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Abstract. We study the relation between standard ideals of the convolution Sobolev
algebra T

(n)
+ (tn) and the convolution Beurling algebra L1((1+ t)n) on the half-line (0,∞).

In particular it is proved that all closed ideals in T
(n)
+ (tn) with compact and countable

hull are standard.

Introduction. For a nonnegative integer n, let T
(n)
+ (tn) denote the Ba-

nach space obtained as the completion of the space C(∞)
c [0,∞) of test func-

tions on [0,∞) in the norm

‖f‖ :=
∞�

0

|f (n)(t)|tn dt, f ∈ C(∞)
c [0,∞).

This space was introduced in [AK] to study ill-posed (abstract) Cauchy
problems, and in connection with integrated semigroups and distribution
semigroups. When n = 0, it is to be understood that T

(n)
+ (tn) coincides with

the space L1(R+) of (classes of) Lebesgue integrable functions on R+ :=
(0,∞). In general T

(n)
+ (tn) is continuously contained in L1(R+). Moreover,

T
(n)
+ (tn) is a semisimple and commutative convolution Banach algebra, a

subalgebra of L1(R+), with character space equal to the set C+, where
C+ := {z ∈ C : <z > 0}, and Gelfand transform given by the Laplace
transform

(Lf)(z) =
∞�

0

f(t)e−zt dt, f ∈ T
(n)
+ (tn), z ∈ C+.

(Here, a Banach algebra is understood as a Banach space endowed with a
jointly continuous multiplication, so that the submultiplicative norm con-
stant need not be 1.) In fact, the range L(T(n)

+ (tn)) is contained and dense
in the Banach algebra A(n)(C+) of analytic functions F : C+ → C such that
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zjF (j)(z) extends continuously up to the boundary iR of C+ and satisfies

lim
z→0

zjF (j)(z) = 0 (1 ≤ j ≤ n), lim
z→∞

zjF (j)(z) = 0 (0 ≤ j ≤ n).

Endowed with pointwise multiplication and the norm

‖F‖ :=
n∑
j=0

max
<z≥0

|zjF (j)(z)|, F ∈ A(n)(C+),

the space A(n)(C+) is a Banach algebra. The above facts and other Banach
algebra properties of T

(n)
+ (tn) may be found in [GM], [GMR1] and [GMR2],

proved even for fractional derivative versions of T
(n)
+ (tn).

The problem of describing closed ideals of T
(n)
+ (tn), as those of L1(R+), is

not simple. In contrast, the case of the algebra A(n)(C+) is well understood:
In [GW1] and [GW2] the closed ideals of A(n)(C+) are completely deter-
mined on the basis of the classical Korenblyum’s theorem for the algebra
An(D) of functions on the disc which are analytic in D and of class C(n) on
the boundary [K]. The results of [GW1] and [GW2], sketched below, may
be considered as a first step towards understanding the structure of ideals
in T

(n)
+ (tn).
Let E be a family of subsets of iR, E = {E0, E1, . . . , En}, such that

(a) En ⊆ · · · ⊆ E1 ⊆ E0;
(b) Ej ⊆ iR\{0} and Ej is relatively closed in iR\{0} for all j = 1, . . . , n,

and E0 is a closed subset of iR.

Let Q be an inner function on C+ and let F be a bounded analytic
function on C+. We write Q |F to indicate that the quotient F/Q remains
analytic and bounded on C+. Then a (closed) ideal of A(n)(C+) is said to
be standard if it is of the form

I(Q; E) := {F ∈ A(n)(C+) : Q |F and F (j)(z) = 0, ∀z ∈ Ej (0 ≤ j ≤ n)}.
Given an ideal L of A(n)(C+), put

Zk(L) := {z ∈ C+ \ {0} : F (j)(z) = 0 (1 ≤ j ≤ k)}
if 1 ≤ k ≤ n, and Z(L) = Z0(L) := {z ∈ C+ : F (z) = 0 for all F ∈ L}. Set
Ej(L) := Zk(L)∩iR (j = 0, 1, . . . , n) and E(L)={E0(L), E1(L), . . . , En(L)}.
Let QL denote the inner factor of L, that is, the greatest inner common
divisor (g.i.c.d., for short) of all nonzero functions in L (see [H]). We call
(QL; E(L)) the data of the ideal L. Then a closed ideal L is standard if
and only if L = I(QL; E(L)). Furthermore, all closed ideals of A(n)(C+) are
standard [GW2, Corollary 3.3].

Now, for an ideal I of T
(n)
+ (tn) and 0 ≤ k ≤ n, set hk0(I) := Zk(L), QI :=

QL and E(I) = E(L), where L := L(I). The space L(I) is an ideal since
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L(T(n)
+ (tn)) is dense in A(n)(C+). We call (QI ; E(I)) the data of the ideal I,

and I(QL; E(L)) the standard ideal associated with the data (QI ; E(I)). Then
we say that a closed ideal I is standard when

I = L−1(L(I)).

The set h(I) := h0
0(I) is called the hull of the ideal L.

Let us consider the Beurling convolution algebra L1(ωn) :={ϕ ∈ L1(R+) :
ϕωn ∈ L1(R+)} with the norm ‖ϕ‖n =

	
R+ |ϕ(t)|ωn(t) dt, where ωn is the

weight given by ωn(t) = (1 + t)n (t > 0). For an ideal J in L1(ωn), let
us define hk(J) := {z ∈ C+ : (Lϕ)(j)(z) = 0 (0 ≤ j ≤ k), ∀ϕ ∈ J}
and put QJ := Q

L(J)
, Nk(J) := hk(J) ∩ iR for k = 0, 1, . . . , n, and N(J) =

{N0(J), N1(J), . . . , Nn(J)}. We call (QJ ; N(J)) the data of the ideal J . Then
a closed ideal J is said to be standard if

J = {ϕ ∈ L1(ωn) : QJ |L(ϕ) and (Lϕ)(k) = 0 on Nk(J) (0 ≤ k ≤ n)}.

Perhaps the most general result about closed ideals in L1(ω0) = L1(R+)
is Gurarĭı’s theorem which says that every closed ideal with countable hull is
standard; see [G]. In [AZ, Theorem 3.6] a partial extension of that theorem
is proven for L1(ωn), n ≥ 1: Every closed ideal J of L1(ωn) for which the
hull h(J) is at most countable and compact is standard.

In the present note we establish a correspondence between standard ide-
als of T

(n)
+ (tn) and certain standard ideals of L1(ωn) and, as a consequence,

we prove that all closed ideals of T
(n)
+ (tn) having compact and at most count-

able hull are standard (Theorem 2.5 below). Then we find that any closed
ideal I of T

(n)
+ (tn) with empty hull is of the form I = Na where a > 0 and

Na := {f ∈ T
(n)
+ (tn) : f = 0 a.e. on [0, a)}.

1. Closed ideals in Sobolev algebras and Beurling algebras. Let
L1(tn) be the Banach space of (classes of) Lebesgue measurable functions
ϕ on (0,∞) such that ϕ(t)tn belongs to L1(R+) with the usual norm. By
the definition of T

(n)
+ (tn) the derivation operator Wn := (−1)ndn/dtn is

a surjective isometry Wn : T
(n)
+ (tn) → L1(tn) whose inverse operator, say

W−n, is given by the Weyl-type integral

W−nϕ(t) =
1

(n− 1)!

∞�

t

(x− t)n−1ϕ(x) dx (ϕ ∈ L1(tn); t > 0).

Note that L1(tn) is not a convolution algebra, and L1(ωn) is formed by the
elements of L1(tn) which are integrable near 0.

In general, for f ∈ T
(n)
+ (tn), the values limt→0+ f (k)(t), k = 0, 1, . . . , n,

need not exist. If they do, we denote them by f (k)(0).
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Define the subspace Tn of T
(n)
+ (tn) by

Tn := {f ∈W−nL1(ωn) : f (k)(0) = 0 (0 ≤ k ≤ n− 1)}.

Let S be the space of all restrictions to [0,∞) of members of the Schwartz
test space S(R).

Lemma 1.1. Let f in T
(n)
+ (tn) be such that f (j)(0) exists up to order k,

with k ≤ n− 1, and f(0) = · · · = f (k)(0) = 0. Then

(f ∗ g)(j) = f (j) ∗ g

for every 1 ≤ j ≤ k + 1 and g ∈ S.

Proof. For g and f as in the statement and x > 0,

g ∗ f(x) =
x�

0

g(y)f(x− y) dy,

whence (g ∗ f)′ = f(0)g + g ∗ f ′ = g ∗ f ′. Now the conclusion follows by
simple induction.

Proposition 1.2. The space Tn has the following properties:

(i) Tn ∗ S ⊆ Tn.
(ii) Wn(f ∗ g) = (Wnf) ∗ g for all f ∈ Tn and g ∈ S.

(iii) I∩Tn is dense in I for every closed ideal I of T
(n)
+ (tn); in particular

Tn is dense in T
(n)
+ (tn).

Proof. Properties (i) and (ii) are straightforward consequences of Lemma
1.1. To prove (iii) we first show that Tn is dense in T

(n)
+ (tn). For a > 0, let

Na be as at the end of the Introduction. Put

D :=
⋃
a>0

Na.

Clearly, D ⊆ Tn and D is an ideal of T
(n)
+ (tn). Moreover, T

(n)
+ (tn) pos-

sesses bounded approximate identities (b.a.i., for short) of the form ψε(x) =
ε−1ψ(ε−1x) (x > 0, ε > 0), where one can take ψ in C

(n)
c (0,∞) ⊆ D; see

for instance [GMR1, Proposition 2.3]. Hence limε→0+ f ∗ ψε = f for every
f ∈ T

(n)
+ (tn), with f ∗ ψε ∈ D. In particular Tn is a dense subspace of

T
(n)
+ (tn).

Let now I be any closed ideal of T
(n)
+ (tn). Take a b.a.i. ψε in D as above.

Since for each g ∈ I we have g ∗ψε ∈ I ∩D ⊂ I ∩Tn and limε→0+ g ∗ψε = g
it follows that I ∩ Tn is dense in I and the proof is complete.
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Next, we consider the companion set of Tn in L1(ωn). Define

Mn :=
{
ϕ ∈ L1(ωn) :

∞�

0

xkϕ(x) dx = 0 (0 ≤ k ≤ n− 1)
}
.

Proposition 1.3. The space Mn has the following properties:

(a) Mn = WnTn and therefore Mn is a dense subspace of L1(tn).
(b) Mn is a closed ideal of L1(ωn).

Proof. (a) Let f ∈ T
(n)
+ (tn) and suppose that f = W−nϕ with ϕ ∈

L1(ωn). Then

f(t) =
∞�

t

∞�

tn−1

. . .

∞�

t1

ϕ(t0) dt0 dt1 . . . dtn−1 (t > 0).

Hence, for 0 ≤ m ≤ n− 1, we have

f (m)(t) = (−1)m
∞�

t

∞�

tn−m−1

. . .

∞�

t1

ϕ(t0) dt0 dt1 . . . dtn−m−1

=
(−1)m

(n−m− 1)!

∞�

t

(x− t)n−m−1ϕ(t0) dt0 (t > 0).

It follows that f ∈ Tn if and only if ϕ ∈Mn. Equivalently Mn = WnTn.
(b) The functional ϕ 7→

	∞
0 xkϕ(x) dx is continuous on L1(ωn) for every

0 ≤ k ≤ n− 1, so Mn is a closed subspace of L1(ωn). Also, by (i) and (ii) of
Proposition 1.2 and (a) above we have Mn ∗ S ⊆ Mn. By density we infer
that Mn is an ideal of L1(ωn), too.

The following result is central to this paper.

Theorem 1.4. For every closed ideal I in T
(n)
+ (tn), the subspace

Ω(I) := Wn(I ∩ Tn) = (WnI) ∩Mn

is a closed ideal of L1(ωn).

Proof. The operator W−n : Mn → Tn is bijective, and it is continuous
if we endow Mn with the L1(ωn)-norm and Tn with the relative topology
induced by the one of T

(n)
+ (tn). For the last topology the ideal I ∩ Tn is

closed in Tn because I is closed. Now, Wn(I ∩ Tn) is the inverse image of
I ∩ Tn under W−n, so it is closed in Mn and consequently in L1(ωn) by
Proposition 1.3(b).

By Proposition 1.2(i), and since I is an ideal, I ∩ Tn is invariant under
convolution with S. From Proposition 1.2(ii) it follows that Ω(I) is also
S-invariant for convolution and so an ideal of L1(ωn).
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According to the theorem, the mapping Ω : I 7→ Ω(I) defines a cor-
respondence between closed ideals of T

(n)
+ (tn) and closed ideals of L1(ωn)

contained in Mn. Since W−n(Ω(I)) = I ∩ Tn and this ideal is dense in I,
Ω is injective. In the next section we use Ω to establish a relationship be-
tween standard ideals of T

(n)
+ (tn) and L1(ωn).

2. Standard ideals in Sobolev algebras. To each closed ideal I in
T

(n)
+ (tn) we can associate the closed ideals L = L(I) in A(n)(C+) and J =
Ω(I) in L1(ωn) with respective data (QI ; E(I)) and (QI ; N(I)) where QI :=
QΩ(I), N(I) := N(Ω(I)) (see Introduction). In order to compare these two
sets of data, we need a couple of lemmas. The first one tells us that the
Laplace transform intertwines the operator Wn and multiplication by zn.

Lemma 2.1. For every f ∈ Tn,

L(Wnf)(z) = (−1)nzn(Lf)(z), <z ≥ 0.

Proof. For 0 ≤ j ≤ n− 1, f (j)(x) =
	∞
x f (j+1)(y) dy with

∞�

1

|f (j+1)(y)| dy ≤
∞�

1

|f (j+1)(y)yj+1| dy <∞.

Hence, limx→∞ f
(j)(x) = 0. Then the statement follows from the equality

L(Wnf)(z) = (−1)n
	∞
0 f (n)(t)e−ztdt and integration by parts.

Let F,G be complex functions on C+ \ {0} such that F (z) = z−nG(z).

Lemma 2.2. For F,G as above,

F ∈ A(n)(C+)⇔ G ∈ C(n)(C+) ∩Hol(C+),

with

G(j)(0) = 0 (0 ≤ j ≤ n− 1), lim
z→∞

zj−nG(j)(z) = 0 (0 ≤ j ≤ n).

In this case, G(n)(0) = n!F (0).

Proof. Suppose F ∈ A(n)(C+). For 0 ≤ m ≤ n,

G(m)(z) = (znF )(m)(z) =
m∑
k=0

(
m

k

)
(zn)(k)F (m−k)(z)

=
m∑
k=0

(
m

k

)(
n

k

)
k! zn−kF (m−k)(z),

from which we see that G ∈ C(n)(C+) ∩ Hol(C+), with G(m)(0) = 0 if 0 ≤
m ≤ n− 1, G(n)(0) = n! F (0), and limz→∞ z

m−nG(m)(z) = 0 (0 ≤ m ≤ n).
Conversely, assume now that G is as above. Then, for 0 ≤ m ≤ n,

(1) lim
z→0

zm−nG(m)(z) = G(n)(0)/(n−m)!.
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This is a consequence of the formula

G(m)(z) =
1

(n−m− 1)!

�

[0,z]

(z − λ)n−m−1G(n)(λ) dλ,

which is valid for 0 ≤ k ≤ n − 1 and z ∈ C+ \ {0}, and holds because
G(k)(0) = 0 if 0 ≤ k ≤ n− 1.

Then for F (z) = z−nG(z) and 1 ≤ m ≤ n we have

(2) zmF (m)(z) =
m∑
k=0

(
m

k

)(
−n
k

)
k! zm−k−nG(m−k)(z)

whence, by (1),

lim
z→0

zmF (m)(z) =
m∑
k=0

(
m

k

)(
−n
k

)
k!

(n−m+ k)!
G(n)(0)

=
m!
n!
G(n)(0)

m∑
k=0

(
n

m− k

)(
−n
k

)
= 0.

The last equality is well known. However, for completeness, let us point out
that it can be shown by noticing that if |z| < 1 and cn(k) = χ[1,n](k) where
χ[1,n] is the indicator function of [1, n], then

1 = (1 + z)n(1 + z)−n =
( n∑
k=0

(
n

k

)
zk
)( ∞∑

k=0

(
−n
k

)
zk
)

=
∞∑
k=0

m∑
k=0

cn(k)
(
n

k

)(
−n
m− k

)
zm,

whence in particular
m∑
k=0

(
n

k

)(
−n
m− k

)
= 0 if 1 ≤ m ≤ n.

Finally, from formula (2) it follows readily that limz→∞ z
mF (m)(z) = 0

for all 0 ≤ m ≤ n, and so f ∈ A(n)(C+).

Let I be a closed ideal in T
(n)
+ (tn). Let consider the two (closed) ideals

L(I) in A(n)(C+) and Ω(I) in L1(ωn), with data (QI ; E(I)) and (QI ; N(I)),
respectively, as in Section 1. Next, we establish a relation between (QI ; E(I))
and (QI ; N(I)). Note that the g.c.i.d. of a family F of functions in A(n)(C+) is
the same as the g.c.i.d. of the closure F since norm convergence in A(n)(C+)
implies uniform convergence on C+.

Proposition 2.3. Let I, (QI ; E(I)), (QI ; N(I)) be as above, with E(I) =
{E0, E1, . . . , En} and N(I) = {N0, N1, . . . , Nn}. Then
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(i) QI = QI .
(ii) 0 ∈ E0 ⇒ Nj = Ej ∪ {0} for all 0 ≤ j ≤ n.

(iii) 0 /∈ E0 ⇒ Nj = Ej ∪ {0} for all 0 ≤ j ≤ n− 1, and Nn = En.

Proof. Note that

(3) L(I ∩ Tn) = L(I)

since I ∩ Tn is dense in I. Also, from Lemma 2.1 we have in particular

(4) L(Ω(I)) = znL(I ∩ Tn).

Then (i) follows immediately from (3), (4) and the remark prior to the
proposition, since z 7→ zn is an outer function on C+; see [H].

Now, let F = L(f) and G = L(ϕ), for f ∈ I ∩ Tn and ϕ ∈ Ω(I), satisfy
G(z) = znF (z). For 0 ≤ j ≤ n and λ 6= 0,

λ ∈ Ej ⇔ F (k)(λ) = 0 ∀F ∈ L(I) (0 ≤ k ≤ j)
⇔ F (k)(λ) = 0 ∀F ∈ L(I ∩ Tn) (0 ≤ k ≤ j)
⇔ G(k)(λ) = 0 ∀G ∈ L(Ω(I)) (0 ≤ k ≤ j) ⇔ λ ∈ Nj ,

where the next-to-last equivalence is due to Lemma 2.2. Moreover, it is
clear that G(k)(0) = 0 for every 0 ≤ k ≤ n − 1, and since 0 ∈ E0 we have
G(n)(0) = 0 by Lemma 2.2 again. In conclusion, 0 ∈ Nj for all 0 ≤ j ≤ n.
This proves part (ii).

For (iii), if λ 6= 0 then λ ∈ Nj ⇔ λ ∈ Ej for every 0 ≤ j ≤ n, as in (ii)
above. Also, 0 ∈ Nj for all 0 ≤ j ≤ n−1; but G(n)(0) = n!F (0) 6= 0 because
0 /∈ E0. Hence Nn = En and the proof is complete.

We are in a position to prove the main result of this section. Given
a closed ideal J in L1(ωn) we say that J is standard in Mn if it is the
intersection of Mn with a standard ideal of L1(ωn).

Theorem 2.4. Let I be a closed ideal of T
(n)
+ (tn). Then I is standard

in T
(n)
+ (tn) if and only if Ω(I) is standard in Mn.

Proof. Suppose that I is standard in T
(n)
+ (tn). Thus there exists data

(Q,E) with E = {E0, E1, . . . , En} such that

I ∩ Tn = {f ∈ Tn : Q |Lf and (Lf)(k) = 0 on Ek (0 ≤ k ≤ n)}.
Hence

Ω(I) = {Wnf ∈Mn : Q | Lf and (Lf)(k) = 0 on Ek (0 ≤ k ≤ n)}.
Let Nk be related with Ek as in Proposition 2.3. Then it follows readily by
Lemma 2.1, Lemma 2.2 and Proposition 2.3 that

Ω(I) = {ϕ ∈Mn : Q |Lϕ and (Lϕ)(k) = 0 on Nk (0 ≤ k ≤ n)}.
This means that Ω(I) is standard in Mn.
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Conversely, suppose that Ω(I) is standard in Mn and set Ĩ = L−1(L(I)).
Then L := L(Ĩ) ⊆ L(I) =: L̃, and L(I) ⊆ L(Ĩ) since I ⊆ Ĩ. Thus we have
L = L̃ and so the data of Ω(I) and Ω(Ĩ) in Mn coincide. Since Ω(I) is
standard it means that Ω(Ĩ) ⊆ Ω(I). Also, Ω(I) ⊆ Ω(Ĩ) since I ⊆ Ĩ. Hence
Ω(I) = Ω(Ĩ). Finally note that, for each closed ideal H in T

(n)
+ (tn), we have

W−n(Ω(H)) = H∩Tn and therefore H = H ∩ Tn = W−n(Ω(H)). Applying
this identity to H = I and H = Ĩ we get

Ĩ = W−nΩ(Ĩ) = W−nΩ(I) = I,

that is, I = L−1(L(I)), so I is standard, as we wanted to show.

Remark. The above is an interesting characterization, even though
what we really need to prove the result below is only the fact that if Ω(I)
is standard then I is standard.

Theorem 2.5. Let I be a closed ideal in T
(n)
+ (tn) with hull h(I) compact

and at most countable. Then I is standard.

Proof. Let QI be the greatest inner common divisor of the ideal I. Using
previous notation, we have

h0(I) = [Z(QI) ∩ C+] ∪ E0(I).

Hence, from Proposition 2.3 we deduce that the hull h(Ω(I)) in L1(ωn),

h(Ω(I)) = [Z(QI) ∩ C+] ∪N0(I)

= [Z(QI) ∩ C+] ∪ E0(I) ∪ {0},
is compact and at most countable. So I is standard by [AZ, Theorem 3.6].

3. Ideals with empty hull. Let I be a not necessarily closed ideal of
L1(R+). Define γ(I) := inf{γ(g) : g ∈ I} where γ(g) = inf(supp g) (g ∈ I).
Then the celebrated Nyman’s theorem says that every ideal of L1(R+) such
that h(I) = ∅ and γ(I) = 0 must be dense in L1(R+); see [D, p. 197], for
instance. As a corollary, for a closed ideal I in L1(R+) with h(I) = ∅ there
exists a > 0 such that I = Ma, where Ma = {g ∈ L1(R+) : γ(g) ≥ a}. This
follows from the fact that the translation

δa : g 7→ δa ∗ g, L1(R+)→Ma

is bijective and continuous with inverse δ−a. In fact, if h(I) = ∅ with γ(I) = a
then J = δ−a∗I is a closed ideal of L1(R+) such that h(J) = ∅ and γ(J) = 0.
Hence, by Nyman’s theorem, J = L1(R+). Finally, I = δa ∗J = δa ∗L1(R+)
= Ma.

Although Nyman’s theorem has recently been extended to the Sobolev
algebra T

(n)
+ (tn) (even for fractional derivation), the above argument does
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not work in this case because T
(n)
+ (tn) is not invariant under translations;

see [GMR1] for both results.

Here, we apply Theorem 2.5 to show that all closed ideals in T
(n)
+ (tn)

having empty hull are of the form Na := Ma ∩ T
(n)
+ (tn).

Lemma 3.1. If f ∈ T
(n)
+ (tn) is such that γ(f) ≥ a > 0 then δ−a ∗ f ∈

T
(n)
+ (tn). Consequently,

Na = (δa ∗ T
(n)
+ (tn)) ∩ T

(n)
+ (tn).

Proof. Set g(x) := f(x+ a) = δ−a ∗ f(x) for x > 0. We know that there
exists F ∈ L1(tn) such that

f(x) =
1

(n− 1)!

∞�

0

(y − x)(n−1)F (y) dy (x > 0).

Therefore

g(x) =
1

(n− 1)!

∞�

x+a

(y − x− a)n−1F (y) dy

=
1

(n− 1)!

∞�

x

(u− x)n−1F (u+ a) du (x > 0),

with F ( · + a) ∈ L1(tn) since
	∞
0 |F (u + a)|un du ≤

	∞
0 |F (t)|tn dt < ∞. So

g ∈ T
(n)
+ (tn).

Set now Ta = (δa ∗ T
(n)
+ (tn)) ∩ T

(n)
+ (tn). If f ∈ Na ⊆ T

(n)
+ (tn) then

f = δa ∗ (δ−a ∗ f) with δ−a ∗ f ∈ T
(n)
+ (tn), whence f ∈ Ta. Conversely, if

f ∈ Ta then f = δa ∗ g with f, g ∈ T
(n)
+ (tn), and γ(f) = a + γ(g) ≥ a by

Titchmarsh’s theorem (see a proof in [D, p. 188]). This means that f ∈ Na,
and the proof is complete.

Theorem 3.2. Let I be a closed ideal of T
(n)
+ (tn) such that h(I) = ∅.

Then I = Na for some a ≥ 0.

Proof. By [GW2, Corollary 3.3], the closed ideal L(I) is standard in
A(n)(C+) and so L(I) = QA(n)(C+) where Q is the g.i.c.d. of L(I). Since
h(I) = ∅ it follows that Q is an inner function on C+ without zeros and
so Q(z) = e−bz for some b ≥ 0. On the other hand, I = δa ∗ (δ−a ∗ I) for
a := γ(I) ≥ 0. Hence, L(I) = e−azL(δ−a ∗ I) where the ideal L(δ−a ∗ I) has
no common zeros in C+. Thus b = a.

In the following, the symbol L−1 refers to preimages in T
(n)
+ (tn).
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Since γ(I) = a we have I ⊆ Na = (δa ∗ T
(n)
+ (tn)) ∩ T

(n)
+ (tn). For the

converse inclusion, note that T
(n)
+ (tn) = L−1(A(n)(C+)) and so

Na = (δa ∗ T
(n)
+ (tn)) ∩ T

(n)
+ (tn)

=
(
δa ∗ L−1(A(n)(C+))

)
∩ T

(n)
+ (tn) ⊆ L−1

(
L(δa ∗ L−1(A(n)(C+)))

)
⊆ L−1(e−azA(n)(C+)) = L−1(L(I)) = I

where the last equality follows because I is standard.

Let us notice that the above statement includes the case a = 0, which
we next write down explicitly because it gives a proof of Nyman’ theorem
for T

(n)
+ (tn) different from the one given in [GMR2].

Corollary 3.3. Let I be an ideal in T
(n)
+ (tn) such that h(I) = ∅ and

γ(I) = 0. Then I is dense in T
(n)
+ (tn).
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