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ALMOST EVERYWHERE CONVERGENCE OF
GENERALIZED ERGODIC TRANSFORMS FOR
INVERTIBLE POWER-BOUNDED OPERATORS IN LP

BY

CHRISTOPHE CUNY (Paris)

Abstract. We show that some results of Gaposhkin about a.e. convergence of se-
ries associated to a unitary operator U acting on L?(X, X, u) (u is a o-finite measure)
may be extended to the case where U is an invertible power-bounded operator acting on
L?(X, X, 1), p > 1. The proofs make use of the spectral integration initiated by Berkson—
Gillespie and, more specifically, of recent results of the author.

1. Introduction. In a series of papers (see [8], [9] or [10]), Gaposhkin
studied conditions, expressed in terms of || f 4+ -+ + U™~ ! f|ls, ensuring the
a.e. convergence of averages {ﬁ(f—k- o+ U”_lf)} or of series ) . a,U"f,

where U is a unitary operator acting on L?(X, X, u) and f € L?(X, u1). His
proofs were based on the use of spectral theory and on the dyadic chaining
to obtain maximal inequalities.

It has been realised recently (see Theorem 6.3 of [6] and the remark be-
low) that when the weight ¢(n) is smaller than and not “too close” to n, the
results of Gaposhkin concerning averages remain valid for power-bounded
operators T acting on LP(X,u) (p > 1). Hence, the use of spectral theory
does not seem to be relevant in this specific situation. However, concerning
the a.e. convergence of series, it seems that the results of Gaposhkin for uni-
tary operators do not pass to power-bounded operators on LP(X, i) (that
are not invertible).

In this paper, we prove that conditions analogous to Gaposhkin’s are
sufficient for the a.e. convergence of the above series when U is assumed to
be an invertible operator on LP(X,u) (p > 1 fixed) which is doubly power-
bounded, i.e. sup,,cz ||T"| < oo.

In particular, we obtain the following, where log; n := (logo - --olog)(n)
(k-fold composition) is defined for n large enough. Throughout the paper,
log will denote the logarithm to base e.
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THEOREM 1.1. Let 1 < p < 2. Let U be an invertible operator on
LP(X, X, 1), doubly power-bounded (i.e. sup,,cz [|[U"| <o0). Let f € LP(X, )
and o € [1/p, 1], B € R. Assume one of the following:

ZHf U _ if a=1/p and 8> 1/p,

n2(log n)r(F-1)

If+- -+ U
Z p

» ‘
nlﬂ’a logn)l’ﬁ (logan)P < oo if 1/p<a<l,

Un— 1

n1+P logn p(B—1)+1

Z If+---+U" fIp

nitrlogn (loggn)P " t(logyn)? < 0o if a=pF=1.

n

Then ), ~s3 m converges [-a.e.
For p > 2, we obtain the following.

THEOREM 1.2. Letp > 2. Let U be an invertible operator on LP(X, X, 1),
doubly power-bounded. Let f € LP(X,u) and o € [1/p,1], B € R. Assume
that

f - UL
2

n?( logn p(5-1)

< 00 if a«=1/p and 8> 1/p,

Z\|f+"'+U" gl
< 00

720 (log n)2? if 1/p<a<l,

n>3
If+--+ U7

Z — ifa=1and B <1,
= n3(logn)2(A-1D+1

_i___._’_UTL*l 2
> 3 T 10y m) < 00 if @ = p=1.
= n3logn

unf
Then ang W COMVETGES [-a.€E.

In [3], Cohen—Cuny-Lin proved that when U is induced by a measure
preserving transformation and 0 < o < 1, 8 = 0, some weaker conditions
are sufficient.

Finally, for p > 2, we obtain a sufficient condition for the convergence of
the Cesaro averages associated to a doubly power-bounded operator. When
p = 2, we recover Gaposhkin’s condition (see e.g. [§]). We have not succeeded
in obtaining a similar condition for p < 2.



ALMOST EVERYWHERE CONVERGENCE 63

THEOREM 1.3. Let p > 2. Let f € LP(X,u) and U be an invertible
power-bounded operator on LP(X, X u). Assume that

3 If -+ U

n3logn

loglogn < oo.
n>1

Then lim;, .o W =0 p-a.e. and >} _, w converges [-a.e.

2. Almost everywhere convergence of averages. We now give
some results about a.e. convergence of averages. These results are essen-
tially known (see e.g. Wu [13], Cohen—Lin [4] or Weber [12]), but we state
them in a somewhat more elegant form, which is needed later and does
not seem to appear in the literature. In this section, 71" is a power-bounded
operator on LP(X, p) which is not necessarily invertible.

Let us recall the following maximal inequality, which is a straightforward
application of Proposition 1(i) of [13].

ProposITION 2.1 (Wu [13]). Let T be a power-bounded operator on
LP(X, X, u), p> 1. Then, for every f € LP(X,u) and n > 0,

1<k<2n

| e 17 o+ T, < K200 o TH

where K = sup,,>1 [|T"]].

Let ¢ be a positive non-decreasing function on [1, co[. When 3 °, ., 1/9P(n)
< 00, we write My, = My,(¢,p) := Zan 1/¢P(n).

PROPOSITION 2.2. Let ¢ : [0,00[ — ]0,00[ be non-decreasing and such
that there exists C' > 0 with (u) > C¥(2u) for every u > 0. Let T be a

power-bounded operator on LP(X, X u), p > 1. Let f € LP(X,u) be such
that

(S 207080 £ T )
2
) 2 w(27)

< Q.

n—1

1
TFf —— 0 p-a.e. and sup — ‘ ka‘GLpX

w<)kzo oo 1 ws1 (0 Z )
In particular, if 33, <, 1/1P(n) < oo and

Tm/l Afn D p
(3) Z If+- m/}‘; f”p( qfl (n)) < o0,

then is satisfied.
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Proof. See Appendix A.

From this proposition, it is not difficult to recover Theorem B and The-
orem 3(iii)—(vii) of [9], as in the corollary below.
We will need the following application.

COROLLARY 2.3. Let T be a power-bounded operator on LP(X, u), p > 1.
Let o € [1/p,1] and B,y € R. Let f € LP(X, ) be such that

TR |
4 , .
W ; n1+pa(log n)pﬁ(log logn)PY <0 if 1/p<a<l,

If+-+ T LD o
©) Z n2(logn)P(B=1 (log log n )Py <oo if a=1/pandB>1/p.

Then
1 n—1

T"f —— 0  p-ae.
n®(logn)?(loglogn)Y Z f n—0o0 pra-e

3. Almost everywhere convergence of series. We start by recalling
the definition and properties of the spectral integral of Berkson—Gillespie
(see [2] or [6] for more details).

Let (X, X, u) be a o-finite measure space. Let p > 1 fixed. Let U be an
invertible operator on LP(X, X 1), doubly power-bounded, i.e. such that

c:=sup [|[U"]| < oc.
nez

It has been proved in [2] that there exists a unique projection-valued function
E :[0,27] — B(LP(X, p)), where B(LP(X, i) stands for the Banach algebra
of bounded operators on LP(X, ), with the following properties.

The function E is right continuous on [0,27] in the strong operator
topology (SOT), admits at each point s € (0,27] a SOT left-hand limit, and
further satisfies

(i) E(s)E(t) = E(min(s,t)) for all s,t € [0, 27];
(i) lims_o E(s) =0 (SOT);
(iii) limgs—or E(s) =1 = E(2m) (SOT),
where I denotes the identity operator on LP(X, p). Those properties allow

one to define an integral (of Riemann—Stieltjes type) with respect to E. More
precisely, there exists a map g — S[O o] g(t) dE(t) defined on the Banach

algebra BV[0, 27] of functions with bounded variation on [0, 27|, that is an
identity preserving algebra homomorphism into B(LP(X, u)). Moreover

| e"dE@M)f=Uf,

[0,27]
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and there exists a constant C),, depending only on p, such that

(6) sup || E()] < *C.
te[0,27]

We want to obtain conditions on f € LP(X, uu) that are sufficient for the
a.e. convergence of series » . a,U"f. Write S,, = S, (f) =Uf+---+U"f.
By Abel summation, the above convergence is equivalent to the fact that the
series Y (an — any1)Sy converges a.e. and a,S, — 0 a.e. In what follows,
the sequence {a,} that we use will play the role of {a,, — an41}.

In [6], we were interested in the norm convergence of ) a,U" f and, for
technical reasons, we already had to decompose the problem in two steps,
while in the case p = 2, Gaposhkin is doing everything at once.

Denote by L the set of positive functions ¢ € C*(]0,7]) such that there
exists € € |0, 1] such that

C1 and —¢’ are non-increasing.
¥ ¥
(C2) t s t1=5p(t) and t — t275¢/(t) are non-decreasing.

It follows from (C2) that

(7) o(t) > —te'(t) Yt €]0,m]
and
(8) lim to(t) = lim £%¢'(£) = 0.

Given ¢ € L, we define £, to be the set of positive sequences {a,} such
that {nay,} is non-increasing and there exists C' > 0 for which

9) Zk:%zk < -C¢'(r/n) VYn>1.
k=1
Then, by , we have

(10) ZkQak < C'np(r/n) Vn>1.
k=1
Notice that, using (C2) and Abel summation, (9)) implies
/
y ¢ (m/n)
In the following we will take oy, := W and
1 .
(a) o(z) = T lloga]? ifl/p<a<l,
(b) (z) = [logz|' " ifa=1, <1,

(¢) o(z) =log |log x| ifa=1,6=1.
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Write, for every n > 1, = An(f) = (f+---+U"1f)/n, and for
every t € R, o,(t) = 1+ - + e(” Dt For {an} € Ly, define W(t) =
Y n>1 non(t), which converges umformly on every compact subset of |0, 27/,
since {a,} is decreasing to 0.

PROPOSITION 3.1. Let ¢ € L and {an} € Ly,. Let {n;} be an increas-
ing sequence of positive integers. Let f € LP(X, u) be such that E(0)f =0
and

(12) D (p(m/2m) || Agns ) "™ P < oo

k>0

Then there exists {gm} C LP(p) with limg_o gore = 0 p-a.e. and in LP,

such that, for every m > 1, taking n = [l&gg?], we have
(13) Z apSk(f) = gm + S W(t)dE(t)f.

|m/2™ 27 —7 /27|

Proof. Let gm = Y prq axSk(f) — S}W/T‘ on—njan W (t) dE(t) f. 1t follows
from Lemmas 4.5 and 4.6 and Theorem 3.3 of [6] that there exists K > 0
such that

pP(m/2")
207

et (S as0) )
I>n

To prove the proposition, it suffices to show that Y, |lg2nk [|h < co.

Define Q7 = Q7 (f) = Y5 [Ax — Agiea]?. Tt has been proved in [6)
(10)] that there exists C, > 0 (depending only on p) such that ||Qyll, <
c?Cyp|| Azn ||, where ¢ = sup,,cz [|U"]].

Hence, by ,

> [tz (3 14 = A 2)

k>0 I>ny

(14) g2 12 < K(

(51 = )
=0

p

< O (p(m/2") Az )? < oo
k>0
For k > 0, we have Z?:kal 22 At — Agiia]? < Z 227%an .

Assume that p > 2. We have, using (C2) and the fact that z — xP/? is
superadditive on [0, oof,
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—1
p T 2nk 1/2p

Z - p{uc ’( Z 2] Ay - AQHIP) Hp
=0

ek 1/2
@ (m/2™) 2 2
H( o2 22 JQ”“)
k>0 =

p

<d( Sz )

n p/
< C’(sz(ﬂﬂ A, 2)
k>0
If p € ]1,2[, we can use

nk

(52 2100 i) | < 210

IN

2]’”" [[Agns—1[[p,

k
k
and then conclude as above.

PROPOSITION 3.2. Let ¢ € L and {o,} € L. Let {ny} be an increas-
ing sequence of positive integers. Let f € LP(X,u) be such that E(0)f =0
and

(15) D (/2| Axullplog k)P < o if p€]1,2],
k>0

(16) > (/2" | Agnelp)* < o0 if p>2
k>0

Then {S Py W(t)dE(t)f} converges pi-a.e.

Proof. We show the p-a.e. convergence of {S}w/2"k,7r[W(t) dE(t)f}, the
proof for the second part being entirely the same.

Define wy, := S]w/2"k+1 /2] W(t)dE(t)f. Hence we have to prove the
p-a.e. convergence of the series >, -, ws. It follows from [5] that, for every
s>r >0, a

p

|5l <el( 5 storian-asp) |

<l emes) I,

Hence, we obtain
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. CY P (m/2")| Ay [ ifpell,2),
Swl<q
‘ k=r Hp C(sz(w/gnj)HAzMH,%)m if p > 2.
j=r

Then the result follows by applying Theorem 2.4 of [4] when p € ]1,2], and
Theorem 2.5 of [4] whenp > 2. m

By Propositions and we see that, under conditions or ,

. k+1_
the series ) ;< 2222% L anSn converges p-a.e. Hence, to prove the p-a.e.

convergence of ) | oSy, it suffices to prove that 212:;;71 a|Si| — 0 p-a.e.

Before proving this last fact, we explain how to choose the sequence
{ni}, depending on .

Let {nx} be an increasing sequence of positive integers. We say that
¢ € L is {ny}-adapted if there exists C' > 0 such that

(17) o(m/2") < Cp(n/2") Vs> 0.

Let {an} € L,. We say that ({an}, ) is {ng}-adapted if ¢ is {ni}-
adapted and there exists C’ > 0 such that

(18) 221 koy, > C'p(m/27+1) Vs > 1.
k=2"s—1
For instance, as before one may take o, := 5 +a(}og o and
(a) w(w)zw, ng=~k ifl/p<a<l,
(b) () =loga"",  np=2% ifa=1p<1,
() ¢(z)=loglloga|,  mp=2", ifa=1,8=1

We will need the following technical lemmata. The proofs are left to the
appendix.

LEMMA 3.3. Letr > 1, p € L and {o,} € L. Let {ny} be an increasing
sequence of positive integers. Let {w,} be a subadditive sequence of positive
numbers. Consider the following conditions:

0 3 (wln/z e ) <o

k>0
(i) ;cp(w/n)rlnan<u:>r < .

If ¢ is {ny}-adapted, then (1)=(ii), and if ({an}, ) is {ni}-adapted, then
(i) =(i).
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REMARK. When T is a power-bounded operator on L”, then N,(f) :=
sup,>g |T" f||p defines a norm on LP, equivalent to || - ||, for which T is a
contraction. In particular, {N,(f +---+T""!f)}, is subadditive. Since N,
and | - ||, are equivalent, the lemma applies with {||f + -+ T" L f||,}» in
place of {wy, }n.

LEMMA 3.4. Let {ny} be any increasing sequence of integers. Let ¢ € L
be {ny}-adapted and let {an}tnen € Ly. Let f € LP(X,pu) be such that
E(0)f =0. Assume that

(19) > (p(m/2m) | Agr )P < oo,
k>0
Then
2"h+1 1
Z laySi| —— 0 p-a.e
e n—oo

PROPOSITION 3.5. Let ¢ € L and {a,} € Ly,. Let {ny} be an increasing
sequence of positive integers such that ¢ is {ny}-adapted. Let f € LP(X, u)
be such that E(0)f =0 and

(20) 3 (o /27) || Azl log k)P < o0 if p € ]1,2],
k>0

(21) 3 (o /2 | Agna |1)? < oo if p>2.
k>0

Then Zn21 anSy converges p-a.e.
Proof. Combine Lemma [3.4] and Propositions [3.1] and n

Proof of Theorem . We want to prove that " U™ f/(n%(logn)?) con-
verges a.e. Using Abel summation by parts, it is sufficient (actually equiva-
lent) to prove that S, /(n®(logn)?) — 0 p-a.e. as n — oo and that

1 1 )
2 - Sn
~ <n°‘(log n)%  (n+1)*(log(n +1))8
converges [i-a.e.
There exist K, L > 0 such that

1 B 1
n®(logn)?  (n+ 1)*(log(n + 1))#

K L Lo 1
~ notl(logn)f  notl(logn)dtt not2(logn)f )°

The series 3 S, /(n*t®(logn)®) clearly converges (absolutely) p-a.e. On
the other hand, if > -3 S,/(n'T%(logn)?) converges p-a.e., then so does
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> o3 Sn/(nt e (log n)P*1) (by Abel summation by parts, using that 1/logn
decreases to 0).

Hence, we have to prove that S,/(n%(logn)?) — 0 p-a.e. and that the
series > 4 Sn/(n1 1 (logn)?) converges p-a.e.

Assume that one of the conditions of Theorem [[1]is satisfied. Then the
conditions of Corollary [2.3] with the corresponding choice of a, 5 are satisfied
and S, /(n%(logn)?) — 0 p-a.e.

Now, we want to apply Proposition [3.5{ with o, = 1/(n®T!(logn)?). We
choose ¢ and ny, as in cases (a), (b) and (c). Then we have

Z @pil(ﬂ/n)nan(HSan/n)p log;n < oo,

where [ =2 ifa<1l,l=3ifa=1land < 1l,and =4 ifa=0=1.
An adaptation of the proof of Lemma shows that holds, which
finishes the proof of Theorem

Proof of Theorem . Assume first that o > 1/p. We follow the same
steps as in the proof of Theorem Assume that one of the conditions of
Theorem [1.2] is satisfied.

We use the previous notations (o, ¢, ...). By Lemma with r = 2
(see also the remark after the lemma), we find that is satisfied, and
Proposition [3.5] applies.

Now, by (1)), ¢(m/2" )| Azn ||, goes to 0 and we easily derive that

>~ (pm/27) | Az ) < oc,
k>0
which implies by Lemma [3.3] that
S o (m/m)nan([1Sullp/n)? < oo
n>1
Then one can check that conditions and of Corollary are satisfied,
which finishes the proof.

For o = 1/p, we first notice that condition is satisfied and we apply
Corollary Then by Hoélder’s inequality with pg := p/2 and 1/py + 1/qo
=1 (i.e. g = p/(p —2)) we find
Z|’f+"'+Un_1fH;2;_Z ||f+"'+Un_1f”12; 1

nlt2e(logn)2s nl/pot2a(logn)2(B-1) ) \ nl/®w(logn)?

n>3 n>3

[ 1fHP 1/po 1 1/q0
< 00,
<Z n1+pa logn (p 1A > <n§2:3 n(log n)2p/(p_2)) o0

by assumption and since 2p/(p —2) > 2 > 1.
Then we can conclude as above, using Proposition
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4.Proofof Theorem([1.3] Let U beaninvertible operatoron LP(X, X, 11)
with sup,,c7 ||[U"|| < oo, where we assume p > 2. Let f € LP(X, i) and define
K,f = S]o,n/Qn} dE(t)f and L, f = S]Qw_w/%%] dE(t)f. Generalizing a result
of Gaposhkin for unitary operators, Berkson, Bourgain and Gillespie [I] proved
that {(f +---+ U™ 1f)/n} converges u-a.e. if and only if {K,(f) + L.(f)}
converges p-a.e. They also proved that > p_, (U¥f —U~*f)/k converges
p-a.e. if and only if { K, (f) — L,(f)} does, generalizing, that time, a result
of Jajte [11].

We now give a sufficient condition for the convergence u-a.e. of K, (f)
and L, (f). We will deal only with {K,,(f)}, the proof for {L,,(f)} being the
same.

Define w, = S]W/Qnﬂ /2n] dE(t) f. Then, by an analogue of the Littlewood—
Paley theorem (see e.g. Theorem 2.4 of [0]), 8]0 /2n] dE(t)f = j>p, Wk With
convergence in LP(X, u), and for every n > m,

I < (5 )

Hence, we have to find a condition for the p-a.e. convergence of an1 W, .
By [6, Theorem 3.3, (11)], we have, for every n > m,

| S (5 - ),

Write
n—1 1/2,1p
d(m,n) = H ( Z | Agir () — AQk(f)P) Hp
=] (Z A (1) = A (D)
X k=m

Notice that, since p > 2, we have || ||p2 < || ||, and {d(m,n)} defines a
superadditive array of numbers, that is, d(m,n)+d(n,r) < d(m,r) whenever
0 < m < n < r. Hence, by Proposition 2.2 of [4], there exists K > 0 such
that, for every n > 1, we have

k
P
max ‘ E wkw < KnPd(2™, 2" 1),
e vt p

and so

3|

nz

k
p
max ) E wk‘H §KE nPd(2", 2.
2"§k§2”+171 p
[=2n n>1



72 C. CUNY

On the other hand we have, with 1/p+1/¢g =1,
2n+1_1 2n+1

/ 1
SIS wl, = (X)) (] Z wi)”
n>1 n>1 n>1 =27

Hence, if we show that )7 -, nPd(2",2""!) < oo, using and the defini-
tion of d(m,n), we will obtain

k
max ‘ E [-a.e.
2n§k§2n+1_1 n—oo
and
2n+1_1
g ‘ E wk‘ <00 p-a.e.,
n>1 [=2n

which yields the u-a.e. convergence of zn21 W, -
Recall that Q2(f) = Y i, [Aokr1(f) — Aok (f)|?. Using superadditivity
again, and Fubini, we obtain

on+l_1

w2 < | (Xt 3 ) - A2 (0F)
n>1 n>1 k=2n
<Cf (Y@ () - Qs Zz) dpgcg (203 n) du.
X n2l n>1

Recall that, for every n > 0, ||Q,(f)[l, < CQCPHAgn( f)llp- Hence, using
the triangle inequality in LP/2(u), we have

(S wraen 2~ )" <03 A (P2

n>1 n>1
The fact that

2
Sl (< 00 o S0 < o0

nlogn
n>1 n>2

follows from Lemma applied with r = 2, a;,, = 1/(n?logn), p(z) =
log |log z| and nj, = 2. =

Appendix A. Proof of Proposition By the assumption ,
the series " |(f + -+ T?" 71 f)/1(2")|P converges p-a.e. In particular, we

have
on_1

oy ST 0 e

Similarly, applying Proposition n to T?" f, we deduce that
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max? O_I‘Z:T]C T2

— 0 pae.

n—oo

%b(

Now, since 9 is non-decreasing, for every 2" < m < 2"*! — 1 we have

fH- T f4 TP
P(m) P(27)

T2nf+..._|_Tm*1f 'f+...+T2"1f
(m) »(2)

)

g

and the result follows.
Assume that 1) satisfies

1 £+ + T M?(m)
D D Ve T () e

Let us prove that ( . ) holds.

By the assumption on %, using Cauchy’s condensation principle, we see
that ), 2"/1P(2") < co. Denote R, = -, 2™/yP(2™). Let ¢ = p/(p—1),

0 < & < ¢/p and define
1 1 1/q
W= (g -ms)
Using Holder’s inequality, we have
1152t llp - 1a ||S2l||p
3L < (30 v

Hence, by the deﬁnltlon of x,

(g 200/ f 4 - T2 f|],)P HngIIp -
Z Z pr nep/Q.

n>1 ¢p(2n) l>0

By elementary considerations,

on B e
Z Rfep/q < S < CRl sp/q
ogp(2n) Tt T o aela T

and

1 < RRS | >p/q “c RERy, p/q
XP(1) Ri_, — R} - \R R
Recall that M,, = ,,, 1/¢P(k). Using that 1 is non-decreasing, we see
that 2R,, < Myn—1 and then
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n o(n—=l)/p 721 R R4
(Zl:o Hf +oe pr) < CZ ”52 Hp 11—

n>1 wp@n) 1>0 " (Riy — Ry)Pla

9

p/q p?/q(9l—1 p?/q (9l
< Y |5yl M2 At )<0’Z||s2zupL”

20=1)(1+p/q)
1>0

where we have used that {M,} is non-increasing, 1/1(2n) < C¢(n), and
1S2nllp < 2supso 7% [1Snlp-

It remains to prove that (3) implies that Y=, || Sy [|[pM3, YP*/a(2h) /2Pl < .
This may be proved by exactly the same argument as in the proof of (ii)=(i)
in Lemma (see below), using the remark after Lemma

Appendix B. Proof of Lemma Assume first that ¢ is {ny}-
adapted. Let us prove that (i)=-(ii).

Since ¢ € L, there exists € € |0, 1] such that t!~5p(t) is non-decreasing.
Let 7 € ]0,¢[. Let k > 0 and n € [2%,2F1 —1]. Since {w,} is subadditive,
using Holder’s inequality we obtain

k k
(k+1) Wyl
p (L) <arteny (v2)
=0 1=0

Then
r k w r2kti_1 o
l
S o mjmnon(S2) < Xart 3 ()Y o
n=>1 k>0 =0 n=2k
T
Wor nao
nr 2 r—1 n
=2 Z(2nl> ¥ (Tr/n)n(l—n)’r
1>0 n>2!
" S wg \T no
nr Wal (1—n)lr r—1 n
<o ST (M) 20 S )
k>0 l=ny n>2!
<ory () Y g0 3 g (1) ne
>~ onr, 2 n n(lfn)r’
k>0 l=ny n>2!

where we have used that {wy /2'} is non-increasing, by subadditivity.

Iverting the order of summation, using @, and the fact that ¢ is
non-increasing, we obtain

Tk+1 no

(1—n)ir Z n
Z 2 SO ﬂ-/n n=m)r
l=ny ’n,>QL

npy1—127+t11 J

S Y e

j=ng n=2J l=ny
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27+l 1 ngy1—1

+ Z Z o' 7r/n Z or(1=n)l

J2ngy1 n=2J l=ng

ny T
< " (m/2m) + C2mierT) N <%)

I>k+1

o on p(m/2m+1)\ " 1
@ (m/2 k)+c< ) 2 g

1>k+1

and the result follows, using again.
Assume now that {ny} is ({an}, ¢)-adapted. Let us prove that (ii)=-(i).
By subadditivity, for every k € {47! ...4"/2 — 1}, we have w}, <
2 ~Hwl + wh,_,). Hence, using (C2) and the fact that {na,} is non-
increasing, we obtain
anj2—1

n—1, r—1 nyAn wyn\ " r—1 r—1 wr\
g an () <2t S (o /mhan ()

k=4n—1

T /A" — k)(4" — k)agn_y <$@4—Z>>

Hence, by (ii),

,
2 2 w22n

ZQD 7T/2n 2n) O[22n<22n) <OO7

n>1

and the same series along odd indices converges too, using monotonicity

properties and the fact that {won/2"} is non-increasing. Hence, using ,

we have

-1
nk wark "R 2n

k>1 n=ng_1

<O T (/2 (2 P (7“;2”> < o0.

n>1

Then, using and the fact that {n«,} is non-increasing, we obtain

r 2nk—1
Waong Waong
Sz (M) < et ()Y na

k>1 k>1 onk—1
w r np—1
2"k 2n
< (m/2™) | —— 2" qugn < 00.
E " (m/ o E on <
k>1 n=ng_1

Appendix C. Proof of Lemma It suffices to prove that
> ks 212:;:;_1 laySi| |5 < oo. By (9), there exists K > 0 such that for
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every n > 1,

n
(23) 3" ke < Kol /)
k=1
(for a proof, see the beginning of Appendix C of [6]).
Let r,q > 1 be such that 1/r + 1/q = 1. By Hoélder’s inequality, using
and the monotonicity of ¢, we have

2Mk+1 1 2Mk+1 1 1/q 2Mk+1 -1 |Sl‘ rN 1/r
e > Jasi<( Y i) < 3 lal<l)>
=27k 1=2"k [=2"k
2"k+1 1 1S\ 1/r
w5 ()
1=2"k
an+1—l |Sl‘ T 1/?"
< r—1 Liadal .
(3 omeme(T))

Assume that p €]1,2[. Then, taking r = p, we obtain

2Mk+1 -1 » 2Mk+1 -1 HS H P

5 sl <5 (15
p

[=2"k [=2"k

Since T is power-bounded, N (h) = sup,,>q ||7"h||, defines an equivalent
norm for which T is a contraction. Hence {N(S,)} is subadditive and we
can apply Lemma [3.3 with r = p.

Assume that p > 2. Then, taking r = 2, we obtain

H%i_ll s < Wfl A
1=2"% P 1=2"% ’ e
and
2"k+1-1 » 2"k+1-1 15, 2\ p/2
ZH > |04151|H SZ( > 90(77/1)1041<llp>> :
k>0 1=2"k Prk>0 N 1=2mk

and we can apply Lemma [3.3] with » = 2. We conclude as above.
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