VOL. 105

2006

NO. 2

ON SOME REPRESENTATIONS OF ALMOST EVERYWHERE CONTINUOUS FUNCTIONS ON \mathbb{R}^m

вv

EWA STROŃSKA (Bydgoszcz)

Abstract. It is proved that the following conditions are equivalent: (a) f is an almost everywhere continuous function on \mathbb{R}^m ; (b) f = g + h, where g, h are strongly quasicontinuous on \mathbb{R}^m ; (c) f = c + gh, where $c \in \mathbb{R}$ and g, h are strongly quasicontinuous on \mathbb{R}^m .

Let λ^* (resp. λ) denote the outer Lebesgue measure (resp. the Lebesgue measure) on \mathbb{R}^m . For each $n \in \mathbb{N}$ (the positive integers) and for each sequence (k_1,\ldots,k_m) of integers let

$$P_{k_1,\ldots,k_m}^n = \left[\frac{k_1-1}{2^n}, \frac{k_1}{2^n}\right) \times \cdots \times \left[\frac{k_m-1}{2^n}, \frac{k_m}{2^n}\right).$$

Moreover, let

$$\mathcal{P}_n = \{P_{k_1,\dots,k_m}^n; k_1,\dots,k_m \in \mathbb{Z}\}$$
 and $\mathcal{P} = \bigcup_n \mathcal{P}_n$.

Observe that:

- (1) if $(k_1, \ldots, k_m) \neq (l_1, \ldots, l_m)$ then $P_{k_1, \ldots, k_m}^n \cap P_{l_1, \ldots, l_m}^n = \emptyset$;
- (2) $\mathbb{R}^m = \bigcup_{k_1,\dots,k_m \in \mathbb{Z}} P^n_{k_1,\dots,k_m};$ (3) if $n_1 > n_2$ then for each sequence (k_1,\dots,k_m) of integers there is a unique sequence (l_1, \ldots, l_m) of integers such that $P_{k_1, \ldots, k_m}^{n_1} \subset P_{l_1, \ldots, l_m}^{n_2}$;
- (4) for each $\mathbf{x} \in \mathbb{R}^m$ and each $n \in \mathbb{N}$ there is a unique integer sequence $(k_1(\mathbf{x}),\ldots,k_m(\mathbf{x}))$ such that $\mathbf{x} \in P_{k_1(\mathbf{x}),\ldots,k_m(\mathbf{x})}^n = P^n(\mathbf{x}).$

For $A \subset \mathbb{R}^m$ and $\mathbf{x} \in \mathbb{R}^m$ denote by

$$d_u(A, \mathbf{x}) = \limsup_{n \to \infty} \frac{\lambda^*(A \cap P^n(\mathbf{x}))}{\lambda(P^n(\mathbf{x}))}, \quad d_l(A, \mathbf{x}) = \liminf_{n \to \infty} \frac{\lambda^*(A \cap P^n(\mathbf{x}))}{\lambda(P^n(\mathbf{x}))}$$

the upper and lower density of $A \subset \mathbb{R}$ at \mathbf{x} (cf. [2]).

A point $\mathbf{x} \in \mathbb{R}^m$ is called a *density point* of a set $A \subset \mathbb{R}^m$ if there exists a λ -measurable set $B \subset A$ such that $d_l(B, \mathbf{x}) = 1$. The family

 $\mathcal{T}_d = \{A \subset \mathbb{R}^m; A \text{ is } \lambda \text{-measurable and } d_l(A, \mathbf{x}) = 1 \text{ for } \mathbf{x} \in A\}$

²⁰⁰⁰ Mathematics Subject Classification: 26B05, 26B35, 54C08, 54C30.

Key words and phrases: continuity, strong quasicontinuity, density topology, sums of functions, products of functions.

is a topology called the *density topology* (with respect to \mathcal{P}) (see [4, 5, 13, 14] for the definitions of the density topologies with respect to other differentiation bases). The topology \mathcal{T}_d introduced above with respect to a fixed sequence of binary nets of half-open cubes is stronger than the ordinary density topology ([13]) with respect to arbitrary cubes containing a given point.

A function $f : \mathbb{R}^m \to \mathbb{R}$ is said to be *strongly quasi-continuous* (for short, s.q.c.) at a point \mathbf{x} if for every set $A \in \mathcal{T}_d$ containing \mathbf{x} and for every $\varepsilon > 0$ there is an open set U such that $U \cap A \neq \emptyset$ and $|f(\mathbf{t}) - f(\mathbf{x})| < \varepsilon$ for all $\mathbf{t} \in A \cap U$ (cf. [7]).

REMARK 1. In the case m = 1 the notion of strong quasicontinuity for functions $f : \mathbb{R} \to \mathbb{R}$ introduced in [7] by Grande with respect to the bilateral density is more general than that above. For example, the function

$$f(x) = \begin{cases} 0 & \text{for } x \le 0, \\ 1 & \text{for } x > 0, \end{cases}$$

is s.q.c. at 0 in the sense of Grande, but it is not s.q.c. at 0 in the above sense.

Evidently, if $f : \mathbb{R} \to \mathbb{R}$ is s.q.c. at x in the above sense then it is s.q.c. at x in the sense of Grande.

Observe that if for $\mathbf{x} \in \mathbb{R}^m$ there is an open set $U \subset \mathbb{R}^m$ such that $d_u(U, \mathbf{x}) > 0$ and the restriction $f|_{U \cup \{\mathbf{x}\}}$ is continuous at \mathbf{x} then f is s.q.c. at \mathbf{x} .

Moreover, by an elementary proof, we obtain:

REMARK 2. If functions $f_n : \mathbb{R}^m \to \mathbb{R}$, n = 1, 2, ..., are s.q.c. at a point **x** and (f_n) uniformly converges to a function f then f is also s.q.c. at **x**.

It is known [8] that every s.q.c. function $f : \mathbb{R}^m \to \mathbb{R}$ is almost everywhere continuous. So, the sum and product of two s.q.c. functions are almost everywhere continuous. We will prove the following:

THEOREM 1. If a function $f : \mathbb{R}^m \to \mathbb{R}$ is almost everywhere continuous then there are two s.q.c. functions $g, h : \mathbb{R}^m \to \mathbb{R}$ such that f = g + h.

Proof. Let cl denote closure and

$$B = \{ y \in \mathbb{R}; \ \lambda(cl(f^{-1}(y))) > 0 \}.$$

Since f is almost everywhere continuous, the set B is countable. Without loss of generality we can assume that $0 \notin B$, because otherwise we can fix a real $a \notin B$ and consider the function f - a.

Let L(B) be the linear span of the set B over the rationals. Since L(B) is countable, there is a positive number $c \in \mathbb{R} \setminus L(B)$. Fix $k \in \mathbb{Z}$ and $n \in \mathbb{N}$.

If

$$\frac{(k-1)c}{2^n} \le f(x) < \frac{kc}{2^n}$$

then we define

$$f_n(x) = \frac{(k-1)c}{2^n}$$

Observe that every function f_n , $n \in \mathbb{N}$, is almost everywhere continuous and the set $D(f_n)$ of its discontinuity points is closed and of λ -measure zero. Moreover, $D(f_n) \subset D(f_{n+1})$ for $n \in \mathbb{N}$.

STEP 1. Observe that $D(f_1)$ is closed and of λ -measure zero. For each $\mathbf{x} \in D(f_1)$ there is a unique cube $P^1(\mathbf{x}) \in \mathcal{P}_1$ such that $\mathbf{x} \in P^1(\mathbf{x})$. Observe that diam $(P^1(\mathbf{x})) < m/2$. For the cube $P^1(\mathbf{x})$ there is a finite family of cubes

$$Q_{1,1,\mathbf{x}},\ldots,Q_{i(1,1,\mathbf{x}),1,\mathbf{x}}\in\mathcal{P}$$

whose closures are pairwise disjoint and contained in $int(P^1(\mathbf{x})) \setminus D(f_1)$ (int denotes interior) and such that

$$\frac{\lambda(\bigcup_{i=1}^{i(1,1,\mathbf{x})}Q_{i,1,\mathbf{x}})}{\lambda(P^1(\mathbf{x}))} > \frac{1}{2}.$$

Moreover, we assume that if $P^1(\mathbf{x}) = P^1(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in D(f_1)$, then $i(1, 1, \mathbf{x}) = i(1, 1, \mathbf{y})$ and $Q_{i,1,\mathbf{x}} = Q_{i,1,\mathbf{y}}$ for $i \leq i(1, 1, \mathbf{x})$. Let

$$S_1^1 = \bigcup_{\mathbf{x} \in D(f_1)} \bigcup_{i \le i(1,1,\mathbf{x})} Q_{i,1,\mathbf{x}}.$$

Observe that

$$\operatorname{cl}(S_1^1) \setminus D(f_1) = \bigcup_{\mathbf{x} \in D(f_1)} \bigcup_{i \le i(1,1,\mathbf{x})} \operatorname{cl}(Q_{i,1,\mathbf{x}}),$$

and the family $\{Q_{i,1,\mathbf{x}}; i \leq i(1,1,\mathbf{x}) \text{ and } \mathbf{x} \in D(f_1)\}$ is \mathcal{P} -locally finite, i.e. for each $\mathbf{y} \in \mathbb{R}^m$ there is an $l \in \mathbb{N}$ such that the family of triples $(i,1,\mathbf{x})$ with $\mathbf{x} \in D(f_1)$ and $Q_{i,1,\mathbf{x}} \cap P^l(\mathbf{y}) \neq \emptyset$ is finite.

Now, for each $\mathbf{x} \in D(f_1)$ we find the first positive integer $n(1, 2, \mathbf{x})$ such that diam $(P^{n(1,2,\mathbf{x})}(\mathbf{x})) < 1/2$ and

$$\mathbf{x} \in P^{n(1,2,\mathbf{x})}(\mathbf{x}) \subset P^1(\mathbf{x}) \setminus \mathrm{cl}(S_1^1).$$

There is then a finite family of cubes

$$Q_{1,n(1,2,\mathbf{x}),\mathbf{x}},\ldots,Q_{i(1,n(1,2,\mathbf{x}),\mathbf{x}),n(1,2,\mathbf{x}),\mathbf{x}}\in\mathcal{P}$$

whose closures are pairwise disjoint and contained in $int(P^{n(1,2,\mathbf{x})}(\mathbf{x}))\setminus D(f_1)$ and such that

$$\frac{\lambda(\bigcup_{i=1}^{i(1,n(1,2,\mathbf{x}),\mathbf{x})}Q_{i,n(1,2,\mathbf{x}),\mathbf{x}})}{\lambda(P^{n(1,2,\mathbf{x})}(\mathbf{x}))} > 1 - \frac{1}{2^2}$$

Moreover, assume that if $n(1,2,\mathbf{x}) = n(1,2,\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in D(f_1)$, then $i(1, n(1,2,\mathbf{x}), \mathbf{x}) = i(1, n(1,2,\mathbf{y}), \mathbf{y})$ and $Q_{i,n(1,2,\mathbf{x}),\mathbf{x}} = Q_{i,n(1,2,\mathbf{y}),\mathbf{y}}$ for $i \leq i(1, n(1,2,\mathbf{x}), \mathbf{x})$. Let

$$S_2^1 = \bigcup_{\mathbf{x} \in D(f_1)} \bigcup_{i \le i(1, n(1, 2, \mathbf{x}), \mathbf{x})} Q_{i, n(1, 2, \mathbf{x}), \mathbf{x}}.$$

Observe that

$$\operatorname{cl}(S_2^1) \setminus D(f_1) = \bigcup_{\mathbf{x} \in D(f_1)} \bigcup_{i \le i(1, n(1, 2, \mathbf{x}), \mathbf{x})} \operatorname{cl}(Q_{i, n(1, 2, \mathbf{x}), \mathbf{x}})$$

and the family $\{Q_{i,n(1,2,\mathbf{x}),\mathbf{x}}; i \leq i(1, n(1,2,\mathbf{x}),\mathbf{x}) \text{ and } \mathbf{x} \in D(f_1)\}$ is \mathcal{P} -locally finite.

For j > 2, we proceed analogously and for each $\mathbf{x} \in D(f_1)$ we find the first positive integer $n(1, j, \mathbf{x})$ such that $\operatorname{diam}(P^{n(1,j,\mathbf{x})}(\mathbf{x})) < 1/2^{j-1}$ and

$$\mathbf{x} \in P^{n(1,j,\mathbf{x})}(\mathbf{x}) \subset P^{n(1,j-1,\mathbf{x})}(\mathbf{x}) \setminus \operatorname{cl}(S^1_{j-1})$$

There is then a finite family of cubes

$$Q_{1,n(1,j,\mathbf{x}),\mathbf{x}},\ldots,Q_{i(1,n(1,j,\mathbf{x}),\mathbf{x}),n(1,j,\mathbf{x}),\mathbf{x}} \in \mathcal{P}$$

whose closures are pairwise disjoint and contained in $int(P^{n(1,j,\mathbf{x})}(\mathbf{x})) \setminus D(f_1)$ and such that

$$\frac{\lambda(\bigcup_{i=1}^{i(1,n(1,j,\mathbf{x}),\mathbf{x})}Q_{i,n(1,j,\mathbf{x}),\mathbf{x}})}{\lambda(P^{n(1,j,\mathbf{x})}(\mathbf{x}))} > 1 - \frac{1}{2^j}$$

Moreover, assume that if $n(1, j, \mathbf{x}) = n(1, j, \mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in D(f_1)$, then $i(1, n(1, j, \mathbf{x}), \mathbf{x}) = i(1, n(1, j, \mathbf{y}), \mathbf{y})$ and $Q_{i,n(1,j,\mathbf{x}),\mathbf{x}} = Q_{i,n(1,j,\mathbf{y}),\mathbf{y}}$ for $i \leq i(1, n(1, j, \mathbf{x}), \mathbf{x})$. Let

$$S_j^1 = \bigcup_{\mathbf{x} \in D(f_1)} \bigcup_{i \le i(1, n(1, j, \mathbf{x}), \mathbf{x})} Q_{i, n(1, j, \mathbf{x}), \mathbf{x}}.$$

Then

$$\operatorname{cl}(S_j^1) \setminus D(f_1) = \bigcup_{\mathbf{x} \in D(f_1)} \bigcup_{i \le i(1, n(1, j, \mathbf{x}), \mathbf{x})} \operatorname{cl}(Q_{i, n(1, j, \mathbf{x}), \mathbf{x}})$$

and the family $\{Q_{i,n(1,j,\mathbf{x}),\mathbf{x}}; i \leq i(1, n(1,j,\mathbf{x}),\mathbf{x}) \text{ and } \mathbf{x} \in D(f_1)\}$ is \mathcal{P} -locally finite.

Let $N_l, l \in \mathbb{Z}$, be pairwise disjoint infinite sets of positive integers such that

$$\mathbb{N} = \bigcup_{l \in \mathbb{Z}} N_l.$$

Observe that for each integer l and for each $\mathbf{x} \in D(f_1)$,

$$d_u\left(\bigcup_{j\in N_l} \operatorname{int}(S_j^1), \mathbf{x}\right) = 1.$$

Let

$$g_1(\mathbf{x}) = \begin{cases} kc/2 & \text{if } \mathbf{x} \in S_j^1, \ j \in N_{2k}, \\ f_1(\mathbf{x}) & \text{elsewhere on } \mathbb{R}^m, \end{cases}$$

and let

$$h_1(\mathbf{x}) = f_1(\mathbf{x}) - g_1(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^m.$$

Observe that $f_1 = g_1 + h_1$. Moreover, for each $\mathbf{x} \in \mathbb{R}^m$,

(*)
$$d_u(\operatorname{int}(g_1^{-1}(g_1(\mathbf{x}))), \mathbf{x}) = 1, \quad d_u(\operatorname{int}(h_1^{-1}(h_1(\mathbf{x}))), \mathbf{x}) = 1.$$

Indeed, if $\mathbf{x} \in D(f_1)$ and $f_1(\mathbf{x}) = (k-1)c/2$ then for each $j \in N_{2k-1}$ there is a cube $P^{n(1,j,\mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$. But

$$\frac{\lambda(S_j^1 \cap P^{n(1,j,\mathbf{x})}(\mathbf{x}))}{\lambda(P^{n(1,j,\mathbf{x})}(\mathbf{x}))} > 1 - \frac{1}{2^j}$$

and $g_1(\mathbf{x}) = f_1(\mathbf{x})$, so $d_u(int(g^{-1}((k-1)c/2)), \mathbf{x}) = 1$.

If $\mathbf{x} \in S_j^1$ for some $j \in \mathbb{N}$, then from the construction of g_1 it follows that $d_u(\operatorname{int}((g_1)^{-1}(g_1(\mathbf{x}))), \mathbf{x}) = 1.$

If $\mathbf{x} \in \mathbb{R}^m \setminus (D(f_1) \cup \bigcup_j S_j^1)$ then $d_u((g_1)^{-1}(g_1(\mathbf{x}))), \mathbf{x}) = 1$, since f_1 is continuous at \mathbf{x} .

If $\mathbf{x} \in D(f_1)$ then $h_1(\mathbf{x}) = 0$. Since $\bigcup_{k \in \mathbb{Z}} \bigcup_{j \in N_{2k-1}} S_j^1 \subset (h_1)^{-1}(0)$, we have $d_u(h_1^{-1}(h_1(\mathbf{x}))), \mathbf{x}) = 1$.

If $\mathbf{x} \notin D(f_1)$ then $d_u(\operatorname{int}(h_1^{-1}(h_1(\mathbf{x}))), \mathbf{x}) = 1$, since h_1 is the difference of the function f_1 continuous at \mathbf{x} and the function g_1 such that $d_u(\operatorname{int}(g_1^{-1}(g_1(\mathbf{x}))), \mathbf{x}) = 1$ for each $\mathbf{x} \in \mathbb{R}^m$.

From (*) it follows that g_1 and h_1 are s.q.c.

STEP $n \ (n \ge 2)$. For a set $A \subset \mathbb{R}^m$ and $\eta > 0$ let

$$\mathcal{O}(A,\eta) = \bigcup_{\mathbf{x}\in A} B(\mathbf{x},\eta), \text{ where } B(\mathbf{x},\eta) = \{\mathbf{t}\in\mathbb{R}^m; |\mathbf{t}-\mathbf{x}|<\eta\}.$$

Assume that there are two functions $g_{n-1}, h_{n-1} : \mathbb{R}^m \to \mathbb{R}$ such that:

• $f_{n-1} = g_{n-1} + h_{n-1};$ • $g_{n-1}(\mathbb{R}^m) \cup h_{n-1}(\mathbb{R}^m) \subset \{kc/2^{n-1}; k \in \mathbb{Z}\};$ • for each $\mathbf{x} \in \mathbb{R}^m,$ $d_u(\operatorname{int}(g_{n-1}^{-1}(g_{n-1}(\mathbf{x}))), \mathbf{x}) = 1, \quad d_u(\operatorname{int}(h_{n-1}^{-1}(h_{n-1}(\mathbf{x}))), \mathbf{x}) = 1.$

For $k \in \mathbb{Z}$ let

$$G_{n,k} = g_{n-1}^{-1}(kc/2^n) \cap D(f_n), \quad H_{n,k} = h_{n-1}^{-1}(kc/2^n) \cap D(f_n).$$

(1) If $G_{n,-2^n} \neq \emptyset$ then as in the first step, for each $\mathbf{x} \in G_{n,-2^n}$ we find the first positive integer $r(n, 1, -2^n, \mathbf{x})$ such that $\mathbf{x} \in P^{r(n,1,-2^n,\mathbf{x})}(\mathbf{x}) \subset \mathcal{O}(G_{n,-2^n}, 1/2^n)$ and

$$\frac{\lambda(P^{r(n,1,-2^n,\mathbf{x})}(\mathbf{x}) \cap g_{n-1}^{-1}(-c))}{\lambda(P^{r(n,1,-2^n,\mathbf{x})}(\mathbf{x}))} > \frac{1}{2}.$$

Moreover, if $\mathbf{x} \in D(f_n) \setminus D(f_{n-1})$ then $P^{r(n,1,-2^n,\mathbf{x})}(\mathbf{x}) \cap D(f_{n-1}) = \emptyset$. There is a finite family of cubes

There is a finite family of cubes

 $Q_{1,r(n,1,-2^n,\mathbf{x}),\mathbf{x}}, Q_{2,r(n,1,-2^n,\mathbf{x}),\mathbf{x}}, \dots, Q_{i(1,r(n,1,-2^n,\mathbf{x}),\mathbf{x}),r(n,1,-2^n,\mathbf{x}),\mathbf{x}} \in \mathcal{P}$ whose closures are pairwise disjoint and contained in

$$(\operatorname{int}(P^{r(n,1,-2^n,\mathbf{x})}(\mathbf{x})) \cap g_{n-1}^{-1}(-c)) \setminus D(f_n)$$

and such that

$$\frac{\lambda(\bigcup_{i=1}^{i(1,r(n,1,-2^n,\mathbf{x}),\mathbf{x})}Q_{i,r(n,1,-2^n,\mathbf{x}),\mathbf{x}})}{\lambda(P^{r(n,1,-2^n,\mathbf{x})}(\mathbf{x}))} > \frac{1}{2}.$$

Moreover, we assume that if $\mathbf{y} \in P^{r(n,1,-2^n,\mathbf{x})}$ for some $\mathbf{x}, \mathbf{y} \in G_{n,-2^n}$ then $i(1, r(n, 1, -2^n, \mathbf{x}), \mathbf{x}) = i(1, r(n, 1, -2^n, \mathbf{y}), \mathbf{y})$ and $Q_{i,r(n,1,-2^n,\mathbf{x}),\mathbf{x}} = Q_{i,r(n,1,-2^n,\mathbf{y}),\mathbf{y}}$ for $i \leq i(1, r(n, 1, -2^n, \mathbf{x}), \mathbf{x})$. Let

$$S_1^{n,-2^n} = \bigcup_{\mathbf{x} \in G_{n,-2^n}} \bigcup_{i \le i(1,r(n,1,-2^n,\mathbf{x}),\mathbf{x})} Q_{i,r(n,1,-2^n,\mathbf{x}),\mathbf{x}}$$

Observe that

$$cl(S_1^{n,-2^n}) \setminus G_{n,-2^n} = \bigcup_{\mathbf{x} \in G_{n,-2^n}} \bigcup_{i \le i(1,r(n,1,-2^n,\mathbf{x}),\mathbf{x})} cl(Q_{i,r(n,1,-2^n,\mathbf{x}),\mathbf{x}})$$

and the family $\{Q_{i,r(n,1,-2^n,\mathbf{x}),\mathbf{x}}; i \leq i(1,r(n,1,-2^n,\mathbf{x}),\mathbf{x}) \text{ and } \mathbf{x} \in G_{n,-2^n}\}$ is \mathcal{P} -locally finite.

If $G_{n,-2^n} = \emptyset$ then we put $S_1^{n,-2^n} = \emptyset$.

Next, fix $k \in (-2^n, 2^n]$. If $G_{n,k} \neq \emptyset$ then for each $\mathbf{x} \in G_{n,k}$ we find the first positive integer $r(n, 1, k, \mathbf{x})$ such that

$$\mathbf{x} \in P^{r(n,1,k,\mathbf{x})}(\mathbf{x}) \subset \mathcal{O}(G_{n,k}, 1/2^n) \setminus \bigcup_{\substack{-2^n \le i < k}} \operatorname{cl}(S_1^{n,i}),$$
$$\frac{\lambda(P^{r(n,1,k,\mathbf{x})}(\mathbf{x}) \cap g_{n-1}^{-1}(kc/2^n))}{\lambda(P^{r(n,1,k,\mathbf{x})}(\mathbf{x}))} > \frac{1}{2}$$

and moreover, if $\mathbf{x} \in D(f_n) \setminus D(f_{n-1})$ then $P^{r(n,1,k,\mathbf{x})}(\mathbf{x}) \cap D(f_{n-1}) = \emptyset$. There is a finite family of cubes

$$Q_{1,r(n,1,k,\mathbf{x}),\mathbf{x}}, Q_{2,r(n,1,k,\mathbf{x}),\mathbf{x}}, \dots, Q_{i(1,r(n,1,k,\mathbf{x}),\mathbf{x}),r(n,1,k,\mathbf{x}),\mathbf{x}} \in \mathcal{P}$$

whose closures are pairwise disjoint and contained in

$$(\operatorname{int}(P^{r(n,1,k,\mathbf{x})}(\mathbf{x})) \cap g_{n-1}^{-1}(kc/2^n)) \setminus D(f_n)$$

and such that

$$\frac{\lambda(\bigcup_{i=1}^{i(1,r(n,1,k,\mathbf{x}),\mathbf{x})}Q_{i,r(n,1,k,\mathbf{x}),\mathbf{x}})}{\lambda(P^{r(n,1,k,\mathbf{x})}(\mathbf{x}))} > \frac{1}{2}.$$

Moreover, we assume that if $\mathbf{y} \in P^{r(n,1,k,\mathbf{x})}(\mathbf{x})$ for some $\mathbf{x}, \mathbf{y} \in G_{n,k}$ then $i(1, r(n, 1, k, \mathbf{x}), \mathbf{x}) = i(1, r(n, 1, k, \mathbf{y}), \mathbf{y})$ and $Q_{i,r(n,1,k,\mathbf{x}),\mathbf{x}} = Q_{i,r(n,1,k,\mathbf{y}),\mathbf{y}}$ for $i \leq i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})$. Let

$$S_1^{n,k} = \bigcup_{\mathbf{x} \in G_{n,k}} \bigcup_{i \le i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})} Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}}$$

and observe that

$$\operatorname{cl}(S_1^{n,k}) \setminus G_{n,k} = \bigcup_{\mathbf{x} \in G_{n,k}} \bigcup_{i \le i(1,r(n,1,k,\mathbf{x}),\mathbf{x})} \operatorname{cl}(Q_{i,r(n,1,k,\mathbf{x}),\mathbf{x}}).$$

Also observe that the family $\{Q_{i,r(n,1,k,\mathbf{x}),\mathbf{x}}; i \leq i(1,r(n,1,k,\mathbf{x}),\mathbf{x}) \text{ and } \mathbf{x} \in G_{n,k}\}$ is \mathcal{P} -locally finite.

If $G_{n,k} = \emptyset$ then we put $S_1^{n,k} = \emptyset$. Now, let

$$S_1^n = \bigcup_{-2^n \le k \le 2^n} S_1^{n,k}$$

(1') Analogously, if $H_{n,k} \neq \emptyset$ for $k \in [-2^n, 2^n]$ then as in (1) for the sets $H_{n,k}$ we construct sets $K_1^{n,k}$ and

$$K_1^n = \bigcup_{-2^n \le k \le 2^n} K_1^{n,k}$$

which are counterparts of $S_1^{n,k}$ and S_1^n constructed in (1) for the sets $G_{n,k}$, contained in the complement of S_1^n and having analogous properties. (2) For $j \ge 2$ and $k \in [-2^{n+j-1}, 2^{n+j-1}]$ with $G_{n,k} \ne \emptyset$ we find families

(2) For $j \geq 2$ and $k \in [-2^{n+j-1}, 2^{n+j-1}]$ with $G_{n,k} \neq \emptyset$ we find families of cubes $Q_{1,r(n,j,k,\mathbf{x}),\mathbf{x}}, Q_{2,r(n,j,k,\mathbf{x}),\mathbf{x}}, \dots, Q_{i(1,r(n,j,k,\mathbf{x}),\mathbf{x}),r(n,j,k,\mathbf{x}),\mathbf{x}} \in \mathcal{P}$ whose closures are pairwise disjoint and contained in

$$(\operatorname{int}(P^{r(n,j,k,\mathbf{x})}(\mathbf{x})) \cap g_{n-1}^{-1}(kc/2^n)) \setminus D(f_n)$$

and such that

$$\frac{\lambda(\bigcup_{i=1}^{i(1,r(n,j,k,\mathbf{x}),\mathbf{x})}Q_{i,r(n,1,k,\mathbf{x}),\mathbf{x}})}{\lambda(P^{r(n,j,k,\mathbf{x})}(\mathbf{x}))} > 1 - \frac{1}{2^j}.$$

Let

$$S_j^{n,k} = \bigcup_{\mathbf{x} \in G_{n,k}} \bigcup_{i \le i(1,r(n,j,k,\mathbf{x}),\mathbf{x})} Q_{i,r(n,j,k,\mathbf{x}),\mathbf{x}}.$$

Then

$$\operatorname{cl}(S_j^{n,k}) \setminus G_{n,k} = \bigcup_{\mathbf{x} \in G_{n,k}} \bigcup_{i \le i(1,r(n,j,k,\mathbf{x}),\mathbf{x})} \operatorname{cl}(Q_{i,r(n,j,k,\mathbf{x}),\mathbf{x}}).$$

Also let

$$S_j^n = \bigcup_{-2^{n+j-1} \le k \le 2^{n+j-1}} S_j^{n,k}$$

If $G_{n,k} = \emptyset$ then we put $S_1^{n,k} = \emptyset$.

(2) Now, if $H_{n,k} \neq \emptyset$ for $k \in [-2^{n+j-1}, 2^{n+j-1}]$ and $j \ge 2$, then for the sets $H_{n,k}$ we construct sets $K_i^{n,k}$ and

$$K_j^n = \bigcup_{-2^{n+j-1} \leq k \leq 2^{n+j-1}} K_j^{n,k}$$

which are counterparts of $S_j^{n,k}$ and S_j^n constructed in (2) for the sets $G_{n,k}$, contained in the complement of S_j^n and having analogous properties.

From the above construction it follows that for every $k \in \mathbb{Z}$ we have

- d_u(⋃_{j∈Nk} int(Sⁿ_j), **x**) = 1 for each **x** ∈ G_{n,k},
 d_u(⋃_{j∈Nk} int(Kⁿ_j), **x**) = 1 for each **x** ∈ H_{n,k}.

Finally, we define $g_n, h_n : \mathbb{R}^m \to \mathbb{R}$ as follows:

- 1) $g_n(\mathbf{x}) = g_{n-1}(\mathbf{x}) + c/2^n$ for $\mathbf{x} \in S_j^n$, $j \in N_{2k}$, $k \in \mathbb{Z}$; 2) $h_n(\mathbf{x}) = h_{n-1}(\mathbf{x}) c/2^n$ for $\mathbf{x} \in K_j^n$, $j \in N_{2k-1}$, $k \in \mathbb{Z}$; 3) for $\mathbf{x} \in \mathbb{R}^m \setminus \bigcup_{k \in \mathbb{Z}} (\bigcup_{j \in N_{2k}} S_j^n \cup \bigcup_{j \in N_{2k-1}} K_j^n)$ let

$$g_n(\mathbf{x}) = g_{n-1}(\mathbf{x}) + (f_n(\mathbf{x}) - f_{n-1}(\mathbf{x}));$$

4) $h_n(\mathbf{x}) = f_n(\mathbf{x}) - g_n(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m$.

As in the first step, we verify that g_n , h_n are s.q.c. Moreover, observe that:

- by 1) and 3), for $\mathbf{x} \in \mathbb{R}^m \setminus \bigcup_{k \in \mathbb{Z}} \bigcup_{j \in N_{2k-1}} K_j^n$ we have $|g_n(\mathbf{x}) - g_{n-1}(\mathbf{x})| < c/2^n$
- by 4) (and 2)), for $\mathbf{x} \in K_j^n$, $j \in N_{2k-1}$, $k \in \mathbb{Z}$ we have

$$|g_{n}(\mathbf{x}) - g_{n-1}(\mathbf{x})| = |(f_{n}(\mathbf{x}) - h_{n}(\mathbf{x})) - g_{n-1}(\mathbf{x})|$$

= $|(f_{n}(\mathbf{x}) - h_{n-1}(\mathbf{x}) + c/2^{n}) - g_{n-1}(\mathbf{x})|$
= $|f_{n}(\mathbf{x}) - (f_{n-1}(\mathbf{x}) - g_{n-1}(\mathbf{x})) + c/2^{n} - g_{n-1}(\mathbf{x})|$
 $\leq |f_{n}(\mathbf{x}) - f_{n-1}(\mathbf{x})| + c/2^{n} < c/2^{n-1}.$

So, $|g_n - g_{n-1}| < c/2^{n-1}$ everywhere on \mathbb{R}^m . Similarly we can check that $|h_n - h_{n-1}| < c/2^{n-2}$ everywhere on \mathbb{R}^m .

The sequences $(q_n)_n$ and $(h_n)_n$ uniformly converge to some functions g and h respectively, which, by Remark 1, are s.q.c. Moreover,

$$g+h = \lim_{n \to \infty} g_n + \lim_{n \to \infty} h_n = \lim_{n \to \infty} (g_n + h_n) = \lim_{n \to \infty} f_n = f.$$

This finishes the proof.

REMARK 3. If the function f from Theorem 1 is of Baire class α ($\alpha > 0$) then the functions g, h can be found in the same class.

REMARK 4. From the proof of Theorem 1 it follows immediately that if U is an open set in \mathbb{R}^m and if $f: U \to \mathbb{R}$ is an almost everywhere continuous function then there are s.q.c. functions $g, h: U \to \mathbb{R}$ such that f = g + h.

REMARK 5. If $U \subset \mathbb{R}^m$ is a nonempty open set and $f: U \to \mathbb{R}$ is a s.q.c. function then for each cube $P \in \mathcal{P}$ the restricted functions $f|_P$ and $f|_{\mathbb{R}^m \setminus P}$ are also s.q.c. at all points of their domains.

Now we will investigate products of s.q.c. functions.

THEOREM 2. Let $f : \mathbb{R}^m \to \mathbb{R}$ be an almost everywhere continuous function such that $\lambda(\operatorname{cl}(f^{-1}(0)) \setminus \operatorname{int}(f^{-1}(0))) = 0$. Then there are s.q.c. functions g, h such that $f = g \cdot h$.

Proof. Set
$$A = {\mathbf{x}; f(\mathbf{x}) > 0}, B = {\mathbf{x}; f(\mathbf{x}) < 0}$$
 and observe that $\lambda(\mathbb{R}^m \setminus (\operatorname{int}(A) \cup \operatorname{int}(B) \cup \operatorname{int}(f^{-1}(0))) = 0.$

If $\operatorname{int}(A) \neq \emptyset$ and if O is a component of $\operatorname{int}(A)$ then $\mathbf{x} \mapsto \ln(f(\mathbf{x}))$ for $\mathbf{x} \in O$ is an almost everywhere continuous function, and by Theorem 1, there are s.q.c. functions $g_O, h_O : O \to \mathbb{R}$ such that $\ln(f(\mathbf{x})) = g_O(\mathbf{x}) + h_O(\mathbf{x})$ for $\mathbf{x} \in O$. Consequently, $f|_O = (e^{\ln(f)})|_O = e^{g|_O} \cdot e^{h|_O}$ is the product of two s.q.c. functions.

Analogously, if $\operatorname{int}(B) \neq \emptyset$ and if O' is a component of $\operatorname{int}(B)$ then $-f|_{O'}$ is the product of two s.q.c. functions, and consequently, so is $f|_{O'}$. Hence, there are s.q.c. functions $g_1, h_1 : (\operatorname{int}(A) \cup \operatorname{int}(B)) \to \mathbb{R}$ such that $f|_{\operatorname{int}(A)\cup\operatorname{int}(B)} = g_1 \cdot h_1$.

Now, let

$$F = \{ \mathbf{x} \in cl(int(f^{-1}(0))) \setminus int(f^{-1}(0)); \, d_u(int(f^{-1}(0)), \mathbf{x}) > 0 \}.$$

As in the proof of Theorem 1, we can prove that there is a \mathcal{P} -locally finite (in int $(f^{-1}(0))$) family of cubes $Q_i^j \in \mathcal{P}$ $(i, j \in \mathbb{N})$ whose closures $cl(Q_i^j)$ are pairwise disjoint and contained in $int(f^{-1}(0))$ and such that:

- if $S^j = \bigcup_{i \in \mathbb{N}} Q_i^j$ then $\operatorname{cl}(S^j) = \bigcup_{i \in \mathbb{N}} \operatorname{cl}(Q_i^j);$
- the sequence $(cl(S^j))_j$ converges in the Hausdorff metric to cl(F);
- for each infinite set $N_0 \subset \mathbb{N}$ and for each $\mathbf{x} \in F$,

$$d_u\Big(\bigcup_{j\in N_0}S^j,\mathbf{x}\Big)>0.$$

Let $\{N_{k,l}\}$ be a family of pairwise disjoint infinite subsets of \mathbb{N} such that

$$\mathbb{N} = \bigcup_{k,l=1}^{\infty} N_{k,l}$$

and let $(w_n)_n$ be a one-to-one enumeration of all non-zero rationals.

Since the boundaries Fr(A) and Fr(B) are of λ -measure zero, similarly we can prove that there is a locally finite (in $int(A) \cup int(B)$) family of cubes $W_i^j \in \mathcal{P}$ whose closures are pairwise disjoint and contained in $int(A) \cup int(B)$ and such that:

- if $V^j = \bigcup_{i \in \mathbb{N}} W^j_i$ then $\operatorname{cl}(V^j) = \bigcup_{i \in \mathbb{N}} \operatorname{cl}(W^j_i);$
- $(\operatorname{cl}(V^j))_j$ converges to $\operatorname{cl}((\operatorname{Fr}(A) \cup \operatorname{Fr}(B)) \setminus F)$ in the Hausdorff metric;
- for each infinite set $N_0 \subset \mathbb{N}$ and for each $\mathbf{x} \in (\operatorname{Fr}(A) \cup \operatorname{Fr}(B)) \setminus F$,

$$d_u\Big(\bigcup_{j\in N_0}V^j,\mathbf{x}\Big)>0$$

Since g_1 is almost everywhere continuous on its domain, in each cube W_i^j we can find a finite family of cubes

$$U_{i,1}^j, \dots, U_{i,k(i,j)}^j \in \mathcal{P}$$

whose closures are pairwise disjoint and contained in $int(W_i^j)$ and such that for every cube $U_{i,k}^j$ there is a positive real r(i, j, k) such that:

- $|g_1(\mathbf{x})| > r(i, j, k)$ for $\mathbf{x} \in \operatorname{cl}(U_{i,k}^j), i, j \in \mathbb{N}$ and $k \le k(i, j);$
- $\operatorname{osc}_{\operatorname{cl}(U_{i,k}^j)} g_1 < r(i,j,k)/jw_l \text{ for } i,l \in \mathbb{N}, j \in N_{l,i}, k \le k(i,j);$
- for each $\mathbf{x} \in (Fr(A) \cup Fr(B)) \setminus F$ and for each infinite set $N_0 \subset \mathbb{N}$,

$$d_u\left(\bigcup_{j\in N_0}\bigcup_{i\in\mathbb{N}}\bigcup_{k\leq k(i,j)}U_{i,k}^j,\mathbf{x}\right)=d_u\left(\bigcup_{j\in N_0}V^j,\mathbf{x}\right)>0.$$

Fix a point $\mathbf{x}_{i,k}^{j}$ in each cube $\operatorname{int}(U_{i,k}^{j}), i, j \in \mathbb{N}, k \leq k(i, j)$. Put

$$g(\mathbf{x}) = \begin{cases} w_k & \text{if } \mathbf{x} \in S^n, \, n \in N_{2k,1}, \, k \in \mathbb{N}, \\ 0 & \text{if } \mathbf{x} \in S^n, \, n \in N_{2k-1,1}, \, k \in \mathbb{N}, \\ 0 & \text{elsewhere on } f^{-1}(0), \\ \frac{g_1(\mathbf{x})w_j}{g_1(\mathbf{x}_{i,k}^n)} & \text{if } \mathbf{x} \in U_{i,k}^n, \, i \in \mathbb{N}, \, n \in N_{j,1}, \, k \le k(i,n), \\ g_1(\mathbf{x}) & \text{elsewhere on } \operatorname{int}(A) \cup \operatorname{int}(B), \\ f(\mathbf{x}) & \text{if } \mathbf{x} \in \mathbb{R}^m \setminus (\operatorname{int}(A) \cup \operatorname{int}(B) \cup f^{-1}(0)), \end{cases}$$

and

$$h(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in S^n, n \in N_{2k,1}, k \in \mathbb{N}, \\ 1 & \text{if } \mathbf{x} \in S^n, n \in N_{2k-1,1}, k \in \mathbb{N}, \\ 0 & \text{elsewhere on } f^{-1}(0), \\ \frac{h_1(\mathbf{x})g_1(\mathbf{x}_{i,k}^n)}{w_j} & \text{if } \mathbf{x} \in U_{i,k}^n, i \in \mathbb{N}, n \in N_{j,1}, k \le k(i,n), \\ h_1(\mathbf{x}) & \text{elsewhere on } \inf(A) \cup \inf(B), \\ 1 & \text{if } \mathbf{x} \in \mathbb{R}^m \setminus (\inf(A) \cup \inf(B) \cup f^{-1}(0)). \end{cases}$$

Since $g(U_{i,k}^n) \subset (w_j - 1/j, w_j + 1/j)$ for all $i, j \in \mathbb{N}$, $n \in N_{j,1}$, $k \leq k(i, n)$, and for each infinite set $N_0 \subset \mathbb{N}$ we have

$$d_u\Big(\bigcup_{j\in N_0}U_{i,k}^j, \mathbf{x}\Big)>0$$

for each

$$\mathbf{x} \in H = \mathbb{R}^m \setminus (\operatorname{int}(A) \cup \operatorname{int}(B) \cup \operatorname{int}(f^{-1}(0)) \cup F),$$

the function g is s.q.c. at every $\mathbf{x} \in H$.

Evidently, it is also s.q.c. elsewhere on \mathbb{R}^m . Analogously, h is s.q.c. Obviously, $f = g \cdot h$ and the proof is complete.

THEOREM 3. If $f : \mathbb{R}^m \to \mathbb{R}$ is an almost everywhere continuous function then there are a constant $c \in \mathbb{R}$ and two s.q.c. functions g, h such that $f = c + g \cdot h$.

Proof. Let $c \in \mathbb{R}$ be such that

$$\lambda(\operatorname{cl}(f^{-1}(c))) = 0.$$

Then the function $f_1 = f - c$ satisfies the assumptions of Theorem 2, and consequently, there are s.q.c. functions g, h such that $f_1 = g \cdot h$. So, $f = c + g \cdot h$ and the proof is finished.

REMARK 6. If $f : \mathbb{R}^m \to \mathbb{R}$ is the product of a finite family of s.q.c. functions f_i , where $i \leq n$, then f satisfies the following condition:

(H) if $A \subset cl(f^{-1}(0)) \setminus f^{-1}(0)$ is such that $d_l(f^{-1}(0), \mathbf{x}) = 1$ for each $\mathbf{x} \in A$ then the set A is nowhere dense in $f^{-1}(0)$.

Proof. I repeat the proof of Remark 5 from [6]. Let

$$B = \{\mathbf{x}; f(\mathbf{x}) = 0 \text{ and } d_l(f^{-1}(0), \mathbf{x}) = 1\}.$$

If $B \neq \emptyset$ and A is not nowhere dense in $f^{-1}(0)$, then there is $\mathbf{x} \in A$ and a positive integer $i \leq n$ such that \mathbf{x} is a density point of $f_i^{-1}(0)$. Since $f_i(\mathbf{x}) \neq 0$ and f_i is s.q.c. at \mathbf{x} , we obtain a contradiction. If $B = \emptyset$ then $A = \emptyset$ and the proof is complete.

Let $(w_n)_n$ be a sequence of all rationals. From the last remark it follows that the function

$$f(x_1, \dots, x_m) = \begin{cases} 1/n & \text{for } x_1 = w_n, \\ 0 & \text{elsewhere on } \mathbb{R}^m \end{cases}$$

is almost everywhere continuous, but it is not the product of any finite family of s.q.c. functions.

Each strongly quasicontinuous function is also quasicontinuous in the sense of Kempisty.

Recall ([9], [10]) that a function $f : \mathbb{R}^m \to \mathbb{R}$ is quasicontinuous at a point $\mathbf{x} \in \mathbb{R}^m$ (in the sense of Kempisty) if for each $\varepsilon > 0$ and each open set $U \ni \mathbf{x}$ there is a nonempty open set $V \subset U$ such that $f(V) \subset (f(\mathbf{x}) - \varepsilon, f(\mathbf{x}) + \varepsilon)$.

This is a purely topological notion while the notion of almost continuity is a measure-theoretic one. The sums and products of finitely many quasicontinuous real functions on \mathbb{R}^m are *cliquish* functions, i.e. are discontinuous only at points of some first category sets ([10]). In Borsík's articles [1], [2] it is proved that each cliquish function $f : \mathbb{R}^m \to \mathbb{R}$ is the sum of two quasicontinuous functions. The results of the present article have similar corollaries:

COROLLARY 1. Let $f : \mathbb{R}^m \to \mathbb{R}$ be a cliquish function. Then

$$f = f_1 + f_2$$
 and $f = c + f_3 \cdot f_4$,

where $c \in \mathbb{R}$ is a constant and f_1 , f_2 , f_3 , f_4 are quasicontinuous functions.

Proof. By [11] and [12] there is a homeomorphism $h : \mathbb{R}^m \to \mathbb{R}^m$ such that $\lambda(h^{-1}(D(f))) = 0$. The function $\phi(\mathbf{x}) = f(h(\mathbf{x})), \mathbf{x} \in \mathbb{R}^m$, is almost everywhere continuous. So, by Theorems 1 and 3 there are a constant $c \in \mathbb{R}$ and strongly quasicontinuous functions $\phi_1, \phi_2, \phi_3, \phi_4 : \mathbb{R}^m \to \mathbb{R}$ such that

$$\phi = \phi_1 + \phi_2$$
 and $\phi = c + \phi_3 \cdot \phi_4$.

Observe that for i = 1, 2, 3, 4 the functions $f_i = \phi_i \circ h^{-1}$ are quasicontinuous,

$$f = \phi \circ h^{-1} = \phi_1 \circ h^{-1} + \phi_2 \circ h^{-1} = f_1 + f_2$$

and

$$f = f \circ h^{-1} = c + (\phi_3 \circ h^{-1}) \cdot (\phi_4 \circ h^{-1}) = c + f_3 \cdot f_4.$$

This finishes the proof.

COROLLARY 2. Let $f : \mathbb{R}^m \to \mathbb{R}$ be a cliquish function such that the set $\operatorname{cl}(f^{-1}(0)) \setminus \operatorname{int}(f^{-1}(0))$ is nowhere dense in \mathbb{R}^m . Then there are two quasicontinuous functions $f_1, f_2 : \mathbb{R}^m \to \mathbb{R}$ with $f = f_1 \cdot f_2$.

Proof. As in the proof of Corollary 1, by [11] and [12], there is a homeomorphism $h : \mathbb{R}^m \to \mathbb{R}^m$ such that $\lambda(h^{-1}(\operatorname{cl}(f^{-1}(0)) \setminus \operatorname{int}(f^{-1}(0)))) = 0$. Let $\phi(\mathbf{x}) = f(h(\mathbf{x}))$ for $\mathbf{x} \in \mathbb{R}^m$. Then

$$\begin{split} \lambda(\mathrm{cl}(\phi^{-1}(0)) \setminus \mathrm{int}(\phi^{-1}(0))) &= \lambda(\mathrm{cl}(f \circ h)^{-1}(0)) \setminus \mathrm{int}(f \circ h)^{-1}(0))) \\ &= \lambda(\mathrm{cl}(h^{-1}(f^{-1}(0))) \setminus \mathrm{int}(h^{-1}(f^{-1}(0)))) \\ &= \lambda(h^{-1}(\mathrm{cl}(f^{-1}(0)) \setminus \mathrm{int}(f^{-1}(0)))) = 0. \end{split}$$

So, by Theorem 2 there are strongly quasicontinuous functions $\phi_1, \phi_2 : \mathbb{R}^m \to \mathbb{R}$ such that $\phi = \phi_1 \cdot \phi_2$. Put $f_1 = \phi_1 \circ h$ and $f_2 = \phi_2 \circ h$ and observe that the functions f_1 and f_2 are quasicontinuous and

$$f = \phi \circ h = (\phi_1 \circ h) \cdot (\phi_2 \circ h) = f_1 \cdot f_2.$$

This completes the proof.

REFERENCES

- J. Borsík, Algebraic structures generated by real quasicontinuous functions, Tatra Mt. Math. Publ. 8 (1996), 175–184.
- [2] —, Sums of quasicontinuous functions for nonseparable spaces, Real Anal. Exchange 22 (1996–97), 328–337.
- [3] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978.
- [4] —, Differentiation of integrals, Amer. Math. Monthly 78 (1971), no. 9, part II, 1–54.
- [5] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–506.
- [6] Z. Grande, On some representations of a.e. continuous functions, Real Anal. Exchange 21 (1995–96), 175–180.
- [7] —, On the strong quasi-continuity of functions of two variables, ibid., 236–243.
- [8] Z. Grande and E. Strońska, On some properties connected with continuity and measurability, Tatra Mt. Math. Publ. 19 (2000), 117-125.
- [9] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1939), 184-197.
- [10] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988–89), 259–306.
- [11] J. C. Oxtoby and S. M. Ulam, On the equivalence of any set of first category to a set of measure zero, Fund. Math. 31 (1938), 201-206.
- [12] J. C. Oxtoby, Measure and Category, 2nd ed., Grad. Texts in Math. 2, Springer, New York, 1980.
- [13] S. Saks, Theory of the Integral, Monografie Mat. 7, Warszawa, 1937.
- [14] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275–284.

Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland E-mail: stronska@neostrada.pl

> Received 7 April 2004; revised 18 December 2005 (4446)

331