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Abstract. Based on a lattice-theoretic approach, we give a complete characterization
of modules with Fleury’s spanning dimension. An example of a non-Artinian, non-hollow
module satisfying this finiteness condition is constructed. Furthermore we introduce and
characterize the dual notion of Fleury’s spanning dimension.

1. Introduction. Smith and Vedadi [SV] characterized modules which
satisfy the ascending (resp. descending) chain condition for non-essential
submodules. Modules that satisfy the descending chain condition for non-
small submodules have been studied by Fleury in [F] in his search for a dual
Goldie dimension. He termed modules with DCC on non-small modules mod-
ules with finite spanning dimensions. A conceptually cleaner dualization of
Goldie’s dimension than Fleury’s had been carried out by Grzeszczuk and
Puczylowski in [GP] by introducing a notion of Goldie dimension for modular
lattice. The dual Goldie dimension of a module being the Goldie dimension
of the dual of its lattice of submodules reassembles earlier dualization at-
tempts made by Varadarajan [V], Takeuchi [T] and Reiter [Re]. Fleury’s
spanning dimension however remained a rather subtle module-theoretic con-
dition between the Artinianness of a module and the finiteness of its dual
Goldie dimension.

In this paper we will give a complete characterization of Fleury’s notion
and will also construct a non-Artinian, non-hollow example with finite span-
ning dimension. Following Grzeszczuk and Puczylowski’s idea we will prove
Smith and Vedadi’s results for modular lattices and apply them to the dual
lattice of the lattice of submodules of a module to obtain this characteriza-
tion. We close by considering modules with ascending chain conditions on
non-small submodules.

Throughout this paper, R denotes an associative ring with unit and all
modules are unitary left R-modules.
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2. Modular lattices. A lattice (L, A, V) (for short L) is a partial or-
dered set (L, <) such that for any a,b € L there exist elements a A b and
a Vb such that a Ab is the largest element ¢ in L with ¢ < a and ¢ < b while
a V b is the smallest element ¢ in L with ¢ < ¢ and b < ¢. For two elements
a < b we denote by [a,b] = {¢ € L | a < ¢ < b} the interval of elements
between a and b. A lattice (L, V, A) is complete if joins \/ X and meets A\ X
exist for any non-empty subsets X C L. In this case the smallest element of
L is denoted by 0 and its largest element by 1. L is called modular if for all
a,b,ce L,

a<b=bA(aVc)=aV(bAc).

All lattices in this paper are supposed to be complete and modular. For
a thorough introduction to lattice theory we refer the reader to Grétzer’s
book [Gl.

If M is a module over a ring R and L£(M) is its set of submodules, then
(L(M),+,0N) is a complete modular lattice with inclusion as partial ordering.

The dual lattice L° of a lattice (L, A, V) consists of the same underlying
set L, but with reversed partial ordering <°, i.e. for all a,b € L : a <° b <
a > b. If L is complete (modular), then so is L°.

An element a is a complement of an element b in a modular lattice L if aVb
=1 and a Ab = 0. We say that L is decomposable if there exist complements
different from 0 and 1. An element a € L with be called decomposable if [0, a
is decomposable. Note that in the case of L = £(M), a submodule A of M
is a complement in £(M) if and only if it is a direct summand of M.

A pseudo-complement of an element a in L is a maximal element of the
set 2, ={ce€ L|aAc=0}, and L is called pseudo-complemented if every
element of L has a pseudo-complement in L. Given a pseudo-complement b
of a the element a \ b has the property that for any ¢ € L, cA (aVb) =0 =
¢ =0, since if ¢ A (a VvV b) = 0, then (¢ A (a Vb)) Vb= b and by modularity
b= (cVb)A(aVb)=((cVb)Aa)Vb. Thisimplies (cVb)Aa <bAa=0.
As b is maximal, ¢ < b, and hence ¢ < cA (bVa) =0, ie. ¢ =0.

An element z € L such that yAz =0 =y =0, for all y € L, is called
essential. The main object of this paper are chain conditions for non-zero
elements that are not essential (called non-essential) with applications to the
dual submodule lattice of a module. A lattice L is called uniform if every
non-zero element of L is essential in L. An element a € L such that whenever
a <be L and a is essential in [0,b] then a = b, is called (essentially) closed
in L.

Goldie’s dimension notion for modules is based on the notion of an in-
dependent family of submodules which generalizes the notion of a basis for
vector spaces. Transferring Goldie’s notion to modular lattices, Grzeszczuk
and Puczylowski called a subset I C L\ {0} of a lattice L independent if for
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any finite subset X of I and z € I\ X one has (\/ X) Az = 0. They proved
the following theorem in [GPl Theorem 5]:

THEOREM 2.1. For a complete modular lattice L the following conditions
are equivalent:

(a) L does not contain infinite independent sets.

(b) L contains a finite independent set {a,...,an} such that a1V---Vay,
is essential in L and the lattices [0, a;] are uniform for 1 <i <n.

(c) sup{k | L contains an independent subset of cardinality equal to k} =
n < o0.

(d) For any ascending chain a; < ag < --- of elements of L there exists
J such that a; is essential in [0, ag] for all k > j.

We say that L has finite Goldie dimension if it satisfies one of the con-
ditions above. The number n in (c) is called the Goldie dimension of L.

While complete modular lattices do not in general have to be pseudo-
complemented, any submodule lattice £(M) of a module M is pseudo-
complemented since L = £(M) has an even stronger property, namely for
any element a € L and chain C' C L,

a/\\/C’: \/(a/\c).
ceC
A complete modular lattice with this property is called upper continuous. If
L is upper continuous, then, by Zorn’s Lemma, 2, has a maximal element
for each a € L, i.e. L is pseudo-complemented. To characterize lattices that
satisfy the ascending chain condition on non-essential elements, we need to
weaken the above notions. We say that a complete modular lattice L is weakly
upper continuous (or a *-lattice) if for any a € L and chain C C L,

\/(a/\c) =0 = a/\\/C:O.

ceC
Any weakly upper continuous lattice L is pseudo-complemented, because for
any a € L, the set 2, = {b € L |aAb=0} is closed under joins of chains
and hence has a maximal element by Zorn’s Lemma. Call a lattice L amply
pseudo-complemented if for any a,b € L with a Ab = 0, there exists a pseudo-
complement a’ of b with a < a’. Any weakly upper continuous lattice is amply
pseudo-complemented, because the set {2, ,={a’ € L | a < a’ and o’ Nb=0}
is non-empty and closed under joins of chains. Hence by Zorn’s Lemma it
has a maximal element, which is the desired pseudo-complement of b.

Recall that a lattice L is called compact if 1 = \/ X for some subset X

of L; then there exist a1,...,a, € X with 1 = a1 V --- V a,. Noetherian
lattices are compact. We call an element a of a complete lattice proper if

a# 1.
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THEOREM 2.2. The following statements are equivalent for a complete
modular lattice L:

(a) L satisfies the ascending chain condition (ACC) on non-essential el-
ements;

(b) L is weakly upper continuous and [0, a] is Noetherian (resp. compact)
for all a € S, where S is one of the following sets:

(1) the set of non-essential elements of L,
(ii) the set of proper closed elements of L,
(iii) the set of decomposable elements of L.

In this case L is amply pseudo-complemented and has finite Goldie dimen-
St0M.

Proof. (a)=(b.i). Let 0 # a € L and C' C L a chain of elements with
Veec(aNc) =0. Then aAc = 0 for all ¢ € C, which shows that the elements
of C' are non-essential. Thus C' must be finite, since otherwise it would con-
tain a countable infinite subchain by < by < --- of non-essential elements
that does not stop, which would contradict (a). Since C' is finite, \/ C is an
element of C' and we have a A \/ C' = 0. This shows that L is weakly upper
continuous. If a is non-essential, then so is every non-zero element in [0, a]. In
particular, any chain in [0, a] stops, i.e. [0, a] is Noetherian (resp. compact).

(b.i)=-(b.ii) is trivial since any proper closed element is non-essential
in L.

(b.ii)=(b.iii). Let a be a decomposable element with a = bV ¢ and
bAc =0 where 0 < b,¢c < a. By the remark preceding the theorem, a
weakly upper continuous lattice is amply pseudo-complemented. Thus there
are mutual pseudo-complements b’ and ¢ such that b < V' and ¢ < ¢ and
b’ is a pseudo-complement of ¢’ and vice versa. Note that if &’ < x with o/
being essential in [0, ], then (x A ) AV = AV = 0 implies 2 A ¢ = 0.
As b is maximal with respect to b A ¢ = 0, we have b = z, i.e. b is
closed. By assumption [0, &'] is Noetherian (resp. compact). Hence also [0, b] is
Noetherian (resp. compact). Analogously [0, ¢] is Noetherian (resp. compact)
and so is the interval [0,bV ¢] = [0, al.

(b.iii)=(a). First note that L has to have finite Goldie dimension. Sup-
pose that there exists a countably infinite independent family of elements
{a;}ien. Since a; A (ag V -+ V ay,) = 0 for any n > 1, by weak upper conti-
nuity we also have a1 A (\/;5; a;) = 0. Thus \/;5, a; is decomposable and
by hypothesis [0,\/,~; a;] is compact, i.e. there exists n > 1 such that
Viyai = Vs @i, 1e. apy1 < Vi, a;, which contradicts the assumption
that the set {a;};en is independent. Thus L has finite Goldie dimension.

Let a1 < as < --- be a chain of non-essential elements. Since L has finite
Goldie dimension, there exists by Theorem (d) an index ¢ such that a;
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is essential in [0, a;] for any j > i. Given a pseudo-complement b of a; we
also have b A aj = 0 for j > i since a; is essential in [0, a;]. By weak upper
continuity, bA(V;>; a;) = 0. Hence bVV 5, a; = V5, bV a; is decomposable
and by assumption [0, \/ j>ibV a;] is compact. Thus there exists n > i such
that a; < bV a, and hence a; = a, for all j > n. =

Examples of lattices satisfying the conditions of Theorem are obvi-
ously Noetherian lattices or uniform lattices. Before we apply our theorem
to modules we note the following:

PROPOSITION 2.3. Let L be a lattice such that every pseudo-complement
is a complement. Then the following conditions are equivalent:

(a) L satisfies ACC on non-essential elements;

(b) L is pseudo-complemented and [0, a] is Noetherian for any decompos-
able element a € L;

(¢) L is Noetherian or uniform.

Proof. (a)=(Db) is trivial by Theorem [2.2](b.iii).

(b)=(c). If L is not uniform, then there exists a non-zero non-essential
element a € L. Since L is pseudo-complemented, a has a pseudo-complement
in L, which by assumption is a complement. Thus 1 is a decomposable ele-
ment and hence Noetherian by assumption.

(c)=(a) is trivial. =

3. Modules with descending chain condition on non-small sub-
modules. Let M be a left R-module over a (unital associative) ring R. As
mentioned before, the submodule lattice £(M) is upper continuous, hence
Theorem becomes [SV] Theorem 1.8]. It is also interesting to apply The-
orem [2.2| to the dual of L(M).

The dual Goldie dimension of a module is the Goldie dimension of £(M )°.
A submodule N of M is called small if it is essential in L(M)°, and coclosed
if it is essentially closed in £(M)°. Given two submodules N and L of M, N
is called a supplement of L in M if N is a pseudo-complement of L in L(M)°.
If £L(M)® is (amply) pseudo-complemented, then M is called (amply) supple-
mented. The existence of supplements in a module is not secured, since in gen-
eral, the lattice £(M)® is not upper continuous. According to Grothendieck,
an object in an abelian category is said to satisfy (AB5) if its lattice of
subobjects is upper continuous. Modules M whose dual submodule lattice
L(M)° is upper continuous are said to satisfy (AB5*), i.e. for any chain of
submodules {B;}; and submodule A of M one has A+ (), B;) = ;(A+B,).
We say that a module M satisfies weak (AB5*) if L(M)° is weakly upper
continuous, i.e. for any chain of submodules {B;}; and submodule A of M
with A+ B; = M for all i, also A+ (("); B;) = M. With this terminology, the
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dual version of Theorem [2.2] yields the following characterization of modules
with finite spanning dimension. Recall that in his attempt to dualize the
Goldie dimension for modules, P. Fleury said that a module has finite span-
ning dimension if for any descending chain of submodules Ny O Ny D ---
there exists an ¢ € N such that N; is small in M for all j > i (see [E]).
This condition is obviously equivalent to M satisfying the descending chain
condition for non-small submodules. For more information on modules with
spanning dimension we refer the reader to [Ral [S1l, [S2] [S3].

THEOREM 3.1. The following statements are equivalent for o left R-
module M :

(1) M has finite spanning dimension, i.e. M satisfies the descending
chain condition (DCC) on non-small submodules;

(2) M satisfies weak (AB5*) and every factor M /N by a non-small sub-
module N of M is Artinian (resp. finitely cogenerated);

(3) M satisfies weak (AB5*) and every factor M/N by a non-zero co-
closed submodule N of M is Artinian (resp. finitely cogenerated);

(4) M satisfies weak (AB5*) and every decomposable factor module of M
is Artinian (resp. finitely cogenerated).

In this case M is amply supplemented and has finite dual Goldie dimension.

The radical Rad(M) of a module M is the sum of all small submod-
ules. In general Rad(M) does not need to be small. In [AS] Al-Khazzi and
Smith proved that Rad (M) is Artinian if and only if M has DCC on small
submodules. Note that M/Rad(M) is Artinian for any module with dual
Goldie dimension. Thus M is Artinian if and only if M has DCC on small
submodules and on non-small submodules.

A module M is called hollow if L£(M)® is uniform. Artinian and hollow
modules have finite spanning dimension. For M = R, these are the only
possibilities, as we will see. Recall that a module M is called w-projective if
whenever M = N + K, then End(M) = Hom(M, N) + Hom(M, K). Projec-
tive modules are m-projective. Proposition yields the following corollary:

COROLLARY 3.2. Let M be a module such that every supplement is a
direct summand. Then the following statements are equivalent:

(a) M has finite spanning dimension;

(b) M is supplemented and decomposable factor modules of M are Ar-
tintan;

(¢) M is Artinian or hollow.

In particular a w-projective module M with finite spanning dimension is Ar-
tinian or hollow.
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Proof. The first statement is a direct translation of Proposition 2.3} A
supplemented m-projective module has the property that supplements are

direct summands since those are precisely the quasi-discrete modules (see
[CLVW]). =

In order to find a module with finite spanning dimension which is nei-
ther Artinian nor hollow we might think of finding a module whose radical
Rad(M) is a waist, i.e. either N C Rad(M) or Rad(M) C N for any sub-
module N of M. In this case Rad(M) is the largest small submodule of M
and M has finite spanning dimension if and only if M/Rad(M) has. Thus
we need to find a module with finite dual Goldie dimension greater than 1,
whose radical is non-Artinian and a waist.

ExaMpPLE 3.3. Let K be a field and V' a vector space over K. Denote
by R = [K,V & V] the trivial extension of K by V & V, i.e. as K-vector
space R = K &V @V and multiplication is defined by (A, v, w).(N, v/, w’) =
(AN, 2 + oM A’ + wX) for all A, N € K and v,v,w,w’ € V. Let M =
V & K ® K and define a left R-module structure on it by

N v,w) - (u,a, B) = Mu, o, §) + (v + pw, 0,0)
where A\, o, 3 € K and u,v,w € V.
Cramm. (V,0,0) is a waist of M.

Let (u,a, B) € M. If (u,, B) & (V,0,0), then we can assume that o # 0
or 3 # 0. Without loss of generality, suppose o # 0. For any v € V', we have

(0, 10,0) - (u,, ) =0 (u, 2, B) + (e 10,0,0) = (v,0,0).

Thus (V,0,0) C R(u, a, 3).

As a consequence, (V,0,0) is small in M, as any waist is. Moreover
M/(V,0,0) = K? is semisimple and so Rad(M) = (V,0,0) and every non-
small submodule of M contains (V,0,0). Thus any chain of non-small sub-
modules of M can be considered a chain in M/(V,0,0), which is finite-
dimensional. Hence every such chain stops.

M is not hollow as it has the two maximal submodules R - (0,1,0) and
R-(0,0,1).

Also note that M is Artinian if and only if Rad(M) is Artinian if and
only if dim(V) < oo.

So we see that for any infinite-dimensional vector space V over K, M =
V & K ® K is a non-Artinian non-hollow left R-module with finite spanning
dimension.

We can show a kind of Fitting’s Lemma for modules with chain conditions
on non-small submodules. A ring S is called strongly w-reqular if for any f €
S the chain fS D f25 D --- stops, while a module M is called strongly co-
Hopfian if for every endomorphism f of M, the chain Im(f) 2 Im(f?) D ---
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stops (see [HKC]). Recall from [CLVW]| that the small ideal of a module M is
defined as V(M) = {f € Endr(M) | Im(f) < M}. We see that any module
M with finite spanning dimension and V(M) = 0 is strongly co-Hopfian. On
the other hand, if a module M has finite dual Goldie dimension, then any
epimorphism f : M — M has a small kernel (see [CLVW]). These modules
are called generalized Hopfian in [GHJ.

Recall that a module M is called semi-projective if fS = Hom (M, Im(f))
for all f € S = End(M) (see [CLVW], 4.20]).

PROPOSITION 3.4. Let M be a module with finite spanning dimension
and let S = End(M). For any f € S there exists n > 0 such that f™* € V(M)
or Im(f™) is a supplement of Ker(f™) in M. In particular if M is semi-
projective, then S/V (M) is strongly m-regular.

Proof. If f* ¢ V(M) for all n > 0, then Im(f) 2 Im(f2) D --- is a
descending chain of non-small submodules and must stop. Thus there exists
n > 0 such that Im(f™) = Im(f™) for all m > n. Let « € M. Then there
exists y € M such that (x)f™ = (y)f?" as Im(f") = Im(f?"). Hence = =
()" + (@ — (5)f") € Im( ) + Ker(f").

Note that Im(f™), as a factor module of M, has finite dual Goldie dimen-
sion and that any epimorphism of a module with finite dual Goldie dimension
has small kernel. Since f™ : Im(f") — Im(f?") = Im(f") is an epimorphism,
its kernel Ker(f™) NIm(f™) is small in Im(f"), i.e. Im(f") is a supplement
of Ker(f™) in M.

Assume that M is semi-projective. Let f € S. If there exists n > 0 such
that f € V(M), then f" is nilpotent in S’ = S/V(M) and so f"S" = f™S’
for all m > n. If f* ¢ V(M) for all n > 0, then there exists n > 0 such that
Im(f™) = Im(f™) for all m > n. Thus fS = Hom (M, Im(f™)) = f™S and
also f*S" = fmS' ie. S'=S/V(M) is strongly m-regular. =

4. Ascending chain conditions on non-small submodules. We
close this paper by dualizing Smith and Vedadi’s result on modules with
DCC on non-essential submodules.

THEOREM 4.1. The following statements are equivalent for a lattice L:

(a) L satisfies DCC on non-essential elements;
(b) [0,a] is Artinian for any non-essential element a € L;
(c) [0,a] is Artinian for any decomposable element a € L.

If L is amply pseudo-complemented, then the following statement is equiva-
lent to (a)—(c):

(d) [0,a] is Artinian for any proper closed element a € L.
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Proof. (a)=-(b) is clear, since any descending chain in [0, a] with a non-
essential is a descending chain of non-essential elements.

(b)=-(c). If a is decomposable with a = bV ¢ and b A ¢ = 0, then b and
c are non-essential, hence [0, b] and [0, ¢|] are Artinian and so is their direct
sum [0, a].

(c)=(a). Ifa; > ag > --- is a descending chain of non-essential elements,
then there exists b € L with bAa; = 0. Thus a; € [0,bVaq], which is Artinian
by hypothesis, and hence the chain has to stop.

(b)=-(d) is clear since proper closed elements are non-essential.

Suppose that L is amply pseudo-complemented and [0, a] is Artinian for
all closed elements a € L. Let a € L be a non-essential element and b an
element with a A b = 0. There exists a pseudo-complement a’ of b such that
a < d, as L is amply pseudo-complemented. Hence [0,a] is Artinian as
pseudo-complements are closed, and also [0, a] is Artinian as a < d'. m

As mentioned before, the submodule lattice £(M) is upper continuous
and hence amply pseudo-complemented. Thus Theorem becomes [SV],
Theorem 1.4]. It is more interesting to apply Theorem to the dual of
L(M), which leads to the following theorem.

THEOREM 4.2. The following conditions are equivalent for a module M :

(a) M satisfies ACC on non-small submodules;
(b) M/N is Noetherian for every non-small submodule N of M ;
(c) every decomposable factor module of M is Noetherian.

If M is amply supplemented, then (a)—(c) are also equivalent to:
(d) M/N is Noetherian for every non-zero coclosed submodule N of M.

Note that condition (d) does not necessarily imply (a)—(c) if M is not
amply supplemented, since (d) is trivially fulfilled for modules M whose only
coclosed submodule is M. Recall that a coclosed ideal in a commutative ring
is idempotent (see [CLVW,, 4.17]). Hence any commutative ring R whose only
idempotent ideals are 0 and R, has only one coclosed ideal, namely I = R,
which fulfills condition (d) trivially. On the other hand if Rad(M) = 0 for
a module M, then any submodule is non-small and “ACC on non-smalls”
means “Noetherianness”. Thus any commutative non-Noetherian ring R with
Jac(R) = 0 and without non-trivial idempotent ideals is an example of a
module satisfying (d) but not having ACC on non-smalls. We shall give
such an example now:

LEMMA 4.3. If F is a field of characteristic zero and X is any infinite
set of variables, then the polynomial ring R = F[X] in the variables x € X
over F is a non-Noetherian integral domain with Jac(R) = 0 and without
non-trivial idempotent ideals.
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Proof. Surely R is a commutative non-Noetherian domain with Jac(R)
= 0. Any element 0 # f € R can be uniquely written as a finite linear
combination of monomials in variables x € X and the constant polynomial 1.
Denote by supp(f) the support of f, which is the finite set of variables that
appear in the monomials which span f. Let I be an idempotent ideal of R
and consider the set {|supp(f)| | 0 # f € I}, which is non-empty subset of N,
since I # 0. Let 0 # f € I with |supp(f)| minimal. Suppose that supp(f)
is not empty and let x € supp(f). We can write f = Y, gi#! for some
polynomials g;, with g, # 0, whose support is contained in supp(f) \ {z}.
Applying n times the partial derivative % to f yields %(f) = (n!)gn,
which is non-zero since g, # 0 and F' has characteristic zero. Note that
I is closed under the action of any derivation D, i.e. D(I) C I, because
D(I) = D(II) C D(I)I + ID(I) C I. Hence 0 # g, € I having smaller
support than f contradicts the minimality of the support of f. Thus supp(f)
must be empty, which makes f a non-zero, hence invertible, constant. Thus

I=R. =

Example is an example of a module with ACC on non-small sub-
modules which is neither Noetherian nor hollow. Another example of such a
module is the following:

EXAMPLE 4.4. Let R be the trivial extension of Z by Q, i.e. R=7Z x Q
with componentwise addition and multiplication defined by

(n,q)(m,p) = (nm,np + gm), Vn,m € Z,q,p € Q.

Note that Jac(R) = 0 x Q is a waist. To see this, take (n,q) € R with
n # 0. Then for all p € Q we have (0, %p)(n, q) = (0,p), i.e. R(n,q) D 0xQ.
Thus each non-small submodule contains Jac(R) and as R/Jac(R) ~ Z is
Noetherian, R has ACC on non-small submodules, but is neither Noetherian
nor hollow (as Z is not hollow).

Any Noetherian, non-Artinian, non-local ring is an example of a module
with ACC, but not DCC, on non-small submodules, while for any Artinian,
non-Noetherian module M over some ring R, the module M @& M satisfies
DCC, but not ACC, on non-small submodules.

Since Rad(M) contains all small submodules, all submodules that prop-
erly contain Rad(M) are non-small. Thus if M has ACC on non-small sub-
modules, then any chain of submodules containing Rad(M) stops and we
have:

PROPOSITION 4.5. M/Rad(M) is Noetherian if M satisfies ACC on
non-small submodules.

The last observation and a result by Al-Khazzi and Smith in [AS] which
says that Rad(M) is Noetherian if and only if M has ACC on small sub-
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modules allows one to conclude that a module is Noetherian if and only if it

satisfies ACC on small submodules and on non-small submodules.
Analogously to Propositon [3.4] we finish the paper with a statement on

endomorphisms of modules with ACC on non-small submodules.

PROPOSITION 4.6. Let M be a module with ACC on non-small submod-
ules. Then for any f € S there exists n > 0 such that Im(f™) N Ker(f™) =0
or Ker(f) is small in M. In particular M is generalized Hopfian (see |[GH]).

Proof. If Ker(f) is not small in M, then Ker(f) C Ker(f?) C --- is an
ascending chain of non-small submodules that must stop. Thus there exists
n > 0 such that Ker(f") = Ker(f™) for all m > n. Let = € Im(f")NKer(f")
and y € M with 2 = (y)f". Since 0 = (2)f" = (y)f*", we have y €
Ker(f*") = Ker(f"), i.e. x = (y)f* = 0.

If f is an epimorphism of M, so is every power of f. Hence if there exists
n > 0 with 0 = Im(f") N Ker(f™) = Ker(f"), then Ker(f") = 0 = Ker(f)
and f is an isomorphism. Otherwise Ker(f) is small in M.
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