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Abstract. We introduce and study strongly invariant means m on commutative hy-
pergroups, m(Typ - ) = m(p - Tzy), x € K, ¢,¢ € L™ (K). We show that the existence
of such means is equivalent to a strong Reiter condition. For polynomial hypergroups we
derive a growth condition for the Haar weights which is equivalent to the existence of
strongly invariant means. We apply this characterization to show that there are commu-
tative hypergroups which do not possess strongly invariant means.

1. Introduction. Hypergroups generalize locally compact groups. For
the theory of hypergroups we refer to [I] and [3]. A hypergroup K is a locally
compact Hausdorff space with a convolution, i.e. a map K x K — M'(K),
(z,y) > 65 % 6y, (M'(K) is the space of probability measures on K) and an
involution, i.e. K — K, x — Z, satisfying certain axioms (see [I] or [3]). The
support of each probability measure J, * d, is compact. Hence, for y € K
the translation of a locally integrable function f on K is defined by

Tof(y) = | f(2) by % 6, (2).
K
Spector [I1] has proven that each commutative hypergroup possesses a Haar
measure p, which is characterized by

V Tt (v) dpty) = | f(y) du(y)

K K
for all z € K and f € C.(K), where C.(K) is the space of all continuous
complex valued functions on K with compact support. Throughout this
paper, K will be a commutative hypergroup. The Banach spaces LP(K) =
LP(K,pu), 1 < p < oo, are invariant under the translations T, x € K, and
we have |, fllp < ||l
The convex subset P1(K) of L'(K) is defined by

PYK) = {f e LK) : £ >0, | f(z)du(z) = 1}.

K
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Let C(K) denote the space of bounded continuous complex valued functions
on K equipped with the sup-norm. Cy,(K) is also invariant under the trans-
lation T,. The space of bounded uniformly continuous functions is given
by

UC(K)={f € CyK) : x> T,f is continuous from K — Cy(K)}.

Our main interest is in strongly invariant means on L*°(K): these are
means m € L>(K)* satisfying

m((Tep) - ) = m(e - Tath)

for all x € K and ¢,v € L*°(K). Invariant means on hypergroups are
studied in [10] and [6]. An invariant mean satisfies m(T,p) = m(p) for all
z € K and ¢ € L*®°(K). Since K is commutative, there exist invariant means
on L*°(K). We will show that this is not necessarily the case for strongly
invariant means. We will derive an equivalent condition for the existence of
such means, namely a strong Reiter condition. For polynomial hypergroups
K on Ny we give an explicit characterization when a strongly invariant mean
exists.

Polynomial hypergroups K on Ny are generated by orthogonal polyno-
mial sequences (R, (x))nen,- No is equipped with the discrete topology. The
convolution is determined by the linearization coefficients g(m,n; k) of the
product R, (z)R,(z), i.e.

n+m
(1.1) Ry (z)Ry(z) = Z g(m,n; k)Ry(x).

k=|n—m)|

If all g(m,n;k) are nonnegative, and if the R, (z) are normalized so that
R, (1) = 1, then, putting
n+m
Om * Op = Z g(ma n; k)(;ka
k=|n—m)|
a convex combination of the point measures J;, we get a convolution on N.
Together with 7 = n as involution and n = 0 as unit, this convolution defines
a commutative hypergroup on Ny. For more details and a lot of examples
we refer to [I] or [5, 6]. The Haar measure on the polynomial hypergroup
Np is the counting measure with weights h(n) = g(n,n;0)~! of the points
n € Ny. Taking m = 1 in ([1.1)) we get the three-term recurrence relation
Ri(2)Ry(x) = apRpt1(x) + by Ry (x) + cnRp—1(x)
for all n € N, with initial values Ryo(z) = 1, Ri(z) = (1/ap)(z — Bo). Hence,
an = g(1,n;n+1) >0, b, = g(1,n;n) >0, ¢, = g(1,n;n — 1) > 0 for all
n € N, and a, + b, + ¢, = 1, whereas ag > 0, 8y € R with a9+ 8y = 1. The
Haar weights satisfy h(0) =1, h(n + 1) = C:ﬁh(n)
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A growth condition for the Haar weights characterizes the existence of
strongly invariant means. Applying this growth condition we test some ex-
amples. We will see that some polynomial hypergroups have a strongly in-
variant mean, while others do not.

2. Strongly invariant means. Let K be a commutative hypergroup.
Let M(K) be the set of invariant means on K, i.e.

M(K) ={m e L=(K)* :m(1) =1, m >0, m(T,p) = m(p)
for all z € K and ¢ € L*(K)}.

Then M(K) is a nonempty (see [10]) weak-*-compact, convex subset of

L>*(K)*. Our main interest is in the set SM(K) of strongly invariant means

in K, i.e.

SM(K) = {m € I®(K)* - m(1) = 1, m > 0, m((Typ) - ) = m(p - (Ty))
for all y € K and p,¢ € L(K)}.

Obviously, SM(K) C M(K) and SM(K) is also a weak-*-compact, convex
subset of L>(K)*. Elements x € K act on L>(K)* by the map F — T, F,
where T, F'(¢) = F(Tyyp) for all ¢ € L*°(K). Note that

IT:Flf = sup [TF(p)| = sup [F(Tup)| < |[F].
lplloo <1 lplloo <1

We define
J(L®(K)) = {F € L®(K)* : T,F = F for all z € K}.

Let Bil(L™(K)) = {B : L®(K) x L®(K) — C : B bilinear}. Each z € K
also determines a map F B;7F, L>®(K)* — Bil(L*(K)), by

By r(0) = F((Top) - ) for all ¢ € LX(K),
and a second map F +— Bg’F, L>*(K)* — Bil(L>*(K)), by

B2 p(0,90) = Fp- (Tey))  for all ¢,9 € L®(K).
We define

SJ(L®(K)) ={F € L™(K)*: B, p = B2 p for all z € K'}.

Obviously J(L>*(K)) and SJ(L*°(K)) are linear subspaces of L*>°(K)* and
0€ SJ(L®(K)) C J(L*(K)).

PROPOSITION 2.1.
(i) The linear span
L:=span{T,p —p:p € L¥(K), v € K}
is not dense in L*°(K) if and only if J(L*™°(K)) # {0}.
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(ii) The linear span
SL :=span{Typ - — - Ttp: p,h € L(K), v € K}
is not dense in L*°(K) if and only if SJ(L>*(K)) # {0}.

(iii) SJ(L>®(K)) € J(L*®(K)) if and only if SL 2 L.

Proof. The proof of (i) follows the lines of the proof of Proposition (2.1)
of [7]. The proofs of (ii) and (iii) also use simple applications of the Hahn—
Banach theorem. For the sake of completeness they are given here.

(ii) Assume SL = L¥(K). If F € SJ(L*(K)), then B! . = B2,
which means F(Typ - ¢ — ¢ - Tgh) = 0 for all ¢,¢ € L®(K) and z € K,
and SL = L*(K) implies F' = 0. Conversely, if SL C L*®(K), then there
exists some F € L®(K)*, F # 0, such that F|SL = 0. In particular,
F e SJ(L>®(K)).

(iii) Assume that there is some F € J(L>®(K)) \ SJ(L*(K)). Then
F|L = 0 and there are some x € K and ¢, € L>®(K) such that

F(Tpp - — - Ti) # 0.

Hence, L C SL. The inverse implication follows immediately by the Hahn—
Banach theorem. m

To show the existence or nonexistence of strongly invariant means on K
we use another version of the Hahn-Banach theorem (cf. [8, Lemma 4.2.7]).
Let SLg be the R-linear span of {Tp -9 —¢-Tz1 : ¢, € LY (K), v € K},
where L°(K) is the space of real-valued elements of L>(K).

PROPOSITION 2.2. The following properties are equivalent:

(i) There exists m € LgP(K)* with m(1) =1, m > 0 and m|SLr = 0.
(i) supyeg n(x) >0 for alln € SLg.

Proof. By the definition of means we have m(y) < sup,cx ¢(z) for
all ¢ € L (K). Supposing (i) we obtain 0 = m(n) < sup,cx n(x) for all
n € SLg.

Conversely, assume that (ii) is valid. Let N(y) = sup,cx ¢(z) for all
¢ € L(K). Then N is a sublinear functional on Lg’(K) and it dominates
the zero functional on SLg. By the Hahn-Banach theorem [9] the zero-
functional on SLg can be extended to a linear functional m on Lg°(K') such
that m(p) < sup,cx ¢(z) for all ¢ € L (K). Then m is a mean on LgP(K)
[8, Proposition 3.2] and m(n) =0 for all n € SLg. =

Writing ¢ € L>®(K) as ¢ = @1 + ip2, ¢1,92 € LF(K), and putting
m(p) = mr(p1) + imgr(p2) for a mean mr on Ly’ (K) we obtain a mean
on L®(K). If p,¢p € L>(K) and ¢ = 1 + ipa, = 91 + ithy with
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@152, ¥1, 92 € L (K), then

Top b — - Tap = (Tupr - 1 — 1 - Tan) — (T2 - 2 — 2 - Taho)
+i(Tep1 - Y2 — @1+ Tatha) + i(Tospz - Y1 — 2 - Tath).

Therefore, if mp is a mean on Ly (K) with mg|SLr = 0, then m is a mean

on L*(K) such that m|SL = 0. So we have the following characterization
of the existence of a strongly invariant mean on K.

THEOREM 2.3. Let K be a commutative hypergroup. There exists a
strongly invariant mean m on K if and only if sup,cn(z) > 0 for all
n € SLg.

3. Reiter’s conditions. Skantharajah [10] has shown for general hy-
pergroups that an invariant mean exists if and only if the following Reiter
condition (Pp) is satisfied: For every € > 0 and compact C' C K there exists
some f € P(K) such that | T, f — f|l1 < € for all z € C.

We now investigate a modification of the Reiter condition (P;) which is
related to the existence of strongly invariant means m € SM(K).

DEFINITION 3.1. We say that K satisfies the strong Reiter condition
(SPy) if for every € > 0 and finite subset F' C K and finite subset ¢ C
L>®(K) there is some f € P1(K) such that

(3.1) ITe(p - f) = f - Tusplly <€
for all z € F and ¢ € .

THEOREM 3.2. If there exists a strongly invariant mean m on K, then
K satisfies (SPY).

Proof. The embedding of the unit ball B C L(K) into L*°(K)* is dense
in the unit ball C C L*°(K)* with respect to the weak-*-topology (see [2,
p. 424]). Hence, the existence of a strongly invariant mean m € SM(K)
yields a net (f;)jer, fj € B, such that

| fi(@)e(x) du(x) — m(y)  for all ¢ € L=(K).
K

Since m(1) = 1 and m is positive we can choose the f; from P!(K). For any
y € K and ¢,1 € L*°(K) we have

V Ty(e- i) (@)e(@) du(z) = | fi(2)e(@) Ty () du(x) — mp - Ty)
K K

and

V £i(@)Typ(@)(x) du(z) = m(Typ - ).
K
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Hence,

(T (0 £,)(@) = (FiTy) @) ) dpa(z) — 0

K
for all ¢ € L*(K).

For F ={y1,...,ym} and & = {p1,..., ¢, } define
gkt = Ty (e1fs) = fi(Tyo0)-

Then the net g; = (91,15, -+ 9mmnj) € LHK)™ = LY(K) x --- x L}YK)
converges to zero in the product space L'(K)™" with respect to the weak
topology. Since for convex subsets of L!'(K)™" the norm-closure coincides
with the weak closure, a convex combination of the g; converges to zero in
the norm of L'(K)™" (see [2, p. 422]). Hence, there exists some f € P'(K),
a convex combination of the functions g;, such that

ITo(o-f)—f - Toplli<e forallzeF,ped. n
Now, we show that the converse of Theorem is also true.

THEOREM 3.3. If K satisfies (SPy), then there ezists a strongly invari-
ant mean m on K.

Proof. Let € > 0, F C K finite and ¢ C L*°(K) finite. Then there exists
f € PYK) such that | Tx(¢ - f) — (Twp) - fll1 < eforallz € F and ¢ € &.
The function f determines a linear functional m, pep € L>(K)* by

mera(®) = | ¥(y)f(y)duly) for all y € L(K).
K

This functional is positive and satisfies

Ime.poll = mera(l) = | f(y) duy) = 1.
K

In particular all m, g ¢ are elements of a weak-*-compact subset of L>(K)*.
For every ¢,¢ € L>*(K) and z € K we have

mepa(e- Ta) = | o) T () f () dply) = | Tulo ) (W)v(y) du(y).

K K
Therefore,

Ime.pa(p - Tah) — mepo(¥ - Top)|
= | N (T2(eh ) = F ) Tep ) y) duty)
K

<Nl Te(pf) = (Tp) - flln <€

for all ¢ € @ with z € F' and ¢ € L*(K) with |4/ < 1.
Defining

(€1, F1,P1) < (€2, I, P2) whenever e <€,y C Fp,®1 C Py
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we get a partial order. With respect to this partial order, the functionals
me,F,e form a net. This net has an accumulation point m € L™ (K)* satis-
fying [[m|| = m(1) = 1 and m(p(T5w)) = m((Top)t) for all ¢,0 € L®(K)
and xr € K. n

The function f € P!(K) in the (SPj) condition can even be chosen to
be continuous with compact support.

LEMMA 3.4. If K satisfies (SPy), then the function f in (3.1) can be
chosen from f € P1(K) N C.(K).

Proof. Let ¢ > 0, F C K finite, & C L% (K) finite, and denote M =
max{||¢|leo : ¢ € ®}. Then there exists g € P(K) such that || T,(p - g) —
(Trp) - gllh < ¢/3 for all z € F, ¢ € ®. Furthermore, there is some f €
PY(K)N C.(K) such that ||g — f|l1 < €/(3M). It follows that

| Te(e - f) = (Tug) - flli < | Tele - f) — Tule - 9)ln
+ | T(e - g9) — (Twp) - glha
+ [(Tep) - g — (Tw) - fll1 <€ m

Restricting from L*>°(K) to UC(K) we may replace the finiteness of
F C K in (SPf) by compactness. In fact we can show:

THEOREM 3.5. Assume that (SPy) is satisfied. For e >0, C C K com-
pact and ® C UC(K) finite there exists some f € PY(K) N C.(K) such
that

| Tu(pf) —Twp- flli <€  forallzeC,ped.

Proof. Let M = max{||¢||ls : ¢ € }. Choose g € P}(K)NC.(K). There
exist x1,...,x, € K and open neighbourhoods U, of z;, i = 1,...,n, such
that
€

n
€
C C U U, and | Ty — Tngl < 3 and || Ty — TySOHoo < 3

i=1
for all z,y € U,, and every p € . Condition (SP}) yields f € PY(K) N
C.(K) such that

€
1Tl £) = Top)- Sl < 5 forall g € @,

i=1,...,n.
Now, let x € C. Then x € U, for some 7 = 1,...,n, and we obtain

1Te(p- f)*g—Te(0- f)xglli=l(¢- f)*Teg— (¢ f)*Trglla

€
< HSO ' leHTxg _TCCing < g
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Hence,

1To(p- f)*xg— ((Twp) - [)*gllh < Tule- f)*xg—Tu (- f)xgl1
| Twi (0 )% g — (Tw0) - ) glli + ([ (T 0) - £) 29— (Tap) - £ * gl < e

Choosing g € PY(K) N C.(K) from an approximate identity in L'(K) it
follows that ||T.(p - f) —Top- fl1 <eforallz € Cand p € P. u

4. Strongly invariant means on polynomial hypergroups. Now,
we study the special case of polynomial hypergroups K on Ny. We begin by
deriving a more accessible description of the linear space

SL =span{T,p -9 — @ -Tpp : n € Ny, p, ¢ € £},
We shall use the following relation for the translation operators T),:
b Cn,

1
(4.1) Thy1=—TioT, — 2T, — —Th1, n>1L

an n n

Applying induction and we will prove the following result.
LEMMA 4.1. SL =span{Tip-¢ — ¢ -Ti¢) : @, € £},
Proof. By induction on n we show
Topr -1 — @1 - Tupr € span{Tipa - Yo — @2 - T1gpa : 2,92 € (7}
for all 1,11 € £°. Assume that Trp1 - 1 — @1 - Tpt)1 are elements of
SLy = span{Tips - 2 — 2 - T1va : 2, 1ho € L7}

for Kk =n — 1,n and for all p1,¢; € £*°. From (4.1)) and T}, 0o T} =T 0T,
we obtain, for all ¢, € £,

Tny101 -1 — 1 Thg1v1 = [T1< - }wl
n an an

. |:T (lel) . bn T . CnTn—1w1:| '

an an an

Tn@l) B bnTnSOl chn—lSol

By the assumption we have

Tho1p1 -1 — 1 -Thoapr € SL,  Thpr -1 — o1 - Tty € SLy.

Moreover,

T, T,
T1< wl)% — a@llel e SLy

n n

and by the assumption

T T
(PlTn( ;¢1> —Ther - 191 € SL.

n Gn
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Hence, we have

T1< wl)% - <P1Tn< 11/}1) = <T1< (p1>¢1 - (plTﬂh)
(27 (79 an an,

T T
- <¢1Tn< 61;/’1) — Thpr - ”/’1> €SI,

n an

and Lemma (.1 is shown. =
Let ¢,v € £°°. Then
(4.2) Tip(n)p(n) —e(n) Tiv(n) = an(p(n + )p(n) — ¢(n + 1)ep(n))
—cn(p(n)yp(n — 1) — P(n)p(n — 1))

= apw(n) — cpw(n — 1)
with
w(n) =p(n+1)yYn) —Yn+1)e(n) for all n € Ny.

Note that we set ag = 1 and ¢y = 0.

It is important to point out that for any sequence w € £°° there are
©, 1 € £ such that w(n) = p(n+1)1(n) —(n+1)p(n). This can be easily
proved by setting

(43) ol20) = {

and

1 for k even
4.4 2k) = ’
(44) ¥(2k) {O for k£ odd,

Therefore, there is again a simplification.
LEMMA 4.2. We have
span{Tip - — - T o, €L} ={Tip - —p-Tip : o, € £7}.
Proof. Let 1,91, 2,12 € £°° and n € Ng. Then due to ,

(Trpr -1 — 1 - Thpr + Tipa - b2 — o - Tia)(n)
= apwi(n) — cpwi(n — 1) + apwa(n) — cpwa(n — 1)

0 for k even,
1 for k odd,

(2 +1) = w(2k) for k even,
4 | —w(2k+1) for k odd
w(2k +1) for k even,

Wik +1) = { —w(2k)  for k odd.

= apw(n) — cpw(n — 1)
with wi,ws,w € £°°. Finally, in view of (4.2)—(4.4) there exist ¢, € £
with
Tipr -1 — 1Tt +Tipa -2 — o - Tipa =Tip - — @ -T1¢). m

Hence, in the case of polynomial hypergroups we are able to characterize
the existence of strongly invariant means as follows.
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PROPOSITION 4.3. There exists m € SM(Ny) ezactly when
sup (T1p(n)y(n) — p(n)Tiy(n)) >0  for all p,¢ € .

n€eNp

Proof. By Lemmas [4.1] and [4.2]
sup (Tip(n)y(n) —(n)Tigp(n)) 20 for all ¢, ¢ € b

n€Ng
is equivalent to

sup n(n) >0 for all n € SLg,
n€eNp

and Theorem [2.3] yields the statement. m

Consequently, the nonexistence of a strongly invariant mean in the case
of polynomial hypergroups is characterized as follows.

PROPOSITION 4.4. There does not exist m € SM(Ny) if and only if there
exist 0 > 0 and w € g such that

apw(n) —cpw(n —1) < —=§  for all n € Ny.
Proof. By the equivalence relation of Proposition [£.3] one only has to

keep in mind (4.2)—(4.4). =

We give another sufficient and necessary condition for the existence of
m € SM(Ny) starting with the sufficiency.

PROPOSITION 4.5. Denote H(n)=Y__,h(k). If the set {h :n € No}
is unbounded, then there exists m € SM(Np).

Proof. Suppose that m € SM(Np) does not exist. By Proposition
there are w € £§° and 6 > 0 such that

anw(n) +6 < cyw(n —1)  for all n € Np.
Since ¢, = ap—1h(n —1)/h(n) it follows that
h(n)apw(n) + h(n)d < ap—1h(n —1)w(n —1) for alln € N.
Adding h(n — 1)d to both sides of the inequality, we obtain, for all n > 2,
h(n)apw(n) + h(n)d + h(n —1)6 < ap—1h(n —1w(n — 1) + h(n — 1)§
< ap—2h(n —2)w(n — 2).
Iterating this step it follows that

h(n)anw(n +5Zh ) < arh(L)w(1) + 8h(1) < w(0) < —6

for all n € N. So for all n € Ny we have
h(n)ay,
H(n)

w(n)+0 <0.
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But there exists a subsequence such that h(ng)an,, /H(ng) — 0 as k — oo,
contradicting w € £g°, 6 > 0. Hence, m € SM(Np) exists. m

PRrROPOSITION 4.6. If m € SM(Ny) exists, then hﬂ)r;)n : neNy} is

unbounded.

Proof. Suppose that {hﬁl(;)n : n € No} is bounded. Putting w(n) =

hﬁfﬁ )n for all n € Ny we get a sequence w € {5 with
H(n) H(n-—1)c,

apw(n) — cpw(n —1) = h(n) a h(n —1)an—1
)

1
— ~ (H(n) - H(n—-1)) =1,
o () = H(n = 1)
Now, for this w choose ¢, € /g according to (4.3) and (4.4). Then we
obtain 1 =m(1) = m(T1p - ¢ — ¢ - T1yp) = 0, which is a contradiction. m
Combining Propositions [£.5] and [4.6] we have a characterization of the
existence of strongly invariant means on polynomial hypergroups.

THEOREM 4.7. There exists a strongly invariant mean on a polynomial
hypergroup Nq if and only if the set
H(n)

h(n)ay,

in € No}
1s unbounded.

We present some examples of polynomial hypergroups for which the set

{ hlé()na)n in € No} is bounded or unbounded, respectively.

(i) Orthogonal polynomials defined by homogeneous trees. The polyno-

mials R, (z; ) with o > 2 are determined by the recurrence coefficients

-1 1

an:a , b,=0, c¢,=— for all n € N

o e
and ag = 1, By = 0 (see Section 1). They generate a polynomial hypergroup
on Ny for each o > 2 (see [4]). The Haar weights are

h(0)=1, h(n)=ala—1)""t neN.

For a > 2 we get

(=022

oy~ 2 (' a1

Hence, { hI({n()Z )n 'n € NO} is bounded and so there does not exist a strongly

invariant mean on these hypergroups.
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(ii) Little q-Legendre polynomials. We now consider a class of orthogonal
polynomials P, (z;q), 0 < ¢ < 1, having Haar weights which grow exponen-

tially, but with an unbounded sequence ( hl({f; )n)n eNg” Given 0 < ¢ < 1 set
1 q
an = _—, =
0= I3 1 Bo )

and for all n € N,
n_ (141 —qg"")
(1—g> ) (1 +gmth)’
(1—q")(1—g"
(1+¢M) A+ g™’
_a (1490 —q")
n =4 2n+1 ny’
(1 =g (1 +q")

These polynomials define a polynomial hypergroup on Ny (see [1]). The Haar
weights are

ap = (

by =

1

h — —-n _ n+l
(n) = 1— q(q q""),
so they are exponentially growing. But
1 1— n+1
anh(n) = 1rq bl
1— q 1+ qn+1

and hence { hl(i(; )n ' nE No} is unbounded, and strongly invariant means
exist.

(iii) Jacobi polynomials, generalized Chebyshev polynomials, q-ultra-
spherical polynomials, Pollaczek polynomials and others. These classes of
orthogonal polynomials generate polynomial hypergroups and their Haar
weights have polynomial growth and the recurrence coefficients a,, converge
towards 1/2 (see [I] or [4, []). Hence, in all these cases {hlzl(;;)n :n€Np}
is unbounded. Therefore, strongly invariant means exist for each of these

hypergroups.
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