + k_1)(\beta_1 q_1 + \cdots + \beta_m q_m)$$

$$+ (2 + k_2)(\beta_1 q_1^2 + \cdots + \beta_m q_m^2) + \cdots.$$

Note that each number from $\{2, 3, 4, 5, 6, 7\}$, that is, every number of the form $2 + k_n$, can be written as a sum of numbers $4, 3, 2$. Hence $t \in E(x)$ and $E(x)$ has non-empty interior. So $x \in \mathcal{MC}$.

3. The topological size and Borel class of \mathcal{C}, \mathcal{I} and \mathcal{MC}. Let us observe that the sets c_{00}, \mathcal{C}, \mathcal{I} and \mathcal{MC} are all dense in ℓ_1. Moreover, c_{00} is an \mathcal{F}_σ-set of the first category. We are interested in the topological size and Borel class of these sets. For this, let us consider the hyperspace $H(\mathbb{R})$ of all non-empty compact subsets of reals, equipped with the Vietoris topology (see [Ke 4F, pp. 24–28]). Recall that the Vietoris topology is generated by the subbase of sets of the form $\{K \in H(\mathbb{R}) : K \subset U\}$ and $\{K \in H(\mathbb{R}) : K \cap U \neq \emptyset\}$ for all open sets U in \mathbb{R}. This topology is metrizable by the Hausdorff metric d_H given by the formula

$$d_H(A, B) = \max \left\{ \max_{t \in A} d(t, B), \max_{s \in B} d(s, A) \right\}$$

where d is the natural metric in \mathbb{R}. It is known that the set N of all nowhere dense compact sets is a G_δ-set in $H(\mathbb{R})$ and the set F of all compact sets
with a finite number of connected components is an F_σ-set. To see this, it is enough to observe that

- K is nowhere dense if and only if for any set U_n from a fixed countable base of the natural topology in \mathbb{R} there exists a set U_m from this base such that $\text{cl}(U_m) \subset U_n$ and $K \subset (\text{cl}(U_m))^c$;
- K has more than k components if and only if there exist pairwise disjoint open intervals J_1, \ldots, J_{k+1} such that $K \subset J_1 \cup \cdots \cup J_{k+1}$ and $K \cap J_i \neq \emptyset$ for $i = 1, \ldots, k+1$.

Now, let us observe that if we assign the set $E(x)$ to the sequence $x \in \ell_1$, we actually define a function $E : \ell_1 \to H(\mathbb{R})$.

Lemma 3.1. The function E is Lipschitz with Lipschitz constant $L = 1$, hence it is continuous.

Proof. Let $t \in E(x)$. Then there exists a subset A of \mathbb{N} such that $t = \sum_{n \in A} x(n)$. We have

$$d(t, E(y)) \leq d\left(t, \sum_{n \in A} y(n)\right) = \left| \sum_{n \in A} (x(n) - y(n)) \right| \leq \sum_{n \in \mathbb{N}} |x(n) - y(n)|$$

where $\| \cdot \|_1$ denotes the norm in ℓ_1. Hence, $d_H(E(x), E(y)) \leq \|x - y\|_1$.

Theorem 3.2. The set C is a dense G_δ-set (and hence residual), I is a true F_σ-set (i.e. it is F_σ but not G_δ) of the first category, and MC is in the class $(F_\sigma \cap G_{\delta \sigma}) \setminus G_\delta$.

Proof. Let us observe that $C \cup c_{00} = E^{-1}[N]$ and $I \cup c_{00} = E^{-1}[F]$ where N, F, E are defined as before. Hence $C \cup c_{00}$ is G_δ and $I \cup c_{00}$ is F_σ. Thus C is G_δ (because c_{00} is F_σ) and $I \cup MC$ is F_σ. Moreover, $I = (I \cup c_{00}) \cap (I \cup MC)$ is F_σ, too. By the density of C, C is residual. Since I is dense of the first category, it cannot be G_δ. For the same reason, MC cannot be G_δ. Since MC is a difference of two F_σ-sets, it is in the class $F_{\sigma \delta} \cap G_{\delta \sigma}$.

Remark 3.3. In [BG1] the following similar result was shown by quite different methods: the set of bounded sequences, with the set of limit points homeomorphic to the Cantor set, is strongly c-algebrable and residual in ℓ_∞.

4. **Spaceability.** In this section we will show that I is spaceable while C is not. This shows that there is a subset M of ℓ_1 containing a dense G_δ-subset and a linear subspace of dimension c, but $Y \setminus M \neq \emptyset$ for any infinite-dimensional closed subspace Y of ℓ_1.

Theorem 4.1. Let I_1 be the subset of I which consists of those $x \in \ell_1$ for which $E(x)$ is an interval. Then I_1 is spaceable.
Proof. Let A_1, A_2, \ldots be a partition of \mathbb{N} into infinitely many infinite subsets. Let $A_n = \{k_1^n < k_2^n < \cdots \}$. Define $x_n \in \ell_1$ by $x_n(k_i^n) = 2^{-j}$ and $x_n(i) = 0$ if $i \notin A_n$. Then $\|x_n\|_1 = 1$ and $\{x_n : x \in \mathbb{N}\}$ forms a normalised basic sequence. Let Y be a closed linear space generated by $\{x_n : x \in \mathbb{N}\}$. Then

$$y \in Y \iff \exists t \in \ell_1 \left(y = \sum_{n=1}^{\infty} t(n)x_n \right).$$

Since $E(x_n) = [0,1]$, we have $E(\sum_{n=1}^{\infty} t(n)x_n) = \bigcup_{n=1}^{\infty} I_n$ where I_n is an interval with endpoints 0 and $t(n)$. Put $t^+(n) = \max\{t(n), 0\}$ and $t^-(n) = \min\{-t(n), 0\}$. Then $E(\sum_{n=1}^{\infty} t(n)x_n) = [\sum_{n=1}^{\infty} t^-(n), \sum_{n=1}^{\infty} t^+(n)]$ and the result follows. ■

Let us mention the very recent result by Bernal-González and Ordóñez Cabrera [BO, Theorem 2.2], who gave sufficient conditions for spaceability of sets in Banach spaces. Using that result, one can prove the spaceability of \mathcal{I}, but it cannot be used to prove Theorem 4.1, since the assumptions are not satisfied.

However, we do not know other results giving sufficient conditions for a set in a Banach space not to be spaceable. An interesting example of a non-spaceable set was given in the classical paper [G] by Gurariy where it was proved that the set of all differentiable functions from $C[0,1]$ is not spaceable. It is well known that the set of all differentiable functions in $C[0,1]$ is dense but meager. We will prove that even dense G_δ-sets in Banach spaces may not be spaceable.

Theorem 4.2. Let Y be an infinite-dimensional closed subspace of ℓ_1. Then there is $y \in Y$ such that $E(y)$ contains an interval.

Proof. Let $\varepsilon_n \downarrow 0$. Let x_1 be any non-zero element of Y with $\|x_1\|_1 = 1 + \varepsilon_1$. Since $x_1 \in \ell_1$, there is n_1 with $\sum_{n=n_1+1}^{\infty} |x_1(n)| \leq \varepsilon_1$. Let E_1 consist of all finite sums $\sum_{n=1}^{n_1} \delta_n x_1(n)$ where $\delta_n \in \{0,1\}$. Then E_1 is a finite set with $\min E_1 = \sum_{n=1}^{n_1} x_1^-(n)$, $\max E_1 = \sum_{n=1}^{n_1} x_1^+(n)$ and $1 \leq \max E_1 - \min E_1 \leq 1 + \varepsilon_1$.

Let $Y_1 = Y \cap \{x \in \ell_1 : x(n) = 0 \text{ for every } n \leq n_1\}$. As $\{x \in \ell_1 : x(n) = 0 \text{ for every } n \leq n_1\}$ has a finite codimension, Y_1 is infinite-dimensional. Let x_2 be any non-zero element of Y_1 with $\|x_2\|_1 = 1 + \varepsilon_2$. Since $x_2 \in \ell_1$, there is $n_2 > n_1$ with $\sum_{n=n_2+1}^{\infty} |x_2(n)| \leq \varepsilon_2$, $i = 1,2$. Let E_2 consist of all finite sums $\sum_{n=n_1+1}^{n_2} \delta_n x_2(n)$, where $\delta_i \in \{0,1\}$. Then E_2 is a finite set with $\min E_2 = \sum_{n=n_1+1}^{n_2} x_2^-(n)$, $\max E_2 = \sum_{n=n_1+1}^{n_2} x_2^+(n)$ and $1 \leq \max E_2 - \min E_2 \leq 1 + \varepsilon_2$.

Proceeding inductively, we define natural numbers $n_1 < n_2 < \cdots$ and infinite-dimensional closed spaces $Y \supset Y_1 \supset Y_2 \supset \cdots$ such that $Y_k = \{x \in Y : x(n) = 0 \text{ for every } n \leq n_k\}$, non-zero elements $x_k \in Y_{k-1}$ with $\|x_k\|_1 = 1 + \varepsilon_k$.
and \(\sum_{n=n_k+1}^{\infty} |x_i(n)| \leq \varepsilon_k, \) \(i = 1, \ldots, k, \) and finite sets \(E_k \) consisting of all sums \(\sum_{n=n_k-1}^{n_k} \delta_n x_k(n) \) where \(\delta_i \in \{0,1\}. \) Note that \(1 \leq \text{diam}(E_k) \leq 1 + \varepsilon_k. \) Consider \(y = \sum_{k=1}^{\infty} x_k/2^k. \) We claim that \(E(y) \) contains the interval \(I := [\min E_1, \max E_1]. \)

Note that for any \(t \in I \) there is \(t_1 \in E_1 \) with \(|t - t_1| \leq (1 + \varepsilon_1)/2. \) Since \(1 \leq \text{diam}(E_2) \leq 1 + \varepsilon_2, \) there is \(t_2 \in E_1 + \frac{1}{2} E_2 \) with \(|t - t_2| \leq (1 + \varepsilon_2)/2^2. \) Hence, there is \(t \in E(x_1 + x_2/2) \) with \(|t - \tilde{t}| \leq (1 + \varepsilon_2)/2^3 + \varepsilon_1. \) Since \(1 \leq \text{diam}(E_k) \leq 1 + \varepsilon_k, \) inductively we can find \(t_k \in E_1 + \frac{1}{2} E_2 + \cdots + \frac{1}{2^k} E_k \) with \(|t - t_k| \leq (1 + \varepsilon_k)/2^k. \) Hence, there is \(\tilde{t} \in E(x_1 + x_2/2 + \cdots + x_k/2^{k-1}) \) with

\[
|t - \tilde{t}| \leq (1 + \varepsilon_k)/2^k + \varepsilon_{k-1}/2 + \cdots + \varepsilon_{k-1}/2^{k-1} \leq (1 + \varepsilon_k)/2^k + 2\varepsilon_{k-1}.
\]

Since \(E(y) \) is closed and contains \(E(x_1 + x_2/2 + \cdots + x_k/2^{k-1}) \), it follows that \(t \in E(y) \) and consequently \(I \subset E(y). \)

Immediately we get the following.

Corollary 4.3. The set \(C \) is not spaceable.

We end the paper with some open questions on the set \(MC. \)

Problem 4.4.

(i) Is \(MC \) \(\sigma \)-algebrable?

(ii) Is \(MC \) an \(F_\sigma \)-subset of \(\ell_1? \)

(iii) Is \(MC \) spaceable?

Acknowledgments. The second and the third authors have been supported by the Polish Ministry of Science and Higher Education Grant No. N N201 414939 (2010-2013). We want to thank F. Prus-Wiśniowski who has informed us about the trichotomy of Guthrie and Nymann, and about other references on subsums of series.

References

SOME SETS IN ℓ_1

Taras Banakh
Wydział Matematyczno-Przyrodniczy
Uniwersytet Jana Kochanowskiego
Świętokrzyska 15
25-406 Kielce, Poland
and
Department of Mathematics
Ivan Franko National University of Lviv
Universytetska 1
79000 Lviv, Ukraine
E-mail: t.o.banakh@gmail.com

Artur Bartoszewicz, Szymon Głáb,
Institute of Mathematics
Łódź University of Technology
Wólkańska 215
93-005 Łódź, Poland
E-mail: arturbar@p.lodz.pl

Emilia Szymonik
Institute of Mathematics
Łódź University of Technology
Wólkańska 215
93-005 Łódź, Poland
E-mail: szymon.glab@p.lodz.pl

Received 26 August 2012 (5746)