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ON STABILITY PROPERTIES OF POSITIVECONTRACTIONS OF L1-SPACES ASSOCIATED WITHFINITE VON NEUMANN ALGEBRASBYFARRUKH MUKHAMEDOV (Tashkent), HASAN AKIN (�anliurfa)and SEYIT TEMIR (�anliurfa)Abstrat. We extend the notion of Dobrushin oe�ient of ergodiity to positiveontrations de�ned on the L
1-spae assoiated with a �nite von Neumann algebra, andin terms of this oe�ient we prove stability results for L

1-ontrations.1. Introdution. The importane of investigating asymptoti behav-ior of Markov operators on ommutative L1-spaes is well known (see [K℄).On the other hand, these investigations involve several notions of mixing(weak mixing, mixing, omplete mixing et.) of L1-ontrations of a measurespae. Relations between these notions are of great interest (see for example[BLRT℄, [BKLM℄). However, in those investigations the lattie property of
L1-spaes is essentially used. Therefore it is natural to onsider Markov op-erators on partially ordered Banah spaes whih are not latties. One lassof suh spaes onsists of L1-spaes assoiated with von Neumann algebras.Note that these Banah spaes are ordered by strongly normal ones (see[EW1℄). In [EW1℄, [EW2℄, [S℄ ertain asymptoti properties of Markov semi-groups on non-ommutative L1-spaes were studied.In this paper we study uniformly (resp. strongly) asymptotially stableontrations of L1-spaes assoiated with �nite von Neumann algebras interms of the Dobrushin oe�ients. The paper is organized as follows. Se-tion 2 ontains some preliminary fats and de�nitions. In Setion 3 we in-trodue the Dobrushin oe�ient of ergodiity of an L1-ontration. Usingthis notion we prove a uniform asymptoti stability riterion for stohastioperators, whih is a non-ommutative analog of Bartoszek's result (see [B℄).Further in Setion 4 we give an analog of the Akoglu�Suheston theorem(see [AS℄) for non-ommutative L1-spaes. We hope that this result willlead to subsequential ergodi theorems in a non-ommutative setting (see2000 Mathematis Subjet Classi�ation: 47A35, 28D05, 37A30.Key words and phrases: oe�ients of ergodiity, asymptoti stability, ontration,ompletely mixing, �nite von Neumann algebra.Work supported by NATO-TUBITAK PC-B program.[259℄
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[CL℄, [LM℄). In the �nal Setion 5 using the results of the previous setionwe prove a strong asymptoti stability riterion for positive L1-ontrations.We note that our results are not valid when the von Neumann algebra isonly semi-�nite.2. Preliminaries. Throughout the paper, M will be a von Neumannalgebra with unit 1, and τ a faithful normal �nite trae on M . Reall that
x ∈ M is alled self-adjoint if x = x∗. The set of all self-adjoint elementsis denoted by Msa. We denote by M∗ a pre-dual spae to M . An element
p ∈ Msa is alled a projetor if p2 = p. Let ∇ be the set of all projetors;
∇ forms a logi. For p ∈ ∇ we set p⊥ = 1 − p (for more de�nitions see[BR℄, [T℄).The map ‖ · ‖1 : M → [0, ∞) de�ned by the formula ‖x‖1 = τ(|x|) is anorm (see [N℄). The ompletion of M with respet to this norm is denoted by
L1(M, τ). It is known [N℄ that the spaes L1(M, τ) and M∗ are isometriallyisomorphi, so they an be identi�ed. We will use this fat without expliitmention.Theorem 2.1 ([N℄). The spae L1(M, τ) oinides with the set

L1 =
{

x =

∞\
−∞

λdeλ :

∞\
−∞

|λ| dτ(eλ) < ∞
}

.Moreover ,
‖x‖1 =

∞\
−∞

|λ| dτ(eλ).

Furthermore, if x, y ∈ L1(M, τ), x, y ≥ 0 and x · y = 0 then ‖x + y‖1 =
‖x‖1 + ‖y‖1.It is known [N℄ that

L1(M, τ) = L1(Msa, τ) + iL1(Msa, τ).(1)Note that L1(Msa, τ) is a pre-dual to Msa.Let T : L1(M, τ) → L1(M, τ) be a bounded linear operator. We saythat T is positive if Tx ≥ 0 whenever x ≥ 0, and a ontration if ‖Tx‖1 ≤
‖x‖1 for all x ∈ L1(Msa, τ). A positive operator T is alled stohasti if
τ(Tx) = τ(x) for all x ≥ 0. It is lear that any stohasti operator is aontration. For given y ∈ L1(Msa, τ) and z ∈ Msa de�ne a linear operator
Ty,z : L1(Msa, τ) → L1(Msa, τ) as follows:

Ty,zx = τ(xz)yand extend it to L1(M, τ) as Ty,zx = Ty,zx1 + iTy,zx2 for x = x1 + ix2,
x1, x2 ∈ L1(Msa, τ).
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Put Ty := Ty,1. A linear operator T : L1(M, τ) → L1(M, τ) is alleduniformly (resp. strongly) asymptotially stable if there exist elements y ∈
L1(Msa, τ) and z ∈ Msa suh that

lim
n→∞

‖Tn − Ty,z‖ = 0(resp.
lim

n→∞
‖Tnx − Ty,zx‖1 = 0for every x ∈ L1(M, τ).)3. Uniformly asymptotially stable ontrations. Let M be a vonNeumann algebra with a faithful normal �nite trae τ . Let L1(M, τ) be theassoiated L1-spae.Let T : L1(M, τ) → L1(M, τ) be a bounded linear operator. De�ne

X = {x ∈ L1(Msa, τ) : τ(x) = 0},

α(T ) = sup
x∈X, x6=0

‖Tx‖1

‖x‖1

, α(T ) = ‖T‖ − α(T ).(2)The quantity α(T ) is alled the Dobrushin oe�ient of ergodiity of T .
Remark 3.1. In the ommutative ase, the Dobrushin oe�ient of er-godiity was introdued in [C℄, [D℄, [ZZ℄.We have the following theorem whih extends the results of [C℄, [ZZ℄.Theorem 3.1. Let T : L1(M, τ) → L1(M, τ) be a bounded linear opera-tor. Then

‖Tx‖1 ≤ α(T )‖x‖1 + α(T )|τ(x)|(3)for every x ∈ L1(Msa, τ).Proof. Assume that x is positive. Then ‖x‖1 = τ(x) and
α(T )‖x‖1+α(T )|τ(x)| = α(T )τ(x)+(‖T‖−α(T ))τ(x) = ‖T‖‖x‖1 ≥ ‖Tx‖1.So (3) is valid. If x ≤ 0 the same argument works. If x ∈ X then (3) followseasily from (2).Suppose now that none of the above three ases holds. Then x = x+−x−,
‖x+‖1 6= 0, ‖x−‖1 6= 0, ‖x+‖1 6= ‖x−‖1 (see [T℄). Let ‖x+‖1 > ‖x−‖1. Put

y =
‖x−‖1

‖x+‖1

x+ − x−, z =
‖x+‖1 − ‖x−‖1

‖x+‖1

x+.Then x = y + z and ‖x‖1 = ‖y‖1 + ‖z‖1; here Theorem 2.1 has been used.It is lear that y ∈ X and z ≥ 0, so (3) is valid for y and z. Hene, we get
‖Tx‖1 ≤ ‖Ty‖1 + ‖Tz‖1 ≤ α(T )‖y‖1 + α(T )‖z‖1 + α(T )τ(z)

= α(T )‖x‖1 + α(T )|τ(x)|.
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Before formulating the main result of this setion we need some lemmas.Lemma 3.2. For every x, y ∈ L1(Msa, τ) suh that x− y ∈ X there exist

u, v ∈ L1(Msa, τ) with u, v ≥ 0 and ‖u‖1 = ‖v‖1 = 1 suh that
x − y =

‖x − y‖1

2
(u − v).Proof. We have x − y = (x − y)+ − (x − y)−. De�ne

u =
(x − y)+

‖(x − y)+‖1

, v =
(x − y)−

‖(x − y)−‖1

.It is lear that u, v ≥ 0 and ‖u‖1 = ‖v‖1 = 1. Sine x − y ∈ X, we have
τ(x − y) = τ((x − y)+) − τ((x − y)−) = ‖(x − y)+‖1 − ‖(x − y)−‖1 = 0,that is, ‖(x−y)+‖1 = ‖(x−y)−‖1. As ‖x−y‖1 = ‖(x−y)+‖1 +‖(x−y)−‖1we get ‖(x − y)+‖1 = ‖x − y‖1/2. Consequently,

u − v =
(x − y)+

‖x − y‖1/2
−

(x − y)−

‖x − y‖1/2
=

2

‖x − y‖1

(x − y).Lemma 3.3. Let T : L1(M, τ) → L1(M, τ) be a stohasti operator. Then
(4) α(T ) = sup{‖Tu − Tv‖1/2 : u, v ∈ L1(Msa, τ),

u, v ≥ 0, ‖u‖1 = ‖v‖1 = 1}.Proof. For x ∈ X, x 6= 0, using Lemma 3.2 we have
‖Tx‖1

‖x‖1

=
‖T (x+ − x−)‖1

‖x+ − x−‖1

=
‖x+−x−‖1

2
‖T (u − v)‖1

‖x+ − x−‖1

=
‖Tu − Tv‖1

2
.Together with (2), this implies (4).Now we are ready to prove the main result of this setion, whih is anon-ommutative version of Bartoszek's result [B℄.Theorem 3.4. Let T : L1(M, τ) → L1(M, τ) be a stohasti operator.The following onditions are equivalent :(i) there exist ̺ > 0 and n0 ∈ N suh that α(Tn0) ≥ ̺;(ii) there exists y ∈ L1(Msa, τ), y ≥ 0, suh that

lim
n→∞

‖Tn − Ty‖ = 0.Proof. (i)⇒(ii). Let ̺ > 0 and n0 ∈ N be suh that α(Tn0) ≥ ̺. Then
α(Tn0) ≤ 1−̺. Put γ = 1−̺. For any ε > 0 hoose k ∈ N suh that γk < ε/2and set K = n0k. Sine T is a stohasti operator we have τ(Tnx−Tmx) = 0for every x ∈ L1(Msa, τ), x ≥ 0, and n, m ∈ N ∪ {0}. Hene using (3) weinfer that
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‖Tnx − Tmx‖1 = ‖Tn0(Tn−n0x − Tm−n0x)‖1 ≤ γ‖Tn−n0x − Tm−n0x‖1

≤ γ2‖Tn−2n0x − Tm−2n0x‖1 ≤ · · · ≤γk‖Tn−Kx − Tm−Kx‖1

≤ γk(‖Tn−Kx‖1 + ‖Tm−Kx‖1) ≤ 2γk‖x‖1 < εfor every x ∈ L1(Msa, τ) with x ≥ 0, ‖x‖1 ≤ 1, and n, m ≥ K.Now in general, keeping in mind (1), for every x∈L1(M, τ) with ‖x‖1≤1we have x =
∑

4

k=1
ikxk for some xk ≥ 0 with ‖xk‖1 ≤ 1, therefore the lastrelation implies that

‖Tnx − Tmx‖1 ≤ 4ε.Consequently, (Tn)n∈N is a Cauhy sequene with respet to the uniformnorm. Therefore for x ∈ L1(M, τ) with x ≥ 0 and ‖x‖1 = 1 the sequene
(Tnx)n∈N onverges in the norm of L1(M, τ) to some y ∈ L1(M, τ). Sine
‖Tx‖1 = ‖x‖1 = 1 and T is positive, it follows that y ≥ 0, ‖y‖1 = 1 and
Ty = y. Using this we obtain

‖Tnz − y‖1 = ‖Tnz − Tny‖1 ≤ ‖Tn−1z − Tn−1y‖1 = ‖Tn−1z − y‖1for every z ∈ L1(Msa, τ) with z ≥ 0 and ‖z‖1 ≤ 1. Hene the sequene
(‖Tnz − y‖1)n∈N is dereasing. As

‖Tmn0z − y‖1 ≤ 2γm for every m ∈ Nwe infer that (Tnz)n∈N onverges to y in the norm topology of L1(Msa, τ).If z ∈ L1(Msa, τ), z ≥ 0, ‖z‖1 6= 0 then taking into aount that
Tnz = ‖z‖1T

(
z

‖z‖1

)

= τ(z)T

(
z

‖z‖1

)

we see that Tnz → τ(z)y as n → ∞, sine T (z/‖z‖1) norm onverges to y.If z ∈ L1(Msa, τ), then z = z+ − z−, therefore
Tnz+ → τ(z+)y and Tnz− → τ(z−)y as n → ∞.So Tnz onverges to Tyz for every z ∈ L1(Msa, τ).In general, if z ∈ L1(M, τ), then z = z1 + iz2, where z1, z2 ∈ L1(Msa, τ),hene

Tnz = Tnz1 + iTnz2 → τ(z1)y + iτ(z2)y = τ(z)y as n → ∞.Thus Tnz onverges to Tyz for every z ∈ L1(M, τ). Sine (Tn)n∈N is aCauhy sequene in the uniform operator topology it follows that
lim

n→∞
‖Tn − Ty‖ = 0.(ii)⇒(i). Let y ∈ L1(Msa, τ) be as in (ii). Fix η ∈ (0, 1/4). Then (ii)implies that there is an n0 ∈ N suh that ‖Tn − Ty‖ < η for every n ≥ n0.Sine Ty = y we get

‖Tn0u − Tn0v‖1 ≤ ‖Tn0u − y‖1 + ‖Tn0v − y‖1 < 2η(5)for every u, v ∈ L1(Msa, τ) with u, v ≥ 0 and ‖u‖1 = ‖v‖1 = 1.
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Hene, using Lemma 3.3 (see (4)) we obtain α(Tn0) ≤ 2η, whih yields

α(Tn0) ≥ 1 − 2η. The proof is omplete.4. Completely mixing and smoothing ontrations. In this se-tion we de�ne ompletely mixing and smoothing L1-ontrations of non-ommutative L1(M, τ)-spaes. These notions will be used in the next se-tion.Let T : L1(M, τ) → L1(M, τ) be a linear ontration. De�ne
(6) ̺(T ) = sup

{

lim
n→∞

‖Tn(u − v)‖1

‖u − v‖1

: u, v ∈ L1(Msa, τ),

u, v ≥ 0, ‖u‖1 = ‖v‖1

}

and ̺(T ) = limn→∞ ‖Tn‖ − ̺(T ).The quantity ̺(T ) is alled the asymptoti Dobrushin oe�ient of er-godiity of T . If ̺(T ) = 0 then T is alled ompletely mixing. Note thatertain properties of ompletely mixing quantum dynamial systems havebeen studied in [AP℄.Using the same argument as in the proof of Theorem 3.4 one an proveTheorem 4.1. Let T : L1(M, τ) → L1(M, τ) be a linear ontration.Then
lim

n→∞
‖Tnx‖1 ≤ ̺(T )‖x‖1 + ̺(T )|τ(x)|(7)for every x ∈ L1(Msa, τ).Using this theorem we an proveTheorem 4.2. If T is a stohasti operator then ̺(T ) = 0 or 1.Proof. From (6) one an easily see that 0 ≤ ̺(T ) ≤ 1. Now suppose that

̺(T ) < 1. This means that there is a number γ ≥ 0 suh that ̺(T ) ≤ γ < 1.Let x ∈ X, x 6= 0. It follows that
lim

n→∞
‖Tnx‖1 ≤ ̺(T )‖x‖1 ≤ γ‖x‖1,so there is n1 ∈ N suh that ‖Tn1x‖1 ≤ γ‖x‖1. If Tn1x = 0 then

lim
n→∞

‖Tnx‖1 = 0.If Tn1x 6= 0 then τ(Tn1x) = τ(x) = 0 sine T is stohasti. Thus by meansof (7) we get
lim

n→∞
‖Tn+n1x‖1 ≤ ̺(T )‖Tn1x‖1 ≤ γ‖Tn1x‖1 ≤ γ2‖x‖1.It follows that there exists n2 > n1 suh that ‖Tn2x‖1 ≤ γ2‖x‖1. Continuingin this way, if Tnx 6= 0 for every n ∈ N then we an �nd a stritly inreasingsequene (nk) suh that ‖Tnkx‖1 ≤ γk‖x‖1 for every k ∈ N. Sine T is a
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ontration we onlude that ‖Tnx‖1 → 0 as n → ∞, whih implies that
̺(T ) = 0.Let T be a positive ontration of L1(M, τ), and let x ∈ L1(M, τ) besuh that x ≥ 0, x 6= 0. We say that T is smoothing with respet to x if forevery ε > 0 there exist δ > 0 and n0 ∈ N suh that τ(pTnx) < ε for every
p ∈ ∇ suh that τ(p) < δ and for every n ≥ n0. A ommutative ounterpartof this notion was introdued in [ZZ℄, [KT℄. The following result has beenproved in [MTA℄; for the sake of ompleteness we inlude the proof.Theorem 4.3. Let T : L1(M, τ) → L1(M, τ) be a positive ontration.Assume that there is a positive element y ∈ L1(M, τ) suh that T is smooth-ing with respet to y. Then either limn→∞ ‖Tny‖1 = 0 or there is a non-zeropositive z ∈ L1(M, τ) suh that Tz = z.Proof. Sine T is a ontration, the limit

lim
n→∞

‖Tny‖1 = αexists. Assume that α 6= 0. De�ne λ : Msa → R by
λ(x) = L((τ(xTny)n∈N))for every x ∈ Msa, where L is a Banah limit (see [K℄). We have

λ(1) = L((τ(Tnx)n∈N)) = lim
n→∞

‖Tnx‖1 = α 6= 0,so λ 6= 0. Moreover, λ is a positive funtional, sine for x ∈ Msa, x ≥ 0, wehave
τ(xTny) = τ(x1/2Tnyx1/2) ≥ 0for every n ∈ N.For arbitrary x = x1 + ix2 ∈ M de�ne

λ(x) = λ(x1) + iλ(x2).Let T ∗∗ be the seond dual of T , i.e. T ∗∗ : M∗∗ → M∗∗. The funtional
λ is T ∗∗-invariant. Indeed,

(T ∗∗λ)(x) = 〈x, T ∗∗λ〉 = 〈T ∗x, λ〉 = L((τ(TnyT ∗x)n∈N))

= L((τ(xTn+1y)n∈N)) = L((τ(xTny)n∈N)) = λ(z).Let λ = λn + λs be the Takesaki deomposition (see [T℄) of λ into thenormal and singular omponents. Sine T is normal and T ∗∗λ = λ, usingthe idea of [J℄ it an be proved that T ∗∗λn = λn. Now we will show that
λn is non-zero. Consider µ := λ|∇. It is lear that µ is an additive measureon ∇. Let us prove that it is σ-additive. To this end, it is enough to showthat µ(pk) → 0 whenever pk+1 ≤ pk and pk ց 0, pk ∈ ∇.Let ε > 0. From pk ց 0 we infer that τ(pk) → 0 as k → ∞. It followsthat there exists kε ∈ N suh that τ(pk) < ε for all k ≥ kε. Sine T is
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smoothing with respet to y we obtain

τ(pkT
ny) < ε, ∀k ≥ kε,for every n ≥ n0. From the properties of Banah limits we get

λ(pk) = L((τ(pkT
ny)n∈N) < ε ∀k ≥ kε,whih implies µ(pk) → 0 as k → ∞. This means that the restrition of λnto ∇ oinides with µ. Sine

τ(p⊥Tny) > τ(Tny) − ε ≥ inf ‖Tny‖1 − ε = α − ε,and we an assume that α − ε > 0 as ε has been arbitrary, it follows that
µ(p⊥) > 0 for all p ∈ ∇ suh that τ(p) < δ. Therefore µ 6= 0, and onse-quently, λn 6= 0.From this we infer that there exists a positive element z ∈ L1(M, τ) suhthat

λn(x) = τ(zx), ∀x ∈ M.The last equality and T ∗∗λn = λn yield
τ(zx) = 〈x, T ∗∗λn〉 = 〈T ∗x, λn〉 = τ(zT ∗x) = τ(Tzx)for every x ∈ M , whih implies that Tz = z.

Remark 4.1 Theorem 4.3 is a non-ommutative analog of Akoglu andSuheston's result [AS℄. However, they used weak onvergene instead ofsmoothing. In fat, smoothing is less restritive, sine if a sequene Tnxwith x ≥ 0 weakly onverges then it is a weakly pre-ompat set, and from[T, Theorem III.5.4℄ we infer that T is smoothing with respet to x.Using Theorem 4.3, in [MTA℄ we have proved a non-ommutative analogof the result of [KS℄ whih indiates a relation between mixing and ompletemixing.
Remark 4.2. It should be noted that Theorem 4.3 is not valid if thevon Neumann algebra is only semi-�nite. Indeed, let B(ℓ2) be the algebraof all bounded linear operators on the Hilbert spae ℓ2. Let {φn}n∈N be thestandard basis of ℓ2, i.e.

φn = (0, . . . , 0, 1
︸ ︷︷ ︸

n

, 0, . . .).

The matrix units of B(ℓ2) an be de�ned by
eij(ξ) = (ξ, φi)φj , ξ ∈ ℓ2, i, j ∈ N.A trae on B(ℓ2) is de�ned by

τ(x) =
∞∑

k=1

(xφk, φk).
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We denote by ℓ∞ the maximal ommutative subalgebra generated by {eii :
i ∈ N}. Let E : B(ℓ2) → ℓ∞ be the anonial onditional expetation (see[T℄). De�ne a map s : ℓ∞ → ℓ∞ as follows: for a ∈ ℓ∞, a =

∑∞
k=1

akekk, put
s(a) =

∞∑

k=1

akek+1,k+1.De�ne T : B(ℓ2) → B(ℓ2) by T (x) = s(E(x)) for x ∈ B(ℓ2). It is learthat T is positive and τ(T (x)) ≤ τ(x) for every x ∈ L1(B(ℓ2), τ) ∩ B(ℓ2)with x ≥ 0. Hene, T is a positive L1-ontration. But for this T there is nonon-zero x suh that Tx = x. Moreover, for every y ∈ L1(B(ℓ2), τ) we have
limn→∞ ‖Tny‖1 6= 0.5. Strongly asymptotially stable ontrations. In this setion wegive a riterion for strong asymptoti stability of ontrations in terms ofomplete mixing.Theorem 5.1. Let T : L1(M, τ) → L1(M, τ) be a positive ontration.The following onditions are equivalent :(i) T is ompletely mixing and smoothing with respet to some h ∈

L1(M, τ), h ≥ 0;(ii) there exists y ∈ L1(M, τ), y ≥ 0, suh that for every x ∈ L1(M, τ),
lim

n→∞
‖Tnx − Tyx‖1 = 0.Proof. (i)⇒(ii). Let h ∈ L1(M, τ), h ≥ 0, h 6= 0, be suh that T issmoothing with respet to h. Without loss of generality we may assume that

‖h‖1 = 1. By Theorem 4.3 there are only two possibilities:(a) limn→∞ ‖Tnh‖1 = 0;(b) there exists y ∈ L1(M, τ), y ≥ 0, y 6= 0, suh that Ty = y.In ase (a), for every x ∈ L1(M, τ) with x ≥ 0 and ‖x‖1 = 1, usingomplete mixing one gets
lim

n→∞
‖Tnx‖1 ≤ lim

n→∞
‖Tnx − Tnh‖1 + lim

n→∞
‖Tnh‖1 = 0.Let x ∈ L1(M, τ). Then x =

∑
4

k=1
ikxk, where xk ≥ 0. Hene using thelast relation one �nds that Tn onverges strongly to T0.In ase (b) we may assume that ‖y‖1 = 1. Sine T is ompletely mixing,

lim
n→∞

‖Tnx − y‖1 = 0for every x ∈ L1(M, τ) with x ≥ 0 and ‖x‖1 = 1. Arguments similar to thoseused towards the end of the proof of Theorem 3.4 show the desired relationholds.



268 F. MUKHAMEDOV ET AL.
(ii)⇒(i). If g ∈ X then Tng norm onverges to τ(g)y = 0, and hene Tis ompletely mixing.If x ∈ L1(M, τ), x ≥ 0, ‖x‖1 = 1, then Tnx norm onverges to y. Soaording to Remark 4.1 we �nd that T is smoothing with respet to x.Aknowledgements. The �rst named author (F.M.) thanks TUBITAKfor providing �nanial support and Harran University for kind hospitalityand providing all failities. The work has also been partially supported byGrants Φ-1.1.2, Φ.2.1.56 of CST of the Republi of Uzbekistan.
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