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ATOMICITY AND THE FIXED DIVISOR IN CERTAIN
PULLBACK CONSTRUCTIONS

BY

JASON GREENE BOYNTON (Fargo, ND)

Abstract. Let D be an integral domain with field of fractions K. In this article,
we use a certain pullback construction in the spirit of Int(E,D) that furnishes many
examples of domains between D[x] and K[x] in which there are elements that do not
admit a finite factorization into irreducible elements. We also define the notion of a fixed
divisor for this pullback construction to characterize all of its irreducible elements and
those nonzero nonunits that do admit a finite factorization into irreducibles. En route
to these characterizations, we show that this construction yields a domain with infinite
restricted elasticity.

1. Introduction. Let D be any integral domain with field of fractions
K and let D• denote the set of nonzero nonunit elements of D. An element
d ∈ D• is called irreducible (or an atom) if d = ab with a, b ∈ D implies
that either a or b is a unit of D. We will write A(D) to denote the set of all
irreducible elements of D. An element d ∈ D• is called atomic if it admits a
finite factorization d = π1 · · ·πt where each πi ∈ A(D). Let F(D) be the set
of all atomic elements of D and N (D) = D• − F(D). That is, N (D) is the
set of elements of D• that do not admit a factorization into irreducibles.

The domain D is called atomic if every element of D• is atomic. Some
standard examples of atomic domains include UFD’s (every factorization
into irreducibles has the same length and is unique up to associates), HFD’s
(every factorization of α into irreducibles has the same length), and domains
satisfying ACCP (ascending chain condition on principal ideals). It is well
known that we have the chain of implications displayed below:

UFD⇒ HFD⇒ ACCP⇒ atomic.

Recall that if E = {e1, . . . , er} is a subset of D, then Int(E,D) = {g ∈
K[x] : g(E) ∈ D} is called the ring of integer-valued polynomials on D
determined by E. The purpose of this article is to extend some results from
[1], [9], [10] to a more general context. In particular, we consider a special
type of conductor square introduced in [3] that defines a ring between D[x]
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and K[x]. Let v(x) = v1(x) · · · vr(x) where v1, . . . , vr are distinct irreducible
polynomials over the field K. If C = v(x)K[X], then we have the natural
surjection η : K[x] � K[x]/C '

∏r
i=1K[θi] where, for each index i ≤ r,

θi is a root of vi. If Di is any overring of D[θi], then we have the inclusion
ι : Πr

i=1Di ↪→
∏r
i=1K[θi]. Taking the pullback of the maps η and ι, we obtain

the ring R = {g(x) ∈ K[x] : g(θi) ∈ Di for each i ≤ r} between D[x] and
K[x] with the nonzero conductor C from K[x] into R. In this case we will
say that R is defined by a conductor square of the type (�):

(�)
R K[x]

∏r
i=1Di

∏r
i=1K[θi]

η

ι

It was first proved in [15] that Int(E,D) = f(x)K[x] +
∑r

i=1Dϕi(x)
where f(x) = (x − e1) · · · (x − er) and, for each i ≤ r, the polynomial ϕi
is the LaGrange interpolation polynomial on the set E. This representation
indicates that Int(E,D) is definable by a conductor square of the type (�).
Indeed, it is noted in [3] that if we set vi(x) = (x− ei) and Di = D for each
i ≤ r, then the resulting pullback ring is R = Int(E,D).

Much is known about the ring Int(E,D) when E is finite (see [6] for a
survey). Recall that a ring R is said to have the strong n-generator property
if the following condition holds for every finitely generated ideal I: For each
nonzero b ∈ I, there exist b1, . . . , bn−1 ∈ I such that I = (b, b1, . . . , bn−1).
For example, [8] proves that Int(E,D) has the strong 2-generator property if
and only if D is a Bézout domain. A similar result for Int(E,D) can be found
in [4] for a larger number of generators. Also, [15] uses the representation
above to show that Int(E,D) is a Prüfer domain if and only if D is a Prüfer
domain. As the previous paragraph suggests, analogous results hold for a
ring R defined by a conductor square of the type (�) (see [5] for a survey of
all of these articles). The following problems may provide impetus to study
the construction:

Problem 1.1 ([7, Problem 50]). Study the ring- and ideal-theoretic prop-
erties that transfer in a conductor square where the conductor ideal is not
maximal (or even prime) in the extension ring.

The construction (�) has conductor ideal that is generally a finite inter-
section of maximal ideals of K[x]. The results of [3] and [4] provide some
investigation toward Problem 1.1.

Problem 1.2 ([7, Problem 52]). Does there exist a pullback diagram of
the type (�) that defines a Prüfer domain containing an ideal requiring more
than two generators?
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The results of [4] show that for n ≥ 2, there exists a Prüfer domain D
with the n-generator property but not the (n − 1)-generator property. In
addition, Int({0}, D) = D+xK[x] shares the same property as D. It follows
from [15] and [3] that the answer to Problem 1.2 is affirmative.

Problem 1.3 ([12, Problem PD2]). Does each Prüfer overring of Z[x]
have the 2-generator property?

A partial affirmative answer to this question is given in [3] where it is
shown that any Prüfer domain R between Z[x] and Q[x] with a nonzero
conductor from Q[x] into R has the 2-generator property.

Some authors have also considered factorization in various pullback con-
structions in the spirit of Int(E,D). For example, [11] finds necessary and
sufficient conditions on the pullback diagram defining S = A+ xB[x] in or-
der that S is an HFD (see [14] for similar examples). On the other hand, [1]
proves that if D is not a field, then Int(E,D) is never atomic. What is more,
a ring R defined by the construction (�) does not satisfy ACCP (see below).
At this point it would be reasonable to guess that the ring R is not atomic.

Indeed, we do show that the diagram (�) is quite useful in producing
numerous examples of nonatomic domains. In addition, we introduce the
concept of a fixed divisor (as in [2], [9], [10]) in order to characterize the
irreducible elements in certain pullbacks of the type (�). We use the fixed
divisor to show that these pullbacks have infinite restricted elasticity. This
investigation might give some insight into the possibility of atomicity in a
ring R defined by (�). If it is the case that such a ring R is atomic, then we
will have a method of producing atomic domains that do not satisfy ACCP.

2. Atomicity. In this section we show that examples of nonatomic do-
mains are quite easily obtained using the construction (�). It will become
evident that in most cases, the divisors of the conductor polynomial v(x)
do not admit a finite factorization into irreducible elements in R. In fact,
the closing result of this section shows that under certain conditions, we
need look no further than the conductor ideal v(x)K[x] for the nonatomic
elements.

Definition 2.1. Suppose that R is a ring defined by the diagram of the
type (�).

(1) As in [6], J0(R) denotes the ring of constants in R. That is, J0(R) =
R ∩K.

(2) A polynomial f ∈ R is called pseudo-irreducible in R if g, h ∈ R and
f = gh imply g or h ∈ J0(R).

If c ∈ J0(R), then we get nothing new when evaluating at θi and it
follows that c ∈

⋂r
i=1Di. In other words, J0(R) ⊂

⋂r
i=1Di. It is also
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worth noting that if f ∈ R, then the irreducibility of f in K[x] implies
the pseudo-irreducibility of f in R. However, if g(x) = x(x − 1)/2 and
R = Int({0, 1},Z), then g is a pseudo-irreducible element of R while it is not
irreducible in Q[x].

Lemma 2.2. Suppose that R is a ring defined by a diagram of the type
(�). If g(x) ∈ R has the property that g(x)/c ∈ R for every nonzero nonunit
c ∈ J0(R), then the following hold:

(1) The polynomial g(x)/c is not an irreducible element of R.
(2) If g(x)/c is a pseudo-irreducible polynomial then it is not atomic.
(3) There exists an infinite chain of principal ideals that properly ascends

from (g(x)).

Proof. (1) Choose any nonzero nonunit d ∈ J0(R). Then g(x)/c =
d · g(x)/cd is a proper factorization.

(2) Suppose that g(x)/d = p1(x) · · · ps(x) where each pk is in A(R). By
assumption, all but one of the pk are constant in R. That is, after a suitable
reordering, we have deg(g) = deg(p1) and p2, . . . , ps ∈ J0(R)•. But then
g(x)/(p2(x) · · · ps(x)) = p1(x) ∈ A(R), contradicting (1) above.

(3) Choose any nonzero nonunit d ∈ J0(R). Then (g(x)) ⊂ (g(x)/d)
⊂ (g(x)/d2) ⊂ · · · is a properly ascending chain of principal ideals that does
not terminate.

Remark 2.3. Notice that if R is a ring defined by (�), then the conduc-
tor polynomial v(x) has the property that v(x)/c ∈ R for every c ∈ J0(R).
Indeed, we have v(θi)/c = 0 ∈ Di for each i ≤ r and it is evident that R
never satisfies the ascending chain condition on its principal ideals. In ad-
dition, usually one need not look much further than v(x) (or its irreducible
factors vi(x)) in order to find an element of R that is not atomic.

The proof of the next result essentially uses the same argument as [1].

Theorem 2.4. Suppose that R is a ring defined by a diagram of the type
(�) with the following properties:

(1) There exists a nonunit d ∈ D that remains a nonunit in DiDj for
each i 6= j.

(2) The Vandermonde determinant ∆ of the full set of roots in a splitting
field of v is nonzero.

Then the polynomial v(x)/∆2d is a pseudo-irreducible element of R so that
R is not atomic.

Proof. Suppose that we can write v(x)/∆2d = g(x)h(x) with g, h ∈ R
and such that deg(g), deg(h) ≥ 1. Lifting this equation up to the UFD K[x],
after a suitable reordering of the vi, we find that g = αv1 · · · vk and h =
βvk+1 · · · vr where α, β ∈ K. It follows that αβ∆2d = 1 so that (α∆)(β∆)d
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= 1. Now α∆ = g(θi) · α∆/g(θi) for any index k + 1 ≤ i ≤ r, and since
g ∈ R, we have g(θi) ∈ Di. If {θ1, . . . , θn} is the full set of roots in a split-
ting field of v(x) where n ≥ r, then α∆/g(θi) ∈ D[θ1, . . . , θn]. It follows
that αz ∈ Di[θ1, . . . , θn] and similarly that βz ∈ Dj [θ1, . . . , θn] for any index
1 ≤ j ≤ k. This means that d is a unit in the ring DiDj [θ1, . . . , θn]. But d is
a nonunit of DiDj , and since we can assume that θ1, . . . , θn are all integral
over D (see [3] for a justification), it must be the case that d is a nonunit
in DiDj [θ1, . . . , θn]. It follows that the polynomial v(x)/∆2d cannot be fac-
tored into two polynomials of smaller degree and is hence pseudo-irreducible.
Lemma 2.2 and Remark 2.3 imply that R is not atomic.

The previous results together with the next examples suggest that non-
atomic domains between D[x] andK[x] defined by the diagram (�) are quite
numerous.

Examples 2.5. Suppose that R is a ring defined by a diagram of the
type (�).

(1) If r = 1, then the ring R defined by (�) is never atomic. Since v(x) =
v1(x) is irreducible in K[x], it is pseudo-irreducible and Remark 2.3
implies that R is not atomic. In particular, the ring Int({0}, D) =
D + xK[x] is nonatomic whenever D is not a field.

(2) (See [1].) If D is not a field, then the ring Int(E,D) of integer-valued
polynomials on D determined by the finite subset E = {e1, . . . , er}
⊂ D is never atomic. As noted in the introduction, Int(E,D) is
defined by a conductor square of the type (�) where C =
(x−e1) · · · (x−er)K[x] and A =

∏r
i=1D. That is, eachDi equalsD so

that DiDj = D ( K. Nonatomicity of R follows from Theorem 2.4.
(3) Suppose that r = 2 and D2 = K(θ2) and consider the polynomial

v1(x) ∈ D[x]. If c is any nonzero element of D, then v1(θ1)/c = 0 ∈
D1 and v1(θ2)/c ∈ K(θ2) putting v1(x)/c ∈ R. Lemma 2.2 implies
that R is not atomic.

(4) If C = x(x− 1)Q[x] and D1×D2 = Z(2)×Z(3), then the polynomial
x/2 ∈ R is not atomic. First note that J0(R) = Z(2) ∩ Z(3) and if 3
divides x/2, then x/6 ∈ R. But this is impossible since 1/6 /∈ Z(3).
It now follows that x/2 cannot be factored into irreducibles. To see
this, if x/2 = c1 · · · cng(x) is a factorization into irreducibles, then
each ci equals 2 and g(x) is irreducible in R. But then g(x) = x/2k

is irreducible, which is false.

We close this section with a result that gives conditions in which the
badly behaved elements with respect to factorization are confined to the
conductor ideal C = v(x)K[x]. This theorem is a slight strengthening of
Proposition 7 in [10]. First, we make a relevant definition.
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Definition 2.6. A D-module M satisfies D-ACC if every ascending
chain of cyclic submodules of M stabilizes.

Theorem 2.7. Suppose that R is a ring defined by a diagram of the type
(�) with the following properties:

(1) Each nonunit of J0(R) remains a nonunit in Di for each i ≤ r.
(2) Each Di satisfies ACC on its cyclic J0(R)-submodules.

Then N (R) is contained in the conductor ideal C = v(x)K[x].

Proof. Since every polynomial in R can be factored into a product of
pseudo-irreducible elements, it suffices to check the result for these poly-
nomials. If g ∈ N (R) is pseudo-irreducible, then there exists in R an infi-
nite chain of cyclic J0(R)-submodules J0(R)g ⊂ J0(R)g1 ⊂ J0(R)g2 ⊂ · · ·
that properly ascends from g. Evaluating at any θi gives a chain of cyclic
J0(R)-submodules J0(R)g(θi) ⊂ J0(R)g1(θi) ⊂ J0(R)g2(θi) ⊂ · · · in Di that
properly ascends from g(θi). If g(θi) 6= 0, then condition (1) ensures that
the chain remains infinite in Di and condition (2) is violated. It follows that
g(θi) = 0 for all i ≤ r so that g ∈ v(x)K[x].

Remark 2.8. If v(x) = x − e is a linear polynomial, then it is enough
to assume that D = D1 is an atomic domain (without the full strength of
ACCP) to conclude that N (R) ⊂ (x − e)K[x]. Indeed, if d + (x − e)q(x) ∈
R = D+ (x− e)K[x] where d 6= 0, then d(1 + (x− e)q(x)/d) can be factored
into a finite product of irreducible elements. If deg(v) ≥ 2, it is not clear
that we can replace condition (2) with “each Di is J0(R)-atomic” (see below
for the definition).

3. The fixed divisor. In this section, we define the notion of a fixed
divisor for a ring R defined by a special case of the diagram (�) (see [2], [9],
[10]). This tool will greatly facilitate the characterization of the irreducible
and atomic elements of R. Using some of the ideas in [13] we can better
understand the factorial behavior in (�). Let D be any integral domain
and let M be any torsion free D-module. The nonzero element m ∈ M is
said to be D-irreducible in M if whenever m = dm′ for some d ∈ D and
m′ ∈M , then d is a unit of D. The set of all D-irreducible elements of M is
denoted by AD(M). A nonzero element m ∈ M is called D-atomic if there
exists a finite factorization m = c1 · · · ctm′ such that ci ∈ A(D) for each
i ≤ t and m′ ∈ AD(M). We will call M a D-UFM (or a factorial module)
if M is D-atomic and if c1 · · · ctm′ = d1 · · · dsm′′ where ci, di ∈ A(D) and
m′,m′′ ∈ AD(M) implies t = s, ci = uidi, and m′ = um′′ for some units
u, ui ∈ D. It is pointed out in [13] that ifM is aD-UFM, thenD is necessarily
a UFD.
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Definition 3.1. Suppose that R is a ring defined by a conductor square
of the type (�) and let E = {θ1, . . . , θr}. Assume further that each Di

is a J0(R)-UFM and that every nonunit of J0(R) remains a nonunit in
each Di.

(1) We will say that R is a ring defined by a conductor square of the type
F(�).

(2) Let g(x) ∈ R. Write each g(θi) = cig
′(θi) where ci ∈ J0(R) and g′(θi)

is an irreducible element in the J0(R)-module Di. Now define the
fixed divisor of g to be d(E, g) = gcd(c1, . . . , cn) in J0(R).

The following theorem collects some basic properties of the fixed divisor.
Similar statements can be found in [9] and [10] for Int(E,D).

Theorem 3.2. Suppose that R is a ring defined by a conductor square
of the type F(�). The following hold for a nonzero polynomial g ∈ R:

(1) g(x)/d(E, g) belongs to the ring R.
(2) d(E, g) = 0 implies g is not irreducible.
(3) g = cg1, where g1 ∈ R and c ∈ J0(R), implies d(E, g) = cd(E, g1).
(4) g = g1 · · · gk, where each gs is in R, implies d(E, g1) · · · d(E, gk) |

d(E, g).
(5) g = gk1 , where g1 ∈ R, implies d(E, g) = d(E, g1)

k.

Proof. (1) Follows immediately from the fact that d(E, g) | g(θi) for each
i ≤ r.

(2) If d(E, g) = 0, then g(θi) = 0 for all i ≤ r. That is, g ∈ v(x)K[x]
and we can write g(x) = v(x)q(x) for some q(x) ∈ K[x]. There is a nonzero
nonunit d ∈ D such that dq(x) ∈ D[x] and we have a factorization g(x) =
v(x)q(x)

d · d.
(3) Follows from the identity gcd(cd1, . . . , cdr) = c gcd(d1, . . . , dn).

(4) Suppose that p is any prime element of J0(R) that divides d(E, g1)
· · · d(E, gk). We will assume that p | d(E, g1) so that p | g1(θi) in the J0(R)-
module Di for each i ≤ r. Using the fact that Di is a J0(R)-UFM, we
can write g1(θi) = γ1,ig1,i(θi) where g1,i(θi) is J0(R)-irreducible and γ1,i ∈
J0(R). Since p is prime (irreducible) in the UFD J0(R), it is prime in
the J0(R)-module Di. That is, p | γ1,i and it is evident from the equation
g(θi) = γ1,i · · · γk,ig1,i(θi) · · · gk,i(θi) that p | γ1,i · · · γk,i for all i ≤ r. There-
fore, p | d(E, g1 · · · gk) and we have d(E, g1) · · · d(E, gk) | d(E, g) as desired.

(5) From (4), we have d(E, g1)
k | d(E, g). Now suppose that p is any prime

element of J0(R) that divides d(E, g). If we write g(θi) = (γ1,ig1,i(θi))
k =

(γ1,i)
kgk1,i(θi), then p | (γ1,i)k in the ring J0(R). Hence, p | γ1,i for each i ≤ r

so that p | d(E, g1)
k.
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We now define a notion similar to that of “primitive” for a polynomial
ring over a UFD. Theorem 3.4 below collects some results similar to those
found in [9] and [10].

Definition 3.3. Suppose that R is a ring defined by a conductor square
of the type F(�). An element g ∈ R is called image primitive if d(E, g) = 1.

Theorem 3.4. Suppose that R is a ring defined by a conductor square
of the type F(�). The following hold for a nonzero polynomial g ∈ R:

(1) d(E, g) = 1 and g = g1 · · · gk, where each gi ∈ R, implies d(E, gi) = 1
for each i ≤ k.

(2) g ∈ A(R) implies d(E, g) = 1.
(3) d(E, g) = 1 implies that g is not divisible by any element of J0(R)•.
(4) If g ∈ J0(R)[x] and g is primitive, then g irreducible in R if and only

if g is irreducible in J0(R)[x] and d(E, g) = 1.

Proof. (1) Follows immediately from (4) in the previous theorem.
(2) If d(E, g) = d is an element of J0(R)•, then g(x)/d ∈ R by (1) of the

previous theorem and g(x) = d · (g(x)/d) is a proper factorization of g(x)
in R.

(3) Suppose that g(x) = ch(x) for some c ∈ J0(R)• and some h ∈ R.
SinceDi is a J0(R)-UFM, and since h(θi) ∈ Di, we have the unique factoriza-
tion h(θi) = γihi(θi) where hi(θi) is irreducible. It now follows that g(θi) =
cγihi(θi) and that 1 = d(E, g) = gcd(cγ1, . . . , cγr) = c gcd(γ1, . . . , γr), mak-
ing c a unit in the ring J0(R).

(4) (⇒) If g(x) is irreducible in R, then g(x) is image primitive by (2).
Suppose g(x) = g1(x)g2(x) is a proper factorization of g(x) in J0(R)[x]. If
g1, g2 are both nonconstant, then this factorization of g is proper. If g(x) =
dg2(x) is a proper factorization in J0(R)[x], then d is a nonunit in J0(R),
making it a nonunit of R.

(⇐) If g(x) is irreducible in J0(R)[x] and image primitive, then g(x) is
irreducible in K[x]. Suppose g(x) = g1(x)g2(x) is a proper factorization of
g(x) in R. Since g(x) is image primitive, both g1(x) and g2(x) are noncon-
stant, which contradicts the irreducibility of g(x) over K[x].

The results below are extensions of some results [9] and [10]. They all fol-
low from the properties of the generalized fixed divisor given in Theorems 3.2
and 3.4. The proofs are essentially the same as the ones provided in [9] and
[10] but we replace Int(E,D) and D[x] with the more general constructions
R defined by F(�) and J0(R)[x]. We therefore omit the details of the proofs
and refer the reader to the previously cited articles.

The definition below is introduced in [10] and is given in order to retain
the notion of elasticity in an integral domain that is not atomic.
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Definition 3.5. Let D be any integral domain with A(D) 6= ∅. We
define the restricted elasticity to be

ρr(D) = sup

{
m

n
∈ Q : α ∈ F(D) and

n∏
i=1

pn = α =
m∏
i=1

qi where pi, qi ∈ A(D)

}
.

It is shown in [10, Corollary 6] that for every real number t ≥ 1, there
exists a domain D with a finite subset E such that ρr(Int(E,D)) = t. That
is, there exists a ring R defined by (�) such that ρr(R) = t. In addition, we
have the following result analogous to [10, Proposition 12].

Theorem 3.6. Suppose that R is a ring defined by a conductor square
of the type F(�). Then ρr(R) =∞.

The next theorem is critical in determining the irreducible elements of
a domain R defined by a diagram of the type F(�). It is analogous to a
familiar representation for elements in a polynomial ring over a UFD.

Theorem 3.7. Suppose that R is a ring defined by a conductor square
of the type F(�). If g ∈ R is image primitive, then there exists a unique (up
to associates) primitive polynomial g1 ∈ J0(R)[x] and d ∈ J0(R) such that

(∗) g(x) = g1(x)/d.

In the result that follows, we lay more of the ground work needed in
characterizing the irreducible and atomic elements of R defined by F(�).

Lemma 3.8. Suppose that R is a ring defined by a conductor square of
the type F(�). The following statements are equivalent for a nonconstant
primitive polynomial f ∈ J0(R)[x]:

(1) f(x)/d(E, f) is irreducible in R.
(2) Either f is irreducible in J0(R)[x], or for every pair of noncon-

stant polynomials g, h ∈ R such that f = gh, one has d(E, f) -
d(E, g)d(E, h).

With Theorem 3.7 and Lemma 3.8 at hand, we are able to characterize
the irreducible elements of a ring defined by F(�) and those elements of the
conductor ideal that do admit a finite factorization into irreducibles. These
results will shed some light on the factorization properties of the construction
F(�) and may provide the necessary tools to find other examples of atomic
domains that do not satisfy ACCP.

Theorem 3.9. Suppose that R is a ring defined by a conductor square
of the type F(�). Let g(x) be a nonunit in R and write g(x) = g1(x)/d as
in (∗). Then g(x) is irreducible in R if and only if
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(1) deg(g) = 0 and g is irreducible in J0(R), or
(2) deg(g) > 0, g(x) is image primitive in R, and d(E, g1) = d where

either

(a) g1(x) is irreducible in J0(R)[x], or
(b) if g1(x) = f(x)h(x) is any proper factorization J0(R), then

d - d(E, f)d(E, h).

Theorem 3.10. Suppose that R is a ring defined by a conductor square
of the type F(�). Let g ∈ v(x)K[x] and write g(x) = g1(x)/d as in (∗). In
order for g to admit a finite factorization into irreducibles, it is necessary
and sufficient that there exists a proper factorization g1(x) = p1(x) · · · pr(x)
in J0(R)[x] and d = c1 · · · cr in J0(R) such that:

(1) d(E, pi) 6= 0 whenever 1 ≤ i ≤ r, and
(2) ci | d(E, pi) whenever 1 ≤ i ≤ r.
We conclude this article with a natural question: Can we find necessary

and sufficient conditions on the diagram (�) in order that the resulting
pullback is atomic? Also, if such conditions are found, can we find examples
that satisfy them?
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