COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 115</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2009</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 115 | 2009 | NO. 2 |
| :--- | :--- | :--- |</table-markdown></div>

ON B-INJECTORS OF SYMMETRIC GROUPS S_{n} AND ALTERNATING GROUPS A_{n} : A NEW APPROACH

BY

M. I. ALALI, BILAL AL-HASANAT, I. SARAYREH, M. KASASSBEH, M. SHATNAWI and A. NEUMANN

Abstract

The aim of this paper is to introduce the notion of $B G$-injectors of finite groups and invoke this notion to determine the B-injectors of S_{n} and A_{n} and to prove that they are conjugate. This paper provides a new, more straightforward and constructive proof of a result of Bialostocki which determines the B-injectors of the symmetric and alternating groups.

1. Introduction. N-injectors in a finite group G are maximal nilpotent subgroups which share many properties with Sylow subgroups. N-injectors were first defined by B. Fischer et al. [7] as follows: A subgroup A of G is an N-injector if for each $H \triangleleft \triangleleft G, A \cap H$ is a maximal nilpotent subgroup of H. A. Mann [10] proved that if $C_{G}(F(G)) \subseteq F(G)$, then G contains N-injectors, they form a conjugacy class, and they can be characterized as the maximal nilpotent subgroups which contain $F(G)$, the Fitting subgroup of G. If G is of odd order, a subgroup S of G is an N-injector if and only if S is a nilpotent subgroup of G of maximal order. (See A. Bialostocki [6, Cor. 5] and A. Mann [10, Thm. 1]). A. Bialostocki [4] defines a B-injector in a finite group G to be any maximal nilpotent subgroup B of G satisfying $d_{2}(B)=d_{2}(G)$, where $d_{2}(X):=\max \{|A| \mid A \leq X$ and A is nilpotent of class at most 2$\}$. Bender [3] showed that if G is N-constrained, that is, $C_{G}(F(G)) \subseteq F(G)$, then A is an N-injector of G if and only if A is a maximal nilpotent subgroup of G containing an element of $a_{2}(G)$ where $a_{2}(G)$ is the set of all nilpotent subgroups of G, of class at most 2 and having order $d_{2}(G)$.

Sometimes B-injectors are called B - N-injectors or nilpotent injectors (see M. I. AlAli, Ch. Hering and A. Neumann [2], P. Flavell [8]). B-injectors and N-injectors of a finite group G are equivalent if G is N-constrained, and B-injectors are N-injectors for any finite group G (A. Neumann [11]).
B-injectors lead to theorems similar to Glaubermann's ZJ-Theorem and it is hoped that they will provide tools and arguments for a modified and

[^0]shortened proof of the classification theorem for finite simple groups. This paper is a part of a greater programme of investigating the B-injectors in arbitrary groups, more precisely, investigating in which groups the B-injectors are conjugate. The symmetric groups S_{n} and the alternating groups A_{n} turn out to be critical in answering the question whether the B-injectors are conjugate or not.
2. General definitions and notations. Our notation is fairly standard. Throughout all groups are finite. If G is a group, $Z(G)$ denotes the center of G. If H and X are subsets of G, then $C_{H}(X)$ and $N_{H}(X)$ denote respectively the centralizer and normalizer of X in H.

The generalized Fitting group $F^{*}(G)$ is defined to be $F(G) E(G)$ where $E(G)=\langle L| L \triangleleft \triangleleft G$ and L is quasisimple〉 is a subgroup of G. A group L is called quasisimple if $L^{\prime}=L$ where L^{\prime} is the derived group of L, and $L^{\prime} / Z(L)$ is non-abelian simple. $O_{p}(G)$ denotes the unique maximal normal p-subgroup of G; it is the Sylow p-subgroup of $F(G)$, and $O_{p^{\prime}}(G)=\prod O_{q}(G)$, where $q \neq p$ and q is prime. If Ω is a finite set, we denote by S_{Ω}, A_{Ω} the symmetric and alternating groups of Ω. If $|\Omega|=n$, we sometimes write S_{n} and A_{n}. Moreover, $\Phi(G)$ denotes the Frattini subgroup of G, the intersection of all maximal subgroups of G. The Fitting subgroup of G is the largest normal nilpotent subgroup of G and is denoted by $F(G)$. A permutation representation $\pi: H \rightarrow \operatorname{Sym}(Y)$ is semiregular if the identity element is the only element of H fixing points of Y. Equivalently $H_{y}=1$ for all y in Y. The integer part of the real number x is denoted by $[x]$.

Definition 2.1. A nilpotent subgroup U of a group G is called a $B G$-injector of G if U contains every nilpotent subgroup of G that is normalized by U.

3. Preliminaries

Theorem 3.1 (A. Mann [10]). Let U be a B-injector of G. Then U contains every nilpotent subgroup of G which is normalized by U.

Corollary 3.1. B-injectors are BG-injectors.
REmARK 3.1. It is clear that $B G$-injectors are maximal nilpotent and contain the Fitting group of G. Also if U is a $B G$-injector of G and if $U \leq H \leq G$, then U is a $B G$-injector of H.

We shall overview the $B G$-injectors in S_{n} and A_{n}, and single out the B-injectors among the $B G$-injectors. This works rather smoothly as the centralizers of elements of prime order in S_{n} have an easily accessible structure.

The following lemmas on $B G$-injectors are needed.

Lemma 3.1. Let G be a finite group, and $U \leq G$ be a $B G$-injector of G.
(1) If $Z \leq Z(G)$ then $Z \leq U$ and U / Z is a $B G$-injector of G / Z.
(2) If $F^{*}(G)=O_{p}(G)$ for some prime p, then U is a Sylow p-subgroup of G.
Proof. (1) Let X / Z be a nilpotent subgroup of G / Z and $U / Z \leq$ $N_{G / Z}(X / Z)$. As $Z \leq Z(G)$ and X / Z is nilpotent, X is nilpotent. Since U / Z normalizes X / Z, we see that U normalizes X. Thus $U \leq N(X)$, and hence $X \leq U$ and $X / Z \leq U / Z$.
(2) As $F^{*}(G)=O_{p}(G)$ and U is nilpotent, it follows that $O_{p}(G) \leq$ $F(G) \leq U$ and $U=O_{p}(U) \times O_{p^{\prime}}(G)$. So $O_{p^{\prime}}(U) \leq C_{G}\left(O_{p}(G)\right)=C_{G}\left(F^{*}(G)\right)$ $\leq F^{*}(G)=O_{p}(G)$. This implies that $O_{p^{\prime}}(U)=1$. Thus $U=O_{p}(U)$ and hence U is a p-group. As U is maximal nilpotent it follows that U is a Sylow p-subgroup.

Lemma 3.2. Let G be a finite group, $U \leq G$ be a $B G$-injector of G, and suppose that G is the central product of two subgroups G_{1} and G_{2}, that is, $G=G_{1} G_{2},\left[G_{1}, G_{2}\right]=1$. Then $U=\left(U \cap G_{1}\right)\left(U \cap G_{2}\right)$ and $U \cap G_{i}$ is a $B G$-injector of G_{i} for $i=1,2$.

Proof. As $G=G_{1} G_{2}$ and $\left[G_{1}, G_{2}\right]=1$, it follows that $G_{1} \leq C_{G}\left(G_{2}\right)$, $G_{2} \unlhd G$ and $G_{1} \cap G_{2} \leq Z(G)$. Define

$$
\begin{aligned}
& U_{1}=\left\{g_{1} \in G_{1} \mid \text { there exists } g_{2} \in G_{2} \text { such that } g_{1} g_{2} \in U\right\} \\
& U_{2}=\left\{g_{2} \in G_{2} \mid \text { there exists } g_{1} \in G_{1} \text { such that } g_{1} g_{2} \in U\right\}
\end{aligned}
$$

Then it can be easily seen that $U_{i} \leq G_{i}$ for $i=1,2$. Also both U_{i} are nilpotent. We show that U_{1} is nilpotent; the proof for U_{2} is analogous.

As $G_{1} \triangleleft G$ and $U G_{2}=U_{1} G_{2}$, it follows that $G_{2} \unlhd U G_{2}$ and $U G_{2} / G_{2}=$ $U_{1} G_{2} / G_{2}$. So $U_{1} / U_{1} \cap G_{2} \cong U_{1} G_{2} / G_{2}=U G_{2} / G_{2}=U / U \cap G_{2}$. Since U is nilpotent, so is $U / U \cap G_{2}$, hence $U_{1} / U_{1} \cap G_{2}$ is nilpotent. As $U_{1} \cap G_{2} \leq$ $G_{1} \cap G_{2} \leq Z(G)$, it follows that $U_{1} \cap G_{2} \leq Z\left(U_{1}\right)$. Hence U_{1} is nilpotent.

So U_{1}, U_{2} are nilpotent and hence $U_{1} U_{2}$ is nilpotent. Also it is clear that $U=U_{1} U_{2}$ and it follows that $U_{i}=U \cap G_{i}, i=1,2$. Thus $U=$ $\left(U \cap G_{1}\right)\left(U \cap G_{2}\right)$. It remains to prove that $U \cap G_{1}$ is a $B G$-injector of G_{1}.

So let $X \leq G_{1}$ be such that X is nilpotent with $U_{1} \leq N_{G_{1}}(X)$. Since $U=$ $U_{1} U_{2}$ and $U_{2} \leq G_{2}$, it follows that U_{2} centralizes G_{1} and X. So $U_{1} \leq C(X) \leq$ $N(X)$, which implies that $U=U_{1} U_{2} \leq N(X)$. As U is a $B G$-injector, it follows that $X \leq U$ and hence $X \leq U \cap G_{1}=U_{1}$. So $X \leq U_{1}$. Thus U_{1} is a $B G$-injector of G_{1}, and likewise U_{2} is a $B G$-injector of G_{2}.

REmARK 3.2. Let $\Omega=\{1, \ldots, n\}$ and let $\left(A_{1}, \ldots, A_{m}\right)$ be a partition of Ω, that is, Ω is a disjoint union of nonempty subsets A_{1}, \ldots, A_{m}. If $H=\left\{g \in S_{\Omega} \mid A_{i}^{g}=A_{i}, i=1, \ldots, m\right\}$, then $H=H_{1} \times \cdots \times H_{m}$ where $H_{i}=\left\{g \in S_{n} \mid g\right.$ leaves A_{i} invariant and fixes any point outside $\}$. It is
clear that $H_{i} \cong S_{A_{i}}$. So if $U \leq S_{n}$ with orbits A_{1}, \ldots, A_{m}, it follows that $U \leq H_{1} \times \cdots \times H_{m} \cong S_{A_{1}} \times \cdots \times S_{A_{m}}$.

If U is a $B G$-injector of S_{n}, then U is a $B G$-injector of H and by Lemma 3.2, we have $U=\left(U \cap H_{1}\right) \times \cdots \times\left(U \cap H_{m}\right)$ and $U \cap H_{i}$ is a $B G$-injector of $H_{i} \cong S_{A_{i}}$.

Lemma 3.3. Suppose that $G=G_{1} \times G_{2}$.
(1) If $A \in a_{2}(G)$, then $A=\left(A \cap G_{1}\right) \times\left(A \cap G_{2}\right)$ and $A \cap G_{i} \in a_{2}\left(G_{i}\right)$, $i=1,2$.
(2) If B is a B-injector of G, then $B=\left(B \cap G_{1}\right) \times\left(B \cap G_{2}\right)$ and $B \cap G_{i}$ is a B-injector of $G_{i}, i=1,2$.
(3) If $a_{2, p}(G)=\{X \leq G \mid X$ is a p-group of class ≤ 2 and of maximal order $\}$ and if $A \in a_{2, p}(G)$, then $A=\left(A \cap G_{1}\right) \times\left(A \cap G_{2}\right)$ and $A \cap G_{i} \in a_{2, p}\left(G_{i}\right), i=1,2$.
Proof. Easy and hence omitted.
Remark 3.3. Let H be a finite group such that $H \cong Z_{p} 2 S_{k}$, the wreath product of the cyclic group Z_{p}, p prime, with S_{k}. Then $F^{*}(H)=O_{p}(H)$.

Proof. See [9].
REMARK 3.4. For a partition $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$ of a finite set $\Omega, Y_{\Sigma}=$ $\left\{g \in S_{\Omega} \mid A_{i}^{g}=A_{i}\right.$ for all $\left.i\right\}$ is the Young subgroup of Ω.

It is obvious that $Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}} \leq S_{\Omega}$, where

$$
Y_{A_{i}}=\left\{g \in S_{\Omega} \mid g \text { fixes all points not in } A_{i}\right\}
$$

and $Y_{A_{i}} \cong S_{A_{i}}$. Further, we define $Y_{A_{i}}^{*}=Y_{A_{i}} \cap A_{\Omega}$ and

$$
Y_{\Sigma}^{*}=\left\langle Y_{A_{1}}^{*}, \ldots, Y_{A_{m}}^{*}\right\rangle=Y_{A_{1}}^{*} \times \cdots \times Y_{A_{m}}^{*} \leq A_{\Omega}
$$

Consider an element $g \in S_{A_{i}}$ of prime order $p \neq 2$.
Let $A=\left\{\alpha \in \Omega \mid \alpha^{g} \neq \alpha\right\}$ and $\Gamma=\left\{\alpha \in \Omega \mid \alpha^{g}=\alpha\right\}$. So $\Sigma=$ (A, Γ) is a partition of Ω. If $|A|=p^{k}$, then g is a product of k pairwise commuting p-cycles t_{1}, \ldots, t_{k} and $t_{i} \in Y_{A}$ corresponding to the orbits of g in A. Also $C_{S_{\Omega}}(g)$ permutes these t_{i} 's and in particular normalizes $V=$ $\left\langle t_{1}, \ldots, t_{k}\right\rangle \cong Z_{p}^{k}$; hence $V \subseteq O_{p}\left(C_{S_{\Omega}}(g)\right)$. So $C_{S_{\Omega}}(g) \leq Y_{Z}=Y_{A} \times \Gamma$, and thus $C_{S_{\Omega}}(g)=C_{Y_{A}}(g) \times Y_{\Gamma}$. As $C_{Y_{A}}(g) \cong Z_{p}$ 2 S_{k}, Remark 3.3 implies $F^{*}\left(C_{Y_{A}}(g)\right)=O_{p}\left(C_{Y}(g)\right)$ and $C(V)=V \times Y_{\Gamma}$. We then exploit the structure of $C(g)$ to investigate the $B G$-injectors of S_{Ω} and A_{Ω}. So we prove the following lemma.

Lemmas 3.6 and 3.7 were proved in [2]; to keep the paper self-contained we repeat the proof.

Lemma 3.4. Let U be a $B G$-injector in $S_{\Omega}, g \in Z(U)$ of prime order $p \neq$ 2 , and let Γ and A be as defined in Remark 3.4. Then $U=\left(U \cap Y_{A}\right) \times\left(U \cap Y_{\Gamma}\right)$,
$U \cap Y_{A}$ is a Sylow p-subgroup of $Y_{A}, U \cap Y_{A}$ is a $B G$-injector of Y_{A}, and $U \cap Y_{\Gamma}$ is a $B G$-injector of $Y_{\Gamma} \cong S_{\Gamma}$.

Proof. As $g \in Z(U)$ is of prime order $p \neq 2$, we have $p||A|$, so

$$
U \leq C_{S_{\Omega}}(g)=C_{Y_{A}}(g) \times Y_{\Gamma}
$$

As U is a $B G$-injector of S_{Ω} and $U \leq C_{Y_{A}}(g) \times Y_{\Gamma} \leq S_{\Omega}$, it follows that U is a $B G$-injector of $C_{Y_{A}}(g) \times Y_{\Gamma} \leq Y_{A} \times Y_{\Gamma}$. By Lemma 3.2, we have

$$
U=\left(U \cap C_{Y_{A}}(g)\right) \times\left(U \cap Y_{\Gamma}\right)=\left(U \cap Y_{A}\right) \times\left(U \cap Y_{\Gamma}\right)
$$

and $U \cap C_{Y_{A}}(g)$ is a $B G$-injector in $C_{Y_{A}}(g), U \cap Y_{\Gamma}$ is a $B G$-injector in $Y_{\Gamma} \cong$ S_{Ω} and $U \cap C_{Y_{A}}(g)=U \cap Y_{A}$. Furthermore, as $F^{*}\left(C_{Y_{A}}(g)\right)=O_{p}\left(C_{Y_{A}}(g)\right)$ (use Remark 3.3), Lemma 3.2 implies that $U \cap Y_{A}$ is a Sylow p-subgroup of Y_{A}.

We can prove a similar result for A_{Ω}.
Lemma 3.5. Let U be a $B G$-injector in A_{Ω} and let $g \in Z(U)$ with prime order $p \neq 2$. Then $U=\left(U \cap C_{Y_{A}^{*}}(g)\right) \times\left(U \cap Y_{\Gamma}^{*}\right)$.

Proof. Since $g \in Z(U)$, we have

$$
U \leq C_{A_{\Omega}}(g) \leq C_{S_{\Omega}}(g)=C_{Y_{A}}(g) \times Y_{\Gamma} \leq Y_{A} \times Y_{\Gamma}
$$

If V is as defined above, it follows that $V \subseteq O_{p}\left(C_{S_{\Omega}}(g)\right)=O_{p}\left(C_{A_{\Omega}}(g)\right)$ as p is odd. As U is a $B G$-injector of $C_{A_{\Omega}}(g)$, this implies that $V \subseteq O_{p}\left(C_{A_{\Omega}}(g)\right)$ $\subseteq U$; but U is nilpotent, so $U=O_{p}(U) \times O_{p^{\prime}}(U)$.

Also $V \subseteq O_{p}(U)$ and $O_{p^{\prime}}(U) \subseteq C\left(O_{p}(U)\right)$, thus $O_{p^{\prime}}(U) \subseteq C_{A_{\Omega}}(V)$. So $O_{p^{\prime}}(U) \leq C_{S_{\Omega}}(V)=V \times Y_{\Gamma}$. As $U \leq A_{\Omega}$ and $V \subset A_{\Omega}(p \neq 2)$, we have

$$
O_{p^{\prime}}(U)=O_{p^{\prime}}(U) \cap A_{\Omega} \leq\left(V \times Y_{\Gamma}\right) \cap A_{\Omega}=V \times\left(Y_{\Gamma} \cap A_{\Omega}\right)=V \times Y_{\Gamma}^{*}
$$

Thus $O_{p^{\prime}} \leq Y_{\Gamma}^{*}$ as $p\left||V|\right.$, and therefore $U=O_{p}(U) \times O_{p^{\prime}}(U) \leq C_{Y_{A}}(g) \times Y_{\Gamma}^{*}$; this implies that $U \leq C_{Y_{A}^{*}}(g) \times Y_{\Gamma}^{*}$, as $p \neq 2$. Hence Lemma 3.3 yields the conclusion.

Combining all these results, we obtain the following general lemma.
Lemma 3.6. Let Ω be a finite set and let U be a $B G$-injector of S_{Ω}. Then there exists a partition $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$ of Ω such that
(1) $U \leq Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}}$.
(2) $U=\left(U \cap Y_{A_{1}}\right) \times \cdots \times\left(U \cap Y_{A_{m}}\right)$.
(3) For $i=1, \ldots, m$, there exists a prime p_{i} such that $U \cap Y_{A_{i}}$ is a Sylow p_{i}-subgroup of $Y_{A_{i}}$ and also a $B G$-injector in $Y_{A_{i}}$.
(4) (a) If $p_{i} \neq 2$, then $p_{i}| | A \mid$.
(b) If $p_{i}=2$, then $\left|A_{i}\right| \not \equiv 3 \bmod 4$.

Proof. We consider two cases:
CASE 1: U is a 2 -group. If Σ is a partition consisting of Ω alone, then $Y_{\Sigma}=S_{\Omega}$ and $U=U \cap Y_{\Sigma}$. As U is a $B G$-injector of S_{Ω}, it is maximal
nilpotent and thus U is a Sylow 2-subgroup of S_{Ω}. So (1)-(3) follow, and $4(\mathrm{a})$ is also true. As U is a 2-group and a $B G$-injector, it cannot normalize a 3-cycle. Hence 4(b) follows.

Case 2: U is not a 2-group. Then there exists a prime $p \neq 2$ such that $p\left||U|\right.$. As U is nilpotent, there exists $z \in Z(U)$ of order p. Let A_{1} be the set of non-fixed points of $Z=Z(U)$ and Γ be the set of fixed points of Z. By Lemma 3.4, we have $U \leq C_{S_{\Omega}}(z) \leq Y_{A_{1}} \times Y_{\Gamma}$ and $p\left|\left|A_{1}\right|\right.$, more precisely

$$
U \leq C_{S_{\Omega}}(z)=C_{Y_{A_{1}}}(z) \times Y_{\Gamma} \leq Y_{A_{1}} \times Y_{\Gamma}
$$

Thus, by Lemma 3.2,

$$
U=\left(U \cap C_{Y_{A_{1}}}(z)\right) \times\left(U \cap Y_{\Gamma}\right)=\left(U \cap Y_{A_{1}}\right) \times\left(U \cap Y_{\Gamma}\right)
$$

and $U \cap C_{Y_{A_{1}}}(z)$ is a $B G$-injector of $Y_{A_{1}}$, and $U \cap Y_{\Gamma}$ is a $B G$-injector of Y_{Γ}. As $U \cap C_{Y_{A_{1}}}(z)$ is a $B G$-injector of $C_{Y_{A_{1}}}(z)$ and $\Gamma^{*}\left(C_{Y_{A_{1}}}(z)\right)=O_{p}\left(C_{Y_{A_{1}}}(z)\right)$, we find that $U \cap C_{Y_{A_{1}}}(z)$ is a Sylow p-subgroup of $Y_{A_{1}} \cong S_{A_{1}} \operatorname{AND} U \cap Y_{\Gamma}$ is a $B G$-injector of $Y_{\Gamma} \cong S_{\Gamma}$. Repeating the argument for $U \cap Y_{\Gamma}$ and $Y_{\Gamma} \cong S_{\Gamma}$ yields the claim.

Lemma 3.7. Let Ω be a finite set and let U be a $B G$-injector of A_{Ω}. Then there exists a partition $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$ of Ω such that:
(1) $U \leq Y_{A_{1}}^{*} \times \cdots \times Y_{A_{m}}^{*}$ and $U=\left(U \cap Y_{A_{1}}^{*}\right) \times \cdots \times\left(U \cap Y_{A_{m}}^{*}\right)$.
(2) For $i=1, \ldots, m$, there exists a prime p_{i} such that $U \cap Y_{A_{i}}^{*}$ is a Sylow p_{i}-subgroup of $Y_{A_{i}}^{*}$.
(3) If $p_{i} \neq 2$, then $p_{i}| | A_{i} \mid$, and if $p_{i}=2$, then $\left|A_{i}\right| \not \equiv 3 \bmod 4$.

Proof. We argue as in the proof of Lemma 3.6.
Corollary 3.2. Let B be a B-injector of S_{Ω}. Then there exists a partition $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$ of Ω, such that $B \leq Y_{A_{i} \cup A_{j}} \times Y_{\Omega \backslash\left(A_{i} \cup A_{j}\right)}$ for any $i \neq j$ and by Lemma 3.3, $B \cap Y_{A_{i} \cup A_{j}}$ is a $B G$-injector of $Y_{A_{i} \cup A_{j}}$. In particular,

$$
d_{2}\left(S_{A_{i}}\right)=d_{2}\left(Y_{A_{i}}\right)=d_{2}\left(B \cap Y_{A_{i}}\right)=d_{2, p_{i}}\left(S_{A_{i}}\right)
$$

Note. If $n=n_{1}+n_{2}$, where $n_{i}>0$, then $d_{2}\left(S_{n}\right) \geq d_{2}\left(S_{n_{1}}\right) d_{2}\left(S_{n_{2}}\right)$ because $S_{n_{1}} \times S_{n_{2}} \leq S_{n}$ and so $d_{2}\left(S_{n_{1}}\right) d_{2}\left(S_{n_{2}}\right)=d_{2}\left(S_{n_{1}} \times S_{n_{2}}\right) \leq d_{2}\left(S_{n}\right)$.

Lemma 3.8. Let Ω be a finite set of size n, and let $P \leq S_{\Omega}$ be a p subgroup of S_{Ω} of class ≤ 2. Then there exist integers $a, b \geq 0$ such that $n \geq p^{a+b}$ and $|P| \leq p^{a+b+a b}$.

Proof. Without loss of generality one can assume that P is transitive on $\Omega, Z=Z(P)$ acts semiregularly on Ω, and since the class of P is ≤ 2, it follows that $P^{\prime} \leq Z(P)$, and if Z_{α} is the set of elements in Z which fix $\alpha \in \Omega$ then $\left(P_{\alpha}\right)^{\prime} \leq\left(P^{\prime}\right)_{\alpha} \leq Z_{\alpha}=1$. So P_{α} is abelian and hence $M=\left\langle Z, P_{\alpha}\right\rangle=Z \times P_{\alpha}$ is an abelian normal subgroup of P, as $P^{\prime} \leq Z \leq M$ and $Z \cap Z_{\alpha}=Z_{\alpha}=1$. Set $|P / M|=p^{a}$ and $|Z|=p^{b}$. Then
there exist $t_{1}, \ldots, t_{a} \in P$ such that $P / M=\left\langle M t_{1}, \ldots, M t_{a}\right\rangle$. Define σ : $P_{\alpha} \rightarrow\left(P^{\prime}\right)^{a}$ by $\sigma(x)=\left(\left[x, t_{1}\right], \ldots,\left[x, t_{a}\right]\right)$. As class $(P) \leq 2$, it follows that σ is a homomorphism and is injective. Therefore $\left|P_{\alpha}\right| \leq\left|P^{\prime}\right|^{a} \leq|Z(P)|^{a}=p^{b a}$ and

$$
n=\left[P: P_{\alpha}\right]=[P: M]\left[M: P_{\alpha}\right]
$$

as $P_{\alpha} \leq M \leq P$. So

$$
\left[P: P_{\alpha}\right]=p^{a} \frac{|M|}{\left|P_{\alpha}\right|}=p^{a} \frac{|Z|\left|P_{\alpha}\right|}{\left|P_{\alpha}\right|}=p^{a} p^{b}=p^{a+b}
$$

and $|P|=n\left|P_{\alpha}\right| \leq n p^{a b}=p^{a+b+a b}$. This completes the proof.
Corollary 3.3. Let Ω be a finite set of size n, and let $P \leq S_{\Omega}$ be a transitive p-subgroup of class ≤ 2 on Ω.
(1) If $p \neq 2$, then $|P| \leq p^{n / p}$, where equality can hold for $n=p$ or $n=9$ and $p=3$.
(2) If $p=2$, then $|P|=n=2$ or $|P| \leq 8^{n / 4}$. If $n>2$ then $|P|<8^{n / 4}$.

Proof. Consider two cases:
CASE 1: $p \neq 2$. By Lemma 3.8, there exist integers $a, b \geq 0$ such that $n=p^{a+b}$ and $|P| \leq p^{a+b-1}$. As $p \neq 2$, it follows that $p^{a+b+a b} \leq p^{n / p}$ if and only if $a+b+a b \leq n / p=p^{a+b-1}$, where equality can only hold for $n=p$ or $n=9$ and $p=3$.

CASE 2: $p=2$. Then $|P| \leq 2^{a+b+a b}$. If $n>2$, then $2^{a+b+a b} \leq 2^{3 \cdot n / 4}$ if and only if $a+b+a b \leq 3 \cdot 2^{a+b-2}$.

Now we prove the following lemmas.
LEMMA 3.9. Let $P \leq S_{\Omega}$ be a p-subgroup with orbits A_{1}, \ldots, A_{m}. Then $P \leq Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}}$, where $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$ is a partition of Ω. Let $\zeta_{i}: Y_{\Sigma} \rightarrow Y_{A_{i}}$ be the projection. Then:
(1) $P \leq P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}$ and $P^{\zeta_{i}} \leq Y_{A_{i}}$.
(2) Each $P^{\zeta_{i}}$ is transitive on A_{i}.
(3) $P \cap Y_{A_{i}} \leq P^{\zeta_{i}}$.
(4) If P is of class ≤ 2 and of maximal order $d_{2, p}\left(S_{\Omega}\right)$, then
(a) $P=P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}$.
(b) $P \cap Y_{A_{i}}=P^{\zeta_{i}}$.
(c) $P=\left(P \cap Y_{A_{1}}\right) \times \cdots \times\left(P \cap Y_{A_{m}}\right)$.

Proof. (1) As $Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}}$, any $x \in Y_{\Sigma}$ can be uniquely written as $x=x_{1} \cdots x_{m}$ with $x_{i} \in Y_{A_{i}}$ and $x^{\zeta_{i}}=x_{i}$. So $x=x^{\zeta_{1}} \cdots x^{\zeta_{m}}$. Hence $x \in P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}$, and this proves (1).
(2) Let $\alpha, \beta \in A_{i}$. As P is transitive on A_{i}, there exists $x \in P$ such that $\alpha^{x}=\beta$. Let $x=x_{1} \cdots x_{m}$ with $x_{j} \in Y_{A_{j}}$. By the definition of $Y_{A_{k}}$, if
$x_{j} \in Y_{A_{i}}$ for $j \neq i$, then x_{j} fixes all points not on A_{j}, hence all points in A_{i} as $A_{i} \subseteq \Omega \backslash A_{j}$. Thus $\alpha^{x_{j}}=\alpha$ and $\beta^{x_{j}}=\beta$ for all $j \neq i$. So

$$
\beta=\alpha^{x}=\alpha^{x_{1} x_{2} \cdots x_{i-1} x_{i} x_{i+1} \cdots x_{m}}=\alpha^{x_{i} x_{i+1} \cdots x_{m}}
$$

and $\alpha^{x_{i}}=\beta^{x_{m}^{-1} x_{m-1}^{-1} \cdots x_{i-1}^{-1}}=\beta$, which proves (2).
(3) Let $x \in P \cap Y_{A_{i}}$. Then the decomposition of x in $Y_{A_{1}} \times \cdots \times Y_{A_{m}}$ is

$$
x=(1, \ldots, 1, x, 1, \ldots, 1) .
$$

So $x=x^{\zeta_{i}} \in P^{\zeta_{i}}$. Hence $P \cap Y_{A_{i}} \leq P^{\zeta_{i}}$.
(4) As $\zeta_{i}, i=1, \ldots, m$, are homomorphisms, we have $\operatorname{class}\left(P^{\zeta_{i}}\right) \leq$ class $(P) \leq 2$, which implies that class $\left(P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}\right) \leq 2$. So $P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}$ is a p-subgroup of S_{Ω} of class ≤ 2. Thus $\left|P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}\right| \leq d_{2, p}\left(S_{\Omega}\right)=|P|$. As $P \leq P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}$, from (1) it follows that $|P| \leq\left|P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}\right| \leq|P|$. Hence $P=P^{\zeta_{1}} \times \cdots \times P^{\zeta_{m}}$. So $P^{\zeta_{i}} \leq P$ and $P \cap Y_{i} \leq P^{\zeta_{i}} \leq P \cap Y_{A_{i}}$. Thus $P \cap Y_{A_{i}}=P^{\zeta_{i}}$, proving (4).

Lemma 3.10. Let Ω be a finite set of size n.
(1) If $p \neq 2$, then $d_{2, p}\left(S_{n}\right)=d_{2, p}\left(A_{n}\right)=p^{[n / p]}$.
(2) If $p \neq 2$, then $d_{2,2}\left(S_{n}\right)=\varepsilon_{n} 8^{[n / 4]}$, where

$$
\varepsilon_{n}= \begin{cases}1, & n \equiv 0,1 \bmod 4, \\ 2, & n \equiv 2,3 \bmod 4,\end{cases}
$$

and if $n>1$, then $d_{2,2}\left(A_{n}\right)=\frac{1}{2} d_{2,2}\left(S_{n}\right)=\frac{1}{2} \varepsilon_{n} 8^{[n / 4]}$. Furthermore, if $p \neq 3$, then:
(a) All p-subgroups of S_{n} of class ≤ 2 and order $d_{2, p}\left(S_{n}\right)$ are conjugate.
(b) If $p>3$, then these groups are elementary abelian.
(c) If $p=2$, then these groups are isomorphic to $Z_{\varepsilon_{n}} \times D_{8}^{[n / 4]}$, where D_{8} denotes a Sylow 2-subgroup of S_{4}, which is a dihedral group of order 8 .
Proof. It can be easily seen that S_{n} contains subgroups of order $p^{[n / p]}$ for any prime p and generated by $[n / p]$ cycles with distinct supports and $p^{[n / p]} \leq d_{2, p}\left(S_{n}\right)$.

Also S_{n} contains 2-subgroups of order $\varepsilon_{n} 8^{[n / 4]} \leq d_{2,2}\left(S_{n}\right)$. This can be explained as follows. Let $\pi=\left(A_{1}, \ldots, A_{m}, A\right)$ be a partition of Ω. Let $\left|A_{i}\right|=4$, $i=1, \ldots, m$, and $|A|=r$, where $n=4 m+r, 0 \leq r \leq 4$. It follows that

$$
H=Y_{A_{1}} \times \cdots \times Y_{A_{m}} \times Y_{r} \leq S_{n}
$$

where $Y_{A_{i}} \cong S_{4}$ and $Y_{r} \cong Z_{\varepsilon_{n}}$. Hence $H \cong S_{4}^{m} \times S_{r}$ contains $D_{8}^{m} \times Z_{\varepsilon_{n}}$ of class ≤ 2. It remains to show that for $p \neq 3$, these groups are exactly all possible p-subgroups of class ≤ 2 and order $d_{2, p}\left(S_{n}\right)$.

We consider two cases:
CASE 1: $p \neq 2$. Let $\left|A_{i}\right|=n_{i}$. Then $p^{\left[n_{i} / p\right]}=p^{n_{i} / p} \leq d_{2, p}\left(S_{A_{i}}\right)=$ $\left|P \cap Y_{A_{i}}\right|$. By Corollary 3.3 we have $\left|P \cap Y_{A_{i}}\right| \leq p^{n_{i} / p}$. Hence $p^{n_{i} / p}=$ $d_{2, p}\left(S_{A_{i}}\right)=\left|P \cap Y_{A_{i}}\right|$. Again by Corollary 3.3, we have either $n_{i}=p$, or $n_{i}=9$ and $p=3$. So if $p \neq 3$, then all orbits of P have length 1 or p. Thus P is conjugate to the subgroup constructed above and hence $d_{2, p}\left(S_{n}\right)=p^{[n / p]}$. As $p \neq 2$, it follows that $d_{2, p}\left(S_{n}\right)=d_{2, p}\left(A_{n}\right)$.

CASE 2: $p=2$. Let $P \in a_{2,2}\left(S_{n}\right)$ and let $P \leq Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}}$ where $Y_{A_{i}}, i=1, \ldots, m$, are the Young subgroups corresponding to the partition $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$. By Lemma 3.3, $P=\left(P \cap Y_{A_{1}}\right) \times \cdots \times\left(P \cap Y_{A_{m}}\right)$ where $P \cap Y_{A_{i}} \in a_{2,2}\left(Y_{A_{i}}\right)$, and by Lemma 3.9, $P \cap Y_{A_{i}}$ is a transitive subgroup of $Y_{A_{i}}$. By Corollary 3.3, $\left|A_{i}\right|=1$ or 2 and $8^{n / 4} \leq d_{2}\left(S_{A_{i}}\right)=\left|P \cap Y_{A_{i}}\right| \leq 8^{n / 4}$. This implies that $\left|P \cap Y_{A_{i}}\right|=8^{n / 4}$, which occurs if and only if $n_{i}=4$. Hence again P is a group conjugate to the group constructed above. As $P \not \leq A_{n}$, this implies that $d_{2,2}\left(A_{n}\right)=\frac{1}{2} d_{2,2}\left(S_{n}\right)$.

Now we are in a position to prove the first main result.
Theorem 3.2. Let Ω be a finite set of size n and let B be a B-injector of S_{Ω}.
(1) If $n \equiv 3 \bmod 4$, then $B=\langle d\rangle \times T$ where d is a 3 -cycle, and T is a Sylow 2-subgroup of $C_{S_{\Omega}}(d)$.
(2) If $n \not \equiv 3 \bmod 4$, then B is a Sylow 2-subgroup. In particular, all the B-injectors of S_{Ω} are conjugate.
Proof. As B is a B-injector of S_{Ω}, it is a $B G$-injector of S_{Ω}. By Lemma 3.6, there exists a partition $\Sigma=\left(A_{1}, \ldots, A_{m}\right)$ of Ω such that $B \leq Y_{\Sigma}$ and $B=\left(B \cap Y_{A_{1}}\right) \times \cdots \times\left(B \cap Y_{A_{m}}\right)$ and for $i=1, \ldots, m$, there exist primes p_{i} such that $B \cap Y_{A_{i}}$ is a Sylow p_{i}-subgroup of $Y_{A_{i}}$, and hence, by Lemma 3.3, a B-injector of $Y_{A_{i}}$.

Let $p_{i} \neq 2$. Then $p_{i}| | A_{i} \mid=n_{i}$ and

$$
\begin{aligned}
\varepsilon_{n_{i}} 8^{\left[n_{i} / 4\right]} & \leq d_{2}\left(S_{A_{i}}\right)=d_{2}\left(Y_{A_{i}}\right)=d_{2}\left(B \cap Y_{A_{i}}\right)=d_{2, p_{i}}\left(B \cap Y_{A_{i}}\right) \\
& =p_{i}^{\left[n_{i} / p_{i}\right]}=p_{i}^{n_{i} / p_{i}} .
\end{aligned}
$$

This implies that $p_{i}=3=n_{i}$. Hence either $B \cap Y_{A_{i}}$ is a 2-group, or $\left|A_{i}\right|=3$ and $B \cap Y_{A_{i}}$ is a 3 -cycle. We have at most one i such that $\left|A_{i}\right|=3$, because we assume that $\left|A_{i}\right|=\left|A_{j}\right|=3$ for $i \neq j$. It follows that $\left(B \cap Y_{A_{i}}\right) \times\left(B \cap Y_{A_{j}}\right) \leq$ $Y_{A_{i} \cup A_{j}} \cong S_{6}$ and $\left(B \cap Y_{A_{i}}\right) \times\left(B \cap Y_{A_{j}}\right)$ is again a B-injector of $Y_{A_{i} \cup A_{j}}$. Hence $d_{2}\left(S_{6}\right)=d_{2}\left(\left(B \cap Y_{A_{i}}\right) \times\left(B \cap Y_{A_{j}}\right)\right)=3^{2}=9$, which is a contradiction, as $16=\varepsilon_{6} 8^{[6 / 4]}=d_{2,2}\left(S_{6}\right) \leq d_{2}\left(S_{6}\right)=9$, so $d_{2}\left(S_{2}\right)>9$. Hence either B is a Sylow 2-group (if no $\left|A_{i}\right|$ is 3), or $b=\langle d\rangle \times T$ for some 3 -cycle. If B is a Sylow 2-group, then $n \not \equiv 3 \bmod 4$ as observed above. If $n \equiv 3 \bmod 4$,
then a Sylow 2-group T of S_{n} has a fixed point and an orbit of length 2. So $T=Z_{2} \times T_{1}$ where T_{1} is a Sylow 2-group of S_{n-3}, and we deduce that

$$
\begin{aligned}
d_{2,2}\left(S_{n}\right) & =d_{2,2}(T)=d_{2,2}\left(Z_{2}\right) d_{2,2}\left(T_{1}\right)=2 d_{2,2}\left(S_{n-3}\right) \\
& <3 d_{2,2}\left(S_{n-3}\right)=d_{2}\left(S_{3}\right) d_{2}\left(S_{n-3}\right) \leq d_{2}\left(S_{n}\right) .
\end{aligned}
$$

As $d_{2,2}\left(S_{n}\right)<d_{2}\left(S_{n}\right)$, it follows that B-injectors cannot be 2 -groups. So $B=\langle d\rangle \times T$, and this completes the description of the $B G$-injectors of S_{n}.

Now we discuss the B-injectors of A_{n}. First we give a lemma.
Lemma 3.11.
(1) If p is prime, $p \geq 7$, then $p^{k}<3^{[p k / 3]}$ for all $k \geq 1$.
(2) $5^{k}<3^{[5 k / 3]}$ for all $k \geq 3$.
(3) $3^{k}<\frac{1}{2} 8^{[3 k / 4]}$ for all $k \geq 3$.

Proof. Easy.
Now we prove the second main result.
Theorem 3.3. Let B be a B-injector in $A_{\Omega}=A_{n}$.
(1) If $|\Omega|=5$, then B is a Sylow 5 -subgroup.
(2) If $|\Omega|=6$, then B is a Sylow 3-subgroup.
(3) If $|\Omega| \neq 5,6$, then there exists a B-injector B^{*} of S_{Ω} such that $B=B^{*} \cap A_{\Omega}\left(B^{*}\right.$ is known by Theorem 3.2).
Let B be a B-injector of $X=A_{5}$ or A_{6}, and let p be a prime divisor of $|X|$. If $z_{p} \in Z(B)$, then $d_{2}(X)=d_{2}(B)=d_{2}\left(C_{X}\left(z_{p}\right)\right) \leq\left|C_{X}\left(z_{p}\right)\right|$ as $B \leq C_{X}\left(z_{p}\right)$.

Let $X=A_{5}$. Then $2 \nmid|B|$, as otherwise $5 \leq d_{2}\left(A_{5}\right) \leq\left|C_{X}\left(z_{2}\right)\right|=4$, a contradiction. Also $3 \nmid|B|$, as otherwise $5 \leq d_{2}\left(A_{5}\right) \leq\left|C_{X}\left(z_{3}\right)\right|=3$, a contradiction. So B is a Sylow 5 -subgroup.

Likewise if $X=A_{6}$, then B is a Sylow 3 -subgroup.
Now we discuss the third case. Let B be a B-injector of A_{Ω} and $|\Omega|$ $\neq 5,6$.

CASE 1: B is a 2-group. Then B is a Sylow 2-subgroup. So $B=B^{*} \cap A_{\Omega}$ for some Sylow 2-subgroup of S_{Ω}. As B is a $B G$-injector of A_{Ω} and is a 2group, it cannot normalize a 3 -cycle, and hence $|\Omega| \not \equiv 3 \bmod 4$, because in this case, Sylow 2-subgroups of S_{Ω} and A_{Ω} do normalize a 3 -cycle. So B^{*} is a B-injector of S_{Ω} (B^{*} is known by Theorem 3.2), and the assertion follows.

Case 2: B is not a 2 -group. By Lemma 3.7, there exists a partition $\pi=\left(A_{1}, \ldots, A_{m}\right)$ of Ω such that $B \leq Y_{\pi}^{*}=Y_{A_{1}}^{*} \times \cdots \times Y_{A_{n}}^{*}, B=\left(B \cap Y_{A_{1}}^{*}\right)$ $\times \cdots \times\left(B \cap Y_{A_{m}}^{*}\right), B \cap Y_{A_{i}}^{*}$ is a B-injector of $Y_{A_{i}}^{*} \cong A_{A_{i}}$ and either $B \cap Y_{A_{i}}^{*}$ is a Sylow 2-subgroup if $\left|A_{i}\right| \equiv \equiv 3 \bmod 4$, or $B \cap Y_{A_{i}}^{*}$ is a Sylow p_{i}-subgroup for some prime $p_{i} \neq 2$ and $p_{i}| | A_{i} \mid$.

Let $p_{i} \neq 2$. Then as $B \cap Y_{A_{i}}^{*}$ is a B-injector of $Y_{A_{i}}^{*}$, one has: If $\left|A_{i}\right|=$ $p_{i} k=n_{i}$ then

$$
d_{2}\left(A_{A_{i}}\right)=d_{2}\left(Y_{A_{i}}^{*}\right)=d_{2}\left(B \cap Y_{A_{i}}^{*}\right)=d_{2, p_{i}}\left(A_{A_{i}}\right)=p_{i}^{k}
$$

and

$$
3^{\left[p_{i} k / 3\right]}=3^{\left[n_{i} / 3\right]}=d_{2,3}\left(A_{A_{i}}\right) \leq d_{2}\left(A_{A_{i}}\right)=p_{i}^{k}
$$

Also we have $\frac{1}{2} d_{2,2}\left(S_{A}\right) \leq d_{2,2}\left(A_{A_{i}}\right) \leq d_{2}\left(A_{A_{i}}\right)$, thus $\frac{1}{2} \varepsilon_{n_{i}} 8^{\left[n_{i} / 4\right]} \leq d_{2}\left(A_{A_{i}}\right)=$ p_{i}^{k}. By Lemma 3.10, we have the following restrictions on p_{i} and $\left|A_{i}\right|$. As $3^{\left[p_{i} k / 3\right]} \leq p_{i}^{k}$, it follows that $p_{i}=3$ or 5 by Lemma 3.11(1). If $p_{i}=5$, then $k=1$ or 2 and hence $\left|A_{i}\right|=3$ or 6 by Lemma $3.11(3)$. So we can renumber the components of π so that $\pi=\left(A_{1}, \ldots, A_{a}, \Gamma_{1}, \ldots, \Gamma_{b}, \Sigma\right)$ where $\left|A_{i}\right|=3$ for $i=1, \ldots, a,\left|\Gamma_{i}\right|=5$ for $i=1, \ldots, b$, and $|\Sigma|=m$ with $n=3 a+5 b+m$. Then
$B=\left(B \cap Y_{A_{1}}^{*}\right) \times \cdots \times\left(B \cap Y_{A_{n}}^{*}\right) \times\left(B \cap Y_{\Gamma_{1}}^{*}\right) \times \cdots \times\left(B \cap Y_{\Gamma_{b}}^{*}\right) \times\left(B \cap Y_{\Sigma}^{*}\right)$ and hence

$$
d_{2}\left(A_{\Omega}\right)=3^{a} 5^{b} d_{2,2}\left(A_{\Sigma}\right)=3^{a} 5^{b} d_{2,2}\left(A_{\Sigma}\right)=3^{a} 5^{b} d_{2,2}\left(S_{m}\right)
$$

and

$$
\frac{1}{2} d_{2}\left(S_{3 a+5 b}\right) d_{2}\left(S_{m}\right) \leq \frac{1}{2} d_{2}\left(S_{n}\right) \leq d_{2}\left(A_{n}\right)=d_{2}(B)=3^{a} 5^{b} d_{2,2}\left(A_{\Sigma}\right)
$$

Hence if $m=0$, then $\frac{1}{2} d_{2}\left(S_{3 a+5 b}\right) \leq 3^{a} 5^{b}$. If $m \neq 0$, then

$$
\begin{aligned}
\frac{1}{2} d_{2}\left(S_{3 a+5 b}\right) d_{2}\left(S_{m}\right) & \leq q 3^{a} 5^{b} d_{2,2}\left(A_{m}\right)=3^{a} 5^{b} \cdot \frac{1}{2} d_{2,2}\left(A_{n}\right)=3^{a} 5^{b} \cdot \frac{1}{2} d_{2,2}\left(S_{m}\right) \\
& \leq d_{2}\left(S_{3 a+5 b}\right) \frac{1}{2} d_{2}\left(S_{m}\right)
\end{aligned}
$$

so $d_{2}\left(S_{3 a+5 b}\right)=3^{a} 5^{b}$ and this implies $a \leq 1, b=0$ and $d_{2}\left(S_{m}\right)=d_{2,2}\left(S_{m}\right)$. Hence, if $m \neq 0$, then B is a 2 -group or $\langle d\rangle \times T$.

This completes the proof of the theorem.
Acknowledgments. The authors thanks are due to Mr. H. J. Schaeffer for a helpful discussion, to C. Hering for his kind advice, to DAAD for financial support and to the referee for his valuable remarks.

REFERENCES

[1] M. I. AlAli, Ch. Hering and A. Neumann, On the B-injectors of sporadic groups, Comm. Algebra 27 (1999), 2853-2863.
[2] —, —, 一, On B-injectors of the covering groups of A_{n}, Illinois J. Math., to appear.
[3] Z. Arad and D. Chillag, Injectors of finite solvable groups, Comm. Algebra 7 (1979), 115-138.
[4] A. Bialostocki, Nilpotent injectors in alternating groups, Israel J. Math. 44 (1983), 335-344.
[5] A. Bialostocki, Nilpotent injectors in symmetric groups, ibid. 41 (1982), 261-273.
[6] -, On products of two nilpotent subgroups of a finite group, ibid. 20 (1975), 178-188.
[7] B. Fischer, W. Gaschütz and B. Hartley, Injektoren endlicher auflösbarer Gruppen, Math. Z. 102 (1967), 337-339.
[8] P. Flavell, Nilpotent injectors in finite groups all whose local subgroups are N-constrained, J. Algebra 149 (1992), 405-418.
[9] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl. 16, Addison-Wesley, 1981.
[10] A. Mann, Injectors and normal subgroups of finite groups, Israel J. Math. 9 (1971), 554-558.
[11] A. Neumann, Nilpotent injectors in finite groups, Arch. Math. (Basel) 71 (1998), 337-340.
M. I. AlAli, B. Al-Hasanat, I. Sarayreh, M. Kasassbeh and M. Shatnawi

Department of Mathematics
Mu'tah University
Alkarak, Jordan
E-mail: Mashhour_ibrahim@yahoo.com
bilal_hasanat@yahoo.com
mkasassbeh@yahoo.com
ibtism@yahoo.com
A. Neumann

Fakultät für Mathematik und Physik Universität Tübingen
Auf der Morgen Stelle 72076 Tübingen, Germany
E-mail: drvneuman@web.de

[^0]: 2000 Mathematics Subject Classification: Primary 20G40.
 Key words and phrases: symmetric group, alternating group, B-injector.

