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CHARACTERIZING CHAINABLE, TREE-LIKE,
AND CIRCLE-LIKE CONTINUA
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SEAWOMIR TUREK (Kielce)

Abstract. We prove that a continuum X is tree-like (resp. circle-like, chainable) if
and only if for each open cover Us = {U1,Us2,Us,Us} of X there is a Us-map f: X — Y
onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if
and only if for each open cover Us = {Uy, Uz, Us} of X there is a Us-map f: X — Y onto
a tree (or the interval [0, 1]).

1. Main results. In this paper we characterize chainable, tree-like and
circle-like continua in the spirit of the following characterization of covering
dimension due to Hemmingsen (see [0, 1.6.9]).

THEOREM 1 (Hemmingsen). For a compact Hausdorff space X the fol-
lowing conditions are equivalent:
(1) dim X < n, which means that any open cover U of X has an open
refinement V of order < n+1;
(2) each open cover U of X with cardinality |U| < n + 2 has an open
refinement V of order <n + 1;
(3) each open cover {U;}!F2 of X has an open refinement {Vi}+2 with
ﬂ?if Vi=0.
We say that a cover V of X is a refinement of a cover U if each V € V
lies in some U € U. The order of a cover U is defined as the cardinal
ord(U) = sup{|F| : F CU with "F # 0}.
A family U of subsets of a set X is called

o chain-like if for U there is an enumeration Y = {Uy, ..., U,} such that
UiNU; # 0 if and only if [i — j| <1 for all 1 <4,j < n;
o circle-like if there is an enumeration Y = {Uj,...,U,} such that

UiNU; #0if and only if |i — j| <1 or {,5} = {1,n};
o tree-like if U contains no circle-like subfamily V C U of cardinality
V| > 3.
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We recall that a continuum X is called chainable (resp. tree-like, circle-
like) if each open cover of X has a chain-like (resp. tree-like, circle-like) open
refinement. By a continuum we understand a connected compact Hausdorff
space.

The following characterization of chainable, tree-like and circle-like con-
tinua is the main result of this paper. For chainable and tree-like continua
this characterization was announced (but not proved) in [IJ.

THEOREM 2. A continuum X is chainable (resp. tree-like, circle-like) if
and only if any open cover U of X of cardinality {U| < 4 has a chain-like
(resp. tree-like, circle-like) open refinement.

In fact, this theorem will be derived from a more general theorem con-
cerning K-like continua.

DEFINITION 1. Let K be a class of continua and n be a cardinal number.
A continuum X is called K-like (resp. n-K-like) if for any open cover U of X
(of cardinality || < n) there is a/-map f: X — K onto some space K € K.

We recall that a map f : X — Y between two topological spaces is called
a U-map, where U is an open cover of X, if there is an open cover V of
Y such that the cover f~1(V) = {f~1(V) : V € V} refines U. It is worth
mentioning that a closed map f: X — Y is a Y-map if and only if the family
{f~Y(y): y € Y} refines U.

It is clear that a continuum X is tree-like (resp. chainable, circle-like)
if and only if it is K-like for the class K of all trees (resp. for K = {[0, 1]},
K = {S'}). Here S' = {2z € C : |z| = 1} stands for the circle.

It turns out that each 4-K-like continuum is K-like for some extension K
of K. This extension is defined with the help of locally injective maps.

A map f: X — Y between topological spaces is called locally injective
if each point x € X has a neighborhood O(z) C X such that the restric-
tion f]O(x) is injective. For a class of continua K let K be the class of all
continua X that admit a locally injective map f: X — Y onto some Y € K.

THEOREM 3. Let K be a class of 1-dimensional continua. If a contin-
uum X 1s 4-K-like, then X is K-like.

In Proposition [I]we shall prove that each locally injective map f: X — Y
from a continuum X onto a tree-like continuum Y is a homeomorphism.
Consequently, K = K for any class K of tree-like continua. This fact combined
with Theorem [3] implies the following characterization:

THEOREM 4. Let K be a class of tree-like continua. A continuum X is
K-like if and only if it is 4-K-like.

One may ask if the number 4 in this theorem can be lowered to 3 as
in Hemmingsen’s characterization of 1-dimensional compacta. It turns out



CHARACTERIZING CONTINUA 3

that this cannot be done: 3-K-likeness is equivalent to being an acyclic curve.
A continuum X is called a curve if dim X < 1. It is acyclic if each map
f: X — S! to the circle is null-homotopic.

THEOREM 5. Let K 3 [0,1] be a class of tree-like continua. A continuum
X is 3-K-like if and only if it is an acyclic curve.

It is known that each tree-like continuum is an acyclic curve, but there are
acyclic curves which are not tree-like [3]. On the other hand, each locally con-
nected acyclic curve is tree-like (moreover, it is a dendrite [10, Chapter X]).
Therefore, for any continuum X and a class K 3 [0, 1] of tree-like continua
we get the following chain of equivalences and implications (in which the
dotted implication holds under the additional assumption that X is locally
connected):

4-chainable —— 4-K-like — 4-tree-like —— 3-K-like

| I PR

chainable —— K-like — tree-like — acyclic curve

Finally, let us present a factorization theorem that reduces the problem of
studying n-K-like continua to the metrizable case. It will play an important
role in the proof of the “circle-like” part of Theorem 2]

THEOREM 6. Let n € NU{w} and K be a family of metrizable continua.
A continuum X is n-K-like if and only if any map f: X — Y to a metrizable
compact space Y can be written as the composition f = gow of a continuous
map w: X — Z onto a metrizable n-K-like continuum Z and a continuous
map g: 4 — Y.

2. Proof of Theorem |5, Let K 5 [0, 1] be a class of tree-like continua.
We need to prove that a continuum X is 3-K-like if and only if it is an acyclic
curve.

To prove the “if” part, assume that X is an acyclic curve. By Theorem 2.1
of [I], X is 3-chainable. Since [0, 1] € K, the continuum X is 3-K-like and we
are done.

Now assume conversely that a continuum X is 3-K-like. First, using Hem-
mingsen’s Theorem (1} we shall show dim X < 1. Let V = {Vj, V5, V3} be an
open cover of X. Since X is 3-K-like, we can find a V-map f: X — T onto
a tree-like continuum 7. Using the 1-dimensionality of tree-like continua,
we find an open cover W of T order < 2 such that the cover f~1(W) =
{f~Y(W) : W € W} is a refinement of V. The continuum X is 1-dimensional
by the implication (2)=(1) of Hemmingsen’s theorem.

It remains to prove that X is acyclic. Let f: X — S! be a continuous
map. Let U = {Uy, Us, U3} be a cover of the unit circle S' = {z € C : |z| = 1}
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by three open arcs Uy, Us, Us, each of length < 7. Such a cover necessarily
has ord(U) = 2. By our assumption there is an f~!(U)-map g: X — T onto
a tree-like continuum 7. From tree-likeness of T it follows that f~!(Z/) has a
tree-like refinement V, and we can assume that T is a tree. It is well-known
(see e.g. [3]) that there exists a continuous map h: T'— S! such that hog
is homotopic to f. But each map from a tree to the circle is null-homotopic.
Hence h o g as well as f are null-homotopic too.

3. Proof of Theorem We shall use some terminology from graph
theory. First we recall some definitions.

By a (combinatorial) graph we understand a pair G = (V, E) consisting
of a finite set V' of vertices and a set E C {{a,b} : a,b € V, a # b} of
unordered pairs of vertices, called edges. A graph G = (V, E) is connected
if any two distinct vertices u,v € V' can be linked by a path (vg,v1,...,v,)
with v9 = w, v, = v and {v;_1,v;} € E for i < n. The number n is called
the length of the path (and equal to the number of edges involved). Each
connected graph possesses a natural path-metric on the set of vertices: the
distance d(u,v) between two distinct vertices u,v € V equals the smallest
length of a path linking them.

Two vertices u,v € V of a graph are adjacent if {u,v} € E is an edge.
The degree deg(v) of a vertex v € V' is the number of vertices u € V adjacent
to v in the graph. The number deg(G) = max,cy deg(v) is called the degree
of the graph. By an r-coloring of the graph we understand any map x: V —
r={0,...,7 — 1}. In this case the value x(v) is called the color of v € V.

LEMMA 1. Let G = (V, E) be a connected graph with deg(G) < 3 such
that d(u,v) > 6 for any two vertices u,v € V of degree 3. Then there is
a 4-coloring x: V. — 4 such that no two distinct vertices u,v € V with
d(u,v) <2 have the same color.

Proof. Let V3 = {v €V :deg(v) = 3} and let B(v) = {v}U{u € V: {u,v}
€ E} be the unit ball centered at v € V. It follows from deg(G) < 3 that
|B(v)| < 4 for each v € V. Moreover, for any distinct v, u € V3 the balls B(v)
and B(u) are disjoint (because d(v,u) > 6 > 2). Hence we can define a 4-
coloring x on J,cys B(v) so that y is injective on each B(u) and x(v) = x(w)
for each v,w € V3. Next, it remains to color the remaining vertices, all of
order < 2, by four colors so that x(z) # x(y) if d(z,y) < 2. It is easy to
check that this can always be done. =

Each graph G = (V, E') can also be thought of as a topological object: just
embed the set of vertices V' as a linearly independent subset into a suitable
Euclidean space and consider the union |G| = Uy, ,3eplu,v] of intervals
corresponding to the edges of G. Assuming that each interval [u,v] C |G| is
isometric to the unit interval [0, 1], we can extend the path-metric of G to
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a path-metric d on the geometric realization |G| of G. For = € |G| we shall
denote by B(z) = {y € |G| : d(x,y) < 1} and B(z) = {y € |G| : d(x,y) < 1}
respectively the open and closed unit balls centered at x. More generally,
B.(z) = {y € |G| : d(z,y) < r} will denote the open ball of radius r with
center at x in |G]|.

By a topological graph we shall understand a topological space I homeo-
morphic to the geometric realization |G| of some combinatorial graph G. In
this case G is called the triangulation of I'. The degree of I' = |G| will be
defined as the degree of the combinatorial graph G (it does not depend on
the choice of a triangulation).

It turns out that any graph can be transformed by a small deformation
into a graph of degree < 3.

LEMMA 2. For any open cover U of a topological graph I' there is a
U-map f: I" — G onto a topological graph G of degree < 3.

This lemma (possibly folklore) can be easily proved by induction. Figure 1
illustrates how to decrease the degree of a selected vertex of a graph.

Fig. 1

Now we have all the tools for the proof of Theorem [3] So, take a class K
of 1-dimensional continua and assume that X is a 4-K-like continuum. We
should prove that X is K-like.

First, we show that X is 1-dimensional. This will follow from Hem-
mingsen’s Theorem [I] as soon as we check that each open cover U of X
of cardinality |/| < 3 has an open refinement V of order < 2. Since || < 4
and X is 4-K-like, there is a U-map f: X — K onto a K € K. It follows
that for some open cover V of K the cover f~1(V) refines U. Since K is
1-dimensional, V has an open refinement W of order < 2. Then the cover
f~t(W) is an open refinement of & having order < 2.

To prove that X is R—like, fix any open cover U of X. By the compactness
of X, we can assume that I/ is finite. Being 1-dimensional, X admits a i/-map
f: X — I onto a topological graph I'. By Lemma [2] we can assume that
deg(I") < 3. Adding vertices on edges of I', we can find a triangulation
(Vr,Er) of I' so fine that

e the path-distance between any vertices of degree 3 in I is > 6;
e the cover {f1(B2(v)): v € Vr} of X is a refinement of Y.
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Lemma [T yields a 4-coloring x: Vp — 4 of Vp such that any two distinct
vertices u,v € Vr with d(u,v) < 2 have distinct colors. For each color i € 4
consider the open 1-neighborhood U; = U, ¢,-1(;y B(v) of the monochrome
set x~(i) C Vr in I'. Since open 1-balls centered at vertices v € Vp cover
the graph I', the 4-element family {U; : i € 4} is an open cover of I". Then
for the 4-element cover Uy = {f~1(U;): i € 4} of the 4-K-like continuum X
we can find a Uy-map g: X — Y toa Y € K. Let W be a finite open cover
of Y such that the cover g~!(W) refines U;. Since Y is 1-dimensional, we
can assume that ord(W) < 2. For every W € W there is a £(W) € 4 such
that g~ (W) C f~ 1 (Uew))-

Since Y is a continuum, in particular, a normal Hausdorff space, we may
find a partition of unity subordinated to W. This is a family {\y: W € W}
of continuous functions Ay : Y — [0, 1] such that

(a) Aw(y) =0fory e Y\ W;
(b) wewAw(y) =1foralyecY.

For every W € W consider the “vertical” family of rectangles
Rw ={W x B(v) :v € Vp, x(v) = {(W)}
in Y x I and let R = ey Rw. For every R € R choose W € W and
vg € Vp such that R = Wr X B(vg). Also let Rp ={Se€R:RNS #0}.

CrAM 1. For any R€R and y € Wg the set Rpy={S € Rr:y € Wgs}
contains at most two distinct rectangles.

Proof. Assume that besides R the set Rp, contains two other distinct
rectangles S; = Ws, x B(vg,) and S2 = Wg, x B(vg,). Taking into account
that y € Wr N Wg, N Wg, and ord(W) < 2, we conclude that either Wg, =
Wg, or Wgp = Wg, or Wg = Wg,. If Wg, = Wg,, then

X(US1) = 5(W51) = g(WSQ) = X(USQ)'

Since B(vg) N B(vs,) # 0 # B(vg) N B(vs,) the property of the 4-coloring x
implies that vg, = vg, and hence S; = S2. Analogously we can prove that
Wpr = Wg, implies R = S and Wr = Wg, implies R = S, which contra-
dicts the choice of S1,52 € Rpy \ {R}. =

Claim [1) implies that for every rectangle R = Wgr x B(vg) the function
Ar : Wr — B(vgr) C I' defined by

Any) = { Ay (YR + Awg (y)vs  if Rpy = {R, S} for some S # R,
R if R, = {R}
is well-defined and continuous. Let 7r: R — Wgr x B(vg) C R be defined
by mr(y,t) = (y, Ar(y))-
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The graphs of Az and Ag for two intersecting rectangles R, S € R are
drawn in Figure 2.

I
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C ] ] Y
Wgr Wg
Fig. 2

It follows that for any R, S € R we get tr[RNS = mg[RN.S, which im-
plies that 7 = Jper 7r: UR — [JR is a well-defined continuous function.
It is easy to check that for every R =W x B(v) € R we get

7Y W x B(v)) €W x By(v).

Consider the diagonal product g/ f: X — Y x I'. It is easy to check that
(92 f)(X) € UR, which implies that the composition h = mo(g A f): X —
UR is well-defined. We claim that h is a U-map onto the continuum L =
h(X), which belongs to the class K.

Given R =W x B(v) € R, observe that

W' (R) = (g A /)" x ' (W x B(v)) C (g A f)" (W x By(v))
=g '(W) N f 1 (Ba(v) C f 1 (Ba(v)) CU
for some U € U. Hence h is a U-map.
The projection pry : L — Y is locally injective because L C |JR and for

every R € R the restriction pry.[RNL: RNL — Y is mJectlve AsY €K,
we conclude that L € K by the definition of the class K.

4. Locally injective maps onto tree-like continua and circle. The
following theorem is known for metrizable continua [7].

PROPOSITION 1. Fach locally injective map f : X — Y from a contin-
uum X onto a tree-like continuum Y is a homeomorphism.

Proof. By the local injectivity of f, there is an open cover U’ such that
f1U is injective for every U € U'. Let U be an open cover of X whose star
St(U) refines U'. Here St(U,U) = | J{U' e U : UNU’ # (0} and StUU) =
{St(U,U) : U e U}.
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For every x € X choose a set U, € U that contains x. Observe that for
distinct points z, 2’ € X with f(z) = f(2') the sets U, U,/ are disjoint. In
the opposite case z,2' € U, UU, C St(U,,U) C U for some U € U', which
is not possible as f[U is injective.

Hence for every y € Y the family U, = {U, : z € f~1(y)} is disjoint.
Since f is closed and surjective, the set V, = Y \ f(X \ UU,) is an open
neighborhood of y in Y such that f~1(V,) C JU,.

Since the continuum Y is tree-like, the cover V = {V,, : y € Y’} has a
finite tree-like refinement W. For every W € W find yy € Y with W C V,
and consider the disjoint family Uy = {U N f=Y(W) : U € Uy, }. It follows
that f~1(W) = JUw and so Uy = Uy ey Uw is an open cover of X.

Now we are able to show that the map f is injective. Assuming the
converse, pick a point ¥ € Y and two distinct points a,b € f~1(y). Since X
is connected, there is a chain G, ..., G, € Uyy such that a € G; and b € G,,.
We can assume that the length n of this chain is the smallest possible. In
this case all sets GG, ..., G, are pairwise distinct.

Let us show that n > 3. In the opposite case a € G; = Uy N f~1(W7)
€Uy, be Gy :Uzﬂf_l(Wg) € Uy and G1 NGy 75@ So, a,b e Uy UUs C
St(Uy,U) C U for some U € U" and then f[U is not injective. Therefore
n > 3.

For every ¢ < m consider the point y; = yw, and find W; € W and
U; € Uy, such that G; = U; N fY(W,) € Uw,. Then (Wy,...,W,) is a
sequence of elements of the tree-like cover W such that y € W7 N W,, and
Wi N Wiy # 0 for all i < n. Since the tree-like cover W does not contain
circle-like subfamilies of length > 3 there are two numbers 1 < i < j < n
such that W;NW; # 0, [j—i| > 1 and {i, j} # {1,n}. We can assume that the
difference k = j — ¢ is the smallest possible. In this case k = 2. Otherwise,
Wi, Wiy1,...,W; is a circle-like subfamily of length > 3 in W, which is
forbidden. Therefore, j = i+ 2 and the family {W;, W, 1, W, 12} contains at
most two distinct sets (in the opposite case this family is circle-like, which
is forbidden). If W; = W44, then U; = U4 as the family Uy, is disjoint.
The assumption W;y1 = W12 leads to a similar contradiction. It remains
to consider the case W; = Wiyo # Witq. Since U;, Uj4o € U,, are distinct,
there are distinct 2;, ;40 € f~1(y;) such that z; € U; and ;42 € Uy yo. Since
Ti, Tivo € Ui UU;po C St(Uiy1,U) C U for some U € U, the restriction f[U
is not injective. This contradiction completes the proof. m

PROPOSITION 2. If f: X — 81 is a locally injective map from a contin-
uum X onto the circle S*, then X is an arc or a circle.

Proof. The compact space X has a finite cover by compact subsets that
embed into the circle. Consequently, X is metrizable and 1-dimensional. We
claim that X is locally connected. Assuming the converse and applying The-
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orem 1 of [9, §49.VI| (or [10, 5.22(b) and 5.12]), we could find a convergence
continuum K C X. This a non-trivial continuum, and it is the limit of a
sequence (K, )new of continua that lie in X \ K.

By the local injectivity of f, the continuum K meets some open set
U C X such that f]U: U — S' is a topological embedding. The intersection
U N K, being a non-empty open subset of the continuum K, is not zero-
dimensional. Consequently, its image f(UNK) C S! is not zero-dimensional
either and hence contains a non-empty open subset V of S'. Choose any
point x € U N K with f(x) € V. The convergence K, — K implies the
existence of a sequence of points x,, € K, n € w, that converge to z. By the
continuity of f, the sequence (f(zy))new converges to f(x) € V. So, there
is n such that f(z,) € V C f(UNK) and z,, € U. The injectivity of f[U
guarantees that x,, € U N K, which is not possible as x,, € K, C X \ K.

Therefore, the continuum X is locally connected. By the local injectivity,
each point x € X has an open connected neighborhood V' homeomorphic to
a (connected) subset of S'. Now we see that the space X is a compact
1-dimensional manifold (possibly with boundary). So, X is homeomorphic
either to the arc or to the circle. m

5. Proof of Theorem [6] In the proof we shall use the technique of
inverse spectra described in [5, §2.5] or [4, Ch. 1]. Given a continuum X
embed it into a Tikhonov cube [0, 1]* of weight x > R,.

Let A be the set of all countable subsets of k, partially ordered by the
inclusion relation: o < 3 iff &« C (3. For a countable subset a@ C k let X, =
pr,(X) be the projection of X onto the face [0,1]* of the cube [0,1]" and
Pa: X — X, be the projection map. For any countable subsets o C 3 of k
let pJ : X3 — X, be the restriction of the natural projection [0, 1% — [0, 1].
In such a way we have defined an inverse spectrum S = {X,, pg, A} over
the index set A, which is w-complete in the sense that any countable subset
B C A has the smallest upper bound sup B = |J B and for any increasing
sequence (a)icw in A with supremum o = J;c,, @; the space X, is the
limit of the inverse sequence {X,,,pa. ",w}. The spectrum S consists of
metrizable compacta X,, a € A, and its inverse limit lim S can be identified
with the space X. By Corollary 1.3.2 of [4], the spectrum S is factorizing in
the sense that any continuous map f: X — Y to a second countable space
Y can be written as the composition f = f, o p, for some index a € A and
some continuous map fo: Xo — Y.

Now we are able to prove the “if” and “only if” parts of Theorem [6] To
prove the “if” part, assume that each map f : X — Y factorizes through
a metrizable n-K-like continuum, where n € N U {w}. To show that X is
n-K-like, fix any open cover U of X with k = |U| < n. By compactness of X
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we can assume that k is finite and 4 = {Uj,...,U;}. By Theorem 1.7.8
of [6], there is a closed cover {Fi,...,F} of X such that F; C U; for all
i < k. Since F; and X \ U; are disjoint closed subsets of the compact space
X = ILmS , there is an index a € A such that for every i < k the images
pa(X \ U;) and p,(F;) are disjoint and hence W; = X, \ po(X \ Uy) is an
open neighborhood of p,(F;). Then {Wi,..., Wy} is an open cover of X,
such that p;1(W;) C U; for all i < k.

By our assumption the projection p,: X — X, can be written as the
composition p, = gow of a map 7: X — Z onto a metrizable n-K-like
continuum Z and a map ¢g: Z — X,. For every ¢ < k consider the open
subset V; = g Y(W;) of Z. Since Z is n-K-like, for the open cover V =
{Vi,..., Vi } of Z there is a V-map h : Z — K onto a space K € K. Then
hom: X — K is al-map of X onto K € K witnessing that X is an n-K-like
continuum.

To prove the “only if” part we need the following lemma.

LEMMA 3. Suppose that X is an n-K-like continuum and o € A. Then
there is 3 > « in A having the property that for any open cover V of Xg,
with |V| < n, there is a map f: Xz — K onto a space K € K such that
fops: X — K is a py'(V)-map.

Proof. Let B be a countable base of the topology of the compact metriz-
able space X, such that B is closed under unions. Denote by i the family
of all possible finite k-set covers {Bi,..., B} C B of X, with k < n. It is
clear that the family 4 is countable.

Each cover U = {By,..., By} € 4 induces the open cover p;1(U) =
{pa1(B;) : 1 <i <k} of X. Since the continuum X is n-K-like, there is a
po H(U)-map fy : X — Ky onto a space Ky € K. By the metrizability of Ky,
and the factorizing property of the spectrum S, for some gy > « in A there
is a map fo,,: Xoy, — Ky such that fiy = fa,, © Doy, Consider the countable
set 3 = Uyey 0w, which is the smallest lower bound of the set {ay : U € U}
in A. We claim that 3 has the required property.

Let V be any open cover of X, with k£ = [V| < n. We can assume that
k is finite and V = {Vi,..., Vi }. By Theorem 1.7.8 of [6], there is a closed
cover {Fy,...,F} of X, such that F; C V; for all i« < k. Since B is the
base of the topology of X, and B is closed under finite unions, for every
1 < k there is a basic set B; € B such that F; C B; C V;. Then the cover
U ={Bs,..., B} belongs to the family $ and refines the cover V. Consider
the map f = fo, opgu: X3 — K = Ky and observe that fopg = fo, 0Py,
is a p;1(U)-map and a p;*(V)-map. =

Now let us return to the proof of the theorem. Assume that the continuum
X is n-K-like. Given a map f: X — Y to a second countable space, we need
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to find a map w: X — Z onto a metrizable n-K-like continuum Z and a
map ¢g: Z — Y such that f = g o 7. Since the spectrum § is factorizing,
there are ag € A and fy: Xoy — Y such that f = fo 0 pa,. Using Lemma [3]
by induction we construct an increasing sequence (o )ic, in A such that for
every i € w and any open cover V of X, with |V| < n, there is a map
f: Xa,., — K onto a space K € K such that f o pq,,, is a p;!(V)-map.

Let a = sup;e, & = (U;,, @i- We claim that the metrizable continuum
X4 is n-K-like. Given any open finite cover U = {Uy,..., U} of X, =
liLnXom where k£ < n, we can find ¢ € w such that the sets W; = X, \
pa, (Xa \ U;), i < k, form an open cover W = {W1,...,W,} of X,, such
that the cover (p%,)~ (W) refines Y. By the choice of a1, there is a map
9: Xay,, — K onto a space K € K such that gopg,,,: X — K is a p 1 (W)-
map. It follows that gopl, + Xo — K is a (p%)~'(W)-map and hence a
U-map, witnessing that the continuum X, is n-K-like.

Now we see that the metrizable n-K-like continuum X, and the maps
T=pa: X = Xo and g = foopf : Xo — Y satisfy our requirements.

6. Proof of Theorem The “chainable” and “tree-like” parts of The-
orem [2] follow immediately from the characterization in Theorem [ So, it
remains to prove the “circle-like” part. Let K = {S'}. We need to prove
that each 4-K-like continuum X is K-like. Given an open cover U of X we
need to construct a Y-map of X onto the circle. By Theorem [6] there is a
U-map f onto a metrizable 4-K-like continuum Y. It follows that for some
open cover V of Y the cover f~1(V) refines Y. The proof will be complete as
soon as we prove that the continuum Y is circle-like. In this case there is a
V-map ¢ : Y — S! and the composition go f: X — S! is a required U/-map
witnessing that X is circle-like.

By Theorem , the metrizable continuum Y is K-like. By Proposition
each continuum K € K is homeomorphic to St or [0,1]. Consequently, the
continuum Y is circle-like or chainable. In the first case we are done. So, we
assume that Y is chainable.

By [10, Theorem 12.5], the continuum Y is irreducible between some
points p, g € Y. This means that each subcontinuum of X that contains p, ¢
coincides with Y. We claim that Y is either indecomposable or the union
of two indecomposable subcontinua. For the proof we will use the argument
of [10, Exercise 12.50] (cf. also [8, Theorem 3.3]).

Suppose that Y is not indecomposable. This means that there are two
proper subcontinua A, B of Y such that Y = A U B. By the choice of the
points p, ¢, they cannot simultaneously lie in A or in B. So, we can assume
that p € A and ¢q € B.

We claim that the closure of Y\ A is connected. Assuming that Y \ A is
disconnected, we can find a proper clopen subset F' C Y \ A that contains ¢
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and conclude that F'U A is a proper subcontinuum of Y that contains both
p and ¢, which is not possible. Replacing B by the closure of Y\ A, we can
assume that Y\ A is dense in B. Then Y \ B is dense in A.

We claim that the continua A and B are indecomposable. Assuming that
A is decomposable, pick two proper subcontinua C, D such that CUD = A.
We can assume that p € D. Then BN D = () (as Y is irreducible between
p and ¢q). By Theorem 11.8 of [10], the set Y \ (B U D) is connected. Let Z
consist of the four open sets Y\ A =Y\ (CUD), Y\ (DU{q}), Y\ (BU{p})
and Y \ (BUC). Since p ¢ C, we see that Z is a cover of Y and there
exists a Z-map h: Y — S! because Y is 4-{S'}-like. Therefore h=1(h(p)) C
Y\ (BUC) C D, h~Y(h(q)) € X\ A C B and h(B) N h(D) = (). Hence
R(Y \ (BUD)) C S'\ {h(p),h(q)} and S'\ (h(B) U k(D)) is the union
of two disjoint open intervals, each contained in one of the components of
ST\ {h(p), h(q)}. This contradicts the connectedness of h(Y \ (B U D)).

Now we know that Y is either indecomposable or the union of two inde-
composable subcontinua. Applying Theorem 7 of [2], we conclude that the
metrizable chainable continuum Y is circle-like.

7. Open problems

PROBLEM 1. For which families K of connected topological graphs every
4-K-like continuum is K-like? Is it true for the family K = {8}, where 8 is
the bouquet of two circles?

Also we do not know if Theorem [4] can be generalized to classes of higher-
dimensional continua.

PROBLEM 2. Let k € N and K be a class of k-dimensional (contractible)
continua. Is there a finite number n such that a continuum X is K-like if and
only if it is n-K-like?
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