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ON STABILITY PROPERTIES OF POSITIVE
CONTRACTIONS OF L'-SPACES ASSOCIATED WITH
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BY
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and SEYIT TEMIR (Sanliurfa)

Abstract. We extend the notion of Dobrushin coefficient of ergodicity to positive
contractions defined on the L'-space associated with a finite von Neumann algebra, and
in terms of this coefficient we prove stability results for L'-contractions.

1. Introduction. The importance of investigating asymptotic behav-
ior of Markov operators on commutative L!'-spaces is well known (see [K]).
On the other hand, these investigations involve several notions of mixing
(weak mixing, mixing, complete mixing etc.) of L!-contractions of a measure
space. Relations between these notions are of great interest (see for example
[BLRT], [BKLM]). However, in those investigations the lattice property of
L'-spaces is essentially used. Therefore it is natural to consider Markov op-
erators on partially ordered Banach spaces which are not lattices. One class
of such spaces consists of L!-spaces associated with von Neumann algebras.
Note that these Banach spaces are ordered by strongly normal cones (see
[EW1]). In [EW1], [EWZ2], [S] certain asymptotic properties of Markov semi-
groups on non-commutative L'-spaces were studied.

In this paper we study uniformly (resp. strongly) asymptotically stable
contractions of L!-spaces associated with finite von Neumann algebras in
terms of the Dobrushin coefficients. The paper is organized as follows. Sec-
tion 2 contains some preliminary facts and definitions. In Section 3 we in-
troduce the Dobrushin coefficient of ergodicity of an L!-contraction. Using
this notion we prove a uniform asymptotic stability criterion for stochastic
operators, which is a non-commutative analog of Bartoszek’s result (see [B]).
Further in Section 4 we give an analog of the Akcoglu—Sucheston theorem
(see [AS]) for non-commutative L'-spaces. We hope that this result will
lead to subsequential ergodic theorems in a non-commutative setting (see
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[CL], [LM]). In the final Section 5 using the results of the previous section
we prove a strong asymptotic stability criterion for positive L!'-contractions.
We note that our results are not valid when the von Neumann algebra is
only semi-finite.

2. Preliminaries. Throughout the paper, M will be a von Neumann
algebra with unit 1, and 7 a faithful normal finite trace on M. Recall that
x € M is called self-adjoint if x = x*. The set of all self-adjoint elements
is denoted by Msg,. We denote by M, a pre-dual space to M. An element
p € My, is called a projector if p> = p. Let V be the set of all projectors;
V forms a logic. For p € V we set pL = 1 — p (for more definitions see
[BR], [T]).

The map || - |1 : M — [0, co) defined by the formula ||z||; = 7(|z|) is a
norm (see [N]). The completion of M with respect to this norm is denoted by
LY(M, 7). It is known [N] that the spaces L'(M,7) and M, are isometrically
isomorphic, so they can be identified. We will use this fact without explicit
mention.

THEOREM 2.1 (|N]). The space L'(M,T) coincides with the set

[e.e] [e.e]

le{x: | Adey: | \)\\dT(e,\)<oo}.
Moreover,
= | [Aldr(ex).

Furthermore, if x,y € LY(M,7), x,y > 0 and -y = 0 then ||z + y||1 =
[l + ol

It is known [N] that
(1) LY M, 7) = L' (Mga, 7) 4 iL' (Mga, 7).

Note that L'(Ms,, ) is a pre-dual to M.

Let T : LY(M,7) — L'(M,7) be a bounded linear operator. We say
that 7' is positive if Tx > 0 whenever x > 0, and a contraction if ||Tz|; <
|lz|l1 for all x € LY(Mg,, 7). A positive operator T is called stochastic if
7(Tz) = 7(x) for all x > 0. It is clear that any stochastic operator is a

contraction. For given y € L'(M,,7) and z € Mg, define a linear operator
Ty : LY (Mga, 7) — L' (Mga, 7) as follows:

Ty.x=T1(z2)y

and extend it to L'(M, ) as Ty.x = Ty,x1 + i1y xo for x = x1 + iz,
T1,T2 € Ll(MsavT)-
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Put T, := T,;. A linear operator T : LY(M,7) — LY(M,7) is called
uniformly (resp. strongly) asymptotically stable if there exist elements y €
L'(Mg,,7) and z € Mg, such that

lim ||[T" - T, .|| =0
n—0o0

(resp.
lim |[T"2z — T, .z|1 =0
n—oo

for every x € L*(M,1).)

3. Uniformly asymptotically stable contractions. Let M be a von
Neumann algebra with a faithful normal finite trace 7. Let L'(M, ) be the
associated L!'-space.

Let T : LY(M,7) — L*(M,7) be a bounded linear operator. Define

X ={z € LY (Mg, 1) : 7(x) = 0},

_ [ Tz]1

(2) a(T) = BT
vex,z#0 |17l

The quantity «(T') is called the Dobrushin coefficient of ergodicity of T.

a(T) = T[] - a&(T).

REMARK 3.1. In the commutative case, the Dobrushin coefficient of er-
godicity was introduced in [C], [D], [ZZ].

We have the following theorem which extends the results of [C], [ZZ].

THEOREM 3.1. Let T : LY(M,7) — L*(M,7) be a bounded linear opera-
tor. Then

3) ITally < @(T) 2l + a(T)|r()]
for every x € L'(Mg,, 7).
Proof. Assume that z is positive. Then ||z||; = 7(x) and
(T 2l +a(T) ()] = A(T)r(@)+(IT] —a(T))7(z) = Il > [Tl

So (3) is valid. If x < 0 the same argument works. If z € X then (3) follows
easily from (2).

Suppose now that none of the above three cases holds. Then x = 2™ —z~,
[z (l1 # 0, lz=[ls # 0, [la™[[x # lz~ [|1 (see [T]). Let [z ™[lx > |lz~||1. Put

B | B [ [

=tk ’ [Eanlh
Then z = y + z and ||z||1 = ||y|l1 + ||z|1; here Theorem 2.1 has been used.
It is clear that y € X and z > 0, so (3) is valid for y and z. Hence, we get
[Tzlly < 1Tyl + [ Tz[l < @(T)llyll +a(T)|| 2] + (T)7(2)
=a(T)|z[l + a(T)|7(2)|-
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Before formulating the main result of this section we need some lemmas.

LEMMA 3.2. For every z,y € L*(Mg,, ) such that x —y € X there exist
u,v € LY (Mga, 7) with u,v > 0 and ||ul|; = ||v]l1 = 1 such that

T —y = |z —ylh (u—v).
2
Proof. We have © —y = (x —y)™ — (z — y)~. Define
— )T — )~
" % S Ut )
Iz =)l (@ = y)~lh
It is clear that w,v > 0 and ||ul[; = ||v]|1 = 1. Since x — y € X, we have

Te—y)=1(z-y)") —m(@-y»)=lz-y) h-l-y =0
that is, [[(z —y) ¥ = [ =)~ As lz =yl = (e =y I+ (@ —y) "
we get |[(z —y)T|l1 = ||z — y|/1/2. Consequently,

— )t — )~ 2
T C et /) A Colt /) B (- y).
lz=ylli/2  Nz—yl/2  llz—ylh
LEMMA 3.3. Let T : LY(M,7) — L'(M,7) be a stochastic operator. Then
(4)  @(T) = sup{||Tu — Tv||1/2 : u,v € L' (Mg, ),

u,v 20, flully = [lvfly = 1}

Proof. For x € X, x # 0, using Lemma 3.2 we have

Tzl 7@t =2 T — o),
e~ lat—a | o+ —a

. ”TU—TUHl

= WTu—Toll,

Together with (2), this implies (4).
Now we are ready to prove the main result of this section, which is a

non-commutative version of Bartoszek’s result [B].

THEOREM 3.4. Let T : LY(M,7) — L'(M,T) be a stochastic operator.
The following conditions are equivalent:

(i) there exist o > 0 and ng € N such that o(T™) > p;
(ii) there emists y € L'(Msa, ), y > 0, such that

lim ||T™ — T, || = 0.
n—oo

Proof. (i)=(ii). Let o > 0 and ng € N be such that «(7™) > p. Then
a(T™) < 1—p. Put v = 1—p. For any £ > 0 choose k € N such that v* < ¢/2
and set K = ngk. Since T is a stochastic operator we have 7(T"z—T"z) = 0
for every x € LY(Mg,,7), > 0, and n,m € NU {0}. Hence using (3) we
infer that
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[T"x = T x|y = (|7 (T2 = T "0x)|[y < AT "0 = T x|y
< ’)/2HTn_2n0$ _ Tm_QnO.%'Hl <... S’kaTn_K.%' _ Tm_K.I'Hl
< AT el + 1T Fall) < 2% |lalh < e
for every € L1 (M, 7) with 2 > 0, [|z]; <1, and n,m > K.
Now in general, keeping in mind (1), for every x € L*(M, 1) with ||z|/; <1
we have z = Y4 _, %z, for some z;, > 0 with ||z;]|; < 1, therefore the last

relation implies that
IT"x — Tz < 4e.

Consequently, (T"),en is a Cauchy sequence with respect to the uniform
norm. Therefore for z € L*(M,7) with > 0 and ||z||; = 1 the sequence
(T"z)pen converges in the norm of L'(M,7) to some y € L*(M, ). Since
ITz||s = ||z|i = 1 and T is positive, it follows that y > 0, ||ly||s = 1 and
Ty = y. Using this we obtain
1Tz = ylly = |T" = Tyl < |T" 2 = T Yyl = [T" 2 — yly
for every 2 € L'(Mg,,7) with z > 0 and ||z||; < 1. Hence the sequence
(IT™2z — yl|1)nen is decreasing. As
| Tz —y||y < 27™  for every m € N

we infer that (T"2),cn converges to 7 in the norm topology of L'(Mg,, 7).
If 2 € LY (Mg, 7), 2 > 0, ||z|]1 # O then taking into account that

Tz = \\ZHlT(ﬁ> - T(Z)T<ﬁ>

we see that T"z — 7(2)y as n — oo, since T'(z/||z||1) norm converges to y.
If 2 € LY (Ms,,7), then z = 2+ — 27, therefore

Tzt - 7(zT)y and T"z~ —7(27)y as n — oo.
So Tz converges to Tyz for every z € L' (Mg, 7).
In general, if z € L'(M,7), then z = 21 + 20, where 21,20 € L' (Mg, 7),
hence
Trz=T"21+iT"20 — 7(z1)y +it(22)y = 7(2)y as n — oc.
Thus T"z converges to T,z for every z € LY(M,7). Since (T™),en is a
Cauchy sequence in the uniform operator topology it follows that
lim ||[T" — T,|| = 0.
n—oo
(ii)=(i). Let y € LY(Mg,,7) be as in (ii). Fix n € (0,1/4). Then (ii)
implies that there is an ng € N such that ||T" — T,|| < n for every n > ng.
Since Ty = y we get
(5) [T"0w —T™0v]y < |T™u =yl + |1 T"v =yl <2
for every u,v € L'(Mg,, 7) with u,v > 0 and |julj; = ||v||1 = 1.
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Hence, using Lemma 3.3 (see (4)) we obtain a(7™°) < 2n, which yields
a(T™) > 1 — 2n. The proof is complete.

4. Completely mixing and smoothing contractions. In this sec-
tion we define completely mixing and smoothing L'-contractions of non-
commutative L!(M,7)-spaces. These notions will be used in the next sec-
tion.

Let T : L*(M,7) — L'(M,7) be a linear contraction. Define

(6) o(T)= sup{ lim w

n—eo lu— vl

Tu,v € Ll(Msa,T),

va&Mh:Hm}

and o(T) = limy, o0 ||T"]| — 2(T).

The quantity o(7T) is called the asymptotic Dobrushin coefficient of er-
godicity of T. If 9(T) = 0 then T is called completely mizing. Note that
certain properties of completely mixing quantum dynamical systems have
been studied in [AP].

Using the same argument as in the proof of Theorem 3.4 one can prove

THEOREM 4.1. Let T : LY(M,7) — L'(M,7) be a linear contraction.
Then

@ Tim [Ty < 2(T) ol + oD} @)
for every x € LY (Ms,, 7).
Using this theorem we can prove
THEOREM 4.2. If T is a stochastic operator then o(T) =0 or 1.

Proof. From (6) one can easily see that 0 < p(T") < 1. Now suppose that
o(T) < 1. This means that there is a number v > 0 such that 9(7") <y < 1.
Let z € X, x # 0. It follows that

Jim [Tz < 2(T) [zl < vl
so there is ny € N such that ||[T™ z||; < 7| z||:. If 7™z = 0 then
lim ||T"z||; = 0.
n—oo
If T2 # 0 then 7(T™z) = 7(x) = 0 since T is stochastic. Thus by means
of (7) we get
lim ([T ™)y < o(T)IT™ 2l < AIT™ 2l < 3|l

n—oo
It follows that there exists ny > nj such that ||772z||; < v2||z|;. Continuing
in this way, if T"x # 0 for every n € N then we can find a strictly increasing
sequence (ny) such that |[T™z||; < 4*||z||; for every k € N. Since T is a
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contraction we conclude that ||T"z||; — 0 as n — oo, which implies that

o(T)=0.

Let T be a positive contraction of L'(M,7), and let € L'(M,7) be
such that = > 0, x # 0. We say that T is smoothing with respect to x if for
every € > 0 there exist § > 0 and ng € N such that 7(pT"x) < ¢ for every
p € V such that 7(p) < § and for every n > ng. A commutative counterpart
of this notion was introduced in [ZZ], [KT]. The following result has been
proved in [MTA]; for the sake of completeness we include the proof.

THEOREM 4.3. Let T : LY(M,7) — L*(M,7) be a positive contraction.
Assume that there is a positive element y € LY (M, 1) such that T is smooth-
ing with respect to y. Then either lim, . ||T"y|[1 = 0 or there is a non-zero
positive z € L'(M,7) such that Tz = z.

Proof. Since T is a contraction, the limit
lim [|[T"y|; = «
n—oo
exists. Assume that a % 0. Define X : Mg, — R by
Alz) = L((T(zT"y)nen))
for every x € Mj,, where L is a Banach limit (see [K]). We have
A1) = L((7(T"2)nen)) = lim [Tz = o #0,

so A # 0. Moreover, A is a positive functional, since for x € Mg,, x > 0, we
have
T(xT™y) = 7(2/*T"yz/?) > 0
for every n € N.
For arbitrary x = x1 + ixo € M define
Az) = Az1) + iA(22).

Let T** be the second dual of T', i.e. T** : M** — M™**. The functional

A is T™*-invariant. Indeed,
(T N)(x) = (x, TNy = (T"x,\) = L((7(T"yT"x)nen))
= L((r(aT" y)nen)) = L((T(@T"y)nen)) = A(2)-

Let A = Ay + As be the Takesaki decomposition (see [T]) of A into the
normal and singular components. Since T is normal and T**A = A, using
the idea of [J] it can be proved that T"*\, = A\,. Now we will show that
An is non-zero. Consider i := A|g. It is clear that y is an additive measure
on V. Let us prove that it is o-additive. To this end, it is enough to show
that u(px) — 0 whenever pg1 < pi and pr \, 0, px € V.

Let € > 0. From p; \, 0 we infer that 7(py) — 0 as k — oo. It follows
that there exists k. € N such that 7(px) < € for all k& > k.. Since T is
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smoothing with respect to y we obtain
Tk T"y) <e, Yk >k,
for every n > ng. From the properties of Banach limits we get
Apk) = LU(T(0kT"Y)nen) <& Vk > ke,

which implies p(px) — 0 as k — oo. This means that the restriction of A,
to V coincides with u. Since

T(ptT™y) > 7(T™y) —e > inf || T™y|1 —e = a — ¢,

and we can assume that a — e > 0 as € has been arbitrary, it follows that
p(pt) > 0 for all p € V such that 7(p) < &. Therefore 1 # 0, and conse-
quently, A\, # 0.
From this we infer that there exists a positive element z € L'(M, ) such
that
An(x) =7(22), Vre M.

The last equality and T**\, = A, yield
T(zz) = (2, T \p) = (T*x, \n) = 7(zT"x) = 7(T2x)
for every x € M, which implies that Tz = z.

REMARK 4.1 Theorem 4.3 is a non-commutative analog of Akcoglu and
Sucheston’s result [AS|. However, they used weak convergence instead of
smoothing. In fact, smoothing is less restrictive, since if a sequence T"x
with > 0 weakly converges then it is a weakly pre-compact set, and from
[T, Theorem II1.5.4] we infer that 7" is smoothing with respect to .

Using Theorem 4.3, in [MTA] we have proved a non-commutative analog
of the result of [KS| which indicates a relation between mixing and complete
mixing.

REMARK 4.2. It should be noted that Theorem 4.3 is not valid if the
von Neumann algebra is only semi-finite. Indeed, let B(¢3) be the algebra
of all bounded linear operators on the Hilbert space ¢2. Let {¢y, }nen be the
standard basis of /o, i.e.

The matrix units of B(¢3) can be defined by

€ij(§) = (§, i)dj, €Ly, i,jEN.
A trace on B(/3) is defined by

o0

Z $¢k, ¢k

k=1
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We denote by £, the maximal commutative subalgebra generated by {e;; :
i € N}. Let E : B(f3) — {s be the canonical conditional expectation (see
[T]). Define a map s : £og — oo as follows: for a € log, a = D77 | axekk, put

o0
s(a) = Z AkCh+1 k+1-
k=1

Define T' : B(¢3) — B({3) by T(z) = s(E(x)) for x € B(l3). It is clear
that T is positive and 7(T(z)) < 7(x) for every x € LY(B(f2),7) N B({3)
with 2 > 0. Hence, T is a positive L!-contraction. But for this 7' there is no
non-zero x such that Tz = z. Moreover, for every y € L'(B(f2), T) we have

lim;, o0 || T"y]]1 # O.

5. Strongly asymptotically stable contractions. In this section we
give a criterion for strong asymptotic stability of contractions in terms of
complete mixing.

THEOREM 5.1. Let T : LY(M, 1) — L*(M, ) be a positive contraction.
The following conditions are equivalent:

(i) T is completely mizing and smoothing with respect to some h €
LY(M,7), h > 0;
(ii) there exists y € L*(M,T), y > 0, such that for every x € L*(M,T),

lim |[T"z — Tyz||; = 0.
n—oo

Proof. (i)=(ii). Let h € LY(M,7), h > 0, h # 0, be such that T is
smoothing with respect to h. Without loss of generality we may assume that
|Ih|l1 = 1. By Theorem 4.3 there are only two possibilities:

(a) limy, 00 || T™R||1 = 0;

(b) there exists y € L1(M, 1), y > 0, y # 0, such that Ty = y.

In case (a), for every z € L'(M,7) with # > 0 and ||z||; = 1, using
complete mixing one gets

lim ||[T"z||; < lim ||T"z — T"h||; + lim ||T"h]||; = 0.
n—oo n—oo n—oo
Let x € L'(M, 7). Then z = Ei:l ¥z}, where 2, > 0. Hence using the

last relation one finds that 7™ converges strongly to 1.
In case (b) we may assume that [|y||; = 1. Since T is completely mixing,

lim [|[T"z —y[1 =0
n—oo
for every x € L*(M, 7) with z > 0 and ||z||; = 1. Arguments similar to those

used towards the end of the proof of Theorem 3.4 show the desired relation
holds.
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(ii)=(i). If g € X then T™g norm converges to 7(g)y = 0, and hence T'
is completely mixing.

If z € LY(M,7), z > 0, |||y = 1, then T"z norm converges to y. So
according to Remark 4.1 we find that T is smoothing with respect to x.
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