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ALMOST EVERYWHERE CONVERGENCE OF
GENERALIZED ERGODIC TRANSFORMS FOR

INVERTIBLE POWER-BOUNDED OPERATORS IN Lp

BY

CHRISTOPHE CUNY (Paris)

Abstract. We show that some results of Gaposhkin about a.e. convergence of se-
ries associated to a unitary operator U acting on L2(X,Σ, µ) (µ is a σ-finite measure)
may be extended to the case where U is an invertible power-bounded operator acting on
Lp(X,Σ, µ), p > 1. The proofs make use of the spectral integration initiated by Berkson–
Gillespie and, more specifically, of recent results of the author.

1. Introduction. In a series of papers (see [8], [9] or [10]), Gaposhkin
studied conditions, expressed in terms of ‖f + · · ·+ Un−1f‖2, ensuring the
a.e. convergence of averages

{
1

ϕ(n)(f+ · · ·+Un−1f)
}

or of series
∑

n anU
nf ,

where U is a unitary operator acting on L2(X,Σ, µ) and f ∈ L2(X,µ). His
proofs were based on the use of spectral theory and on the dyadic chaining
to obtain maximal inequalities.

It has been realised recently (see Theorem 6.3 of [6] and the remark be-
low) that when the weight ϕ(n) is smaller than and not “too close” to n, the
results of Gaposhkin concerning averages remain valid for power-bounded
operators T acting on Lp(X,µ) (p > 1). Hence, the use of spectral theory
does not seem to be relevant in this specific situation. However, concerning
the a.e. convergence of series, it seems that the results of Gaposhkin for uni-
tary operators do not pass to power-bounded operators on Lp(X,µ) (that
are not invertible).

In this paper, we prove that conditions analogous to Gaposhkin’s are
sufficient for the a.e. convergence of the above series when U is assumed to
be an invertible operator on Lp(X,µ) (p > 1 fixed) which is doubly power-
bounded, i.e. supn∈Z ‖Tn‖ <∞.

In particular, we obtain the following, where logk n := (log ◦ · · · ◦ log)(n)
(k-fold composition) is defined for n large enough. Throughout the paper,
log will denote the logarithm to base e.
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Theorem 1.1. Let 1 < p ≤ 2. Let U be an invertible operator on
Lp(X,Σ, µ), doubly power-bounded (i.e. supn∈Z ‖Un‖<∞). Let f ∈Lp(X,µ)
and α ∈ [1/p, 1], β ∈ R. Assume one of the following:

(1)

∑
n

‖f + · · ·+ Un−1f‖pp
n2(log n)p(β−1)

<∞ if α = 1/p and β > 1/p,

∑
n

‖f + · · ·+ Un−1f‖pp
n1+pα(log n)pβ

(log2 n)p <∞ if 1/p < α < 1,

∑
n

‖f + · · ·+ Un−1f‖pp
n1+p(log n)p(β−1)+1

(log3 n)p <∞ if α = 1 and β < 1,

∑
n

‖f + · · ·+ Un−1f‖pp
n1+p log n

(log2 n)p−1(log4 n)p <∞ if α = β = 1.

Then
∑

n≥3
Unf

nα(logn)β
converges µ-a.e.

For p > 2, we obtain the following.

Theorem 1.2. Let p > 2. Let U be an invertible operator on Lp(X,Σ, µ),
doubly power-bounded. Let f ∈ Lp(X,µ) and α ∈ [1/p, 1], β ∈ R. Assume
that ∑

n

‖f + · · ·+ Un−1f‖pp
n2(log n)p(β−1)

<∞ if α = 1/p and β > 1/p,

∑
n≥3

‖f + · · ·+ Un−1f‖2p
n1+2α(log n)2β

<∞ if 1/p < α < 1,

∑
n≥3

‖f + · · ·+ Un−1f‖2p
n3(log n)2(β−1)+1

<∞ if α = 1 and β < 1,

∑
n≥3

‖f + · · ·+ Un−1f‖2p
n3 log n

(log2 n) <∞ if α = β = 1.

Then
∑

n≥3
Unf

nα(logn)β
converges µ-a.e.

In [3], Cohen–Cuny–Lin proved that when U is induced by a measure
preserving transformation and 0 < α < 1, β = 0, some weaker conditions
are sufficient.

Finally, for p ≥ 2, we obtain a sufficient condition for the convergence of
the Cesàro averages associated to a doubly power-bounded operator. When
p = 2, we recover Gaposhkin’s condition (see e.g. [8]). We have not succeeded
in obtaining a similar condition for p < 2.
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Theorem 1.3. Let p ≥ 2. Let f ∈ Lp(X,µ) and U be an invertible
power-bounded operator on Lp(X,Σ, µ). Assume that∑

n≥1

‖f + · · ·+ Un−1f‖2p
n3 log n

log log n <∞.

Then limn→∞
f+···+Un−1f

n = 0 µ-a.e. and
∑n

k=1
Ukf−U−kf

k converges µ-a.e.

2. Almost everywhere convergence of averages. We now give
some results about a.e. convergence of averages. These results are essen-
tially known (see e.g. Wu [13], Cohen–Lin [4] or Weber [12]), but we state
them in a somewhat more elegant form, which is needed later and does
not seem to appear in the literature. In this section, T is a power-bounded
operator on Lp(X,µ) which is not necessarily invertible.

Let us recall the following maximal inequality, which is a straightforward
application of Proposition 1(i) of [13].

Proposition 2.1 (Wu [13]). Let T be a power-bounded operator on
Lp(X,Σ, µ), p > 1. Then, for every f ∈ Lp(X,µ) and n ≥ 0,∥∥ max

1≤k≤2n
|f + · · ·+ T k−1f |

∥∥
p
≤ K

n∑
l=0

2(n−l)/p‖f + · · ·+ T 2l−1f‖p,

where K = supn≥1 ‖Tn‖.

Letψ be a positive non-decreasing function on [1,∞[. When
∑

n≥1 1/ψp(n)
<∞, we write Mm = Mm(ψ, p) :=

∑
n≥m 1/ψp(n).

Proposition 2.2. Let ψ : [0,∞[ → ]0,∞[ be non-decreasing and such
that there exists C > 0 with ψ(u) ≥ Cψ(2u) for every u > 0. Let T be a
power-bounded operator on Lp(X,Σ, µ), p > 1. Let f ∈ Lp(X,µ) be such
that

(2)
∑
n≥1

(
∑n

l=0 2(n−l)/p‖f + · · ·+ T 2l−1f‖p)p

ψp(2n)
<∞.

Then

1
ψ(n)

n−1∑
k=0

T kf −−−→
n→∞

0 µ-a.e. and sup
n≥1

1
ψ(n)

∣∣∣ n−1∑
k=0

T kf
∣∣∣ ∈ Lp(X,µ).

In particular, if
∑

n≥1 1/ψp(n) <∞ and

(3)
∑
n

‖f + · · ·+ Tn−1f‖pp
nψp(n)

(
Mnψ

p(n)
n

)p
<∞,

then (2) is satisfied.
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Proof. See Appendix A.

From this proposition, it is not difficult to recover Theorem B and The-
orem 3(iii)–(vii) of [9], as in the corollary below.

We will need the following application.

Corollary 2.3. Let T be a power-bounded operator on Lp(X,µ), p > 1.
Let α ∈ [1/p, 1] and β, γ ∈ R. Let f ∈ Lp(X,µ) be such that∑

n

‖f + · · ·+ Tn−1f‖pp
n1+pα(log n)pβ(log log n)pγ

<∞ if 1/p < α ≤ 1,(4)

∑
n

‖f + · · ·+ Tn−1f‖pp
n2(log n)p(β−1)(log log n)pγ

<∞ if α = 1/p and β > 1/p.(5)

Then
1

nα(log n)β(log log n)γ

n−1∑
k=0

T kf −−−→
n→∞

0 µ-a.e.

3. Almost everywhere convergence of series. We start by recalling
the definition and properties of the spectral integral of Berkson–Gillespie
(see [2] or [6] for more details).

Let (X,Σ, µ) be a σ-finite measure space. Let p > 1 fixed. Let U be an
invertible operator on Lp(X,Σ, µ), doubly power-bounded, i.e. such that

c := sup
n∈Z
‖Un‖ <∞.

It has been proved in [2] that there exists a unique projection-valued function
E : [0, 2π]→ B(Lp(X,µ)), where B(Lp(X,µ)) stands for the Banach algebra
of bounded operators on Lp(X,µ), with the following properties.

The function E is right continuous on [0, 2π] in the strong operator
topology (SOT), admits at each point s ∈ (0, 2π] a SOT left-hand limit, and
further satisfies

(i) E(s)E(t) = E(min(s, t)) for all s, t ∈ [0, 2π];
(ii) lims→0E(s) = 0 (SOT);
(iii) lims→2π E(s) = I = E(2π) (SOT),

where I denotes the identity operator on Lp(X,µ). Those properties allow
one to define an integral (of Riemann–Stieltjes type) with respect to E. More
precisely, there exists a map g 7→

	
[0,2π] g(t) dE(t) defined on the Banach

algebra BV [0, 2π] of functions with bounded variation on [0, 2π], that is an
identity preserving algebra homomorphism into B(Lp(X,µ)). Moreover�

[0,2π]

eit dE(t)f = Uf,
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and there exists a constant Cp, depending only on p, such that

(6) sup
t∈[0,2π[

‖E(t)‖ ≤ c2Cp.

We want to obtain conditions on f ∈ Lp(X,µ) that are sufficient for the
a.e. convergence of series

∑
n anU

nf . Write Sn = Sn(f) = Uf + · · ·+ Unf .
By Abel summation, the above convergence is equivalent to the fact that the
series

∑
n(an − an+1)Sn converges a.e. and anSn → 0 a.e. In what follows,

the sequence {αn} that we use will play the role of {an − an+1}.
In [6], we were interested in the norm convergence of

∑
n anU

nf and, for
technical reasons, we already had to decompose the problem in two steps,
while in the case p = 2, Gaposhkin is doing everything at once.

Denote by L the set of positive functions ϕ ∈ C1(]0, π]) such that there
exists ε ∈ ]0, 1[ such that

(C1) ϕ and −ϕ′ are non-increasing.
(C2) t 7→ t1−εϕ(t) and t 7→ t2−εϕ′(t) are non-decreasing.

It follows from (C2) that

(7) ϕ(t) ≥ −tϕ′(t) ∀t ∈ ]0, π]

and

(8) lim
t→0

tϕ(t) = lim
t→0

t2ϕ′(t) = 0.

Given ϕ ∈ L, we define Lϕ to be the set of positive sequences {αn} such
that {nαn} is non-increasing and there exists C > 0 for which

n∑
k=1

k2αk ≤ −Cϕ′(π/n) ∀n ≥ 1.(9)

Then, by (7), we have
n∑
k=1

k2αk ≤ C ′nϕ(π/n) ∀n ≥ 1.(10)

Notice that, using (C2) and Abel summation, (9) implies

(11)
∑
k≥n

αk ≤ −C ′′
ϕ′(π/n)
n2

∀n ≥ 1.

In the following we will take αn := 1
n1+α(logn)β

and

(a) ϕ(x) =
1

x1−α|log x|β
if 1/p < α < 1,

(b) ϕ(x) = |log x|1−β if α = 1, β < 1,
(c) ϕ(x) = log |log x| if α = 1, β = 1.
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Write, for every n ≥ 1, An = An(f) = (f + · · ·+ Un−1f)/n, and for
every t ∈ R, σn(t) = 1 + · · · + ei(n−1)t. For {αn} ∈ Lϕ, define W (t) =∑

n≥1 αnσn(t), which converges uniformly on every compact subset of ]0, 2π[,
since {αn} is decreasing to 0.

Proposition 3.1. Let ϕ ∈ L and {αn} ∈ Lϕ. Let {nk} be an increas-
ing sequence of positive integers. Let f ∈ Lp(X,µ) be such that E(0)f = 0
and

(12)
∑
k≥0

(ϕ(π/2nk)‖A2nk‖p)min(p,2) <∞.

Then there exists {gm} ⊂ Lp(µ) with limk→∞ g2nk = 0 µ-a.e. and in Lp,
such that, for every m ≥ 1, taking n =

[ logm
log 2

]
, we have

(13)
m∑
k=1

αkSk(f) = gm +
�

]π/2n,2π−π/2n[

W (t) dE(t)f.

Proof. Let gm =
∑m

k=1 αkSk(f)−
	
]π/2n,2π−π/2n[W (t) dE(t)f . It follows

from Lemmas 4.5 and 4.6 and Theorem 3.3 of [6] that there exists K > 0
such that

‖g2n‖pp ≤ K
(
ϕp(π/2n)

2pn

∥∥∥( n−1∑
l=0

22l|A2l −A2l+1 |2
)1/2∥∥∥p

p
(14)

+
∥∥∥ϕ(π/2n)

(∑
l≥n
|A2l −A2l+1 |2

)1/2∥∥∥p
p

)
.

To prove the proposition, it suffices to show that
∑

k≥0 ‖g2nk‖
p
p <∞.

Define Q2
n = Q2

n(f) =
∑

l≥n |A2l − A2l+1 |2. It has been proved in [6,
(10)] that there exists Cp > 0 (depending only on p) such that ‖Qn‖p ≤
c2Cp‖A2n‖p, where c = supn∈Z ‖Un‖.

Hence, by (12),∑
k≥0

∥∥∥ϕ(π/2nk)
( ∑
l≥nk

|A2l −A2l+1 |2
)1/2∥∥∥p

p

≤ c2pCpp
∑
k≥0

(ϕ(π/2nk)‖A2nk‖p)p <∞.

For k ≥ 0, we have
∑nk−1

l=0 22l|A2l −A2l+1 |2 ≤
∑k

j=1 22njQ2
nj−1

.

Assume that p ≥ 2. We have, using (C2) and the fact that x 7→ xp/2 is
superadditive on [0,∞[,
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∑
k≥0

ϕp(π/2nk)
2pnk

∥∥∥( nk−1∑
l=0

22l|A2l −A2l+1 |2
)1/2∥∥∥p

p

≤
∥∥∥∥(∑

k≥0

ϕ2(π/2nk)
22nk

k∑
j=1

22njQ2
nj−1

)1/2∥∥∥∥p
p

≤ C
∥∥∥(∑

j≥1

ϕ2(π/2nj )Qnj−1

)1/2∥∥∥p
p

≤ C ′
(∑
k≥0

ϕ2(π/2nk)‖Ank‖
2
p

)p/2
.

If p ∈ ]1, 2[, we can use∥∥∥( nk−1∑
l=0

22l|A2l(f)−A2l+1(f)|2
)1/2∥∥∥p

p
≤

k∑
j=1

2pnj‖Qnj−1‖pp

≤
k∑
j=1

2pnj‖A2nj−1‖pp,

and then conclude as above.

Proposition 3.2. Let ϕ ∈ L and {αn} ∈ Lϕ. Let {nk} be an increas-
ing sequence of positive integers. Let f ∈ Lp(X,µ) be such that E(0)f = 0
and ∑

k≥0

(ϕ(π/2nk)‖A2nk‖p log k)p <∞ if p ∈ ]1, 2],(15)

∑
k≥0

(ϕ(π/2nk)‖A2nk‖p)2 <∞ if p > 2.(16)

Then {
	
]π/2nk ,2π−π/2nk [W (t) dE(t)f} converges µ-a.e.

Proof. We show the µ-a.e. convergence of {
	
]π/2nk ,π[W (t) dE(t)f}, the

proof for the second part being entirely the same.
Define wk :=

	
]π/2nk+1 ,π/2nk ]W (t) dE(t)f . Hence we have to prove the

µ-a.e. convergence of the series
∑

k≥0wk. It follows from [5] that, for every
s > r ≥ 0, ∥∥∥ s∑

k=r

wk

∥∥∥p
p
≤ C

∥∥∥( 2ns∑
l=2nr

ϕ2(π/2l)|A2l −A2l+1 |2
)1/2∥∥∥p

p

≤ C
∥∥∥( s∑

j=r

ϕ2(π/2nj )Q2
nj

)1/2∥∥∥p
p
.

Hence, we obtain
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∥∥∥ s∑
k=r

wk

∥∥∥p
p
≤


C

s∑
j=r

ϕp(π/2nj )‖A2nj ‖pp if p ∈ ]1, 2],

C
( s∑
j=r

ϕ2(π/2nj )‖A2nj ‖2p
)p/2

if p > 2.

Then the result follows by applying Theorem 2.4 of [4] when p ∈ ]1, 2], and
Theorem 2.5 of [4] when p > 2.

By Propositions 3.1 and 3.2, we see that, under conditions (15) or (16),
the series

∑
k≥0

∑2nk+1−1
n=2nk αnSn converges µ-a.e. Hence, to prove the µ-a.e.

convergence of
∑

n αnSn, it suffices to prove that
∑2nk+1−1

l=2nk αl|Sl| → 0 µ-a.e.
Before proving this last fact, we explain how to choose the sequence

{nk}, depending on ϕ.
Let {nk} be an increasing sequence of positive integers. We say that

ϕ ∈ L is {nk}-adapted if there exists C > 0 such that

ϕ(π/2ns+1) ≤ Cϕ(π/2ns) ∀s ≥ 0.(17)

Let {αn} ∈ Lϕ. We say that ({αn}, ϕ) is {nk}-adapted if ϕ is {nk}-
adapted and there exists C ′ > 0 such that

(18)
2ns−1∑
k=2ns−1

kαk ≥ C ′ϕ(π/2ns+1) ∀s ≥ 1.

For instance, as before one may take αn := 1
n1+α(logn)β

and

(a) ϕ(x) =
1

x1−α|log x|β
, nk = k, if 1/p < α < 1,

(b) ϕ(x) = |log x|1−β, nk = 2k, if α = 1, β < 1,

(c) ϕ(x) = log |log x|, nk = 22k , if α = 1, β = 1.

We will need the following technical lemmata. The proofs are left to the
appendix.

Lemma 3.3. Let r > 1, ϕ ∈ L and {αn} ∈ Lϕ. Let {nk} be an increasing
sequence of positive integers. Let {wn} be a subadditive sequence of positive
numbers. Consider the following conditions:

(i)
∑
k≥0

(
ϕ(π/2nk)

w2nk

2nk

)r
<∞,

(ii)
∑
n≥1

ϕ(π/n)r−1nαn

(
wn
n

)r
<∞.

If ϕ is {nk}-adapted, then (i)⇒(ii), and if ({αn}, ϕ) is {nk}-adapted, then
(ii)⇒(i).
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Remark. When T is a power-bounded operator on Lp, then Np(f) :=
supn≥0 ‖Tnf‖p defines a norm on Lp, equivalent to ‖ · ‖p, for which T is a
contraction. In particular, {Np(f + · · ·+ Tn−1f)}n is subadditive. Since Np

and ‖ · ‖p are equivalent, the lemma applies with {‖f + · · ·+ Tn−1f‖p}n in
place of {wn}n.

Lemma 3.4. Let {nk} be any increasing sequence of integers. Let ϕ ∈ L
be {nk}-adapted and let {αn}n∈N ∈ Lϕ. Let f ∈ Lp(X,µ) be such that
E(0)f = 0. Assume that

(19)
∑
k≥0

(ϕ(π/2nk)‖A2nk‖p)min(p,2) <∞.

Then
2nk+1−1∑
l=2nk

|αlSl| −−−→
n→∞

0 µ-a.e.

Proposition 3.5. Let ϕ ∈ L and {αn} ∈ Lϕ. Let {nk} be an increasing
sequence of positive integers such that ϕ is {nk}-adapted. Let f ∈ Lp(X,µ)
be such that E(0)f = 0 and∑

k≥0

(ϕ(π/2nk)‖A2nk‖p log k)p <∞ if p ∈ ]1, 2],(20)

∑
k≥0

(ϕ(π/2nk)‖A2nk‖p)2 <∞ if p > 2.(21)

Then
∑

n≥1 αnSn converges µ-a.e.

Proof. Combine Lemma 3.4 and Propositions 3.1 and 3.2.

Proof of Theorem 1.1. We want to prove that
∑
Unf/(nα(log n)β) con-

verges a.e. Using Abel summation by parts, it is sufficient (actually equiva-
lent) to prove that Sn/(nα(log n)β)→ 0 µ-a.e. as n→∞ and that∑

n

(
1

nα(log n)β
− 1

(n+ 1)α(log(n+ 1))β

)
Sn

converges µ-a.e.
There exist K,L > 0 such that

1
nα(log n)β

− 1
(n+ 1)α(log(n+ 1))β

=
K

nα+1(log n)β
+

L

nα+1(log n)β+1
+O

(
1

nα+2(log n)β

)
.

The series
∑
Sn/(n2+α(log n)β) clearly converges (absolutely) µ-a.e. On

the other hand, if
∑

n≥3 Sn/(n
1+α(log n)β) converges µ-a.e., then so does
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∑
n≥3 Sn/(n

1+α(log n)β+1) (by Abel summation by parts, using that 1/log n
decreases to 0).

Hence, we have to prove that Sn/(nα(log n)β) → 0 µ-a.e. and that the
series

∑
n≥3 Sn/(n

1+α(log n)β) converges µ-a.e.
Assume that one of the conditions of Theorem 1.1 is satisfied. Then the

conditions of Corollary 2.3 with the corresponding choice of α, β are satisfied
and Sn/(nα(log n)β)→ 0 µ-a.e.

Now, we want to apply Proposition 3.5 with αn = 1/(nα+1(log n)β). We
choose ϕ and nk as in cases (a), (b) and (c). Then we have∑

ϕp−1(π/n)nαn(‖Sn‖p/n)p logl n <∞,

where l = 2 if α < 1, l = 3 if α = 1 and β < 1, and l = 4 if α = β = 1.
An adaptation of the proof of Lemma 3.3 shows that (20) holds, which

finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. Assume first that α > 1/p. We follow the same
steps as in the proof of Theorem 1.1. Assume that one of the conditions of
Theorem 1.2 is satisfied.

We use the previous notations (αn, ϕ, . . .). By Lemma 3.3 with r = 2
(see also the remark after the lemma), we find that (21) is satisfied, and
Proposition 3.5 applies.

Now, by (21), ϕ(π/2nk)‖A2nk‖p goes to 0 and we easily derive that∑
k≥0

(ϕ(π/2nk)‖A2nk‖p)p <∞,

which implies by Lemma 3.3 that∑
n≥1

ϕp−1(π/n)nαn(‖Sn‖p/n)p <∞.

Then one can check that conditions (4) and (5) of Corollary 2.3 are satisfied,
which finishes the proof.

For α = 1/p, we first notice that condition (5) is satisfied and we apply
Corollary 2.3. Then by Hölder’s inequality with p0 := p/2 and 1/p0 + 1/q0
= 1 (i.e. q0 = p/(p− 2)) we find∑
n≥3

‖f + · · ·+ Un−1f‖2p
n1+2α(log n)2β

=
∑
n≥3

( ‖f + · · ·+ Un−1f‖2p
n1/p0+2α(log n)2(β−1)

)(
1

n1/q0(log n)2

)

≤
(∑
n≥3

‖f + · · ·+ Un−1f‖pp
n1+pα(log n)(p−1)β

)1/p0(∑
n≥3

1
n(log n)2p/(p−2)

)1/q0

<∞,

by assumption and since 2p/(p− 2) > 2 > 1.
Then we can conclude as above, using Proposition 3.5.
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4.ProofofTheorem1.3. LetU be an invertible operator onLp(X,Σ, µ)
with supn∈Z ‖Un‖ <∞, where we assume p ≥ 2. Let f ∈ Lp(X,µ) and define
Knf =

	
]0,π/2n] dE(t)f and Lnf =

	
]2π−π/2n,2π] dE(t)f . Generalizing a result

of Gaposhkin for unitary operators, Berkson, Bourgain and Gillespie [1] proved
that {(f + · · ·+ Un−1f)/n} converges µ-a.e. if and only if {Kn(f) +Ln(f)}
converges µ-a.e. They also proved that

∑n
k=1 (Ukf − U−kf)/k converges

µ-a.e. if and only if {Kn(f)− Ln(f)} does, generalizing, that time, a result
of Jajte [11].

We now give a sufficient condition for the convergence µ-a.e. of Kn(f)
and Ln(f). We will deal only with {Kn(f)}, the proof for {Ln(f)} being the
same.

Definewn=
	
]π/2n+1,π/2n] dE(t)f . Then, by an analogue of the Littlewood–

Paley theorem (see e.g. Theorem 2.4 of [6]),
	
]0,π/2n] dE(t)f =

∑
k≥nwk with

convergence in Lp(X,µ), and for every n > m,∥∥∥ n−1∑
k=m

wk

∥∥∥p
p
≤ (c2Cp)p

∥∥∥( n−1∑
k=m

|wk|2
)1/2∥∥∥p

p
.

Hence, we have to find a condition for the µ-a.e. convergence of
∑

n≥1wn.
By [6, Theorem 3.3, (11)], we have, for every n > m,

(22)
∥∥∥ n−1∑
k=m

wk

∥∥∥p
p
≤ (c2Cp)p

∥∥∥( n−1∑
k=m

|A2k+1(f)−A2k(f)|2
)1/2∥∥∥p

p
.

Write

d(m,n) =
∥∥∥( n−1∑

k=m

|A2k+1(f)−A2k(f)|2
)1/2∥∥∥p

p

=
�

X

( n−1∑
k=m

|A2k+1(f)−A2k(f)|2
)p/2

dµ.

Notice that, since p ≥ 2, we have ‖ ‖`p/2 ≤ ‖ ‖`1 , and {d(m,n)} defines a
superadditive array of numbers, that is, d(m,n)+d(n, r) ≤ d(m, r) whenever
0 < m < n < r. Hence, by Proposition 2.2 of [4], there exists K > 0 such
that, for every n ≥ 1, we have∥∥∥ max

2n≤k≤2n+1−1

∣∣∣ k∑
l=2n

wk

∣∣∣∥∥∥p
p
≤ Knpd(2n, 2n+1),

and so ∑
n≥1

∥∥∥ max
2n≤k≤2n+1−1

∣∣∣ k∑
l=2n

wk

∣∣∣∥∥∥p
p
≤ K

∑
n≥1

npd(2n, 2n+1).
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On the other hand we have, with 1/p+ 1/q = 1,∑
n≥1

∥∥∥ 2n+1−1∑
l=2n

wk

∥∥∥
p
≤
(∑
n≥1

1
nq

)1/q(∑
n≥1

np
∥∥∥ 2n+1−1∑

l=2n

wk

∥∥∥p
p

)1/p
.

Hence, if we show that
∑

n≥1 n
pd(2n, 2n+1) <∞, using (22) and the defini-

tion of d(m,n), we will obtain

max
2n≤k≤2n+1−1

∣∣∣ k∑
l=2n

wl

∣∣∣ −−−→
n→∞

0 µ-a.e.

and ∑
n≥1

∣∣∣ 2n+1−1∑
l=2n

wk

∣∣∣ <∞ µ-a.e.,

which yields the µ-a.e. convergence of
∑

n≥1wn.
Recall that Q2

n(f) =
∑

k≥n |A2k+1(f) − A2k(f)|2. Using superadditivity
again, and Fubini, we obtain

∑
n≥1

npd(2n, 2n+1) ≤
�

X

(∑
n≥1

n2
2n+1−1∑
k=2n

|A2k+1(f)−A2k(f)|2
)p/2

dµ

≤ C
�

X

(∑
n≥1

(Q2
2n(f)−Q2

2n+1(f))
n∑
l=1

l
)p/2

dµ ≤ C
�

X

(∑
n≥1

nQ2
2n(f)

)p/2
dµ.

Recall that, for every n ≥ 0, ‖Qn(f)‖p ≤ c2Cp‖A2n(f)‖p. Hence, using
the triangle inequality in Lp/2(µ), we have(∑

n≥1

npd(2n, 2n+1 − 1)
)2/p

≤ C
∑
n≥1

n‖A22n (f)‖2p.

The fact that∑
n≥1

n‖A22n (f)‖2p <∞ ⇔
∑
n≥2

‖An(f)‖2p
n log n

log log n <∞

follows from Lemma 3.3 applied with r = 2, αn = 1/(n2 log n), ϕ(x) =
log |log x| and nk = 2k.

Appendix A. Proof of Proposition 2.2. By the assumption (2),
the series

∑
n |(f + · · ·+ T 2n−1f)/ψ(2n)|p converges µ-a.e. In particular, we

have
1

ψ(2n)

2n−1∑
k=0

T kf −−−→
n→∞

0 µ-a.e.

Similarly, applying Proposition 2.1 to T 2nf , we deduce that
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1
ψ(2n)

max2n−1
l=0

∣∣∣ l∑
k=0

T k(T 2nf)
∣∣∣ −−−→
n→∞

0 µ-a.e.

Now, since ψ is non-decreasing, for every 2n ≤ m ≤ 2n+1 − 1 we have∣∣∣∣f + · · ·+ Tm−1f

ψ(m)
− f + · · ·+ T 2n−1f

ψ(2n)

∣∣∣∣
≤
∣∣∣∣T 2nf + · · ·+ Tm−1f

ψ(m)

∣∣∣∣+ 2
∣∣∣∣f + · · ·+ T 2n−1f

ψ(2n)

∣∣∣∣,
and the result follows.

Assume that ψ satisfies∑
n

1
ψp(n)

<∞ and
∑
n

‖f + · · ·+ Tn−1‖pp
nψp(n)

(
Mnψ

p(n)
n

)p
<∞.

Let us prove that (2) holds.
By the assumption on ψ, using Cauchy’s condensation principle, we see

that
∑

n 2n/ψp(2n) <∞. Denote Rn =
∑

m≥n 2m/ψp(2m). Let q = p/(p−1),
0 < ε < q/p and define

χ(n) :=
(

1
Rεn
− 1
Rεn−1

)1/q

.

Using Hölder’s inequality, we have
n∑
l=0

‖S2l‖p
2l/p

≤
( n∑
k=0

χq(k)
)1/q

( n∑
l=0

‖S2l‖
p
p

χp(l)2l

)1/p

.

Hence, by the definition of χ,∑
n≥1

(
∑n

l=0 2(n−l)/p‖f + · · ·+ T 2l−1f‖p)p

ψp(2n)
≤
∑
l≥0

‖S2l‖
p
p

χp(l)2l
∑
n≥l

2n

ψp(2n)
R−εp/qn .

By elementary considerations,∑
n≥l

2n

ψp(2n)
R−εp/qn ≤

Rl�

0

dx

xεp/q
≤ CR1−εp/q

l ,

and

1
χp(l)

=
(

RεlR
ε
l−1

Rεl−1 −Rεl

)p/q
≤ C

(
RεlRl−1

Rl−1 −Rl

)p/q
.

Recall that Mn =
∑

k≥n 1/ψp(k). Using that ψ is non-decreasing, we see
that 2Rn ≤M2n−1 and then
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∑
n≥1

(
∑n

l=0 2(n−l)/p‖f + · · ·+ T 2l−1f‖p)p

ψp(2n)
≤ C

∑
l≥0

‖S2l‖pp
RlR

p/q
l−1

(Rl−1 −Rl)p/q

≤ C
∑
l≥0

‖S2l‖pp
M2l−1M

p/q

2l−2ψ
p2/q(2l−1)

2(l−1)(1+p/q)
≤ C ′

∑
l

‖S2l‖pp
Mp

2l
ψp

2/q(2l)
2pl

,

where we have used that {Mn} is non-increasing, ψ(2n) ≤ Cψ(n), and
‖S2n‖p ≤ 2 supk≥0 ‖T k‖ ‖Sn‖p.

It remains to prove that (3) implies that
∑

l ‖S2l‖
p
pM

p
2l
ψp

2/q(2l)/2pl <∞.
This may be proved by exactly the same argument as in the proof of (ii)⇒(i)
in Lemma 3.3 (see below), using the remark after Lemma 3.3.

Appendix B. Proof of Lemma 3.3. Assume first that ϕ is {nk}-
adapted. Let us prove that (i)⇒(ii).

Since ϕ ∈ L, there exists ε ∈ ]0, 1[ such that t1−εϕ(t) is non-decreasing.
Let η ∈ ]0, ε[. Let k ≥ 0 and n ∈ [2k, 2k+1 − 1]. Since {wn} is subadditive,
using Hölder’s inequality we obtain

wrn ≤
( k∑
l=0

w2l

)r
≤ 2ηr(k+1)

k∑
l=0

(
w2l

2ηl

)r
.

Then∑
n≥1

ϕr−1(π/n)nαn

(
wn
n

)r
≤
∑
k≥0

2ηr(k+1)
k∑
l=0

(
w2l

2ηl

)r 2k+1−1∑
n=2k

ϕr−1(π/n)
αn
nr−1

≤ 2ηr
∑
l≥0

(
w2l

2ηl

)r ∑
n≥2l

ϕr−1(π/n)
nαn

n(1−η)r

≤ 2ηr
∑
k≥0

nk+1∑
l=nk

(
w2l

2l

)r
2(1−η)lr

∑
n≥2l

ϕr−1(π/n)
nαn

n(1−η)r

≤ 2ηr
∑
k≥0

(
w2nk

2nk

)r nk+1∑
l=nk

2(1−η)lr
∑
n≥2l

ϕr−1

(
π

n

)
nαn

n(1−η)r ,

where we have used that {w2l/2l} is non-increasing, by subadditivity.
Iverting the order of summation, using (9), (17) and the fact that ϕ is

non-increasing, we obtain
nk+1∑
l=nk

2(1−η)lr
∑
n≥2l

ϕr−1(π/n)
nαn

n(1−η)r

≤
nk+1−1∑
j=nk

2j+1−1∑
n=2j

ϕr−1(π/n)
nαn

n(1−η)r

j∑
l=nk

2r(1−η)l
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+
∑

j≥nk+1

2j+1−1∑
n=2j

ϕr−1(π/n)
nαn

n(1−η)r

nk+1−1∑
l=nk

2r(1−η)l

≤ ϕr(π/2nk) + C2nk+1r(1−η)
∑
l≥k+1

(
ϕ(π/2nl)
2nl(1−η)

)r
≤ ϕr(π/2nk) + C

(
ϕ(π/2nk+1)

2nl(η−ε)

)r ∑
l≥k+1

1
2nl(ε−η)r

,

and the result follows, using (17) again.
Assume now that {nk} is ({αn}, ϕ)-adapted. Let us prove that (ii)⇒(i).
By subadditivity, for every k ∈ {4n−1, . . . 4n/2 − 1}, we have wr4n ≤

2r−1(wrk + wr4n−k). Hence, using (C2) and the fact that {nαn} is non-
increasing, we obtain

4n−1ϕr−1(π/4n)4nα4n

(
w4n

4n

)r
≤ 2r−1

4n/2−1∑
k=4n−1

(
ϕr−1(π/k)kαk

(
wk
k

)r
+ ϕr−1(π/4n − k)(4n − k)α4n−k

(
w4n−k
4n − k

)r)
.

Hence, by (ii), ∑
n≥1

ϕr−1(π/22n)(22n)2α22n

(
w22n

22n

)r
<∞,

and the same series along odd indices converges too, using monotonicity
properties and the fact that {w2n/2n} is non-increasing. Hence, using (17),
we have∑

k≥1

ϕr−1(π/2nk)
(
w2nk

2nk

)r nk−1∑
n=nk−1

22nα2n

≤ Cr−1
∑
n≥1

ϕr−1(π/2n)(2n)2α2n

(
w2n

2n

)r
<∞.

Then, using (18) and the fact that {nαn} is non-increasing, we obtain∑
k≥1

ϕr(π/2nk)
(
w2nk

2nk

)r
≤
∑
k≥1

ϕr−1(π/2nk)
(
w2nk

2nk

)r 2nk−1∑
n=2nk−1

nαn

≤
∑
k≥1

ϕr−1(π/2nk)
(
w2nk

2nk

)r nk−1∑
n=nk−1

22nα2n <∞.

Appendix C. Proof of Lemma 3.4. It suffices to prove that∑
k≥1 ‖

∑2nk+1−1
l=2nk |αlSl| ‖pp < ∞. By (9), there exists K > 0 such that for
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every n ≥ 1,

(23)
n∑
k=1

kαk ≤ Kϕ(π/n)

(for a proof, see the beginning of Appendix C of [6]).
Let r, q > 1 be such that 1/r + 1/q = 1. By Hölder’s inequality, using

(17) and the monotonicity of ϕ, we have
2nk+1−1∑
l=2nk

|αlSl| ≤
( 2nk+1−1∑

l=2nk

lαl

)1/q
( 2nk+1−1∑

l=2nk

lαl

(
|Sl|
l

)r)1/r

(24)

≤ ϕ(r−1)/r(π/2nk+1)
( 2nk+1−1∑

l=2nk

lαl

(
|Sl|
l

)r)1/r

≤
( 2nk+1−1∑

l=2nk

ϕr−1(π/l)lαl

(
|Sl|
l

)r)1/r

.

Assume that p ∈]1, 2[. Then, taking r = p, we obtain∥∥∥ 2nk+1−1∑
l=2nk

|αlSl|
∥∥∥p
p
≤

2nk+1−1∑
l=2nk

ϕp−1(π/l)lαl

(
‖Sl‖p
l

)p
.

Since T is power-bounded, N(h) = supn≥0 ‖Tnh‖p defines an equivalent
norm for which T is a contraction. Hence {N(Sn)} is subadditive and we
can apply Lemma 3.3 with r = p.

Assume that p ≥ 2. Then, taking r = 2, we obtain∥∥∥ 2nk+1−1∑
l=2nk

|αlSl|
∥∥∥p
p
≤
( 2nk+1−1∑

l=2nk

ϕ(π/l)lαl
‖Sl‖2p
l2

)p/2
and ∑

k≥0

∥∥∥ 2nk+1−1∑
l=2nk

|αlSl|
∥∥∥p
p
≤
∑
k≥0

( 2nk+1−1∑
l=2nk

ϕ(π/l)lαl

(
‖Sl‖p
l

)2)p/2
,

and we can apply Lemma 3.3 with r = 2. We conclude as above.
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