COLLOQUIUM MATHEMATICUM

THE EULER AND HELMHOLTZ OPERATORS ON FIBERED MANIFOLDS WITH ORIENTED BASES

BY
J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract

We study naturality of the Euler and Helmholtz operators arising in the variational calculus in fibered manifolds with oriented bases.

Given two fibered manifolds $Z_{1} \rightarrow M$ and $Z_{2} \rightarrow M$ over the same base M, we denote the space of all base preserving fibered manifold morphisms of Z_{1} into Z_{2} by $\mathcal{C}_{M}^{\infty}\left(Z_{1}, Z_{2}\right)$.

In [1], I. Kolář studied the Euler operator

$$
E: \mathcal{C}_{M}^{\infty}\left(J^{s} Y, \bigwedge^{m} T^{*} M\right) \rightarrow \mathcal{C}_{Y}^{\infty}\left(J^{2 s} Y, V^{*} Y \otimes \bigwedge^{m} T^{*} M\right)
$$

for fibered manifolds $p: Y \rightarrow M$. He deduced that all natural operators of this type are of the form $c E, c \in \mathbb{R}$, provided m is sufficiently large.

In [3], Kolář and Vitolo studied the Helmholtz operator

$$
H: \mathcal{C}_{Y}^{\infty}\left(J^{s} Y, V^{*} Y \otimes \bigwedge^{m} T^{*} M\right) \rightarrow \mathcal{C}_{J^{s} Y}^{\infty}\left(J^{2 s} Y, V^{*} J^{s} Y \otimes V^{*} Y \otimes \bigwedge^{m} T^{*} M\right)
$$

for fibered manifolds $p: Y \rightarrow M$. They deduced that all natural operators of this type are of the form $c H, c \in \mathbb{R}$, provided $s=1,2$. In [4], we extended this result to all s.

In the present paper, for a fibered manifold $p: Y \rightarrow M$ with oriented basis, we study the naturality of the Euler operator

$$
\widetilde{E}: \mathcal{V}_{o l}^{+}(M) \times \mathcal{C}^{\infty}\left(J^{s} Y, \mathbb{R}\right) \rightarrow \mathcal{C}_{Y}^{\infty}\left(J^{2 s} Y, V^{*} Y\right)
$$

given by $\widetilde{E}(\eta, \lambda) \otimes \eta=E(\lambda \otimes \eta)$ for any $\eta \in \mathcal{V}_{o l}{ }^{+}(M)$ and $\lambda \in \mathcal{C}^{\infty}\left(J^{s} Y, \mathbb{R}\right)$, where $\mathcal{V} o l^{+}(M)$ is the set of all positive volume forms on M.

We also study, for fibered manifolds $p: Y \rightarrow M$ with oriented bases, the naturality of the Helmholtz operator

$$
\widetilde{H}: \mathcal{V} o l^{+}(M) \times \mathcal{C}_{Y}^{\infty}\left(J^{s} Y, V^{*} Y\right) \rightarrow \mathcal{C}_{J^{s} Y}^{\infty}\left(J^{2 s} Y, V^{*} J^{s} Y \otimes V^{*} Y\right)
$$

defined from H just as \widetilde{E} from E.

[^0]The first main result of the present paper is
Theorem 1. Let m, n, s be natural numbers. Any $\mathcal{F} \mathcal{M}_{m, n}^{+}$-natural $\pi_{s}^{2 s_{-}}$ local, regular operator

$$
D: \mathcal{V}_{o l} l^{+}(M) \times \mathcal{C}^{\infty}\left(J^{s} Y, \mathbb{R}\right) \rightarrow \mathcal{C}_{Y}^{\infty}\left(J^{2 s} Y, V^{*} Y\right)
$$

\mathbb{R}-linear in the second factor and homogeneous of weight 0 in the first factor, is of the form $D=c \widetilde{E}, c \in \mathbb{R}$.

REMARK 1. $\mathcal{F} \mathcal{M}_{m, n}^{+}$denotes the category of all (m, n)-dimensional fibered manifolds with oriented bases and their fibered embeddings covering orientation preserving embeddings. The $\mathcal{F} \mathcal{M}_{m, n}^{+}$-naturality of D means that for any $\mathcal{F} \mathcal{M}_{m, n}^{+}$-map $f: Y_{1} \rightarrow Y_{2}$, any Lagrangians $\lambda_{1} \in \mathcal{C}^{\infty}\left(J^{s} Y_{1}, \mathbb{R}\right)$ and $\lambda_{2} \in \mathcal{C}^{\infty}\left(J^{s} Y_{2}, \mathbb{R}\right)$ and any positive volume forms $\eta_{1} \in \mathcal{V} o l^{+}\left(M_{1}\right)$ and $\eta_{2} \in \mathcal{V}_{o l}{ }^{+}\left(M_{2}\right)$ if λ_{1} and λ_{2} are f-related and η_{1} and η_{2} are f-related, then $D\left(\eta_{1}, \lambda_{1}\right)$ and $D\left(\eta_{2}, \lambda_{2}\right)$ are f-related. The regularity means that D transforms smoothly parametrized families of Lagrangians and volume forms into smoothly parametrized families of respective morphisms. The locality means that $D(\eta, \lambda)_{u}$ depends on $\operatorname{germ}_{\pi_{s}^{2 s}(u)}(\lambda)$ and $\operatorname{germ}_{x}(\eta)$ for any $u \in J_{x}^{2 s} Y$, $x \in M$, where $\pi_{s}^{2 s}: J^{2 s} Y \rightarrow J^{s} Y$ is the jet projection. The linearity in the second factor means that $D(\eta, \lambda)$ depends \mathbb{R}-linearly on $\lambda \in \mathcal{C}^{\infty}\left(J^{s} Y, \mathbb{R}\right)$ for any fixed $\eta \in \mathcal{V}$ ol ${ }^{+}(M)$. The homogeneity of weight 0 in the first factor means that $D(t \eta, \lambda)=D(\eta, \lambda)$ for $t>0$.

REMARK 2. Theorem 1 without the linearity assumption does not hold. For, let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a non-constant function. Then the operator $\widetilde{E}^{[h]}(\eta, \lambda)$ $=\left(h \circ \lambda \circ \pi_{s}^{2 s}\right) \widetilde{E}(\eta, \lambda)$ is not linear in the second factor.

REMARK 3. If $C: \mathcal{C}_{M}^{\infty}\left(J^{s} Y, \bigwedge^{m} T^{*} M\right) \rightarrow \mathcal{C}_{Y}^{\infty}\left(J^{2 s} Y, V^{*} Y \otimes \bigwedge^{m} T^{*} M\right)$ is a natural \mathbb{R}-linear operator, then (similarly to \widetilde{E}) one can define the corresponding natural operator $\widetilde{C}: \mathcal{V}_{o l^{+}}(M) \times \mathcal{C}^{\infty}\left(J^{s} Y, \mathbb{R}\right) \rightarrow \mathcal{C}_{Y}^{\infty}\left(J^{2 s} Y, V^{*} Y\right)$, \mathbb{R}-linear in the second factor and homogeneous of weight zero in the first factor. Using Theorem 1, we see that $\widetilde{C}=c \widetilde{E}$, and we recover the above mentioned result of [1] in the case of \mathbb{R}-linear operators. The inverse construction of C from \widetilde{C} is impossible because we have no canonical surjection $\mathcal{C}_{M}^{\infty}\left(J^{s} Y, \bigwedge^{m} T^{*} M\right) \rightarrow \mathcal{V}^{\prime} l^{+}(M) \times \mathcal{C}^{\infty}\left(J^{s} Y, \mathbb{R}\right)$. So, Theorem 1 is not a consequence of the result of [1].

The second main result of the present paper is
Theorem 2. Let m, n, s be natural numbers. Any $\mathcal{F} \mathcal{M}_{m, n}^{+}{ }^{-n a t u r a l,} \pi_{s}^{2 s_{-}}$ local, regular operator

$$
D: \mathcal{V}_{o l}^{+}(M) \times \mathcal{C}_{Y}^{\infty}\left(J^{s} Y, V^{*} Y\right) \rightarrow \mathcal{C}_{J^{s} Y}^{\infty}\left(J^{2 s} Y, V^{*} J^{s} Y \otimes V^{*} Y\right)
$$

\mathbb{R}-linear in the second factor and homogeneous with weight 0 in the first factor, is of the form $c \widetilde{H}, c \in \mathbb{R}$.

Remark 4. Theorem 2 without the assumption of linearity does not hold. For, we have a natural operator \widetilde{H}^{0} non-linear in the second factor given by $\left\langle\widetilde{H}^{0}(\eta, B)_{j_{x}^{2 s} \sigma}, v \otimes w\right\rangle=\left\langle B_{j_{x}^{s} \sigma}, T \pi_{0}^{s}(v)\right\rangle\left\langle B_{j_{x}^{s} \sigma}, w\right\rangle$ for $j_{x}^{2 s} \sigma \in J^{2 s} Y$, $x \in M, v \in V_{j_{x}^{s} \sigma} J^{s} Y, w \in V_{\sigma(x)} Y$.

Proof of Theorem 1. From now on $\mathbb{R}^{m, n}$ is the trivial bundle $\mathbb{R}^{m} \times \mathbb{R}^{n}$ $\rightarrow \mathbb{R}^{m}$ and $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ are the usual coordinates on $\mathbb{R}^{m, n}$.

Let D be an operator in question.
Since an $\mathcal{F} \mathcal{M}_{m, n}^{+}$-map $(x, y-\sigma(x))$ sends $j_{0}^{2 s}(\sigma)$ to $\Theta=j_{0}^{2 s}(0) \in$ $J_{0}^{2 s}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)=J_{0}^{2 s}\left(\mathbb{R}^{m, n}\right), J^{2 s}\left(\mathbb{R}^{m, n}\right)$ is the $\mathcal{F} \mathcal{M}_{m, n}^{+}$-orbit of Θ. Therefore D is uniquely determined by the evaluations

$$
\left\langle D(\eta, \lambda)_{\Theta}, v\right\rangle \in \mathbb{R}
$$

for all $\lambda \in \mathcal{C}^{\infty}\left(J^{s}\left(\mathbb{R}^{m, n}\right), \mathbb{R}\right), \eta \in \mathcal{V}_{o l}{ }^{+}\left(\mathbb{R}^{m}\right)$ and $v \in T_{0} \mathbb{R}^{n}=V_{(0,0)} \mathbb{R}^{m, n}$.
Using the invariance of D with respect to $\mathcal{F} \mathcal{M}_{m, n}^{+}$-morphisms of the form $\operatorname{id}_{\mathbb{R}^{m}} \times \psi$ for linear ψ we see that D is uniquely determined by the evaluations

$$
\left\langle D(\eta, \lambda)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle \in \mathbb{R}
$$

for all $\lambda \in \mathcal{C}^{\infty}\left(J^{s}\left(\mathbb{R}^{m, n}\right), \mathbb{R}\right)$ and $\eta \in \mathcal{V}_{o l}{ }^{+}\left(\mathbb{R}^{m}\right)$.
Consider an arbitrary positive volume form $\eta=f\left(x^{1}, \ldots, x^{m}\right) d x^{1} \wedge \ldots$ $\cdots \wedge d x^{m}$ on \mathbb{R}^{m}. There is a map $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $\frac{\partial}{\partial x^{1}} F=f$ and $F(0)=0$. Then the locally defined $\mathcal{F} \mathcal{M}_{m, n}^{+}-\operatorname{map}\left(F, x^{2}, \ldots, x^{m}, y^{1}, \ldots, y^{n}\right)^{-1}$ preserves $\Theta, \frac{\partial}{\partial y^{1}} 0$ and sends $\operatorname{germ}_{0}\left(d^{m} x\right)$ into $\operatorname{germ}_{0}(\eta)$, where $d^{m} x=$ $d x^{1} \wedge \cdots \wedge d x^{m}$. Then by naturality D is uniquely determined by the evaluations

$$
\left\langle D\left(d^{m} x, \lambda\right)_{\Theta}, \frac{\partial}{\partial y^{1}}{ }_{0}\right\rangle \in \mathbb{R}
$$

for all $\lambda \in \mathcal{C}^{\infty}\left(J^{s}\left(\mathbb{R}^{m, n}\right), \mathbb{R}\right)$.
By the \mathbb{R}-linearity in the second factor of D and by Corollary 19.8 in [1] we see that D is determined by the values

$$
\begin{equation*}
\left\langle D\left(d^{m} x, x^{\beta} M\left(y_{\alpha}^{j}\right)\right)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle \tag{1}
\end{equation*}
$$

where $\left(x^{i}, y_{\alpha}^{j}\right)$ is the induced coordinate system on $J^{s}\left(\mathbb{R}^{m, n}\right)$ and M is an arbitrary monomial in the y_{α}^{j} 's. (Here and below, α and β are arbitrary m-tuples with $|\alpha| \leq s$ and $j=1, \ldots, n$.)

Now, using the invariance of D with respect to the $\mathcal{F} \mathcal{M}_{m, n}^{+}-$maps

$$
\left(x^{1}, \ldots, x^{m}, \tau^{1} y^{1}, \ldots, \tau^{n} y^{n}\right)
$$

for $\tau^{j}>0$, we get the homogeneity condition which gives that (1) is zero if
$M\left(y_{\alpha}^{j}\right)$ is not of the form y_{α}^{1}. So, D is determined by the values

$$
\left\langle D\left(d^{m} x, x^{\beta} y_{\alpha}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle
$$

for α and β as above.
Next, using the invariance of D with respect to the $\mathcal{F} \mathcal{M}_{m, n}^{+}$-maps

$$
\left(x^{1}, \ldots, \tau^{i} x^{i}, \ldots, x^{m}, y^{1}, \ldots, y^{n}\right)
$$

for $\tau^{i}>0$ and using the \mathbb{R}-linearity in the second factor and the homogeneity of weight 0 in the first factor of D we get

$$
\begin{equation*}
\left\langle D\left(d^{m} x, x^{\beta} y_{\alpha}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle=0 \tag{2}
\end{equation*}
$$

if only $\beta_{i}-\alpha_{i} \neq 0$ for some $i=1, \ldots, m$ (i.e. if $\alpha \neq \beta$).
Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be an m-tuple with $|\alpha| \leq s$.
Suppose $\alpha_{i_{1}}>0$ for some $i_{1}=1, \ldots, m$.
The locally defined $\mathcal{F} \mathcal{M}_{m, n}^{+}$-map $\psi=\left(x^{1}, \ldots, x^{m}, y^{1}+x^{i_{1}} y^{1} \ldots, y^{n}\right)^{-1}$ preserves $x^{1}, \ldots, x^{m}, \Theta$ and $\frac{\partial}{\partial y^{1}}{ }_{0}$ and sends y_{α}^{1} to $y_{\alpha}^{1}+x^{i_{1}} y_{\alpha}^{1}+y_{\alpha-1_{i_{1}}}^{1}$ $\left(\right.$ as $y_{\alpha}^{1} \circ J^{s} \psi^{-1}\left(j_{x_{o}}^{s} \sigma\right)=\partial_{\alpha}\left(\sigma^{1}+x^{i_{1}} \sigma^{1}\right)\left(x_{o}\right)=\partial_{\alpha} \sigma^{1}\left(x_{o}\right)+x_{o}^{i_{1}} \partial_{\alpha} \sigma^{1}\left(x_{o}\right)+$ $\partial_{\alpha-1_{i_{1}}} \sigma^{1}\left(x_{o}\right)=\left(y_{\alpha}^{1}+x^{i_{1}} y_{\alpha}^{1}+y_{\alpha-1_{i_{1}}}^{1}\right)\left(j_{x_{o}}^{s} \sigma\right)$ for $j_{x_{o}}^{s} \sigma \in J^{s} \mathbb{R}^{m, n}$, where ∂_{α} is the iterated partial derivative with respect to the index α multiplied by $1 / \alpha!$). Then using the invariance of D with respect to ψ, from

$$
\left\langle D\left(d^{m} x, x^{\alpha-1_{1}} y_{\alpha}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle=0
$$

(see (2)) we see that

$$
\left\langle D\left(d^{m} x, x^{\alpha} y_{\alpha}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}}{ }_{0}\right\rangle=-\left\langle D\left(d^{m} x, x^{\alpha-1_{i_{1}}} y_{\alpha-1_{i_{1}}}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle
$$

Continuing this process we see that

$$
\left\langle D\left(d^{m} x, x^{\alpha} y_{\alpha}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}}{ }_{0}\right\rangle=(-1)^{|\alpha|}\left\langle D\left(d^{m} x, y_{(0)}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}}{ }_{0}\right\rangle
$$

Summing up, D is determined by the value

$$
\left\langle D\left(d^{m} x, y_{(0)}^{1}\right)_{\Theta}, \frac{\partial}{\partial y^{1}{ }_{0}}\right\rangle \in \mathbb{R}
$$

Thus the vector space of all D in question is of dimension less than or equal to 1 . Hence $D=c \widetilde{E}$ for some $c \in \mathbb{R}$.

Proof of Theorem 2. Let D be an operator in question. Let Θ be as in the proof of Theorem 1.

As in that proof, D is uniquely determined by

$$
\left\langle D(\eta, B)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(g(x), 0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}{ }_{0}}\right\rangle \in \mathbb{R}
$$

for all $B \in \mathcal{C}_{\mathbb{R}^{m, n}}^{\infty}\left(J^{s}\left(\mathbb{R}^{m, n}\right), V^{*} \mathbb{R}^{m, n}\right), \eta \in \mathcal{V} o l^{+}\left(\mathbb{R}^{m}\right)$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
Using the invariance of D with respect to the $\mathcal{F} \mathcal{M}_{m, n}^{+}$-maps $\left(x^{1}, \ldots, x^{m}\right.$, $\left.y^{1}+g(x) y^{1}, y^{2}, \ldots, y^{n}\right)$ preserving Θ we find that D is uniquely determined by

$$
\left\langle D(\eta, B)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}{ }_{0}}\right\rangle \in \mathbb{R}
$$

for all $B \in \mathcal{C}_{\mathbb{R}^{m, n}}^{\infty}\left(J^{s}\left(\mathbb{R}^{m, n}\right), V^{*} \mathbb{R}^{m, n}\right)$.
Then similarly to the proof of Theorem 1 (using $\mathcal{F} \mathcal{M}_{m, n}^{+}$-naturality), D is uniquely determined by

$$
\left\langle D\left(d^{m} x, B\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \in \mathbb{R}
$$

for all B as above.
Let $B \in \mathcal{C}_{\mathbb{R}^{m, n}}^{\infty}\left(J^{s}\left(\mathbb{R}^{m, n}\right), V^{*} \mathbb{R}^{m, n}\right)$. Using the invariance of D with respect to the $\mathcal{F} \mathcal{M}_{m, n}^{+}$-maps $\psi_{\tau}=\left(x^{1}, \ldots, x^{m},\left(1 / \tau^{1}\right) y^{1}, \ldots,\left(1 / \tau^{n}\right) y^{n}\right)$ for $\tau^{j} \neq 0$ we get the homogeneity condition

$$
\begin{aligned}
\left\langle D\left(d^{m} x,\left(\psi_{\tau}\right)_{*} B\right)_{\Theta}\right. & \left., \frac{d}{d t}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \\
& =\tau^{1} \tau^{2}\left\langle D\left(d^{m} x, B\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle
\end{aligned}
$$

for $\tau=\left(\tau^{1}, \ldots, \tau^{n}\right)$. Then by the second factor linearity of D and by Corollary 19.8 in [2] of the Peetre theorem,

$$
\left\langle D\left(d^{m} x, B\right)_{\Theta}, \frac{d}{d t}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle
$$

is determined by the values

$$
\begin{aligned}
& \left\langle D\left(d^{m} x, x^{\beta} y_{\alpha}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \\
& \left\langle D\left(d^{m} x, x^{\beta} y_{\alpha}^{1} d y^{2}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle
\end{aligned}
$$

for all m-tuples α and β with $|\alpha| \leq s$.
Then by the invariance of D with respect to the $\mathcal{F} \mathcal{M}_{m, n}^{+}$-maps

$$
\left(\tau^{1} x^{1}, \ldots, \tau^{m} x^{m}, y^{1}, \ldots, y^{n}\right)
$$

for $\tau^{i}>0$ and the first factor 0 -weight homogeneity of D we get

$$
\begin{align*}
& \left\langle D\left(d^{m} x, x^{\beta} y_{\alpha}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t}{ }_{0}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \tag{3}\\
& \quad=\left\langle D\left(d^{m} x, x^{\beta} y_{\alpha}^{1} d y^{2}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle=0
\end{align*}
$$

if only $\beta \neq \alpha$.
Suppose $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is an m-tuple with $|\alpha| \leq s$ and $\alpha_{i} \neq 0$ for some i. Then using the invariance of D with respect to the locally defined $\mathcal{F} \mathcal{M}_{m, n}^{+}$-map $\psi=\left(x^{1}, \ldots, x^{m}, y^{1}, y^{2}+x^{i} y^{2}, \ldots, y^{n}\right)^{-1}$ preserving $x^{1}, \ldots, x^{m}, y^{1}, \Theta, j_{0}^{s}(1,0, \ldots, 0)$ and $\frac{\partial}{\partial y^{2}}{ }_{0}$ and sending y_{α}^{2} to $y_{\alpha}^{2}+x^{i} y_{\alpha}^{2}+$ $y_{\alpha-1_{i}}^{2}$, from

$$
\left\langle D\left(d^{m} x, x^{\alpha-1_{i}} y_{\alpha}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle=0
$$

(see (3)) we deduce that

$$
\begin{aligned}
& \left\langle D\left(d^{m} x, x^{\alpha} y_{\alpha}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t}{ }_{0}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \\
& \quad=-\left\langle D\left(d^{m} x, x^{\alpha-1_{i}} y_{\alpha-1_{i}}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t}{ }_{0}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle
\end{aligned}
$$

Then for any m-tuple α with $|\alpha| \leq s$ we have

$$
\begin{aligned}
& \left\langle D\left(d^{m} x, x^{\alpha} y_{\alpha}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \\
& \quad=(-1)^{|\alpha|}\left\langle D\left(d^{m} x, y_{(0)}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle
\end{aligned}
$$

By the same arguments (since ψ sends $d y_{2}$ to $d y^{2}+x^{i} d y^{2}$), from

$$
\left\langle D\left(d^{m} x, x^{\alpha-1_{i}} y_{\alpha}^{1} d y^{2}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle=0
$$

we obtain

$$
\left\langle D\left(d^{m} x, x^{\alpha} y_{\alpha}^{1} d y^{2}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle=0
$$

if $\alpha \neq(0)$.
Using the invariance of D with respect to the local $\mathcal{F} \mathcal{M}_{m, n}^{+}$-map

$$
\left(x^{1}, \ldots, x^{m}, y^{1}+y^{1} y^{2}, \ldots, y^{n}\right)^{-1}
$$

preserving $\Theta, j_{0}^{s}(1,0, \ldots, 0)$ and $\frac{\partial}{\partial y^{2}}{ }_{0}$, from

$$
\left\langle D\left(d^{m} x, d y^{1}\right)_{\Theta}, \frac{d}{d t_{0}}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle=0
$$

we deduce that

$$
\begin{aligned}
\left\langleD \left(d^{m} x, y_{(0)}^{2}\right.\right. & \left.\left.d y^{1}\right)_{\Theta}, \frac{d}{d t}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \\
& =-\left\langle D\left(d^{m} x, y_{(0)}^{1} d y^{2}\right)_{\Theta}, \frac{d}{d t}{ }_{0}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle
\end{aligned}
$$

Thus D is uniquely determined by

$$
\left\langle D\left(d^{m} x, y_{(0)}^{2} d y^{1}\right)_{\Theta}, \frac{d}{d t}\left(t j_{0}^{s}(1,0, \ldots, 0)\right) \otimes \frac{\partial}{\partial y^{2}}{ }_{0}\right\rangle \in \mathbb{R}
$$

Therefore the vector space of all D in question is of dimension less than or equal to 1 . Hence $D=c \widetilde{H}$ for some $c \in \mathbb{R}$.

REFERENCES

[1] I. Kolář, Natural operators related with the variational calculus, in: Differential Geometry and its Applications (Opava, 1992), Silesian Univ., Opava, 1993, 461-472.
[2] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[3] I. Kolář and R. Vitolo, On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Philos. Soc. 135 (2003), 277-290.
[4] W. M. Mikulski, On naturality of the Helmholtz operator, Arch. Math. (Brno) 41 (2005), 145-149.

Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: kurek@golem.umcs.lublin.pl

Institute of Mathematics
Jagiellonian University
Reymonta 4
31-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 58A20, 58E30.
 Key words and phrases: natural operator, Euler operator, Helmholtz operator, Lagrangian.

