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AN EXTENSION OF DISTRIBUTIONAL WAVELET TRANSFORM

BY

R. ROOPKUMAR (Karaikudi)

Abstract. We construct a new Boehmian space containing the space S̃ ′(Rn × R+)
and define the extended wavelet transform W of a new Boehmian as a tempered Boehmian.
In analogy to the distributional wavelet transform, it is proved that the extended wavelet
transform is linear, one-to-one, and continuous with respect to δ-convergence as well as
∆-convergence.

1. Introduction. Let N,N0,R,R+ denote the natural numbers, non-
negative integers, real numbers and positive real numbers respectively. For
β = (β1, . . . , βn) ∈ Nn

0 and b ∈ Rn, let |β| =
∑n

i=1 βi and ‖b‖ be the
Euclidean norm of b. Let S̃ (Rn×R+)={g∈C∞(Rn×R+) : Ql,m,k,p(g)<∞},
where

Ql,m,k,p(g) = sup
|β|≤p

sup
(b,a)∈Rn×R+

(1 + ‖b‖2)m
∣∣∣∣al( ∂

∂a

)k
Dβ

bg

∣∣∣∣
for l,m, k, p ∈ N0 with l + m ≤ k + p. We denote by D(Rn) and S (Rn)
the space of infinitely differentiable functions with compact support and the
space of rapidly decreasing functions respectively. We endow S ′(Rn) and
S̃ ′(Rn × R+) with the weak∗ topology.

For a given wavelet ψ ∈ Rn, the wavelet transform W : S (Rn) →
S̃ (Rn × R+) is defined by

(1) (Wg)(b, a) =
�

Rn

g(t)ψ
(

t− b
a

)
dt
an

(b, a) ∈ Rn × R+,

and the distributional wavelet transform W ′ : S̃ ′(Rn × R+) → S ′(Rn) is
defined by

(2) (W ′G)(f) = G(Wf), f ∈ S (Rn).

For more details, we refer to [14].
On the other hand, Boehmians were introduced by J. Mikusiński and

P. Mikusiński [5] with two notions of convergence [6]. Thereafter various
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Boehmian spaces have been constructed to extend various integral trans-
forms. See [3, 4, 7, 11, 12, 15–18].

In [15], a wavelet transform on periodic Boehmians is discussed which
extends the wavelet transform on periodic distributions [2]. According to
[1], the wavelet transform is the same as the windowed Fourier transform
with respect to the window function g, defined by

(3) G[f ](ν, t) =
1√
2π

∞�

−∞
f(τ)ḡ(τ − t)eiνt dτ,

and extends to the space of integrable Boehmians. This transform is different
from the usual wavelet transform (see equations (1) and (3)). In the present
work, we extend the wavelet transform on S̃ ′(Rn × R+) [14] to a suitable
Boehmian space. Thus the present work and the above-mentioned two works
on wavelet transform [15, 1] are different.

2. Auxiliary results

Definition 2.1. Suppose G ∈ S̃ ′(Rn×R+) and φ ∈ D(Rn). We define

(G⊗ φ)(g) = G(g × φ̌), g ∈ S̃ (Rn × R+),

where

(g × φ)(b, a) =
�

Rn

g(b− x, a)φ(x) dx, (b, a) ∈ Rn × R+,

and φ̌(x) = φ(−x), x ∈ Rn.

Lemma 2.2. If g ∈ S̃ (Rn × R+) and φ ∈ D(Rn) then Ql,m,k,p(g × φ) ≤
CQl,m,k,p(g) for some C > 0, and hence g × φ ∈ S̃ (Rn × R+).

Proof. In preparation for the main part of the proof, let us first show
that Dγ

b(g × φ) = (Dγ
bg) × φ, where γ = (γ1, . . . , γi) with γk = 1 for some

k ∈ {1, . . . , n} and γi = 0 for i 6= k. Let h ∈ R, uk be the unit vector along
the xk-axis and A > 0 be such that suppφ ⊂ {x ∈ Rn : ‖x‖ ≤ A}. Using
the mean value theorem we get∣∣∣∣(g × φ)(b + huk, a)− (g × φ)(b, a)

h
− (Dγ

bg)(b, a)
∣∣∣∣

≤
�

Rn

∣∣∣∣g(b + huk, a)− g(b, a)
h

− (Dγ
bg)(b, a)

∣∣∣∣|φ(x)| dx

≤
�

Rn

[|(Dγ
bg)(b + h′uk, a)|+ |(Dγ

bg)(b, a)|]|φ(x)| dx

where h′ lies between 0 and h. Since the integrand is dominated by the
integrable function 2Q0,0,0,1(g)|φ|, we can apply the dominated convergence
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theorem to get

lim
h→0

�

Rn

|(Dγ
bg)(b + h′uk, a)− (Dγ

bg)(b, a)| |φ(x)| dx

≤
�

Rn

lim
h→0
|(Dγ

bg)(b + h′uk, a)− (Dγ
bg)(b, a)| |φ(x)| dx

= 0 (since Dγ
bg is continuous).

Similarly we can show that (∂/∂a)(g × φ) = ((∂/∂a)g)× φ. This proves
that g×φ is infinitely differentiable and (∂/∂a)kDα

b(g×φ)=((∂/∂a)kDα
bg)×φ

for all k ∈ N and α ∈ N0. Next for l,m, k, p ∈ N0, β ∈ Nn
0 such that |β| ≤ p

and (b, a) ∈ Rn × R+,

(1 + ‖b‖)m
∣∣∣∣al( ∂

∂a

)k
Dβ

b(g × φ)(b, a)
∣∣∣∣

= (1 + ‖b‖)m
∣∣∣∣al �

Rn

((
∂

∂a

)k
Dβ

bg

)
(b− x, a)φ(x) dx

∣∣∣∣
≤

�

‖x‖≤A

(1 + (‖b− x‖+ ‖x‖)2)m
∣∣∣∣al(( ∂

∂a

)k
Dβ

bg

)
(b− x, a)φ(x)

∣∣∣∣ dx
≤

�

‖x‖≤A

(1 + (‖b− x‖+A)2)m
∣∣∣∣al(( ∂

∂a

)k
Dβ

bg

)
(b− x, a)φ(x)

∣∣∣∣ dx
≤ C1Ql,m,k,p(g)

�

Rn

|φ(x)| dx for some C1 > 0.

By taking C = C1

	
Rn |φ(x)| dx, we conclude the proof.

Lemma 2.3. If G ∈ S̃ ′(Rn × R+) and φ ∈ D(Rn) then G ⊗ φ ∈
S̃ ′(Rn × R+).

Proof. Lemma 2.2 shows that if g ∈ S̃ (Rn × R+), then G(g × φ̌) is
meaningful. Moreover, G ∈ S̃ ′(Rn × R+) implies that there exist K > 0
and l,m, k, p ∈ N0 such that l +m ≤ k + p and

|G(g × φ̌)| ≤ KQl,m,k,p(g × φ̌) ≤ KCQl,m,k,p(g), ∀g ∈ S̃ (Rn × R+).

Thus G⊗ φ ∈ S̃ ′(Rn × R+).

Lemma 2.4. If G1, G2 ∈ S̃ ′(Rn × R+), φ ∈ D(Rn) and α ∈ C, then

(1) (G1 +G2)⊗ φ = G1 ⊗ φ+G2 ⊗ φ.
(2) (αG1)⊗ φ = α(G1 ⊗ φ).

This follows from the linearity of the integral.
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Theorem 2.5 (Convolution theorems). If G ∈ S̃ ′(Rn×R+), f ∈ S (Rn)
and φ ∈ D(Rn) then

(1) W (f ∗ φ) = (Wf)× φ,
(2) W ′(G⊗ φ) = (W ′G) ∗ φ.

Proof. (1) For (b, a) ∈ Rn × R+,

W (f ∗ φ)(b, a) =
�

Rn

(f ∗ φ)(t)ψ
(

t− b
a

)
dt

an
(4)

=
�

Rn

�

Rn

f(t− x)φ(x) dxψ
(

t− b
a

)
dt
an
.

Since the integrand (t,x) 7→ f(t−x)φ(x)ψ
(
t−b
a

)
is continuous on Rn×Rn,

it is measurable. As ψ, f ∈ S (Rn) and φ ∈ D(Rn), we get supx∈Rn |ψ(x)| =
K <∞ and f, φ ∈ L 1(Rn). Therefore

�

Rn×Rn

∣∣∣∣f(t− x)φ(x)ψ
(

t− b
a

)∣∣∣∣ d(x× dt
an

)
≤ K

�

Rn

�

Rn

|f(t− x)φ(x)| dx dt
an

= K
�

Rn

|φ(x)| dx
�

Rn

|f(t− x)| dt
an

<∞,

and hence the integrand is an integrable function on Rn ×Rn. Thus we can
apply Fubini’s theorem to the integral on the right hand side of (4) and the
integral is equal to

�

Rn

�

Rn

f(t− x)ψ
(

t− b
a

)
dt
an

φ(x) dx

=
�

Rn

�

Rn

f(s)ψ
(

s + x− b
a

)
ds
an

φ(x) dx

=
�

Rn

�

Rn

f(s)ψ
(

s− (b− x)
a

)
ds
an

φ(x) dx

=
�

Rn

(Wf)(b− x, a)φ(x) dx = (Wf × φ)(b, a).

(2) For f ∈ S (Rn),

W ′(G⊗ φ)(f) = (G⊗ φ)(Wf) = G((Wf)× φ̌) = G(W (f ∗ φ̌))

= (W ′G)(f ∗ φ̌) = ((W ′G) ∗ φ)(f).
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3. Boehmian spaces. We shall first recall the construction of a Boeh-
mian space from [10]. Let Γ be a topological vector space, (S, ∗) be a com-
mutative semigroup, ? : Γ × S → Γ satisfying

• (f + g) ? s = (f ? s) + (g ? s), f, g ∈ Γ, s ∈ S,
• (αf) ? s = α(f ? s), f ∈ Γ, s ∈ S, α ∈ C,
• f ? (s ∗ t) = (f ? s) ? t, f ∈ Γ, s, t ∈ S,
• fi ? s→ f ? s in Γ as n→∞ if fi → f in Γ as n→∞ and s ∈ S;

and let ∆ be a collection of sequences from S with the following properties:

• if (si), (ti) ∈ ∆ then (si ∗ ti) ∈ ∆,
• f ? si → f in Γ as n→∞ if f ∈ Γ and (si) ∈ ∆.

A pair of sequences ((fi), (si)) is said to be a quotient if

(5) fi ? sj = fj ? si, ∀i, j ∈ N.

We denote by fi

si
a quotient. An equivalence relation ∼ on the collection of

all quotients is defined by

(6)
fi
si
∼ gi
ti

if fi ? tj = gj ? si, ∀i, j ∈ N.

The collection of all equivalence classes is denoted by B = B(Γ, (S, ∗), ?,∆)
and each equivalence class is called a Boehmian. On the space of Boehmians
we define addition, scalar multiplication and multiplication by s ∈ S as
follows: [

fi
si

]
+
[
gi
ti

]
=
[

(fi ? ti) + (gi ? si)
si ∗ ti

]
,

α

[
fi
si

]
=
[
αfi
si

]
,[

fi
si

]
? s =

[
fi ? s

si

]
.

Every member f of Γ is identified with the Boehmian
[f?si

si

]
for any (si) ∈ ∆.

The space of Boehmians is also equipped with two notions of convergence,
namely δ-convergence and ∆-convergence. The following two definitions and
the lemma can be found in [6].

Definition 3.1 (δ-convergence). Let (Xi) be a sequence in B and
X ∈ B. We say that Xi

δ→ X as i → ∞ if there exists (sj) ∈ ∆ such
that Xi ? sj , X ? sj ∈ Γ for all i, j ∈ N and for each j ∈ N, Xi ? sj → X ? sj
as i→∞ in Γ .

Lemma 3.2. Xi
δ→ X as i → ∞ if and only if there exist fi,j , fj ∈ Γ ,

i, j ∈ N, and (sj) ∈ ∆ such that Xi =
[fi,j

sj

]
, X =

[fj

sj

]
and for each j ∈ N,

fi,j → fj as i→∞ in Γ .
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Definition 3.3 (∆-convergence). We say that Xi
∆→ X as i → ∞ if

there exists (si)∈∆ with (Xi−X)?si∈Γ for all i∈N and (Xi −X) ? si→0
as i→∞ in Γ .

For more details about the two notions of convergence on B, we refer
to [6].

The space of tempered Boehmians was introduced by P. Mikusiński in
[8, 9] and slightly modified in [16]. Now we recall the definition of tempered
Boehmians from [16]. The space of tempered Boehmians is defined as B2 =
B(S ′(Rn), (D(Rn), ∗), ∗, ∆0), where ∗ is the convolution between S ′(Rn)
and S (Rn) defined by (u ∗ f)(g) = u(g ∗ f̌) for g ∈ S ′(Rn), and ∆0 is the
family of sequences (φi) from D(Rn) satisfying

•
	
Rn φi(x) dx = 1 for all i ∈ N,

• there exists M > 0 such that
	
Rn |φi(x)| dx ≤M for all i ∈ N,

• s(φi)→ 0 as i→∞, where s(φi) = sup{‖x‖ : φi(x) 6= 0}.

Now we prove the following lemmas to construct the Boehmian space
B1 = B(S̃ ′(Rn × R+), (D(Rn), ∗),⊗, ∆0).

Lemma 3.4. If G ∈ S̃ ′(Rn×R+), g ∈ S̃ (Rn×R+) and φ1, φ2 ∈ D(Rn)
then

(1) g × (φ1 ∗ φ2) = (g × φ1)× φ2,
(2) G⊗ (φ1 ∗ φ2) = (G⊗ φ1)⊗ φ2.

Proof. (1) Let (b, a) ∈ Rn × R+. Then

(g × (φ1 ∗ φ2))(b, a) =
�

Rn

g(b− x, a)(φ1 ∗ φ2)(x) dx

=
�

Rn

g(b− x, a)
�

Rn

φ1(x− t)φ2(t) dt dx.

Since g is bounded and φ1, φ2 ∈ D(Rn), as in the proof of Theorem 2.5 we
find that g(b − x, a)φ1(x − t)φ2(t) is integrable on the product space and
hence we can apply Fubini’s theorem. Thus the last integral is equal to�

Rn

�

Rn

g(b− x, a)φ1(x− t)φ2(t) dx dt

=
�

Rn

�

Rn

g(b− (y + t), a)φ1(y) dy φ2(t) dt

=
�

Rn

�

Rn

g((b− t)− y), a)φ1(y) dy φ2(t) dt

=
�

Rn

(g × φ1)(b− t, a)φ2(t) dt = ((g × φ1)× φ2)(b, a).
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(2) Let g ∈ S̃ (Rn × R+). Then

(G⊗ (φ1 ∗ φ2))(g) = G(g × (φ1 ∗ φ2)∨)

= G(g × (φ̌1 ∗ φ̌2))

= G(g × (φ̌2 ∗ φ̌1)) (since ∗ is commutative)

= G((g × φ̌2)× φ̌1) (using (1) of this lemma)

= (G⊗ φ1)(g × φ̌2)

= ((G⊗ φ1)⊗ φ2)(g).

Lemma 3.5. If Gi → G as i→∞ in S̃ ′(Rn×R+) and φ ∈ D(Rn) then
Gi ⊗ φ→ G as i→∞ in S̃ ′(Rn × R+).

Proof. We note first that g × φ̌ ∈ S̃ (Rn ×R+) for all g ∈ S̃ (Rn ×R+),
by Lemma 2.2. If Gi → G as i → ∞ in S̃ ′(Rn × R+) then for each g ∈
S̃ (Rn × R+), (Gi −G)(g)→ 0 as i→∞. Therefore

((Gi ⊗ φ)− (G⊗ φ))(g) = ((Gi −G)⊗ φ)(g)

= (Gi −G)(g × φ̌)→ 0 as i→∞.

Lemma 3.6. If g ∈ S̃ (Rn × R+) and (φi) ∈ ∆0 then g × φi → g as
i→∞ in S̃ (Rn × R+).

Proof. Fix l,m, k, p ∈ N0 such that l + m ≤ k + p and β ∈ Nn
0 with

|β| ≤ p. The mean-value theorem applied to (∂/∂a)kDβ
bg(·, a) gives the es-

timate

(7)
∣∣∣∣( ∂

∂a

)k
Dβ

bg(b− x, a)−
(
∂

∂a

)k
Dβ

bg(b, a)
∣∣∣∣

≤ ‖x‖ ·
∥∥∥∥∇( ∂

∂a

)k
Dβ

bg(t, a)
∥∥∥∥,

where t = (1−h)(b−x)+hb = b+(h−1)x (0 < h < 1). If β = (β1, . . . , βn)
then put

β
(i)
j =

{
βj + 1 if j = i

βj if j 6= i
for i, j ∈ {1, . . . , n},

and β(i) = (β(i)
1 , . . . , β

(i)
n ) ∈ Nn

0 , ∀i = 1, . . . , n. Then we also have

(8)
∥∥∥∥∇( ∂

∂a

)k
Dβ

bg(t, a)
∥∥∥∥ ≤ C2

n∑
i=1

∣∣∣∣( ∂

∂a

)k
Dβ(i)

b g(t, a)
∣∣∣∣

for some C2 > 0. Therefore for every (b, a) ∈ Rn × R+,
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|a|l(1 + ‖b‖2)m
∣∣∣∣( ∂

∂a

)k
Dβ

b(g × φi − g)(b, a)
∣∣∣∣

= |a|l(1 + ‖b‖2)m
∣∣∣∣ �

Rn

[(
∂

∂a

)k
Dβ

bg(b− x, a)−
(
∂

∂a

)k
Dβ

bg(b, a)φi(x)
]
dx
∣∣∣∣

(by using
	
Rn φi(x) dx = 1, ∀i ∈ N)

≤
�

Rn

|a|l(1 + ‖b‖2)m
∣∣∣∣( ∂

∂a

)k
Dβ

bg(b− x, a)−
(
∂

∂a

)k
Dβ

bg(b, a)
∣∣∣∣ |φi(x)| dx

≤ C2

�

Rn

|a|l(1 + (‖t‖+ ‖x‖)2)m‖x‖
n∑
i=1

∣∣∣∣( ∂

∂a

)k
Dβ(i)

b g(t, a)
∣∣∣∣ |φi(x)| dx

(since ‖b‖ ≤ ‖t‖+ ‖(1− h)x‖ ≤ ‖t‖+ ‖x‖)

≤ C2

�

Rn

|a|l(1 + (‖t‖+ s(φi))2)m‖x‖
n∑
i=1

∣∣∣∣( ∂

∂a

)k
Dβ(i)

b g(t, a)
∣∣∣∣ |φi(x)| dx

≤ C2C3MQm,l,k,p+1(g)s(φi)

for some C3 > 0 and M > 0 such that
	
Rn |φi(x)| dx ≤ M for all i ∈ N.

Since s(φi)→ 0 as i→∞, we obtain

Qm,l,k,p(g × φi − g)→ 0 as i→∞,

which proves the lemma.

Lemma 3.7. If G ∈ S̃ ′(Rn × R+) and (φi) ∈ ∆0 then G ⊗ φi → G as
i→∞ in S̃ ′(Rn × R+).

Proof. Suppose g ∈ S̃ (Rn × R+). Then Lemma 2.2 gives g × φ̌i ∈
S̃ (Rn × R+) for all i ∈ N. It is obvious that (φ̌i) ∈ ∆0. Therefore Lemma
3.6 leads to g × φ̌i → g as i→∞ in S̃ (Rn × R+). Hence

lim
i→∞

(G⊗ φi)(g) = lim
i→∞

G(g × φ̌i) = G( lim
i→∞

g × φ̌i) = G(g).

Remark 3.8. If Λ ∈ S ′(Rn) and f ∈ S (Rn) then we know that Λ∗f is a
function defined by (Λ∗f)(x) = Λ(τxf̌) for x ∈ Rn. But this technique is not
applicable for G⊗φ when G ∈ S̃ ′(Rn×R+) and φ ∈ D(Rn), because G acts
on functions of (b, a) ∈ Rn×R+ and φ is a function of x ∈ Rn. Therefore we
could not decide whether G⊗φ is a function or not. However, the conclusion
of Lemma 2.3 is sufficient for our purpose. For this reason, we construct the
Boehmian space B1 by using the distribution space S̃ ′(Rn×R+) and we use
the definition of tempered Boehmian space B(S ′(Rn), (D(Rn), ∗), ∗, ∆0) of
[16] instead of B(I (Rn), (D(Rn), ∗), ∗, ∆0) of [8].
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4. Generalized wavelet transform. In this section, we are going to
define the extended wavelet transform and discuss its properties.

Definition 4.1. We define the extended wavelet transform W from B1

into B2 by

W

([
Gi
φi

])
=
[
W ′Gi
φi

]
for
[
Gi
φi

]
∈ B1.

Lemma 4.2. The extended wavelet transform W : B1 → B2 is well
defined.

Proof. First we prove that if
[
Gi
φi

]
∈ B1 then

[
W ′Gi
φi

]
∈ B2. If

[
Gi
φi

]
∈ B1,

then we observe that Gi ∈ S̃ ′(Rn × R+) for all i ∈ N, (φi) ∈ ∆0 and

(9) Gi ⊗ φj = Gj ⊗ φi, ∀i, j ∈ N.

Then W ′Gi ∈ S ′(Rn) for all i ∈ N. Applying the wavelet transform W ′ :
S̃ ′(Rn×R+)→ S ′(Rn) on both sides of (9) and using Theorem 2.5(2), we
can write

(10) (W ′Gi) ∗ φj = (W ′Gj) ∗ φi, ∀i, j ∈ N.

Therefore W ′Gi
φi

is a quotient; as a consequence,
[
W ′Gi
φi

]
∈ B2. Moreover,[

Gi
φi

]
=
[
Hi
φi

]
in B2 implies that

(11) Gi ⊗ φj = Hj ⊗ φi, ∀i, j ∈ N.

and hence

(12) (W ′Gi) ∗ φj = (W ′Hj) ∗ φi, ∀i, j ∈ N.

Therefore W
[
Gi
φi

]
= W

[
Hi
φi

]
in B2, which completes the proof.

Lemma 4.3 (Consistency). The extended wavelet transform W : B1 →
B2 is consistent with the wavelet transform W ′ : S̃ ′(Rn × R+)→ S ′(Rn).

Proof. If G ∈ S̃ ′(Rn×R+), then the Boehmian representing G in B1 is[G⊗φi

φi

]
for any (φi) ∈ ∆0. Now

W

([
G⊗ φi
φi

])
=
[
W ′(G⊗ φi)

φi

]
=
[

(W ′G) ∗ φi
φi

]
,

which is the identification of W ′(G) in B2.

Theorem 4.4. The extended wavelet transform W : B1 → B2 is linear.

The proof of this theorem is straightforward.

Theorem 4.5. The extended wavelet transform W : B1 → B2 is one-
to-one.
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Proof. Let
[
Gi
φi

]
,
[
Hi
δi

]
∈ B1 be such that W

([
Gi
φi

])
= W

([
Hi
δi

])
in B2 or[

W ′Gi
φi

]
=
[
W ′Hi
δi

]
. Then

(13) (W ′Gi) ∗ δj = (W ′Hj) ∗ φi, ∀i, j ∈ N.

By Theorem 2.5(2), it follows that

(14) W ′(Gi ⊗ δj) = W ′(Hj ⊗ φi), ∀i, j ∈ N.

Since the wavelet transform W ′ : S̃ ′(Rn×R+)→ S ′(Rn) is one-to-one, we
get

(15) Gi ⊗ δj = Hj ⊗ φi, ∀i, j ∈ N.

Thus
[
Gi
φi

]
=
[
Hi
δi

]
in B1.

Theorem 4.6. The extended wavelet transform W : B1 → B2 is con-
tinuous with respect to δ-convergence.

Proof. Let Xi
δ→ X as i → ∞ in B1. Then by Lemma 3.2, there exist

Gi,j ∈ S̃ ′(Rn × R+) for i, j ∈ N and (φj) ∈ ∆0 such that Xi =
[Gi,j

φj

]
,

X =
[Gj

φj

]
and for each j ∈ N,

(16) Gi,j → Gj in S̃ ′(Rn × R+) as i→∞.

Since the wavelet transform W ′ : S̃ ′(Rn×R+)→ S ′(Rn) is continuous, we
get

(17) W ′Gi,j →W ′Gj in S̃ ′(Rn × R+) as i→∞.

Since W Xi =
[W ′Gi,j

φj

]
and W X =

[W ′Gj

φj

]
, again by using Lemma 3.2 we

conclude that W Xi
δ→ W X in B2 as i → ∞. Thus W is continuous with

respect to δ-convergence.

Lemma 4.7. If X ∈ B1 and φ ∈ D(Rn) then W (X ⊗ φ) = (W X) ∗ φ.

Proof. Let X =
[
Gi
φi

]
. Then

W (X ⊗ φ) = W

([
Gi ⊗ φ
φi

])
=
[
W ′(Gi ⊗ φ)

φi

]
=
[

(W ′Gi) ∗ φ
φi

]
=
[
W ′Gi
φi

]
∗ φ = (W X) ∗ φ.

Theorem 4.8. The extended wavelet transform W : B1 → B2 is con-
tinuous with respect to ∆-convergence.

Proof. Let Xi
∆→ X in B1 as i → ∞. This means that there exist

sequences (Fi) from S̃ ′(Rn×R+) and (φi) ∈ ∆0 such that Xi⊗φi−X⊗φi =
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[Fi⊗φj

φj

]
for all i ∈ N and

(18) Fi → 0 in S̃ ′(Rn × R+) as i→∞.
By the continuity of the wavelet transform W ′ : S̃ ′(Rn × R+) → S ′(Rn),
it follows that

(19) W ′Fi → 0 in S ′(Rn) as i→∞.
Using Lemma 4.7, we get, for all i ∈ N,

(W Xi −W X) ∗ φi = (W (Xi −X)) ∗ φi = W ((Xi −X)⊗ φi)

= W

([
Fi ∗ φj
φj

])
=
[

(W ′Fi) ∗ φj
φj

]
.

Consequently, W Xi
∆→ W X in B2 as i→∞.

Finally, we point out that an inversion formula for the wavelet transform
W ′ : S̃ ′(Rn×R+)→ S ′(Rn) has not yet been found, and the same problem
concerns W : B1 → B2.
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