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Abstract. We introduce and study strongly invariant means m on commutative hy-
pergroups, m(Txϕ · ψ) = m(ϕ · Tx̃ψ), x ∈ K, ϕ,ψ ∈ L∞(K). We show that the existence
of such means is equivalent to a strong Reiter condition. For polynomial hypergroups we
derive a growth condition for the Haar weights which is equivalent to the existence of
strongly invariant means. We apply this characterization to show that there are commu-
tative hypergroups which do not possess strongly invariant means.

1. Introduction. Hypergroups generalize locally compact groups. For
the theory of hypergroups we refer to [1] and [3]. A hypergroup K is a locally
compact Hausdorff space with a convolution, i.e. a map K ×K →M1(K),
(x, y) 7→ δx ∗ δy, (M1(K) is the space of probability measures on K) and an
involution, i.e. K → K, x 7→ x̃, satisfying certain axioms (see [1] or [3]). The
support of each probability measure δx ∗ δy is compact. Hence, for y ∈ K
the translation of a locally integrable function f on K is defined by

Txf(y) =
�

K

f(z) dδx ∗ δy (z).

Spector [11] has proven that each commutative hypergroup possesses a Haar
measure µ, which is characterized by�

K

Txf(y) dµ(y) =
�

K

f(y) dµ(y)

for all x ∈ K and f ∈ Cc(K), where Cc(K) is the space of all continuous
complex valued functions on K with compact support. Throughout this
paper, K will be a commutative hypergroup. The Banach spaces Lp(K) =
Lp(K,µ), 1 ≤ p ≤ ∞, are invariant under the translations Tx, x ∈ K, and
we have ‖Txf‖p ≤ ‖f‖p.

The convex subset P 1(K) of L1(K) is defined by

P 1(K) =
{
f ∈ L1(K) : f ≥ 0,

�

K

f(x) dµ(x) = 1
}
.
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Let Cb(K) denote the space of bounded continuous complex valued functions
on K equipped with the sup-norm. Cb(K) is also invariant under the trans-
lation Tx. The space of bounded uniformly continuous functions is given
by

UC(K) = {f ∈ Cb(K) : x 7→ Txf is continuous from K → Cb(K)}.
Our main interest is in strongly invariant means on L∞(K): these are

means m ∈ L∞(K)∗ satisfying

m((Txϕ) · ψ) = m(ϕ · Tx̃ψ)

for all x ∈ K and ϕ,ψ ∈ L∞(K). Invariant means on hypergroups are
studied in [10] and [6]. An invariant mean satisfies m(Txϕ) = m(ϕ) for all
x ∈ K and ϕ ∈ L∞(K). Since K is commutative, there exist invariant means
on L∞(K). We will show that this is not necessarily the case for strongly
invariant means. We will derive an equivalent condition for the existence of
such means, namely a strong Reiter condition. For polynomial hypergroups
K on N0 we give an explicit characterization when a strongly invariant mean
exists.

Polynomial hypergroups K on N0 are generated by orthogonal polyno-
mial sequences (Rn(x))n∈N0 . N0 is equipped with the discrete topology. The
convolution is determined by the linearization coefficients g(m,n; k) of the
product Rm(x)Rn(x), i.e.

(1.1) Rm(x)Rn(x) =
n+m∑

k=|n−m|

g(m,n; k)Rk(x).

If all g(m,n; k) are nonnegative, and if the Rn(x) are normalized so that
Rn(1) = 1, then, putting

δm ∗ δn =

n+m∑
k=|n−m|

g(m,n; k)δk,

a convex combination of the point measures δk, we get a convolution on N0.
Together with ñ = n as involution and n = 0 as unit, this convolution defines
a commutative hypergroup on N0. For more details and a lot of examples
we refer to [1] or [5, 6]. The Haar measure on the polynomial hypergroup
N0 is the counting measure with weights h(n) = g(n, n; 0)−1 of the points
n ∈ N0. Taking m = 1 in (1.1) we get the three-term recurrence relation

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x)

for all n ∈ N, with initial values R0(x) = 1, R1(x) = (1/α0)(x− β0). Hence,
an = g(1, n;n + 1) > 0, bn = g(1, n;n) ≥ 0, cn = g(1, n;n − 1) > 0 for all
n ∈ N, and an + bn + cn = 1, whereas α0 > 0, β0 ∈ R with α0 + β0 = 1. The
Haar weights satisfy h(0) = 1, h(n+ 1) = an

cn+1
h(n).



INVARIANT MEANS ON HYPERGROUPS 121

A growth condition for the Haar weights characterizes the existence of
strongly invariant means. Applying this growth condition we test some ex-
amples. We will see that some polynomial hypergroups have a strongly in-
variant mean, while others do not.

2. Strongly invariant means. Let K be a commutative hypergroup.
Let M(K) be the set of invariant means on K, i.e.

M(K) = {m ∈ L∞(K)∗ : m(1) = 1, m ≥ 0, m(Txϕ) = m(ϕ)

for all x ∈ K and ϕ ∈ L∞(K)}.
Then M(K) is a nonempty (see [10]) weak-∗-compact, convex subset of
L∞(K)∗. Our main interest is in the set SM(K) of strongly invariant means
in K, i.e.

SM(K) = {m ∈ L∞(K)∗ : m(1) = 1, m ≥ 0, m((Tyϕ) · ψ) = m(ϕ · (Tỹψ))

for all y ∈ K and ϕ,ψ ∈ L∞(K)}.
Obviously, SM(K) ⊆ M(K) and SM(K) is also a weak-∗-compact, convex
subset of L∞(K)∗. Elements x ∈ K act on L∞(K)∗ by the map F 7→ TxF ,
where TxF (ϕ) = F (Txϕ) for all ϕ ∈ L∞(K). Note that

‖TxF‖ = sup
‖ϕ‖∞≤1

|TxF (ϕ)| = sup
‖ϕ‖∞≤1

|F (Txϕ)| ≤ ‖F‖.

We define

J(L∞(K)) = {F ∈ L∞(K)∗ : TxF = F for all x ∈ K}.
Let Bil(L∞(K)) = {B : L∞(K) × L∞(K) → C : B bilinear}. Each x ∈ K
also determines a map F 7→ B1

x,F , L∞(K)∗ → Bil(L∞(K)), by

B1
x,F (ϕ,ψ) = F ((Txϕ) · ψ) for all ϕ,ψ ∈ L∞(K),

and a second map F 7→ B2
x,F , L∞(K)∗ → Bil(L∞(K)), by

B2
x,F (ϕ,ψ) = F (ϕ · (Tx̃ψ)) for all ϕ,ψ ∈ L∞(K).

We define

SJ(L∞(K)) = {F ∈ L∞(K)∗ : B1
x,F = B2

x,F for all x ∈ K}.
Obviously J(L∞(K)) and SJ(L∞(K)) are linear subspaces of L∞(K)∗ and
0 ∈ SJ(L∞(K)) ⊆ J(L∞(K)).

Proposition 2.1.

(i) The linear span

L := span{Txϕ− ϕ : ϕ ∈ L∞(K), x ∈ K}
is not dense in L∞(K) if and only if J(L∞(K)) 6= {0}.
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(ii) The linear span

SL := span{Txϕ · ψ − ϕ · Tx̃ψ : ϕ,ψ ∈ L∞(K), x ∈ K}

is not dense in L∞(K) if and only if SJ(L∞(K)) 6= {0}.
(iii) SJ(L∞(K)) ( J(L∞(K)) if and only if SL ) L.

Proof. The proof of (i) follows the lines of the proof of Proposition (2.1)
of [7]. The proofs of (ii) and (iii) also use simple applications of the Hahn–
Banach theorem. For the sake of completeness they are given here.

(ii) Assume SL = L∞(K). If F ∈ SJ(L∞(K)), then B1
x,F = B2

x,F ,
which means F (Txϕ · ψ − ϕ · Tx̃ψ) = 0 for all ϕ,ψ ∈ L∞(K) and x ∈ K,
and SL = L∞(K) implies F = 0. Conversely, if SL ( L∞(K), then there
exists some F ∈ L∞(K)∗, F 6= 0, such that F |SL = 0. In particular,
F ∈ SJ(L∞(K)).

(iii) Assume that there is some F ∈ J(L∞(K)) \ SJ(L∞(K)). Then
F |L = 0 and there are some x ∈ K and ϕ,ψ ∈ L∞(K) such that

F (Txϕ · ψ − ϕ · Tx̃ψ) 6= 0.

Hence, L ( SL. The inverse implication follows immediately by the Hahn–
Banach theorem.

To show the existence or nonexistence of strongly invariant means on K
we use another version of the Hahn–Banach theorem (cf. [8, Lemma 4.2.7]).
Let SLR be the R-linear span of {Txϕ ·ψ−ϕ ·Tx̃ψ : ϕ,ψ ∈ L∞R (K), x ∈ K},
where L∞R (K) is the space of real-valued elements of L∞(K).

Proposition 2.2. The following properties are equivalent:

(i) There exists m ∈ L∞R (K)∗ with m(1) = 1, m ≥ 0 and m|SLR = 0.
(ii) supx∈K η(x) ≥ 0 for all η ∈ SLR.

Proof. By the definition of means we have m(ϕ) ≤ supx∈K ϕ(x) for
all ϕ ∈ L∞R (K). Supposing (i) we obtain 0 = m(η) ≤ supx∈K η(x) for all
η ∈ SLR.

Conversely, assume that (ii) is valid. Let N(ϕ) = supx∈K ϕ(x) for all
ϕ ∈ L∞R (K). Then N is a sublinear functional on L∞R (K) and it dominates
the zero functional on SLR. By the Hahn–Banach theorem [9] the zero-
functional on SLR can be extended to a linear functional m on L∞R (K) such
that m(ϕ) ≤ supx∈K ϕ(x) for all ϕ ∈ L∞R (K). Then m is a mean on L∞R (K)
[8, Proposition 3.2] and m(η) = 0 for all η ∈ SLR.

Writing ϕ ∈ L∞(K) as ϕ = ϕ1 + iϕ2, ϕ1, ϕ2 ∈ L∞R (K), and putting
m(ϕ) = mR(ϕ1) + imR(ϕ2) for a mean mR on L∞R (K) we obtain a mean
on L∞(K). If ϕ,ψ ∈ L∞(K) and ϕ = ϕ1 + iϕ2, ψ = ψ1 + iψ2 with
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ϕ1, ϕ2, ψ1, ψ2 ∈ L∞R (K), then

Txϕ · ψ − ϕ · Tx̃ψ = (Txϕ1 · ψ1 − ϕ1 · Tx̃ψ1)− (Txϕ2 · ψ2 − ϕ2 · Tx̃ψ2)

+ i(Txϕ1 · ψ2 − ϕ1 · Tx̃ψ2) + i(Txϕ2 · ψ1 − ϕ2 · Tx̃ψ1).

Therefore, if mR is a mean on L∞R (K) with mR|SLR = 0, then m is a mean
on L∞(K) such that m|SL = 0. So we have the following characterization
of the existence of a strongly invariant mean on K.

Theorem 2.3. Let K be a commutative hypergroup. There exists a
strongly invariant mean m on K if and only if supx∈K η(x) ≥ 0 for all
η ∈ SLR.

3. Reiter’s conditions. Skantharajah [10] has shown for general hy-
pergroups that an invariant mean exists if and only if the following Reiter
condition (P1) is satisfied: For every ε > 0 and compact C ⊆ K there exists
some f ∈ P 1(K) such that ‖Txf − f‖1 < ε for all x ∈ C.

We now investigate a modification of the Reiter condition (P1) which is
related to the existence of strongly invariant means m ∈ SM(K).

Definition 3.1. We say that K satisfies the strong Reiter condition
(SP ∗1 ) if for every ε > 0 and finite subset F ⊆ K and finite subset Φ ⊆
L∞(K) there is some f ∈ P 1(K) such that

(3.1) ‖Tx(ϕ · f)− f · Txϕ‖1 < ε

for all x ∈ F and ϕ ∈ Φ.

Theorem 3.2. If there exists a strongly invariant mean m on K, then
K satisfies (SP ∗1 ).

Proof. The embedding of the unit ball B ⊆ L1(K) into L∞(K)∗ is dense
in the unit ball C ⊆ L∞(K)∗ with respect to the weak-∗-topology (see [2,
p. 424]). Hence, the existence of a strongly invariant mean m ∈ SM(K)
yields a net (fj)j∈I , fj ∈ B, such that

�

K

fj(x)ψ(x) dµ(x)→ m(ψ) for all ψ ∈ L∞(K).

Since m(1) = 1 and m is positive we can choose the fj from P 1(K). For any
y ∈ K and ϕ,ψ ∈ L∞(K) we have

�

K

Ty(ϕ · fj)(x)ψ(x) dµ(x) =
�

K

fj(x)ϕ(x)Tỹψ(x) dµ(x)→ m(ϕ · Tỹψ)

and �

K

fj(x)Tyϕ(x)ψ(x) dµ(x)→ m(Tyϕ · ψ).
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Hence, �

K

(Ty(ϕfj)(x)− (fjTyϕ)(x))ψ(x) dµ(x)→ 0

for all ψ ∈ L∞(K).
For F = {y1, . . . , ym} and Φ = {ϕ1, . . . , ϕn} define

gk,l,j = Tyk(ϕlfj)− fj(Tykϕl).
Then the net gj = (g1,1,j , . . . , gm,n,j) ∈ L1(K)mn = L1(K) × · · · × L1(K)
converges to zero in the product space L1(K)mn with respect to the weak
topology. Since for convex subsets of L1(K)mn the norm-closure coincides
with the weak closure, a convex combination of the gj converges to zero in
the norm of L1(K)mn (see [2, p. 422]). Hence, there exists some f ∈ P 1(K),
a convex combination of the functions gj , such that

‖Tx(ϕ · f)− f · Txϕ‖1 < ε for all x ∈ F, ϕ ∈ Φ.
Now, we show that the converse of Theorem 3.2 is also true.

Theorem 3.3. If K satisfies (SP ∗1 ), then there exists a strongly invari-
ant mean m on K.

Proof. Let ε > 0, F ⊆ K finite and Φ ⊆ L∞(K) finite. Then there exists
f ∈ P 1(K) such that ‖Tx(ϕ · f)− (Txϕ) · f‖1 < ε for all x ∈ F and ϕ ∈ Φ.
The function f determines a linear functional mε,F,Φ ∈ L∞(K)∗ by

mε,F,Φ(ψ) =
�

K

ψ(y)f(y) dµ(y) for all ψ ∈ L∞(K).

This functional is positive and satisfies

‖mε,F,Φ‖ = mε,F,Φ(1) =
�

K

f(y) dµ(y) = 1.

In particular all mε,F,Φ are elements of a weak-∗-compact subset of L∞(K)∗.
For every ϕ,ψ ∈ L∞(K) and x ∈ K we have

mε,F,Φ(ϕ · Tx̃ψ) =
�

K

ϕ(y)Tx̃ψ(y)f(y) dµ(y) =
�

K

Tx(ϕf)(y)ψ(y) dµ(y).

Therefore,

|mε,F,Φ(ϕ · Tx̃ψ)−mε,F,Φ(ψ · Txϕ)|

=
∣∣∣ �
K

(Tx(ϕf)(y)− f(y)Txϕ(y))ψ(y) dµ(y)
∣∣∣

≤ ‖ψ‖∞‖Tx(ϕf)− (Txϕ) · f‖1 < ε

for all ϕ ∈ Φ with x ∈ F and ψ ∈ L∞(K) with ‖ψ‖∞ ≤ 1.
Defining

(ε1, F1, Φ1) < (ε2, F2, Φ2) whenever ε2 ≤ ε1, F1 ⊆ F2, Φ1 ⊆ Φ2
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we get a partial order. With respect to this partial order, the functionals
mε,F,Φ form a net. This net has an accumulation point m ∈ L∞(K)∗ satis-
fying ‖m‖ = m(1) = 1 and m(ϕ(Tx̃ψ)) = m((Txϕ)ψ) for all ϕ,ψ ∈ L∞(K)
and x ∈ K.

The function f ∈ P 1(K) in the (SP ∗1 ) condition can even be chosen to
be continuous with compact support.

Lemma 3.4. If K satisfies (SP ∗1 ), then the function f in (3.1) can be
chosen from f ∈ P 1(K) ∩ Cc(K).

Proof. Let ε > 0, F ⊆ K finite, Φ ⊆ L∞(K) finite, and denote M =
max{‖ϕ‖∞ : ϕ ∈ Φ}. Then there exists g ∈ P 1(K) such that ‖Tx(ϕ · g) −
(Txϕ) · g‖1 < ε/3 for all x ∈ F , ϕ ∈ Φ. Furthermore, there is some f ∈
P 1(K) ∩ Cc(K) such that ‖g − f‖1 < ε/(3M). It follows that

‖Tx(ϕ · f)− (Txϕ) · f‖1 ≤ ‖Tx(ϕ · f)− Tx(ϕ · g)‖1
+ ‖Tx(ϕ · g)− (Txϕ) · g‖1
+ ‖(Txϕ) · g − (Txϕ) · f‖1 < ε.

Restricting from L∞(K) to UC(K) we may replace the finiteness of
F ⊆ K in (SP ∗1 ) by compactness. In fact we can show:

Theorem 3.5. Assume that (SP ∗1 ) is satisfied. For ε > 0, C ⊆ K com-
pact and Φ ⊆ UC(K) finite there exists some f ∈ P 1(K) ∩ Cc(K) such
that

‖Tx(ϕf)− Txϕ · f‖1 < ε for all x ∈ C,ϕ ∈ Φ.

Proof. Let M = max{‖ϕ‖∞ : ϕ ∈ Φ}. Choose g ∈ P 1(K)∩Cc(K). There
exist x1, . . . , xn ∈ K and open neighbourhoods Uxi of xi, i = 1, . . . , n, such
that

C ⊆
n⋃
i=1

Uxi and ‖Txg − Tyg‖1 <
ε

3M
and ‖Txϕ− Tyϕ‖∞ <

ε

3

for all x, y ∈ Uxi and every ϕ ∈ Φ. Condition (SP ∗1 ) yields f ∈ P 1(K) ∩
Cc(K) such that

‖Txi(ϕ · f)− (Txiϕ) · f‖1 <
ε

3
for all ϕ ∈ Φ,

i = 1, . . . , n.

Now, let x ∈ C. Then x ∈ Uxi for some i = 1, . . . , n, and we obtain

‖Tx(ϕ · f) ∗ g − Txi(ϕ · f) ∗ g‖1 = ‖(ϕ · f) ∗ Txg − (ϕ · f) ∗ Txig‖1
≤ ‖ϕ · f‖1‖Txg − Txig‖1 <

ε

3
.
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Hence,

‖Tx(ϕ · f) ∗ g − ((Txϕ) · f) ∗ g‖1 ≤ ‖Tx(ϕ · f) ∗ g − Txi(ϕ · f) ∗ g‖1
+ ‖Txi(ϕ · f) ∗ g− ((Txiϕ) · f) ∗ g‖1 + ‖((Txiϕ) · f) ∗ g− ((Txϕ) · f) ∗ g‖1 < ε.

Choosing g ∈ P 1(K) ∩ Cc(K) from an approximate identity in L1(K) it
follows that ‖Tx(ϕ · f)− Txϕ · f‖1 ≤ ε for all x ∈ C and ϕ ∈ Φ.

4. Strongly invariant means on polynomial hypergroups. Now,
we study the special case of polynomial hypergroups K on N0. We begin by
deriving a more accessible description of the linear space

SL = span{Tnϕ · ψ − ϕ · Tnψ : n ∈ N0, ϕ, ψ ∈ `∞}.

We shall use the following relation for the translation operators Tn:

(4.1) Tn+1 =
1

an
T1 ◦ Tn −

bn
an
Tn −

cn
an
Tn−1, n ≥ 1.

Applying induction and (4.1) we will prove the following result.

Lemma 4.1. SL = span{T1ϕ · ψ − ϕ · T1ψ : ϕ,ψ ∈ `∞}.

Proof. By induction on n we show

Tnϕ1 · ψ1 − ϕ1 · Tnψ1 ∈ span{T1ϕ2 · ψ2 − ϕ2 · T1ψ2 : ϕ2, ψ2 ∈ `∞}

for all ϕ1, ψ1 ∈ `∞. Assume that Tkϕ1 · ψ1 − ϕ1 · Tkψ1 are elements of

SL1 := span{T1ϕ2 · ψ2 − ϕ2 · T1ψ2 : ϕ2, ψ2 ∈ `∞}

for k = n − 1, n and for all ϕ1, ψ1 ∈ `∞. From (4.1) and Tn ◦ T1 = T1 ◦ Tn
we obtain, for all ϕ1, ψ1 ∈ `∞,

Tn+1ϕ1 · ψ1 − ϕ1 · Tn+1ψ1 =

[
T1

(
Tnϕ1

an

)
− bnTnϕ1

an
− cnTn−1ϕ1

an

]
ψ1

− ϕ1

[
Tn

(
T1ψ1

an

)
− bnTnψ1

an
− cnTn−1ψ1

an

]
.

By the assumption we have

Tn−1ϕ1 · ψ1 − ϕ1 · Tn−1ψ1 ∈ SL1, Tnϕ1 · ψ1 − ϕ1 · Tnψ1 ∈ SL1.

Moreover,

T1

(
Tnϕ1

an

)
ψ1 −

Tnϕ1

an
T1ψ1 ∈ SL1

and by the assumption

ϕ1Tn

(
T1ψ1

an

)
− Tnϕ1 ·

T1ψ1

an
∈ SL1.
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Hence, we have

T1

(
Tnϕ1

an

)
ψ1 − ϕ1Tn

(
T1ψ1

an

)
=

(
T1

(
Tnϕ1

an

)
ψ1 −

Tnϕ1

an
T1ψ1

)
−
(
ϕ1Tn

(
T1ψ1

an

)
− Tnϕ1 ·

T1ψ1

an

)
∈SL1,

and Lemma 4.1 is shown.

Let ϕ,ψ ∈ `∞. Then

T1ϕ(n)ψ(n)− ϕ(n)T1ψ(n) = an(ϕ(n+ 1)ψ(n)− ψ(n+ 1)ϕ(n))(4.2)

− cn(ϕ(n)ψ(n− 1)− ψ(n)ϕ(n− 1))

= anω(n)− cnω(n− 1)

with

ω(n) = ϕ(n+ 1)ψ(n)− ψ(n+ 1)ϕ(n) for all n ∈ N0.

Note that we set a0 = 1 and c0 = 0.

It is important to point out that for any sequence ω ∈ `∞ there are
ϕ,ψ ∈ `∞ such that ω(n) = ϕ(n+1)ψ(n)−ψ(n+1)ϕ(n). This can be easily
proved by setting

(4.3) ϕ(2k) =

{
0 for k even,

1 for k odd,
ϕ(2k + 1) =

{
ω(2k) for k even,

−ω(2k + 1) for k odd

and

(4.4) ψ(2k) =

{
1 for k even,

0 for k odd,
ψ(2k + 1) =

{
ω(2k + 1) for k even,

−ω(2k) for k odd.

Therefore, there is again a simplification.

Lemma 4.2. We have

span{T1ϕ · ψ − ϕ · T1ψ : ϕ,ψ ∈ `∞} = {T1ϕ · ψ − ϕ · T1ψ : ϕ,ψ ∈ `∞}.

Proof. Let ϕ1, ψ1, ϕ2, ψ2 ∈ `∞ and n ∈ N0. Then due to (4.2),

(T1ϕ1 · ψ1 − ϕ1 · T1ψ1 + T1ϕ2 · ψ2 − ϕ2 · T1ψ2)(n)

= anω1(n)− cnω1(n− 1) + anω2(n)− cnω2(n− 1)

= anω(n)− cnω(n− 1)

with ω1, ω2, ω ∈ `∞. Finally, in view of (4.2)–(4.4) there exist ϕ,ψ ∈ `∞

with

T1ϕ1 · ψ1 − ϕ1 · T1ψ1 + T1ϕ2 · ψ2 − ϕ2 · T1ψ2 = T1ϕ · ψ − ϕ · T1ψ.

Hence, in the case of polynomial hypergroups we are able to characterize
the existence of strongly invariant means as follows.
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Proposition 4.3. There exists m ∈ SM(N0) exactly when

sup
n∈N0

(T1ϕ(n)ψ(n)− ϕ(n)T1ψ(n)) ≥ 0 for all ϕ,ψ ∈ `∞R .

Proof. By Lemmas 4.1 and 4.2,

sup
n∈N0

(T1ϕ(n)ψ(n)− ϕ(n)T1ψ(n)) ≥ 0 for all ϕ,ψ ∈ `∞R

is equivalent to

sup
n∈N0

η(n) ≥ 0 for all η ∈ SLR,

and Theorem 2.3 yields the statement.

Consequently, the nonexistence of a strongly invariant mean in the case
of polynomial hypergroups is characterized as follows.

Proposition 4.4. There does not exist m ∈ SM(N0) if and only if there
exist δ > 0 and ω ∈ `∞R such that

anω(n)− cnω(n− 1) ≤ −δ for all n ∈ N0.

Proof. By the equivalence relation of Proposition 4.3 one only has to
keep in mind (4.2)–(4.4).

We give another sufficient and necessary condition for the existence of
m ∈ SM(N0) starting with the sufficiency.

Proposition 4.5. Denote H(n)=
∑n

k=0h(k). If the set
{ H(n)
h(n)an

:n ∈ N0

}
is unbounded, then there exists m ∈ SM(N0).

Proof. Suppose that m ∈ SM(N0) does not exist. By Proposition 4.4
there are ω ∈ `∞R and δ > 0 such that

anω(n) + δ ≤ cnω(n− 1) for all n ∈ N0.

Since cn = an−1h(n− 1)/h(n) it follows that

h(n)anω(n) + h(n)δ ≤ an−1h(n− 1)ω(n− 1) for all n ∈ N.
Adding h(n− 1)δ to both sides of the inequality, we obtain, for all n ≥ 2,

h(n)anω(n) + h(n)δ + h(n− 1)δ ≤ an−1h(n− 1)ω(n− 1) + h(n− 1)δ

≤ an−2h(n− 2)ω(n− 2).

Iterating this step it follows that

h(n)anω(n) + δ
n∑
k=1

h(k) ≤ a1h(1)ω(1) + δh(1) ≤ ω(0) ≤ −δ

for all n ∈ N. So for all n ∈ N0 we have

h(n)an
H(n)

ω(n) + δ ≤ 0.
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But there exists a subsequence such that h(nk)ank
/H(nk) → 0 as k → ∞,

contradicting ω ∈ `∞R , δ > 0. Hence, m ∈ SM(N0) exists.

Proposition 4.6. If m ∈ SM(N0) exists, then
{ H(n)
h(n)an

: n ∈ N0

}
is

unbounded.

Proof. Suppose that
{ H(n)
h(n)an

: n ∈ N0

}
is bounded. Putting ω(n) =

H(n)
h(n)an

for all n ∈ N0 we get a sequence ω ∈ `∞R with

anω(n)− cnω(n− 1) =
H(n)

h(n)
− H(n− 1)cn
h(n− 1)an−1

=
1

h(n)
(H(n)−H(n− 1)) = 1.

Now, for this ω choose ϕ,ψ ∈ `∞R according to (4.3) and (4.4). Then we
obtain 1 = m(1) = m(T1ϕ · ψ − ϕ · T1ψ) = 0, which is a contradiction.

Combining Propositions 4.5 and 4.6 we have a characterization of the
existence of strongly invariant means on polynomial hypergroups.

Theorem 4.7. There exists a strongly invariant mean on a polynomial
hypergroup N0 if and only if the set{

H(n)

h(n)an
: n ∈ N0

}
is unbounded.

We present some examples of polynomial hypergroups for which the set{ H(n)
h(n)an

: n ∈ N0

}
is bounded or unbounded, respectively.

(i) Orthogonal polynomials defined by homogeneous trees. The polyno-
mials Rn(x;α) with α ≥ 2 are determined by the recurrence coefficients

an =
α− 1

α
, bn = 0, cn =

1

α
for all n ∈ N

and α0 = 1, β0 = 0 (see Section 1). They generate a polynomial hypergroup
on N0 for each α ≥ 2 (see [4]). The Haar weights are

h(0) = 1, h(n) = α(α− 1)n−1, n ∈ N.
For α > 2 we get

H(n) =
α(α− 1)n − 2

α− 2
,

H(n)

h(n)an
=

α

α− 2

(
1− 2

α(α− 1)n

)
.

Hence,
{ H(n)
h(n)an

: n ∈ N0

}
is bounded and so there does not exist a strongly

invariant mean on these hypergroups.
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(ii) Little q-Legendre polynomials. We now consider a class of orthogonal
polynomials Pn(x; q), 0 < q < 1, having Haar weights which grow exponen-

tially, but with an unbounded sequence
( H(n)
h(n)an

)
n∈N0

. Given 0 < q < 1 set

α0 =
1

q + 1
, β0 =

q

q + 1

and for all n ∈ N,

an = qn
(1 + q)(1− qn+1)

(1− q2n+1)(1 + qn+1)
,

bn =
(1− qn)(1− qn+1)

(1 + qn)(1 + qn+1)
,

cn = qn
(1 + q)(1− qn)

(1− q2n+1)(1 + qn)
.

These polynomials define a polynomial hypergroup on N0 (see [1]). The Haar
weights are

h(n) =
1

1− q
(q−n − qn+1),

so they are exponentially growing. But

anh(n) =
1 + q

1− q
1− qn+1

1 + qn+1
,

and hence
{ H(n)
h(n)an

: n ∈ N0

}
is unbounded, and strongly invariant means

exist.
(iii) Jacobi polynomials, generalized Chebyshev polynomials, q-ultra-

spherical polynomials, Pollaczek polynomials and others. These classes of
orthogonal polynomials generate polynomial hypergroups and their Haar
weights have polynomial growth and the recurrence coefficients an converge

towards 1/2 (see [1] or [4, 5]). Hence, in all these cases
{ H(n)
h(n)an

: n ∈ N0

}
is unbounded. Therefore, strongly invariant means exist for each of these
hypergroups.
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