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Lp BOUNDS FOR SPECTRAL MULTIPLIERS ON RANK ONE
NA-GROUPS WITH ROOTS NOT ALL POSITIVE
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Abstract. We consider a family of non-unimodular rank one NA-groups with roots
not all positive, and we show that on these groups there exists a distinguished left invariant
sub-Laplacian which admits a differentiable Lp functional calculus for every p ≥ 1.

0. Introduction. Let G be a real connected Lie group, let Xj , j =
1, . . . d, be some left invariant vector fields on G which generate the Lie al-
gebra of G, and consider the left invariant sub-Laplacian ∆ = −∑d

j=1X
2
j .

On the space L2(G) relative to the right invariant Haar measure on G, the
operator ∆ is formally self-adjoint and non-negative. Then, from the spectral
theorem, every Borel functionm bounded on R+ determines a bounded oper-
ator on L2(G) via the formula m(∆) =

�
R+ m(λ) dEλ, where ∆ =

�
R+ λdEλ

is the spectral resolution of ∆. A question which arises naturally is the fol-
lowing (see Hörmander [12] for Rn): is it possible, under certain conditions
regarding the function m, to extend m(∆) to a bounded operator on Lp(G)
for some p 6= 2?

We concentrate on the case where G is a solvable Lie group with ex-
ponential volume growth (for Lie groups with polynomial volume growth,
see Christ [2], and Alexopoulos [1]). Two classes of solvable Lie groups with
exponential volume growth and invariant sub-Laplacians emerge in the mis-
cellaneous works on that problem: Lie groups with sub-Laplacians which
admit a differentiable Lp functional calculus (see e.g. Hebisch [8, 9, 10],
Cowling, Giulini, Hulanicki and Mauceri [4], Mustapha [14], Gnewuch [7]);
and Lie groups with sub-Laplacians of holomorphic Lp type (see Christ and
Müller [3], Ludwig and Müller [13], and Hebisch, Ludwig and Müller [11]).
In this paper, we prove a multiplier theorem for groups and sub-Laplacians
belonging to the first class.

2000 Mathematics Subject Classification: Primary 22E30; Secondary 22E25, 43A15,
43A80, 47A60, 47D05.

Key words and phrases: sub-Laplacian, solvable Lie group, stratified group, exponen-
tial volume growth, multiplier theorem, differentiable functional calculus.

[51]



52 E. DAVID-GUILLOU

We consider a family of Lie groups G such that each G is a semidirect
product of a real nilpotent Lie group N (not necessarily Euclidean) with the
real line R, and the action is semisimple and has nonzero eigenvalues all pos-
itive but one. We show that on each G there is a left invariant sub-Laplacian
with differentiable functional calculus on Lp(G) for all p ≥ 1. This result is
new when N is non-Euclidean (for N Euclidean, see Hebisch [10]); in the
case of eigenvalues not all positive with N non-Euclidean, previous multi-
plier theorems concern exclusively invariant sub-Laplacians of holomorphic
Lp type (see Christ and Müller [3], Ludwig and Müller [13], and Hebisch,
Ludwig and Müller [11]).

1. Results. Let us begin by introducing some notations, and recalling
some basic notions about stratified groups (those can be found in the book
of Folland and Stein [6]).

Let H be a stratified group, that is, a connected simply connected nilpo-
tent Lie group whose Lie algebra h has a vector space decomposition

h =
n⊕

j=1

Vj ,

where the subspaces Vj satisfy

[V1, Vj ] = Vj+1, j = 1, . . . , n− 1.

This structure of dilations on h corresponds to a structure of dilations on H,
which is given by the one-parameter group of automorphisms of the group H
defined by

σt = expH ◦ σt ◦ exp−1
H , t ∈ R,

where expH denotes the exponential map from h to H. Endowed with this
structure of dilations, the nilpotent Lie group H is said to be a homogeneous
group of homogeneous dimension

Q =
n∑

j=1

j dimVj .

Let α be real negative, and let G = H × R × R be the Lie group with
product

g1 · g2 = (h1, a1, t1) · (h2, a2, t2) = (h1 · σt1h2, a1 + eαt1a2, t1 + t2),

where gi = (hi, ai, ti) ∈ G, i = 1, 2. Observe that the Lie group G is solvable
with exponential volume growth, and that it is non-unimodular whenever
α 6= −Q. We endow G with the right invariant Haar measure

dg = dh da dt,
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dh being a bi-invariant Haar measure on H, and da and dt being the
Lebesgue measures on R corresponding respectively to the variables a and t.

In what follows, we identify h with an ideal of the Lie algebra g of G. Fix
a basis {e1, . . . , ed} of the vector space V1. To each vector ej , j = 1, . . . , d,
we associate a left invariant vector field X̃j on H by setting

X̃jφ(h) = ∂sφ(h · expH(sej))|s=0, h ∈ H, φ ∈ C1(H),

and a left invariant vector field Xj on G by setting

Xjφ(g) = ∂sφ(g · exp(sej))|s=0, g ∈ G, φ ∈ C1(G),

where exp denotes the exponential map from g to G. It is easy to see that
Xj = etX̃j, j = 1, . . . , d. We define two more left invariant vector fields
on G,

X0 = ∂t, Xd+1 = eαt∂a.

Note that the system
χ = {X0, . . . ,Xd+1}

satisfies Hörmander’s condition on G.
We now consider the operator −∑d+1

j=0 X
2
j defined on the set C∞0 (G) of

smooth functions compactly supported in G. Let ∆ denote the Friedrichs
extension of this operator on L2(G) (i.e. the smallest self-adjoint extension),

∆ = −
d+1∑

j=0

X2
j .

The operator ∆ so defined is a left invariant sub-Laplacian on G.
The aim of this paper is to prove the following multiplier theorem.

Theorem 1.1. Let G and ∆ be as above. Suppose that m is a real
function compactly supported in ]0,∞[ which belongs to the Sobolev space
HQ+5+ε(R+) for some ε > 0. Then the operator m(∆) extends to an oper-
ator bounded on Lp(G) for all p ≥ 1.

Remark 1.1. The degree of regularity of our Lp multipliers is not sharp.
Indeed for H = Rn we need m ∈ Hn+5+ε(R+), whereas Hebisch proves
in [10] that m ∈ Hn+9/2+ε(R+) is sufficient. The interest of our result is not
quantitative but qualitative: we give the first example of a sub-Laplacian
which admits a differentiable Lp functional calculus, p 6= 2, on an NA-group
with roots not all positive and for which N 6= Rn.

To prove Theorem 1.1, we estimate the heat kernel {pz}<z>0 associated
with the sub-Laplacian ∆,

e−z∆φ = φ ∗l pz, φ ∈ C∞0 (G), <z > 0,

where ∗l denotes the convolution product in the space L2(G, dlg) relative to
dlg = e−(Q+α)tdg, the left invariant Haar measure on G. We show that p1+is
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is uniformly bounded in L1(G) by a polynomial in s ∈ R. It was proved by
Hebisch [9] that m(∆) is then bounded on Lp(G) for all p ≥ 1. Following
Hebisch, Theorem 1.1 derives from the result below.

Theorem 1.2. Let G and pz be as above. There is a constant C > 0
such that

‖p1+is‖L1(G) ≤ C(1 + |s|)Q+9/2, s ∈ R.
Our purpose is thus to establish Theorem 1.2. In order to do that, we

estimate the norm of p1+is in L1(G) by its norm in the space L2(G) with
some weight ω. In Section 2, we define ω, we give an estimate of p1+is in
L2(G,ωdg) (Theorem 2.1), and we show that this implies Theorem 1.2. The
remainder of the paper is devoted to the proof of Theorem 2.1.

We use the variable constant convention, which means that in a sequence
of equations, identical names will possibly be applied to different constants
(whose dependence on the parameters of the equations is clear). The nota-
tions introduced in Sections 1 and 2 hold throughout the paper, except in
Section 4.1 and the appendix, Section 7; these two sections contain general
results on Lie groups and have their own local notations.

2. Estimates on the heat kernel: L1 through L2. Let ρ be the
Carnot–Carathéodory distance on G associated with the Hörmander sys-
tem χ. We denote by |g| = ρ(e, g) the distance from an element g in G to
the unit e of G, and by BR = {g ∈ G : |g| < R}, R > 0, the ball centered at
e of radius R.

Proposition 2.1. If there exists a non-negative function ω on G such
that

‖(1 + ω)−1/2‖L2(BR) ≤ C(1 +R)3/2, R > 0,

‖ω1/2p1+is‖L2(G) ≤ C(1 + |s|)Q+3/2, s ∈ R,
then the conclusion of Theorem 1.2 is true.

Proof. This is a rewriting of a result proved by Hebisch [9].

To prove Theorem 1.2, we show that there exists a function ω on G which
has the properties required by Proposition 2.1. Let | · |H be a homogeneous
norm on the homogeneous group H, that is, a function continuous and non-
negative on H, smooth away from the unit eH of H, and which satisfies for
all h in H: |h|H = |h−1|H ; |σth|H = et|h|H for every t in R; |h|H = 0 if and
only if h = eH . We put

ω(g) = ω(h, a, t) = |h|QH |a|, g = (h, a, t) ∈ G.
Lemma 2.1. There is a constant C > 0 such that

‖(1 + ω)−1/2‖L2(BR) ≤ C(1 +R)3/2, R > 0.
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Proof. By the geometry of the Lie group G, there exists C > 0 such that

BR ⊂ {g = (h, a, t) : |h|H ≤ CeCR, |a| ≤ CeCR, |t| ≤ C(R+ 1)}, R > 0.

Now the assertion follows from easy computations.

Theorem 2.1. There is a constant C > 0 such that

‖ω1/2p1+is‖L2(G) ≤ C(1 + |s|)Q+3/2, s ∈ R.

Lemma 2.1 and Theorem 2.1 prove Theorem 1.2, by Proposition 2.1. So
the point is now to demonstrate Theorem 2.1.

To do this, we show that the function s 7→ ‖ω1/2p1+is‖2L2(G) satisfies a
certain differential inequality which, once integrated, implies the expected
estimate on ‖ω1/2p1+is‖2L2(G). The remainder of the paper is organized as
follows. In Section 3, we consider the functions

fk,ξ(s) = ‖ |h|k/2H |a|1/2pξ+is‖2L2(G), s ∈ R, ξ ∈ DQ−k, k = 0, . . . , Q,

where Dn, n ∈ N, denotes the disc {z ∈ C : |z − 1| ≤ 1 − 1/2n}. Observe
that

fQ,ξ(s) = fQ(s) = ‖ω1/2p1+is‖2L2(G), s ∈ R, ξ ∈ D0.

We fix k ∈ [0, Q] and ξ ∈ DQ−k, and we show that ∂sfk,ξ is bounded by a
certain quantity. We evaluate directly one part of this quantity (Sections 4
and 5), and we estimate the other part by f0,ξ0 , . . . , fk−1,ξk−1 with ξj ∈ DQ−j
(Section 6). In Section 6, we insert these estimates in the estimate of ∂sfk,ξ
to obtain a certain differential inequality that can be integrated using an
induction argument. This proves, modulo a pointwise estimate on the heat
kernel, that fk,ξ is bounded by a polynomial in s; in the particular case where
k = Q, it proves Theorem 2.1. In the appendix, Section 7, we establish a
pointwise estimate on the heat kernel with complex time on a general non-
unimodular Lie group, which completes the proof of Theorem 2.1.

Remark. In what follows, we shall denote by 〈· , ·〉 the scalar product
in L2(G), and when no ambiguity is possible, by ‖ · ‖L2 the norm ‖ · ‖L2(G).

3. First step towards a differential inequality. In this section, we
prove the following proposition, which provides estimates of the derivatives
∂sfk,ξ of the functions fk,ξ defined above.

Proposition 3.1. Let k be an integer in [0, Q]. There exists a constant
Ck > 0 such that , for any ξ in DQ−k and s in R,
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|∂s‖ |h|k/2H |a|1/2pξ+is‖2L2 |

≤





Ck

1∑

ε=0

k∑

l=1−ε
sup

ζ∈DQ−k+1

‖e(l+α)t/2|h|(k−l)/2H |a|(1−ε)/2pζ+is‖2L2

when k = 1, . . . , Q,

C0 sup
ζ∈DQ+1

‖eαt/2pζ+is‖2L2 when k = 0.

First we show some auxiliary results (Lemmata 3.1–3.3). The proof of
Proposition 3.1 is given at the end of the section.

Lemma 3.1. Let X be a left invariant vector field of the Hörmander
system χ, let λ be real , and n1, n2 be integers. Let φ be the function defined
by φ(g) = |h|n1

H |a|n2 , where g = (h, a, t) ∈ G. Then there exists a constant
C > 0 such that , for any <z > 1/2Q+1,

‖eλt/2φ1/2Xpz‖2L2 ≤ C sup
|ζ−z|<1/2Q+1

‖eλt/2φ1/2pζ‖2L2

+
d+1∑

j=1

|〈Xjpz, e
λtXj(φ)pz〉|.

Proof. The proof is a slight modification of an argument of Hebisch [9].
We shall assume that X 6= X0; the proof for X = X0 is similar. By integra-
tion by parts,

〈∆pz, eλtφpz〉

=
d+1∑

j=0

‖eλt/2φ1/2Xjpz‖2L2 + λ〈X0pz, e
λtφpz〉+

d+1∑

j=1

〈Xjpz, e
λtXj(φ)pz〉

≥ ‖eλt/2φ1/2X0pz‖2L2 + ‖eλt/2φ1/2Xpz‖2L2

− |λ| · ‖eλt/2φ1/2X0pz‖L2 · ‖eλt/2φ1/2pz‖L2 −
d+1∑

j=1

|〈Xjpz, e
λtXj(φ)pz〉|

≥ ‖eλt/2φ1/2Xpz‖2L2 −
λ2

4
‖eλt/2φ1/2pz‖2L2 −

d+1∑

j=1

|〈Xjpz, e
λtXj(φ)pz〉|.

Since pz depends analytically on z, by the Cauchy formula there exists a
positive constant C such that, for all x > 1/2Q+1 and y ∈ R,

‖eλt/2φ1/2∆px+iy‖2L2 = ‖eλt/2φ1/2∂xpx+iy‖2L2

≤ C sup
|ζ−(x+iy)|<1/2Q+1

‖eλt/2φ1/2pζ‖2L2 .

The desired inequality follows.
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For integers k, l, and X ∈ χ, we set

Ik,l,X(ξ, s) = �
G

e(l+α)t|h|k−lH |pξ+is(h, a, t)| |Xpξ+is(h, a, t)| dh da dt,

where ξ is positive and s is real.

Lemma 3.2. Let k ∈ [0, Q] and l ∈ [0, k] be integers, and let X ∈ χ.
There exists a constant C > 0 such that for any ξ in DQ−k and any real s,

Ik,l,X(ξ, s) ≤ C
k∑

m=l

sup
ζ∈DQ−k+1

‖e(m+α)t/2|h|(k−m)/2
H pζ+is‖2L2 .

Proof. Fix k in [0, Q] and X ∈ χ. Let us start by estimating Ik,l,X for
l = k. For any ξ ∈ DQ−k and s ∈ R, <(ξ + is) ≥ 1/2Q−k > 1/2Q+1.
Consequently, by Lemma 3.1,

Ik,l,X(ξ, s) = �
G

e(k+α)t|pξ+is(h, a, t)| |Xpξ+is(h, a, t)| dh da dt

≤ ‖e(k+α)t/2pξ+is‖L2 · ‖e(k+α)t/2Xpξ+is‖L2

≤ C sup
|ζ−(ξ+is)|<1/2Q+1

‖e(k+α)t/2pζ‖2L2

= C sup
|ζ−ξ|<1/2Q+1

‖e(k+α)t/2pζ+is‖2L2 , ξ ∈ DQ−k, s ∈ R.

For any ζ such that |ζ − ξ| < 1/2Q+1, one has |ζ − 1| ≤ 1− 1/2Q−k+1; thus

Ik,l,X(ξ, s) ≤ C sup
ζ∈DQ−k+1

‖e(k+α)t/2pζ+is‖2L2 , ξ ∈ DQ−k, s ∈ R,

which is the expected estimate for l = k.
Let us now estimate Ik,l,X for l ∈ [0, k − 1]. Assume that there is l ∈ [1, k]

such that, for some C > 0,

Ik,l,X(ξ, s) ≤ C
k∑

m=l

sup
ζ∈DQ−k+1

‖e(m+α)t/2|h|(k−m)/2
H pζ+is‖2L2 ,

ξ ∈ DQ−k, s ∈ R,
and let us estimate Ik,l−1,X . Again by Lemma 3.1,

Ik,l−1,X(ξ, s)

= �
G

e(l−1+α)t|h|k−l+1
H |pξ+is(h, a, t)| |Xpξ+is(h, a, t)| dh da dt

≤ ‖e(l−1+α)t/2|h|(k−l+1)/2
H pξ+is‖L2 · ‖e(l−1+α)t/2|h|(k−l+1)/2

H Xpξ+is‖L2
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≤ ‖e(l−1+α)t/2|h|(k−l+1)/2
H pξ+is‖2L2

+ ‖e(l−1+α)t/2|h|(k−l+1)/2
H Xpξ+is‖2L2

≤ C sup
|ζ−(ξ+is)|<1/2Q+1

‖e(l−1+α)t/2|h|(k−l+1)/2
H pζ‖2L2

+
d+1∑

j=1

|〈Xjpξ+is, e
(l−1+α)tXj(|h|k−l+1

H )pξ+is〉|, ξ ∈ DQ−k, s ∈ R.

We treat each term of the right-hand side separately. First we observe that

sup
|ζ−(ξ+is)|<1/2Q+1

‖e(l−1+α)t/2|h|(k−l+1)/2
H pζ‖2L2

= sup
|ζ−ξ|<1/2Q+1

‖e(l−1+α)t/2|h|(k−l+1)/2
H pζ+is‖2L2

≤ sup
ζ∈DQ−k+1

‖e(l−1+α)t/2|h|(k−l+1)/2
H pζ+is‖2L2 .

Next, using Xd+1(|h|k−l+1
H ) = 0, we find that

|〈Xd+1pξ+is, e
(l−1+α)tXd+1(|h|k−l+1

H )pξ+is〉| = 0.

Now we estimate

|〈Xjpξ+is, e
(l−1+α)tXj(|h|k−l+1

H )pξ+is〉|

for 1 ≤ j ≤ d, remembering that Xj = etX̃j. An argument using the ho-
mogeneity of the norm | · |H proves that for all n ≥ 1 there is C > 0 which
satisfies X̃j(|h|nH) ≤ C|h|n−1

H . Then

(1) |〈Xjpξ+is, e
(l−1+α)tXj(|h|k−l+1

H )pξ+is〉|
≤ C〈|Xjpξ+is|, e(l+α)t|h|k−lH |pξ+is|〉, ξ ∈ DQ−k, s ∈ R.

We recognize Ik,l,Xj (ξ, s), bounded by assumption on l. Thus

|〈Xjpξ+is, e
(l−1+α)tXj(|h|k−l+1

H )pξ+is〉|

≤ C
k∑

m=l

sup
ζ∈DQ−k+1

‖e(m+α)t/2|h|(k−m)/2
H pζ+is‖2L2 , ξ ∈ DQ−k, s ∈ R.

Finally, this implies the required estimate on Ik,l−1,X :

Ik,l−1,X(ξ, s) ≤ C
k∑

m=l−1

sup
ζ∈DQ−k+1

‖e(m+α)t/2|h|(k−m)/2
H pζ+is‖2L2 ,

ξ ∈ DQ−k, s ∈ R.
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For integers k, l, and X ∈ χ, we set

Jk,l,X(ξ, s) = �
G

elt|h|k−lH |a| |pξ+is(h, a, t)| |Xpξ+is(h, a, t)| dh da dt,

where ξ is positive and s is real.

Lemma 3.3. Let k ∈ [0, Q] and l ∈ [0, k] be integers, and let X ∈ χ.
There exists a constant C > 0 such that , for any ξ in DQ−k and any real s,

Jk,l,X(ξ, s) ≤ C
1∑

ε=0

k∑

m=l

sup
ζ∈DQ−k+1

‖e(m+εα)t/2|h|(k−m)/2
H |a|(1−ε)/2pζ+is‖2L2 .

Proof. The proof is similar to that of Lemma 3.2, modulo the fact that
the integrals Jk,l−1,X are estimated via Lemma 3.1 not only by the integrals
Jk,l,Y with Y ∈ χ, but also by Ik,l−1,Y . Lemma 3.2 is used to conclude the
proof.

Proof of Proposition 3.1. For all integers k in [0, Q],

∂s‖ |h|k/2H |a|1/2pξ+is‖2L2 = 2<〈−i∆pξ+is, |h|kH |a|pξ+is〉

= −2=
d+1∑

j=0

〈X2
j pξ+is, |h|kH |a|pξ+is〉

= 2=
d+1∑

j=0

(‖ |h|k/2H |a|1/2Xjpξ+is‖2L2 + 〈Xjpξ+is,Xj(|h|kH |a|)pξ+is〉)

= 2
d+1∑

j=1

=〈Xjpξ+is,Xj(|h|kH |a|)pξ+is〉.

Then for k = 0, ξ ∈ DQ and s ∈ R,

|∂s‖ |a|1/2pξ+is‖2L2 | ≤ 2
d+1∑

j=1

|〈Xjpξ+is,Xj(|a|)pξ+is〉|

≤ 2〈|Xd+1pξ+is|, eαt|pξ+is|〉
= 2I0,0,Xd+1(ξ, s).

Hence by Lemma 3.2, there exists C0 > 0 such that

|∂s‖ |a|1/2pξ+is‖2L2 | ≤ C0 sup
ζ∈DQ+1

‖eαt/2pζ+is‖2L2 , ξ ∈ DQ, s ∈ R,

which proves the assertion of Proposition 3.1 for k = 0.
Now assume that k is in [1, Q]. The argument used to deduce the esti-

mate (1) in the proof of Lemma 3.2 implies that there is Ck > 0 such that,
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for every ξ ∈ DQ−k and s ∈ R,

|∂s‖ |h|k/2H |a|1/2pξ+is‖2L2 | ≤ 2
d+1∑

j=1

|〈Xjpξ+is,Xj(|h|kH |a|)pξ+is〉|

≤ Ck
d∑

j=1

〈|Xjpξ+is|, et|h|k−1
H |a||pξ+is|〉+ 2〈|Xd+1pξ+is|, eαt|h|kH |pξ+is|〉

= Ck

d∑

j=1

Jk,1,Xj (ξ, s) + 2Ik,0,Xd+1(ξ, s).

By Lemmata 3.2 and 3.3, for all k ∈ [1, Q] we have

|∂s‖ |h|k/2H |a|1/2pξ+is‖2L2 |

≤ Ck
( 1∑

ε=0

k∑

m=1

sup
ζ∈DQ−k+1

‖e(m+εα)t/2|h|(k−m)/2
H |a|(1−ε)/2pζ+is‖2L2

+
k∑

m=0

sup
ζ∈DQ−k+1

‖e(m+α)t/2|h|(k−m)/2
H pζ+is‖2L2

)

≤ Ck
1∑

ε=0

k∑

m=0

sup
ζ∈DQ−k+1

‖e(m+εα)t/2|h|(k−m)/2
H |a|(1−ε)/2pζ+is‖2L2 ,

ξ ∈ DQ−k, s ∈ R,
which ends the proof of Proposition 3.1.

4. Estimates on the heat kernel in L2(G) weighted by exponen-
tials in t. In this section, we establish explicit weighted estimates on the
heat kernel (Proposition 4.1, Corollary 4.1, Proposition 4.2, Corollary 4.2).
Those estimates will allow us to initialize a process of successive integration
of the differential inequality (Sections 5 and 6), which will lead to Theo-
rem 2.1 (Section 6).

Proposition 4.1. There is a positive constant C such that

‖eαt/2pξ+is‖2L2 ≤ C(1 + |s|)2, ξ ∈ DQ+1, s ∈ R.
Proof. This follows trivially from an estimate established by Hebisch [9,

p. 203].

An easy consequence of Proposition 4.1 is the following.

Corollary 4.1. There is a positive constant C such that , for any in-
teger k in [α,Q],

‖ekt/2pξ+is‖2L2 ≤ C(1 + |s|)2, ξ ∈ DQ+1, s ∈ R.
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Proof. Let k be an integer in [α,Q]. For every ξ ∈ DQ+1 and s ∈ R,

‖ekt/2pξ+is‖2L2 ≤
0

�
−∞

( �
H×R

eαt|pξ+is(h, a, t)|2 dh da
)
dt

+
∞

�
0

( �
H×R

eQt|pξ+is(h, a, t)|2 dh da
)
dt

≤ ‖eαt/2pξ+is‖2 + �
G

eQt|pξ+is(g)|2 dg.

Now

�
G

eQt|pξ+is(g)|2 dg = �
G

e−Qt|pξ+is(g−1)|2 d(g−1)

= �
G

e−Qt|δ(g)pξ+is(g)|2δ(g−1) dg

= �
G

e−Qte(Q+α)t|pξ+is(g)|2 dg = ‖eαt/2pξ+is‖2L2 .

Thus by Proposition 4.1, there exists C > 0 such that

‖ekt/2pξ+is‖2L2 ≤ 2‖eαt/2pξ+is‖2 ≤ C(1 + |s|)2, ξ ∈ DQ+1, s ∈ R.
A refinement of the estimate of Hebisch [9], more sophisticated than

Proposition 4.1, is given by the following proposition.

Proposition 4.2. There is a positive constant C such that

‖eαt/2px/2+ηs+i(y+s)‖2L2 ≤ C
s

η2 , x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1.

The proof of Proposition 4.2 uses tools related to Schrödinger operators.
In Section 4.1 below, we introduce the results on Schrödinger operators we
need; then we prove Proposition 4.2 in Section 4.2. But before that, we
complete the list of our explicit weighted estimates on the heat kernel by
the following corollary of Proposition 4.2.

Corollary 4.2. There is a positive constant C such that , for any in-
teger k in [1, Q],

‖ekt/2px/2+ηs+i(y+s)‖2L2 ≤ C
s

η2 , x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1.

Proof. The proof is analogous to that of Corollary 4.1.

4.1. On Schrödinger operators. Note that the results presented here are
general, and are not specific to the groups introduced in Section 1.

Let G0 be a real connected simply connected Lie group, g0 be its Lie
algebra, and dg0 be a right invariant Haar measure on G0. We consider
a family χ0 = {Y1, . . . , Yn} of left invariant vector fields on G0 satisfying
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Hörmander’s condition. Let ρ0 denote the Carnot–Carathéodory distance
relative to χ0, and τ the corresponding distance to the unit 0 of G0,

τ(g0) = ρ0(0, g0), g0 ∈ G0.

Let {f1, . . . , fn} be a family of real functions in C1(G0). We define the
operators

Ujφ = (Yj + ifj)φ, φ ∈ C∞0 (G0), j = 1, . . . , n,

and their adjoint operators U ∗j , j = 1, . . . , n, in L2(G0). We consider the
operator

∑n
j=1U

∗
j Uj defined on C∞0 (G0). That operator is symmetric and

non-negative on L2(G0), and thus it admits a Friedrichs extension. Let H
denote this extension,

H =
n∑

j=1

U∗j Uj .

The operator H is a Schrödinger operator on L2(G0). The semigroup e−zH

is well defined for <z > 0, and so is the kernel of the semigroup that we
shall denote by e−zHδ0.

Lemma 4.1. Let K be a compact set in the half-plane {z ∈ C : <z > 0}.
There is a positive constant C independent of the family of functions
{f1, . . . , fn} such that for every real c, x+ iy in K, η in ]0, 1[ and s ≥ 1,

‖e−(x/2+ηs+i(y+s))Hδ0‖L2(G0,e2cτ(g0) dg0) ≤ C exp
(
C

s

η2 c
2
)
.

Proof. It is analogous to the proof of Lemma 1.4 in Hebisch [9].

4.2. Proof of Proposition 4.2. Let the notations be those of Sections 1
and 2 again. Let G0 denote the Lie group G0 = H×R, with H as in Section 1
and with product

g0 · g̃0 = (h, t) · (h̃, t̃ ) = (h · σth̃, t+ t̃ ), g0 = (h, t), g̃0 = (h̃, t̃ ) ∈ G0.

We equip G0 with the right invariant Haar measure dg0 = dh dt, and we
identify the left invariant vector fields {X0, . . . ,Xd} on G with left invariant
vector fields on G0. It is then easy to show that χ0 = {X0, . . . ,Xd} is a
Hörmander system on G0. Let ρ0 denote the Carnot–Carathéodory distance
on G0 related to χ0, and τ the corresponding distance from an element in
G0 to the unit 0 of G0.

Now consider the operator −∑d
j=0X

2
j + e2αta2, where a is a real para-

meter, defined on C∞0 (G0). That operator has the form
∑n

j=1 U
∗
j Uj described

above in Section 4.1. Thus it admits a Friedrichs extension on L2(G0), de-
noted by Ha,

Ha = −
d∑

j=0

X2
j + e2αta2.
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Fix x+ iy ∈ DQ, η ∈ ]0, 1[ and s ≥ 1. From the Plancherel formula,

‖eαt/2px/2+ηs+i(y+s)‖2L2(G) = �
R
‖eαt/2px/2+ηs+i(y+s)‖2L2(G0) da

= �
R
‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) da

= �
|a|<e−cs/η2

+ �
e−cs/η2≤|a|<1

+ �
1≤|a|

,

for any positive constant c. Let us estimate each integral separately.
Easy geometrical considerations on the Lie group G0 show that there is

a constant C > 0 for which

|t| ≤ C(τ(g0) + 1), g0 = (h, t) ∈ G0.

Hence there is C > 0 such that, for every a ∈ R,

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0)

≤ C‖eCτ(g0)e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0).

From this we deduce, by Lemma 4.1, that there is C1 > 0 such that, for
every a ∈ R,

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0)

≤ C1 exp
(
C1

s

η2

)
, x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1.

Let us now choose the constant c equal to C1 in the integrals to estimate.
One then has for any x+ iy ∈ DQ, η ∈ ]0, 1[ and s ≥ 1,

�
|a|<e−C1s/η

2

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) da ≤ 2C1.(2)

For every a 6= 0 and every smooth function φ,

‖eαt/2φ‖2L2(G0) ≤
1
|a| ‖e

αt/2|a|1/2φ‖2L2(G0)

≤ 1
|a| (‖e

αtaφ‖2L2(G0) + ‖φ‖2L2(G0)).

The operator −∑d
j=0X

2
j is non-negative on L2(G0), thus for every a 6= 0

and for every function φ in the domain of Ha,

‖eαtaφ‖2L2(G0) = 〈e2αta2φ, φ〉L2(G0) ≤ 〈Haφ, φ〉L2(G0)

≤ ‖Haφ‖2L2(G0) + ‖φ‖2L2(G0),

which implies

‖eαt/2φ‖2L2(G0) ≤
2
|a| (‖Haφ‖2L2(G0) + ‖φ‖2L2(G0)).
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Taking φ = e−(x/2+ηs+i(y+s))Haδ0 in the above inequality, we obtain

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0)

≤ 2
|a| (‖Hae

−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) + ‖e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0)).

It is easy to check that the functions s 7→ ‖Hae
−(x/2+ηs+i(y+s))Haδ0‖2L2(G0)

and s 7→ ‖e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) have non-positive derivatives on R+.
Therefore they decrease on R+, and we have

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0)

≤ 2
|a| (‖Hae

−(x/2+iy)Haδ0‖2L2(G0) + ‖e−(x/2+iy)Haδ0‖2L2(G0))

≤ 2
|a| (‖Hae

−(x/4+iy)Ha‖2L(L2(G0),L2(G0)) + ‖e−(x/4+iy)Ha‖2L(L2(G0),L2(G0)))

× ‖e−(x/4)Haδ0‖2L2(G0).

We know from spectral theory that the operators Hae
−(x/4+iy)Ha and

e−(x/4+iy)Ha are bounded on L2(G0) uniformly in x, y for x+ iy ∈ DQ, and
that the bound is independent of the parameter a ∈ R. We deduce easily
from the boundedness of e−(x/4+iy)Ha that ‖e−(x/4)Haδ0‖2L2(G0) is bounded
uniformly in x for x+ iy ∈ DQ, and independently of a. As a consequence,
the second integral is such that, for any x+ iy ∈ DQ, η ∈ ]0, 1[, and s ≥ 1,

(3) �
e−C1s/η

2≤|a|<1

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) da

≤ C �
e−C1s/η

2≤|a|<1

1
|a| da ≤ C

s

η2 .

And we also have

�
1≤|a|

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) da

≤ C �
1≤|a|

1
|a| ‖e

−(x/4)Haδ0‖2L2(G0) da

≤ C �
R

1
|a| ‖e

−(x/4)Haδ0‖2L2(G0) da = C‖px/4‖2L2(G).

It is a straightforward application of Theorem 7.1 (see Appendix, Section 7)
that ‖px/4‖L2(G) is bounded uniformly in x for x + iy ∈ DQ. Then for any
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x+ iy ∈ DQ, η ∈ ]0, 1[, and s ≥ 1,

�
1≤|a|

‖eαt/2e−(x/2+ηs+i(y+s))Haδ0‖2L2(G0) da ≤ C.(4)

Using the estimates (2)–(4), we find that there is C > 0 such that

‖eαt/2px/2+ηs+i(y+s)‖2L2(G)

≤ C
(

1 +
s

η2

)
≤ C s

η2 , x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1,

which proves Proposition 4.2.

5. Estimates on the heat kernel in L2(G) weighted by polyno-
mials in |h|H. In this section, we derive new estimates on the heat kernel
in L2(G) from those of Section 4. The main result is given by the following
proposition; we shall use it to estimate, by polynomials in s, some of the
terms in the inequality of Proposition 3.1.

Proposition 5.1. Let k be an integer in [1, Q]. There exists a positive
constant Ck such that

‖ |h|k/2H pξ+is‖2L2 ≤ Ck(1 + |s|)3+k, ξ ∈ DQ, s ∈ R.

We start by showing two technical lemmata before proving Proposi-
tion 5.1 at the end of the section.

Lemma 5.1. Let k be an integer in [2, Q]. There exists a positive constant
Ck such that , for any x+ iy in DQ, η in ]0, 1[, and s ≥ 1,

∂s‖ |h|k/2H px/2+iy+(i+η)s‖2L2

≤





Ck
s2/k

η1+4/k
‖ |h|k/2H px/2+iy+(i+η)s‖(2k−4)/k

L2 when k ∈ [3, Q],

C2
s

η3 when k = 2.

Proof. For every x+ iy ∈ DQ and η ∈ ]0, 1[,

∂s‖ |h|k/2H px/2+iy+(i+η)s‖2L2

= 2<
d+1∑

j=0

(i+ η)〈X2
j px/2+iy+(i+η)s, |h|kHpx/2+iy+(i+η)s〉



66 E. DAVID-GUILLOU

= − 2η
d+1∑

j=0

‖ |h|k/2H Xjpx/2+iy+(i+η)s‖2L2

− 2<
d+1∑

j=0

(i+ η)〈Xjpx/2+iy+(i+η)s,Xj(|h|kH)px/2+iy+(i+η)s〉

≤ − 2η
d+1∑

j=0

‖ |h|k/2H Xjpx/2+iy+(i+η)s‖2L2

+ 2|i+ η|
d∑

j=1

|〈Xjpx/2+iy+(i+η)s,Xj(|h|kH)px/2+iy+(i+η)s〉|

≤ − 2η
d+1∑

j=0

‖ |h|k/2H Xjpx/2+iy+(i+η)s‖2L2

+ 2
√

2
d∑

j=1

〈|Xjpx/2+iy+(i+η)s|, |Xj(|h|kH)| |px/2+iy+(i+η)s|〉, s ≥ 1.

Then by the argument used to prove estimate (1) in Lemma 3.2, there is
Ck > 0 such that, for every x+ iy ∈ DQ and η ∈ ]0, 1[,

∂s‖ |h|k/2H px/2+iy+(i+η)s‖2L2

≤ − 2η
d+1∑

j=0

‖ |h|k/2H Xjpx/2+iy+(i+η)s‖2L2

+ Ck

d∑

j=1

〈|Xjpx/2+iy+(i+η)s|, et|h|k−1
H |px/2+iy+(i+η)s|〉

≤ − 2η
d∑

j=1

‖ |h|k/2H Xjpx/2+iy+(i+η)s‖2L2

+ Ck

d∑

j=1

‖ |h|k/2H Xjpx/2+iy+(i+η)s‖L2 · ‖et|h|k/2−1
H px/2+iy+(i+η)s‖L2

≤ Ck
η
‖et|h|k/2−1

H px/2+iy+(i+η)s‖2L2 , s ≥ 1.

For k = 2, this implies by Corollary 4.2 that
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∂s‖ |h|Hpx/2+iy+(i+η)s‖2L2 ≤
C2

η
‖etpx/2+iy+(i+η)s‖2L2

≤ C2
s

η3 , x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1,

which proves the assertion for k = 2.
For k ∈ [3, Q],

∂s‖|h|k/2H px/2+iy+(i+η)s‖2L2 ≤
Ck
η
‖et|h|k/2−1

H px/2+iy+(i+η)s‖2L2

≤ Ck
η
‖e2t|px/2+iy+(i+η)s|4/k‖Lk/2 · ‖ |h|k−2

H |px/2+iy+(i+η)s|(2k−4)/k‖Lk/(k−2)

=
Ck
η
‖e(k/2)tpx/2+iy+(i+η)s‖4/kL2 · ‖ |h|k/2H px/2+iy+(i+η)s‖(2k−4)/k

L2 .

Thus by Corollary 4.2, for every x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1,

∂s‖ |h|k/2H px/2+iy+(i+η)s‖2L2 ≤
Ck
η

(
s

η2

)2/k

‖ |h|k/2H px/2+iy+(i+η)s‖(2k−4)/k
L2

≤ Ck
s2/k

η1+4/k
‖ |h|k/2H px/2+iy+(i+η)s‖(2k−4)/k

L2 ,

which proves the assertion for k ∈ [3, Q].

Lemma 5.2. Let k be an integer in [2, Q]. There exists a positive constant
Ck such that , for any x+ iy in DQ, η in ]0, 1[, and s ≥ 1,

‖ |h|k/2H px/2+iy+(i+η)s‖2L2 ≤ Ck
s1+k/2

η2+k/2
.

Proof. We estimate ‖ |h|k/2H px/2+iy+(i+η)s‖2L2 first for k = 2, then for k
in [3, Q].

By Lemma 5.1,

∂s‖ |h|Hpx/2+iy+(i+η)s‖2L2 ≤ C2
s

η3 , s ≥ 1.

Hence

‖ |h|Hpx/2+iy+(i+η)s‖2L2 ≤ ‖ |h|Hpx/2+η+i(y+1)‖2L2 + C2
s2

η3 , s ≥ 1.

Now Theorem 7.1 implies that

‖ |h|Hpx/2+η+i(y+1)‖2L2 ≤ c, x+ iy ∈ DQ, η ∈ ]0, 1[.

Then

‖ |h|Hpx/2+iy+(i+η)s‖2L2 ≤ c+C2
s2

η3 ≤ C2
s2

η3 , x+iy ∈ DQ, η ∈ ]0, 1[, s ≥1,

proving the assertion for k = 2.
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Now fix k ∈ [3, Q]. Set ψ(s) = ‖ |h|k/2H px/2+iy+(i+η)s‖2L2 . Lemma 5.1 en-
sures that

ψ′(s) ≤ Ck
s2/k

η1+4/k
ψ(k−2)/k(s), s ≥ 1.

Hence

ψ(s) ≤
(
ψ2/k(1) + Ck

s1+2/k

η1+4/k

)k/2
, s ≥ 1.

By Theorem 7.1,

ψ(1) = ‖ |h|k/2H px/2+η+i(y+1)‖2L2 ≤ ck, x+ iy ∈ DQ, η ∈ ]0, 1[.

In terms of the heat kernel, we have

‖ |h|k/2H px/2+iy+(i+η)s‖2L2 ≤
(
ck + Ck

s1+2/k

η1+4/k

)k/2

≤ Ck
s1+k/2

η2+k/2
, x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1,

which proves the statement for k ∈ [3, Q].

5.1. Proof of Proposition 5.1. Let us estimate ‖ |h|k/2H pξ+is‖2L2 first for
k = 1, and then for k ∈ [2, Q].

Arguments similar to those used to prove Proposition 3.1 when k = 0
show that there is a constant C1 > 0 for which

|∂s‖ |h|1/2H pξ+is‖2L2 | ≤ C1 sup
ζ∈DQ+1

‖et/2pζ+is‖2L2 , ξ ∈ DQ, s ∈ R.

Hence by Corollary 4.1,

|∂s‖ |h|1/2H pξ+is‖2L2 | ≤ C1(1 + |s|)2, s ∈ R,
where C1 is a positive constant independent of ξ ∈ DQ. This implies that

‖ |h|1/2H pξ+is‖2L2 ≤ ‖ |h|1/2H pξ‖2L2 + C1(1 + |s|)3, ξ ∈ DQ, s ∈ R.
By Theorem 7.1,

‖ |h|1/2H pξ+is‖2L2 ≤ C1(1 + |s|)3, ξ ∈ DQ, s ∈ R,
which gives the assertion for k = 1.

Now we assume that k is in [2, Q]. On the one hand, Theorem 7.1 implies
that there exists ck > 0 such that

‖ |h|k/2H pξ+is‖2L2 ≤ ck, ξ ∈ DQ, |s| ≤ 1.

On the other hand, we know from Lemma 5.2 that there is Ck > 0 such that

‖ |h|k/2H px/2+iy+(i+η)s‖2L2 ≤ Ck
s1+k/2

η2+k/2
, x+ iy ∈ DQ, η ∈ ]0, 1[, s ≥ 1.
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For η = x/2s, this implies that

‖ |h|k/2H px+iy+is‖2L2 ≤ Cks1+k/2
(

2s
x

)2+k/2

≤ Cks3+k, x+ iy ∈ DQ, s ≥ 1.

Now by a process analogous to the one used to establish the above estimate,
one proves

‖ |h|k/2H px+iy+is‖2L2 ≤ Ck|s|3+k, x+ iy ∈ DQ, s ≤ −1.

Combining the estimates for |s| ≤ 1, s ≥ 1 and s ≤ −1, we obtain

‖ |h|k/2H pξ+is‖2L2 ≤ Ck(1 + |s|)3+k, ξ ∈ DQ, s ∈ R.

6. Proof of Theorem 2.1. In this section, we establish the following
proposition which proves Theorem 2.1.

Proposition 6.1. Let k be an integer in [0, Q]. There exists a positive
constant C such that

‖ |h|k/2H |a|1/2pξ+is‖2L2 ≤ C(1 + |s|)3+Q+k, ξ ∈ DQ−k, s ∈ R.
Denouement. Theorem 2.1 follows from Proposition 6.1 with k = Q.

Proof of Proposition 6.1. The proof is by induction on k. By arguments
similar to those used to prove Proposition 5.1 when k = 1,

‖ |a|1/2pξ+is‖2L2 ≤ C(1 + |s|)3, ξ ∈ DQ, s ∈ R.
This yields the assertion for k = 0.

Let us now fix an integer k0 in [1, Q], and assume that the assertion holds
for every integer k in [0, k0− 1]. Proposition 3.1 ensures that there is C > 0
such that for any ξ ∈ DQ−k0 ,

|∂s‖ |h|k0/2
H |a|1/2pξ+is‖2L2 |

≤ C
( k0−1∑

l=0

sup
ζ∈DQ−k0+1

‖e(l+α)t/2|h|(k0−l)/2
H pζ+is‖2L2

+ sup
ζ∈DQ−k0+1

‖e(k0+α)t/2pζ+is‖2L2

+
k0∑

l=1

sup
ζ∈DQ−k0+1

‖elt/2|h|(k0−l)/2
H |a|1/2pζ+is‖2L2

)
, s ∈ R.

This gives an estimate of |∂s‖ |h|k0/2
H |a|1/2pξ+is‖2L2 | in terms of norms of

the heat kernel in weighted L2. We shall evaluate the norms separately,
depending on whether the weight is purely exponential in t, polynomial in
|h|H and |a|, or polynomial in |h|H only.
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There is only one term with weight purely exponential in t: it is the
supremum of ‖e(k0+α)t/2pζ+is‖2L2 for ζ ∈ DQ−k0+1. By Corollary 4.1, we
have

sup
ζ∈DQ−k0+1

‖e(k0+α)t/2pζ+is‖2L2 ≤ C(1 + |s|)2, s ∈ R.

Concerning terms with weights polynomial in |h|H and |a|, they are the
suprema of

‖elt/2|h|(k0−l)/2
H |a|1/2pζ+is‖2L2 for ζ ∈ DQ−k0+1

with l = 1, . . . , k0. Fix l in [1, k0]. We have

‖elt/2|h|(k0−l)/2
H |a|1/2pζ+is‖2L2

≤
0

�
−∞

( �
H×R
|h|k0−l

H |a| |pζ+is(h, a, t)|2 dh da
)
dt

+
∞

�
0

( �
H×R

e(Q−k0+l)t|h|k0−l
H |a| |pζ+is(h, a, t)|2 dh da

)
dt

≤ ‖ |h|(k0−l)/2
H |a|1/2pζ+is‖2L2 + �

G

e(Q−k0+l)t|h|k0−l
H |a| |pζ+is(g)|2 dg.

Now

�
G

e(Q−k0+l)t|h|k0−l
H |a| |pζ+is(g)|2 dg

= �
G

e−(Q−k0+l)t|σ−t(h−1)|k0−l
H | − e−αta| |pζ+is(g−1)|2 d(g−1)

= �
G

e−(Q−k0+l)te−(k0−l)t|h|k0−l
H e−αt|a| |pζ+is(g)|2e(Q+α)t dg

= ‖ |h|(k0−l)/2
H |a|1/2pζ+is‖2L2 .

Thus, by assumption on k0, there is C > 0 such that

sup
ζ∈DQ−k0+1

‖elt/2|h|(k0−l)/2
H |a|1/2pζ+is‖2L2 ≤2 sup

ζ∈DQ−k0+1

‖ |h|(k0−l)/2
H |a|1/2pζ+is‖2L2

≤ C(1 + |s|)3+Q+k0−l, s ∈ R.

Concerning terms with weights polynomial in |h|H only, they are the
suprema of

‖e(l+α)t/2|h|(k0−l)/2
H pζ+is‖2L2 for ζ ∈ DQ−k0+1
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with l = 0, . . . , k0 − 1. Fix l in [0, k0 − 1]. We have

‖e(l+α)t/2|h|(k0−l)/2
H pζ+is‖2L2 ≤ �

|h|H<1

( �
R×R

e(l+α)t|pζ+is(h, a, t)|2 da dt
)
dh

+ �
|h|H≥1

( �
R×R

e(l+α)t|h|Q−lH |pζ+is(h, a, t)|2 da dt
)
dh

≤ ‖e(l+α)t/2pζ+is‖2L2 + �
G

e(l+α)t|h|Q−lH |pζ+is(g)|2 dg.

On the one hand, by Corollary 4.1,

sup
ζ∈DQ−k0+1

‖e(l+α)t/2pζ+is‖2L2 ≤ C(1 + |s|)2, s ∈ R.

On the other hand,

�
G

e(l+α)t|h|Q−lH |pζ+is(g)|2 dg = �
G

e−(l+α)t|σ−t(h−1)|Q−lH |pζ+is(g−1)|2 d(g−1)

= �
G

e−(l+α)te−(Q−l)t|h|Q−lH |pζ+is(g)|2e(Q+α)t dg

= ‖ |h|(Q−l)/2H pζ+is‖2L2 .

Thus by Lemma 5.1, there is C > 0 such that

�
G

e(l+α)t|h|Q−lH |pζ+is(g)|2 dg ≤ C(1 + |s|)3+Q−l, s ∈ R.

Finally,

|∂s‖ |h|k0/2
H |a|1/2pξ+is‖2L2 |

≤ C
( k0−1∑

l=0

(1 + |s|)3+Q−l + (1 + |s|)2 +
k0∑

l=1

(1 + |s|)3+Q+k0−l
)

≤ C(1 + |s|)3+Q+k0−1, ξ ∈ DQ−k0 , s ∈ R.
Then by Theorem 7.1, there exists C > 0 such that

‖ |h|k0/2
H |a|1/2pξ+is‖2L2 | ≤ ‖ |h|k0/2

H |a|1/2pξ‖2L2 |+ C(1 + |s|)3+Q+k0

≤ C(1 + |s|)3+Q+k0, ξ ∈ DQ−k0 , s ∈ R,
and Proposition 6.1 follows.

7. Appendix: Heat kernel with complex time on non-unimod-
ular Lie groups. In this section, we prove a pointwise estimate on the
heat kernel with complex time (Theorem 7.1) used in the previous sections.
This estimate holds on general non-unimodular Lie groups, which seems to
be new when the time is complex.
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Let G be a real connected Lie group equipped with a right invariant
Haar measure dg. We denote by dlg the corresponding left Haar measure
and by δ the modular function of G,

dg = δ(g)dlg.

From now on, we shall assume that the Lie group G is non-unimodular, that
is, δ 6≡ 1.

Let χ = {X1, . . . ,Xn} be a system of left invariant vector fields on G that
satisfies Hörmander’s condition. We form the left invariant sub-Laplacian
on G,

∆ =
n∑

j=1

X2
j .

We associate with ∆ the semigroup of operators T z = e−z∆, <z > 0, and
we denote by pz the heat kernel

e−z∆φ = pz ∗l φ, φ ∈ C∞0 (G), <z > 0,

where ∗l denotes the convolution product in L2(G, dlg).

Theorem 7.1. Let G, δ, pz be as above, and λ be real positive. For any
ε in ]0, 1[, there is a positive constant C such that

|pz(g)| ≤ C(<z)−n/2eλ<(z)δ−1/2(g) exp
(
−<
( |g|2

(4 + ε)z

))
, g ∈ G, <(z)>0,

where n is the local dimension of the Lie group G.

Proof. This is a straightforward consequence of Proposition 7.1 below.

To state Proposition 7.1, we need to introduce additional notations. Set

A = δ1/2∆δ−1/2 + λ Id.

The operator A is self-adjoint and non-negative on L2(G, dlg). We asso-
ciate with A the semigroup of operators Sz = e−zA, <z > 0. Elementary
computations show that

Sz = e−λzδ1/2T zδ−1/2, <z > 0.

It follows that, for every <z > 0,

qz = e−λzδ1/2pz(5)

satisfies
Szφ = φ ∗l qz, φ ∈ C∞0 (G).

Proposition 7.1. For any ε in ]0, 1[, there is a positive constant C such
that

|qz(g)| ≤ C(<z)−n/2 exp
(
−<
( |g|2

(4 + ε)z

))
, g ∈ G, <(z) > 0.
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Proof. By Davies [5, Theorem 3.4.8], Lemmata 7.1 and 7.2 below yield
the conclusion.

Lemma 7.1. For any ε in ]0, 1[, there is a positive constant C such that

qt(g) ≤ Ce−λt/2t−n/2 exp
(
− |g|2

(4 + ε)t

)
, g ∈ G, t > 0.

Proof. By the pointwise estimate on the heat kernel of Varopoulos [15,
Theorem IX.1.2],

pt(g) ≤ Cδ−1/2(g)(min(t, 1))−n/2 exp
(
− |g|2

(4 + ε)t

)
, g ∈ G, t > 0.

Lemma 7.1 follows upon using (5) with z = t ∈ ]0,∞[.

Lemma 7.2. There exists a positive constant C such that

|qz(g)| ≤ C(<z)−n/2, g ∈ G, <(z) > 0.

Proof. For any real positive x and any real y,

qx+iy = Sx/3Sx/3+iyqx/3.

So
‖qx+iy‖L∞(G,dlg) ≤ ‖Sx/3‖2→∞‖Sx/3+iy‖2→2‖qx/3‖L2(G,dlg),

where

‖Sx/3‖2→∞ = sup{‖Sx/3φ‖L∞(G,dlg) : ‖φ‖L2(G,dlg) ≤ 1},
‖Sx/3+iy‖2→2 = sup{‖Sx/3+iyφ‖L2(G,dlg) : ‖φ‖L2(G,dlg) ≤ 1}.

Let us estimate ‖Sx/3‖2→∞. For any φ ∈ C∞0 (G),

‖Sx/3φ‖L∞(G,dlg) ≤ ‖φ ∗l qx/3‖L∞(G,dlg) ≤ ‖φ‖L2(G, dlg)‖qx/3‖L2(G,dlg).

Hence
‖Sx/3‖2→∞ ≤ ‖qx/3‖L2(G, dlg),

which implies
‖qx+iy‖L∞(G,dlg) ≤ ‖qx/3‖2L2(G,dlg),

We observe that, for any t > 0,

qt(g−1) = e−λtδ1/2(g−1)pt(g−1) = e−λtδ−1/2(g)pt(g)δ(g) = qt(g), g ∈ G.
Therefore

‖qx/3‖2L2(G,dlg) = �
G

qx/3(g)qx/3(g−1) dlg = qx/3 ∗l qx/3(e) = q2x/3(e)

where e is the unit of the Lie group G. Then by Lemma 7.1, we have

‖qx+iy‖L∞(G,dlg) ≤ Cx−n/2, x > 0, y ∈ R.
This completes the proof of Lemma 7.2.
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