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NON-ESSENTIAL ELEMENTS IN MODULAR LATTICES
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Abstract. Based on a lattice-theoretic approach, we give a complete characterization
of modules with Fleury’s spanning dimension. An example of a non-Artinian, non-hollow
module satisfying this finiteness condition is constructed. Furthermore we introduce and
characterize the dual notion of Fleury’s spanning dimension.

1. Introduction. Smith and Vedadi [SV] characterized modules which
satisfy the ascending (resp. descending) chain condition for non-essential
submodules. Modules that satisfy the descending chain condition for non-
small submodules have been studied by Fleury in [F] in his search for a dual
Goldie dimension. He termed modules with DCC on non-small modules mod-
ules with finite spanning dimensions. A conceptually cleaner dualization of
Goldie’s dimension than Fleury’s had been carried out by Grzeszczuk and
Puczylowski in [GP] by introducing a notion of Goldie dimension for modular
lattice. The dual Goldie dimension of a module being the Goldie dimension
of the dual of its lattice of submodules reassembles earlier dualization at-
tempts made by Varadarajan [V], Takeuchi [T] and Reiter [Re]. Fleury’s
spanning dimension however remained a rather subtle module-theoretic con-
dition between the Artinianness of a module and the finiteness of its dual
Goldie dimension.

In this paper we will give a complete characterization of Fleury’s notion
and will also construct a non-Artinian, non-hollow example with finite span-
ning dimension. Following Grzeszczuk and Puczyłowski’s idea we will prove
Smith and Vedadi’s results for modular lattices and apply them to the dual
lattice of the lattice of submodules of a module to obtain this characteriza-
tion. We close by considering modules with ascending chain conditions on
non-small submodules.

Throughout this paper, R denotes an associative ring with unit and all
modules are unitary left R-modules.
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2. Modular lattices. A lattice (L,∧,∨) (for short L) is a partial or-
dered set (L,≤) such that for any a, b ∈ L there exist elements a ∧ b and
a∨ b such that a∧ b is the largest element c in L with c ≤ a and c ≤ b while
a ∨ b is the smallest element c in L with a ≤ c and b ≤ c. For two elements
a ≤ b we denote by [a, b] = {c ∈ L | a ≤ c ≤ b} the interval of elements
between a and b. A lattice (L,∨,∧) is complete if joins

∨
X and meets

∧
X

exist for any non-empty subsets X ⊆ L. In this case the smallest element of
L is denoted by 0 and its largest element by 1. L is called modular if for all
a, b, c ∈ L,

a ≤ b⇒ b ∧ (a ∨ c) = a ∨ (b ∧ c).

All lattices in this paper are supposed to be complete and modular. For
a thorough introduction to lattice theory we refer the reader to Grätzer’s
book [G].

If M is a module over a ring R and L(M) is its set of submodules, then
(L(M),+,∩) is a complete modular lattice with inclusion as partial ordering.

The dual lattice Lo of a lattice (L,∧,∨) consists of the same underlying
set L, but with reversed partial ordering <o, i.e. for all a, b ∈ L : a <o b ⇔
a > b. If L is complete (modular), then so is Lo.

An element a is a complement of an element b in a modular lattice L if a∨b
= 1 and a∧ b = 0. We say that L is decomposable if there exist complements
different from 0 and 1. An element a ∈ L with be called decomposable if [0, a]
is decomposable. Note that in the case of L = L(M), a submodule A of M
is a complement in L(M) if and only if it is a direct summand of M .

A pseudo-complement of an element a in L is a maximal element of the
set Ωa = {c ∈ L | a ∧ c = 0}, and L is called pseudo-complemented if every
element of L has a pseudo-complement in L. Given a pseudo-complement b
of a the element a∨ b has the property that for any c ∈ L, c∧ (a∨ b) = 0⇒
c = 0, since if c ∧ (a ∨ b) = 0, then (c ∧ (a ∨ b)) ∨ b = b and by modularity
b = (c ∨ b) ∧ (a ∨ b) = ((c ∨ b) ∧ a) ∨ b. This implies (c ∨ b) ∧ a ≤ b ∧ a = 0.
As b is maximal, c ≤ b, and hence c ≤ c ∧ (b ∨ a) = 0, i.e. c = 0.

An element x ∈ L such that y ∧ x = 0 ⇒ y = 0, for all y ∈ L, is called
essential. The main object of this paper are chain conditions for non-zero
elements that are not essential (called non-essential) with applications to the
dual submodule lattice of a module. A lattice L is called uniform if every
non-zero element of L is essential in L. An element a ∈ L such that whenever
a ≤ b ∈ L and a is essential in [0, b] then a = b, is called (essentially) closed
in L.

Goldie’s dimension notion for modules is based on the notion of an in-
dependent family of submodules which generalizes the notion of a basis for
vector spaces. Transferring Goldie’s notion to modular lattices, Grzeszczuk
and Puczyłowski called a subset I ⊆ L \ {0} of a lattice L independent if for
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any finite subset X of I and x ∈ I \X one has (
∨
X) ∧ x = 0. They proved

the following theorem in [GP, Theorem 5]:

Theorem 2.1. For a complete modular lattice L the following conditions
are equivalent:

(a) L does not contain infinite independent sets.
(b) L contains a finite independent set {a1, . . . , an} such that a1∨· · ·∨an

is essential in L and the lattices [0, ai] are uniform for 1 ≤ i ≤ n.
(c) sup{k | L contains an independent subset of cardinality equal to k} =

n <∞.
(d) For any ascending chain a1 < a2 < · · · of elements of L there exists

j such that aj is essential in [0, ak] for all k ≥ j.
We say that L has finite Goldie dimension if it satisfies one of the con-

ditions above. The number n in (c) is called the Goldie dimension of L.
While complete modular lattices do not in general have to be pseudo-

complemented, any submodule lattice L(M) of a module M is pseudo-
complemented since L = L(M) has an even stronger property, namely for
any element a ∈ L and chain C ⊆ L,

a ∧
∨
C =

∨
c∈C

(a ∧ c).

A complete modular lattice with this property is called upper continuous. If
L is upper continuous, then, by Zorn’s Lemma, Ωa has a maximal element
for each a ∈ L, i.e. L is pseudo-complemented. To characterize lattices that
satisfy the ascending chain condition on non-essential elements, we need to
weaken the above notions. We say that a complete modular lattice L is weakly
upper continuous (or a ∗-lattice) if for any a ∈ L and chain C ⊆ L,∨

c∈C

(a ∧ c) = 0 ⇒ a ∧
∨
C = 0.

Any weakly upper continuous lattice L is pseudo-complemented, because for
any a ∈ L, the set Ωa = {b ∈ L | a ∧ b = 0} is closed under joins of chains
and hence has a maximal element by Zorn’s Lemma. Call a lattice L amply
pseudo-complemented if for any a, b ∈ L with a∧b = 0, there exists a pseudo-
complement a′ of b with a ≤ a′. Any weakly upper continuous lattice is amply
pseudo-complemented, because the set Ωa,b ={a′ ∈ L | a ≤ a′ and a′∧ b=0}
is non-empty and closed under joins of chains. Hence by Zorn’s Lemma it
has a maximal element, which is the desired pseudo-complement of b.

Recall that a lattice L is called compact if 1 =
∨
X for some subset X

of L; then there exist a1, . . . , an ∈ X with 1 = a1 ∨ · · · ∨ an. Noetherian
lattices are compact. We call an element a of a complete lattice proper if
a 6= 1.
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Theorem 2.2. The following statements are equivalent for a complete
modular lattice L:

(a) L satisfies the ascending chain condition (ACC) on non-essential el-
ements;

(b) L is weakly upper continuous and [0, a] is Noetherian (resp. compact)
for all a ∈ S, where S is one of the following sets:
(i) the set of non-essential elements of L,
(ii) the set of proper closed elements of L,
(iii) the set of decomposable elements of L.

In this case L is amply pseudo-complemented and has finite Goldie dimen-
sion.

Proof. (a)⇒(b.i). Let 0 6= a ∈ L and C ⊆ L a chain of elements with∨
c∈C(a∧c) = 0. Then a∧c = 0 for all c ∈ C, which shows that the elements

of C are non-essential. Thus C must be finite, since otherwise it would con-
tain a countable infinite subchain b1 < b2 < · · · of non-essential elements
that does not stop, which would contradict (a). Since C is finite,

∨
C is an

element of C and we have a ∧
∨
C = 0. This shows that L is weakly upper

continuous. If a is non-essential, then so is every non-zero element in [0, a]. In
particular, any chain in [0, a] stops, i.e. [0, a] is Noetherian (resp. compact).

(b.i)⇒(b.ii) is trivial since any proper closed element is non-essential
in L.

(b.ii)⇒(b.iii). Let a be a decomposable element with a = b ∨ c and
b ∧ c = 0 where 0 < b, c < a. By the remark preceding the theorem, a
weakly upper continuous lattice is amply pseudo-complemented. Thus there
are mutual pseudo-complements b′ and c′ such that b ≤ b′ and c ≤ c′ and
b′ is a pseudo-complement of c′ and vice versa. Note that if b′ ≤ x with b′
being essential in [0, x], then (x ∧ c′) ∧ b′ = c′ ∧ b′ = 0 implies x ∧ c′ = 0.
As b′ is maximal with respect to b′ ∧ c′ = 0, we have b′ = x, i.e. b′ is
closed. By assumption [0, b′] is Noetherian (resp. compact). Hence also [0, b] is
Noetherian (resp. compact). Analogously [0, c] is Noetherian (resp. compact)
and so is the interval [0, b ∨ c] = [0, a].

(b.iii)⇒(a). First note that L has to have finite Goldie dimension. Sup-
pose that there exists a countably infinite independent family of elements
{ai}i∈N. Since a1 ∧ (a2 ∨ · · · ∨ an) = 0 for any n > 1, by weak upper conti-
nuity we also have a1 ∧ (

∨
i>1 ai) = 0. Thus

∨
i≥1 ai is decomposable and

by hypothesis [0,
∨

i≥1 ai] is compact, i.e. there exists n > 1 such that∨n
i=1 ai =

∨
i≥1 ai, i.e. an+1 ≤

∨n
i=1 ai, which contradicts the assumption

that the set {ai}i∈N is independent. Thus L has finite Goldie dimension.
Let a1 ≤ a2 ≤ · · · be a chain of non-essential elements. Since L has finite

Goldie dimension, there exists by Theorem 2.1(d) an index i such that ai
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is essential in [0, aj ] for any j > i. Given a pseudo-complement b of ai we
also have b ∧ aj = 0 for j > i since ai is essential in [0, aj ]. By weak upper
continuity, b∧(

∨
j≥i aj) = 0. Hence b∨

∨
j≥i aj =

∨
j≥i b∨aj is decomposable

and by assumption [0,
∨

j≥i b ∨ aj ] is compact. Thus there exists n ≥ i such
that aj ≤ b ∨ an and hence aj = an for all j ≥ n.

Examples of lattices satisfying the conditions of Theorem 2.2 are obvi-
ously Noetherian lattices or uniform lattices. Before we apply our theorem
to modules we note the following:

Proposition 2.3. Let L be a lattice such that every pseudo-complement
is a complement. Then the following conditions are equivalent:

(a) L satisfies ACC on non-essential elements;
(b) L is pseudo-complemented and [0, a] is Noetherian for any decompos-

able element a ∈ L;
(c) L is Noetherian or uniform.

Proof. (a)⇒(b) is trivial by Theorem 2.2(b.iii).
(b)⇒(c). If L is not uniform, then there exists a non-zero non-essential

element a ∈ L. Since L is pseudo-complemented, a has a pseudo-complement
in L, which by assumption is a complement. Thus 1 is a decomposable ele-
ment and hence Noetherian by assumption.

(c)⇒(a) is trivial.

3. Modules with descending chain condition on non-small sub-
modules. Let M be a left R-module over a (unital associative) ring R. As
mentioned before, the submodule lattice L(M) is upper continuous, hence
Theorem 2.2 becomes [SV, Theorem 1.8]. It is also interesting to apply The-
orem 2.2 to the dual of L(M).

The dual Goldie dimension of a module is the Goldie dimension of L(M)o.
A submodule N of M is called small if it is essential in L(M)o, and coclosed
if it is essentially closed in L(M)o. Given two submodules N and L of M , N
is called a supplement of L inM if N is a pseudo-complement of L in L(M)o.
If L(M)o is (amply) pseudo-complemented, thenM is called (amply) supple-
mented. The existence of supplements in a module is not secured, since in gen-
eral, the lattice L(M)o is not upper continuous. According to Grothendieck,
an object in an abelian category is said to satisfy (AB5) if its lattice of
subobjects is upper continuous. Modules M whose dual submodule lattice
L(M)o is upper continuous are said to satisfy (AB5∗), i.e. for any chain of
submodules {Bi}i and submodule A ofM one has A+(

⋂
iBi) =

⋂
i(A+Bi).

We say that a module M satisfies weak (AB5∗) if L(M)o is weakly upper
continuous, i.e. for any chain of submodules {Bi}i and submodule A of M
with A+Bi = M for all i, also A+(

⋂
iBi) = M . With this terminology, the
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dual version of Theorem 2.2 yields the following characterization of modules
with finite spanning dimension. Recall that in his attempt to dualize the
Goldie dimension for modules, P. Fleury said that a module has finite span-
ning dimension if for any descending chain of submodules N1 ⊇ N2 ⊇ · · ·
there exists an i ∈ N such that Nj is small in M for all j ≥ i (see [F]).
This condition is obviously equivalent to M satisfying the descending chain
condition for non-small submodules. For more information on modules with
spanning dimension we refer the reader to [Ra, S1, S2, S3].

Theorem 3.1. The following statements are equivalent for a left R-
module M :

(1) M has finite spanning dimension, i.e. M satisfies the descending
chain condition (DCC) on non-small submodules;

(2) M satisfies weak (AB5∗) and every factor M/N by a non-small sub-
module N of M is Artinian (resp. finitely cogenerated);

(3) M satisfies weak (AB5∗) and every factor M/N by a non-zero co-
closed submodule N of M is Artinian (resp. finitely cogenerated);

(4) M satisfies weak (AB5∗) and every decomposable factor module of M
is Artinian (resp. finitely cogenerated).

In this case M is amply supplemented and has finite dual Goldie dimension.

The radical Rad(M) of a module M is the sum of all small submod-
ules. In general Rad(M) does not need to be small. In [AS] Al-Khazzi and
Smith proved that Rad(M) is Artinian if and only if M has DCC on small
submodules. Note that M/Rad(M) is Artinian for any module with dual
Goldie dimension. Thus M is Artinian if and only if M has DCC on small
submodules and on non-small submodules.

A module M is called hollow if L(M)o is uniform. Artinian and hollow
modules have finite spanning dimension. For M = R, these are the only
possibilities, as we will see. Recall that a module M is called π-projective if
whenever M = N +K, then End(M) = Hom(M,N) + Hom(M,K). Projec-
tive modules are π-projective. Proposition 2.3 yields the following corollary:

Corollary 3.2. Let M be a module such that every supplement is a
direct summand. Then the following statements are equivalent:

(a) M has finite spanning dimension;
(b) M is supplemented and decomposable factor modules of M are Ar-

tinian;
(c) M is Artinian or hollow.

In particular a π-projective module M with finite spanning dimension is Ar-
tinian or hollow.
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Proof. The first statement is a direct translation of Proposition 2.3. A
supplemented π-projective module has the property that supplements are
direct summands since those are precisely the quasi-discrete modules (see
[CLVW]).

In order to find a module with finite spanning dimension which is nei-
ther Artinian nor hollow we might think of finding a module whose radical
Rad(M) is a waist, i.e. either N ⊆ Rad(M) or Rad(M) ⊆ N for any sub-
module N of M . In this case Rad(M) is the largest small submodule of M
and M has finite spanning dimension if and only if M/Rad(M) has. Thus
we need to find a module with finite dual Goldie dimension greater than 1,
whose radical is non-Artinian and a waist.

Example 3.3. Let K be a field and V a vector space over K. Denote
by R = [K,V ⊕ V ] the trivial extension of K by V ⊕ V , i.e. as K-vector
space R = K⊕V ⊕V and multiplication is defined by (λ, v, w).(λ′, v′, w′) =
(λλ′, λv′ + vλ′, λw′ + wλ′) for all λ, λ′ ∈ K and v, v′, w, w′ ∈ V . Let M =
V ⊕K ⊕K and define a left R-module structure on it by

(λ, v, w) · (u, α, β) = λ(u, α, β) + (αv + βw, 0, 0)

where λ, α, β ∈ K and u, v, w ∈ V .

Claim. (V, 0, 0) is a waist of M .

Let (u, α, β) ∈M . If (u, α, β) 6∈ (V, 0, 0), then we can assume that α 6= 0
or β 6= 0. Without loss of generality, suppose α 6= 0. For any v ∈ V , we have

(0, α−1v, 0) · (u, α, β) = 0 · (u, α, β) + (αα−1v, 0, 0) = (v, 0, 0).

Thus (V, 0, 0) ⊆ R(u, α, β).
As a consequence, (V, 0, 0) is small in M , as any waist is. Moreover

M/(V, 0, 0) ∼= K2 is semisimple and so Rad(M) = (V, 0, 0) and every non-
small submodule of M contains (V, 0, 0). Thus any chain of non-small sub-
modules of M can be considered a chain in M/(V, 0, 0), which is finite-
dimensional. Hence every such chain stops.

M is not hollow as it has the two maximal submodules R · (0, 1, 0) and
R · (0, 0, 1).

Also note that M is Artinian if and only if Rad(M) is Artinian if and
only if dim(V ) <∞.

So we see that for any infinite-dimensional vector space V over K, M =
V ⊕K ⊕K is a non-Artinian non-hollow left R-module with finite spanning
dimension.

We can show a kind of Fitting’s Lemma for modules with chain conditions
on non-small submodules. A ring S is called strongly π-regular if for any f ∈
S the chain fS ⊇ f2S ⊇ · · · stops, while a module M is called strongly co-
Hopfian if for every endomorphism f of M , the chain Im(f) ⊇ Im(f2) ⊇ · · ·
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stops (see [HKC]). Recall from [CLVW] that the small ideal of a moduleM is
defined as ∇(M) = {f ∈ EndR(M) | Im(f)�M}. We see that any module
M with finite spanning dimension and ∇(M) = 0 is strongly co-Hopfian. On
the other hand, if a module M has finite dual Goldie dimension, then any
epimorphism f : M → M has a small kernel (see [CLVW]). These modules
are called generalized Hopfian in [GH].

Recall that a moduleM is called semi-projective if fS = Hom(M, Im(f))
for all f ∈ S = End(M) (see [CLVW, 4.20]).

Proposition 3.4. Let M be a module with finite spanning dimension
and let S = End(M). For any f ∈ S there exists n > 0 such that fn ∈ ∇(M)
or Im(fn) is a supplement of Ker(fn) in M . In particular if M is semi-
projective, then S/∇(M) is strongly π-regular.

Proof. If fn 6∈ ∇(M) for all n > 0, then Im(f) ⊇ Im(f2) ⊇ · · · is a
descending chain of non-small submodules and must stop. Thus there exists
n > 0 such that Im(fn) = Im(fm) for all m > n. Let x ∈ M . Then there
exists y ∈ M such that (x)fn = (y)f2n as Im(fn) = Im(f2n). Hence x =
(y)fn + (x− (y)fn) ∈ Im(fn) + Ker(fn).

Note that Im(fn), as a factor module ofM , has finite dual Goldie dimen-
sion and that any epimorphism of a module with finite dual Goldie dimension
has small kernel. Since fn : Im(fn)→ Im(f2n) = Im(fn) is an epimorphism,
its kernel Ker(fn) ∩ Im(fn) is small in Im(fn), i.e. Im(fn) is a supplement
of Ker(fn) in M .

Assume that M is semi-projective. Let f ∈ S. If there exists n > 0 such
that fn ∈ ∇(M), then fn is nilpotent in S′ = S/∇(M) and so fnS′ = fmS′

for all m > n. If fn 6∈ ∇(M) for all n > 0, then there exists n > 0 such that
Im(fn) = Im(fm) for all m > n. Thus fnS = Hom(M, Im(fm)) = fmS and
also fnS′ = fmS′, i.e. S′ = S/∇(M) is strongly π-regular.

4. Ascending chain conditions on non-small submodules. We
close this paper by dualizing Smith and Vedadi’s result on modules with
DCC on non-essential submodules.

Theorem 4.1. The following statements are equivalent for a lattice L:

(a) L satisfies DCC on non-essential elements;
(b) [0, a] is Artinian for any non-essential element a ∈ L;
(c) [0, a] is Artinian for any decomposable element a ∈ L.

If L is amply pseudo-complemented, then the following statement is equiva-
lent to (a)–(c):

(d) [0, a] is Artinian for any proper closed element a ∈ L.
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Proof. (a)⇒(b) is clear, since any descending chain in [0, a] with a non-
essential is a descending chain of non-essential elements.

(b)⇒(c). If a is decomposable with a = b ∨ c and b ∧ c = 0, then b and
c are non-essential, hence [0, b] and [0, c] are Artinian and so is their direct
sum [0, a].

(c)⇒(a). If a1 ≥ a2 ≥ · · · is a descending chain of non-essential elements,
then there exists b ∈ L with b∧a1 = 0. Thus ai ∈ [0, b∨a1], which is Artinian
by hypothesis, and hence the chain has to stop.

(b)⇒(d) is clear since proper closed elements are non-essential.
Suppose that L is amply pseudo-complemented and [0, a] is Artinian for

all closed elements a ∈ L. Let a ∈ L be a non-essential element and b an
element with a ∧ b = 0. There exists a pseudo-complement a′ of b such that
a ≤ a′, as L is amply pseudo-complemented. Hence [0, a′] is Artinian as
pseudo-complements are closed, and also [0, a] is Artinian as a ≤ a′.

As mentioned before, the submodule lattice L(M) is upper continuous
and hence amply pseudo-complemented. Thus Theorem 4.1 becomes [SV,
Theorem 1.4]. It is more interesting to apply Theorem 4.1 to the dual of
L(M), which leads to the following theorem.

Theorem 4.2. The following conditions are equivalent for a module M :

(a) M satisfies ACC on non-small submodules;
(b) M/N is Noetherian for every non-small submodule N of M ;
(c) every decomposable factor module of M is Noetherian.

If M is amply supplemented, then (a)–(c) are also equivalent to:

(d) M/N is Noetherian for every non-zero coclosed submodule N of M .

Note that condition (d) does not necessarily imply (a)–(c) if M is not
amply supplemented, since (d) is trivially fulfilled for modulesM whose only
coclosed submodule isM . Recall that a coclosed ideal in a commutative ring
is idempotent (see [CLVW, 4.17]). Hence any commutative ring R whose only
idempotent ideals are 0 and R, has only one coclosed ideal, namely I = R,
which fulfills condition (d) trivially. On the other hand if Rad(M) = 0 for
a module M , then any submodule is non-small and “ACC on non-smalls”
means “Noetherianness”. Thus any commutative non-Noetherian ring R with
Jac(R) = 0 and without non-trivial idempotent ideals is an example of a
module satisfying 4.2(d) but not having ACC on non-smalls. We shall give
such an example now:

Lemma 4.3. If F is a field of characteristic zero and X is any infinite
set of variables, then the polynomial ring R = F [X] in the variables x ∈ X
over F is a non-Noetherian integral domain with Jac(R) = 0 and without
non-trivial idempotent ideals.
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Proof. Surely R is a commutative non-Noetherian domain with Jac(R)
= 0. Any element 0 6= f ∈ R can be uniquely written as a finite linear
combination of monomials in variables x ∈ X and the constant polynomial 1.
Denote by supp(f) the support of f , which is the finite set of variables that
appear in the monomials which span f . Let I be an idempotent ideal of R
and consider the set {|supp(f)| | 0 6= f ∈ I}, which is non-empty subset of N,
since I 6= 0. Let 0 6= f ∈ I with |supp(f)| minimal. Suppose that supp(f)
is not empty and let x ∈ supp(f). We can write f =

∑n
l=0 glx

l for some
polynomials gl, with gn 6= 0, whose support is contained in supp(f) \ {x}.
Applying n times the partial derivative ∂

∂x to f yields ∂n

∂xn (f) = (n!)gn,
which is non-zero since gn 6= 0 and F has characteristic zero. Note that
I is closed under the action of any derivation D, i.e. D(I) ⊆ I, because
D(I) = D(II) ⊆ D(I)I + ID(I) ⊆ I. Hence 0 6= gn ∈ I having smaller
support than f contradicts the minimality of the support of f . Thus supp(f)
must be empty, which makes f a non-zero, hence invertible, constant. Thus
I = R.

Example 3.3 is an example of a module with ACC on non-small sub-
modules which is neither Noetherian nor hollow. Another example of such a
module is the following:

Example 4.4. Let R be the trivial extension of Z by Q, i.e. R = Z×Q
with componentwise addition and multiplication defined by

(n, q)(m, p) = (nm, np+ qm), ∀n,m ∈ Z, q, p ∈ Q.

Note that Jac(R) = 0 × Q is a waist. To see this, take (n, q) ∈ R with
n 6= 0. Then for all p ∈ Q we have (0, 1

np)(n, q) = (0, p), i.e. R(n, q) ⊃ 0×Q.
Thus each non-small submodule contains Jac(R) and as R/Jac(R) ' Z is
Noetherian, R has ACC on non-small submodules, but is neither Noetherian
nor hollow (as Z is not hollow).

Any Noetherian, non-Artinian, non-local ring is an example of a module
with ACC, but not DCC, on non-small submodules, while for any Artinian,
non-Noetherian module M over some ring R, the module M ⊕M satisfies
DCC, but not ACC, on non-small submodules.

Since Rad(M) contains all small submodules, all submodules that prop-
erly contain Rad(M) are non-small. Thus if M has ACC on non-small sub-
modules, then any chain of submodules containing Rad(M) stops and we
have:

Proposition 4.5. M/Rad(M) is Noetherian if M satisfies ACC on
non-small submodules.

The last observation and a result by Al-Khazzi and Smith in [AS] which
says that Rad(M) is Noetherian if and only if M has ACC on small sub-
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modules allows one to conclude that a module is Noetherian if and only if it
satisfies ACC on small submodules and on non-small submodules.

Analogously to Propositon 3.4 we finish the paper with a statement on
endomorphisms of modules with ACC on non-small submodules.

Proposition 4.6. Let M be a module with ACC on non-small submod-
ules. Then for any f ∈ S there exists n > 0 such that Im(fn)∩Ker(fn) = 0
or Ker(f) is small in M . In particular M is generalized Hopfian (see [GH]).

Proof. If Ker(f) is not small in M , then Ker(f) ⊆ Ker(f2) ⊆ · · · is an
ascending chain of non-small submodules that must stop. Thus there exists
n > 0 such that Ker(fn) = Ker(fm) for all m > n. Let x ∈ Im(fn)∩Ker(fn)
and y ∈ M with x = (y)fn. Since 0 = (x)fn = (y)f2n, we have y ∈
Ker(f2n) = Ker(fn), i.e. x = (y)fn = 0.

If f is an epimorphism of M , so is every power of f . Hence if there exists
n > 0 with 0 = Im(fn) ∩ Ker(fn) = Ker(fn), then Ker(fn) = 0 = Ker(f)
and f is an isomorphism. Otherwise Ker(f) is small in M .
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