
COLLOQU IUM MATHEMAT I CUMVOL. 105 2006 NO. 2

ON SOME REPRESENTATIONS OF ALMOST EVERYWHERECONTINUOUS FUNCTIONS ON R
mBYEWA STRO�SKA (Bydgoszz)Abstrat. It is proved that the following onditions are equivalent: (a) f is an almosteverywhere ontinuous funtion on R

m; (b) f = g + h, where g, h are strongly quasion-tinuous on R
m

; () f = c+ gh, where c ∈ R and g, h are strongly quasiontinuous on R
m.Let λ∗ (resp. λ) denote the outer Lebesgue measure (resp. the Lebesguemeasure) on R

m. For eah n ∈ N (the positive integers) and for eah sequene
(k1, . . . , km) of integers let

Pn
k1,...,km

=

[

k1 − 1

2n
,
k1

2n

)

× · · · ×

[

km − 1

2n
,
km

2n

)

.Moreover, let
Pn = {Pn

k1,...,km
; k1, . . . , km ∈ Z} and P =

⋃

n

Pn.Observe that:(1) if (k1, . . . , km) 6= (l1, . . . , lm) then Pn
k1,...,km

∩ Pn
l1,...,lm

= ∅;(2) R
m =

⋃

k1,...,km∈Z
Pn

k1,...,km
;(3) if n1 > n2 then for eah sequene (k1, . . . , km) of integers there is aunique sequene (l1, . . . , lm) of integers suh that Pn1

k1,...,km
⊂ Pn2

l1,...,lm
;(4) for eah x ∈ R

m and eah n ∈ N there is a unique integer sequene
(k1(x), . . . , km(x)) suh that x ∈ Pn

k1(x),...,km(x) = Pn(x).For A ⊂ R
m and x ∈ R

m denote by
du(A,x) = lim sup

n→∞

λ∗(A ∩ Pn(x))

λ(Pn(x))
, dl(A,x) = lim inf

n→∞

λ∗(A ∩ Pn(x))

λ(Pn(x))the upper and lower density of A ⊂ R at x (f. [2℄).A point x ∈ R
m is alled a density point of a set A ⊂ R

m if there existsa λ-measurable set B ⊂ A suh that dl(B,x) = 1. The family
Td = {A ⊂ R

m; A is λ-measurable and dl(A,x) = 1 for x ∈ A}2000 Mathematis Subjet Classi�ation: 26B05, 26B35, 54C08, 54C30.Key words and phrases: ontinuity, strong quasiontinuity, density topology, sums offuntions, produts of funtions. [319℄



320 E. STRO�SKAis a topology alled the density topology (with respet to P) (see [4, 5, 13, 14℄for the de�nitions of the density topologies with respet to other di�eren-tiation bases). The topology Td introdued above with respet to a �xedsequene of binary nets of half-open ubes is stronger than the ordinarydensity topology ([13℄) with respet to arbitrary ubes ontaining a givenpoint.A funtion f : R
m → R is said to be strongly quasi-ontinuous (for short,s.q..) at a point x if for every set A ∈ Td ontaining x and for every ε > 0there is an open set U suh that U ∩ A 6= ∅ and |f(t) − f(x)| < ε for all

t ∈ A ∩ U (f. [7℄).Remark 1. In the ase m = 1 the notion of strong quasiontinuity forfuntions f : R → R introdued in [7℄ by Grande with respet to the bilateraldensity is more general than that above. For example, the funtion
f(x) =

{

0 for x ≤ 0,
1 for x > 0,is s.q.. at 0 in the sense of Grande, but it is not s.q.. at 0 in the abovesense.Evidently, if f : R → R is s.q.. at x in the above sense then it is s.q..at x in the sense of Grande.Observe that if for x ∈ R

m there is an open set U ⊂ R
m suh that

du(U,x) > 0 and the restrition f |U∪{x} is ontinuous at x then f is s.q..at x.Moreover, by an elementary proof, we obtain:Remark 2. If funtions fn : R
m → R, n = 1, 2, . . . , are s.q.. at a point

x and (fn) uniformly onverges to a funtion f then f is also s.q.. at x.It is known [8℄ that every s.q.. funtion f : R
m → R is almost every-where ontinuous. So, the sum and produt of two s.q.. funtions are almosteverywhere ontinuous. We will prove the following:Theorem 1. If a funtion f : R

m → R is almost everywhere ontinuousthen there are two s.q.. funtions g, h : R
m → R suh that f = g + h.Proof. Let cl denote losure and

B = {y ∈ R; λ(cl(f−1(y))) > 0}.Sine f is almost everywhere ontinuous, the set B is ountable. Withoutloss of generality we an assume that 0 6∈ B, beause otherwise we an �x areal a 6∈ B and onsider the funtion f − a.Let L(B) be the linear span of the set B over the rationals. Sine L(B)is ountable, there is a positive number c ∈ R \L(B). Fix k ∈ Z and n ∈ N.



ALMOST EVERYWHERE CONTINUOUS FUNCTIONS 321If
(k − 1)c

2n
≤ f(x) <

kc

2nthen we de�ne
fn(x) =

(k − 1)c

2n
.Observe that every funtion fn, n ∈ N, is almost everywhere ontinuous andthe set D(fn) of its disontinuity points is losed and of λ-measure zero.Moreover, D(fn) ⊂ D(fn+1) for n ∈ N.

Step 1. Observe that D(f1) is losed and of λ-measure zero. For eah
x ∈ D(f1) there is a unique ube P 1(x) ∈ P1 suh that x ∈ P 1(x). Observethat diam(P 1(x)) < m/2. For the ube P 1(x) there is a �nite family of ubes

Q1,1,x, . . . , Qi(1,1,x),1,x ∈ Pwhose losures are pairwise disjoint and ontained in int(P 1(x))\D(f1) (intdenotes interior) and suh that
λ(

⋃i(1,1,x)
i=1 Qi,1,x)

λ(P 1(x))
>

1

2
.Moreover, we assume that if P 1(x) = P 1(y) for some x,y ∈ D(f1), then

i(1, 1,x) = i(1, 1,y) and Qi,1,x = Qi,1,y for i ≤ i(1, 1,x). Let
S1

1 =
⋃

x∈D(f1)

⋃

i≤i(1,1,x)

Qi,1,x.

Observe that
cl(S1

1) \ D(f1) =
⋃

x∈D(f1)

⋃

i≤i(1,1,x)

cl(Qi,1,x),

and the family {Qi,1,x; i ≤ i(1, 1,x) and x ∈ D(f1)} is P-loally �nite, i.e.for eah y ∈ R
m there is an l ∈ N suh that the family of triples (i, 1,x)with x ∈ D(f1) and Qi,1,x ∩ P l(y) 6= ∅ is �nite.Now, for eah x ∈ D(f1) we �nd the �rst positive integer n(1, 2,x) suhthat diam(Pn(1,2,x)(x)) < 1/2 and

x ∈ Pn(1,2,x)(x) ⊂ P 1(x) \ cl(S1
1).There is then a �nite family of ubes

Q1,n(1,2,x),x, . . . , Qi(1,n(1,2,x),x),n(1,2,x),x ∈ Pwhose losures are pairwise disjoint and ontained in int(Pn(1,2,x)(x))\D(f1)and suh that
λ(

⋃i(1,n(1,2,x),x)
i=1 Qi,n(1,2,x),x)

λ(Pn(1,2,x)(x))
> 1 −

1

22
.



322 E. STRO�SKAMoreover, assume that if n(1, 2,x) = n(1, 2,y) for some x,y ∈ D(f1), then
i(1, n(1, 2,x),x) = i(1, n(1, 2,y),y) and Qi,n(1,2,x),x = Qi,n(1,2,y),y for i ≤
i(1, n(1, 2,x),x). Let

S1
2 =

⋃

x∈D(f1)

⋃

i≤i(1,n(1,2,x),x)

Qi,n(1,2,x),x.

Observe that
cl(S1

2) \ D(f1) =
⋃

x∈D(f1)

⋃

i≤i(1,n(1,2,x),x)

cl(Qi,n(1,2,x),x)

and the family {Qi,n(1,2,x),x; i ≤ i(1, n(1, 2,x),x) and x ∈ D(f1)} is P-loally �nite.For j > 2, we proeed analogously and for eah x ∈ D(f1) we �nd the�rst positive integer n(1, j,x) suh that diam(Pn(1,j,x)(x)) < 1/2j−1 and
x ∈ Pn(1,j,x)(x) ⊂ Pn(1,j−1,x)(x) \ cl(S1

j−1).There is then a �nite family of ubes
Q1,n(1,j,x),x, . . . , Qi(1,n(1,j,x),x),n(1,j,x),x ∈ Pwhose losures are pairwise disjoint and ontained in int(Pn(1,j,x)(x))\D(f1)and suh that

λ(
⋃i(1,n(1,j,x),x)

i=1 Qi,n(1,j,x),x)

λ(Pn(1,j,x)(x))
> 1 −

1

2j
.Moreover, assume that if n(1, j,x) = n(1, j,y) for some x,y ∈ D(f1), then

i(1, n(1, j,x),x) = i(1, n(1, j,y),y) and Qi,n(1,j,x),x = Qi,n(1,j,y),y for i ≤
i(1, n(1, j,x),x). Let

S1
j =

⋃

x∈D(f1)

⋃

i≤i(1,n(1,j,x),x)

Qi,n(1,j,x),x.

Then
cl(S1

j ) \ D(f1) =
⋃

x∈D(f1)

⋃

i≤i(1,n(1,j,x),x)

cl(Qi,n(1,j,x),x)

and the family {Qi,n(1,j,x),x; i ≤ i(1, n(1, j,x),x) and x ∈ D(f1)} is P-loally�nite.Let Nl, l ∈ Z, be pairwise disjoint in�nite sets of positive integers suhthat
N =

⋃

l∈Z

Nl.Observe that for eah integer l and for eah x ∈ D(f1),
du

(

⋃

j∈Nl

int(S1
j ),x

)

= 1.



ALMOST EVERYWHERE CONTINUOUS FUNCTIONS 323Let
g1(x) =

{

kc/2 if x ∈ S1
j , j ∈ N2k,

f1(x) elsewhere on R
m,and let

h1(x) = f1(x) − g1(x), x ∈ R
m.Observe that f1 = g1 + h1. Moreover, for eah x ∈ R
m,

(∗) du(int(g−1
1 (g1(x))),x) = 1, du(int(h−1

1 (h1(x))),x) = 1.Indeed, if x ∈ D(f1) and f1(x) = (k − 1)c/2 then for eah j ∈ N2k−1 thereis a ube Pn(1,j,x)(x) ∋ x. But
λ(S1

j ∩ Pn(1,j,x)(x))

λ(Pn(1,j,x)(x))
> 1 −

1

2jand g1(x) = f1(x), so du(int(g−1((k − 1)c/2)),x) = 1.If x ∈ S1
j for some j ∈ N, then from the onstrution of g1 it follows that

du(int((g1)
−1(g1(x))),x) = 1.If x ∈ R

m \ (D(f1) ∪
⋃

j S1
j ) then du((g1)

−1(g1(x))),x) = 1, sine f1 isontinuous at x.If x ∈ D(f1) then h1(x) = 0. Sine ⋃

k∈Z

⋃

j∈N2k−1
S1

j ⊂ (h1)
−1(0), wehave du(h−1

1 (h1(x))),x) = 1.If x 6∈ D(f1) then du(int(h−1
1 (h1(x))),x) = 1, sine h1 is the di�er-ene of the funtion f1 ontinuous at x and the funtion g1 suh that

du(int(g−1
1 (g1(x))),x) = 1 for eah x ∈ R

m.From (∗) it follows that g1 and h1 are s.q..
Step n (n ≥ 2). For a set A ⊂ R

m and η > 0 let
O(A, η) =

⋃

x∈A

B(x, η), where B(x, η) = {t ∈ R
m; |t− x| < η}.Assume that there are two funtions gn−1, hn−1 : R

m → R suh that:
• fn−1 = gn−1 + hn−1;
• gn−1(R

m) ∪ hn−1(R
m) ⊂ {kc/2n−1; k ∈ Z};

• for eah x ∈ R
m,

du(int(g−1
n−1(gn−1(x))),x) = 1, du(int(h−1

n−1(hn−1(x))),x) = 1.For k ∈ Z let
Gn,k = g−1

n−1(kc/2n) ∩ D(fn), Hn,k = h−1
n−1(kc/2n) ∩ D(fn).(1) If Gn,−2n 6= ∅ then as in the �rst step, for eah x ∈ Gn,−2n we �ndthe �rst positive integer r(n, 1,−2n,x) suh that x ∈ P r(n,1,−2n,x)(x) ⊂

O(Gn,−2n , 1/2n) and



324 E. STRO�SKA
λ(P r(n,1,−2n,x)(x) ∩ g−1

n−1(−c))

λ(P r(n,1,−2n,x)(x))
>

1

2
.Moreover, if x ∈ D(fn) \ D(fn−1) then P r(n,1,−2n,x)(x) ∩ D(fn−1) = ∅.There is a �nite family of ubes

Q1,r(n,1,−2n,x),x, Q2,r(n,1,−2n,x),x, . . . , Qi(1,r(n,1,−2n,x),x),r(n,1,−2n,x),x ∈ Pwhose losures are pairwise disjoint and ontained in
(int(P r(n,1,−2n,x)(x)) ∩ g−1

n−1(−c)) \ D(fn)and suh that
λ(

⋃i(1,r(n,1,−2n,x),x)
i=1 Qi,r(n,1,−2n,x),x)

λ(P r(n,1,−2n,x)(x))
>

1

2
.Moreover, we assume that if y ∈ P r(n,1,−2n,x) for some x,y ∈ Gn,−2nthen i(1, r(n, 1,−2n,x),x) = i(1, r(n, 1,−2n,y),y) and Qi,r(n,1,−2n,x),x =

Qi,r(n,1,−2n,y),y for i ≤ i(1, r(n, 1,−2n,x),x). Let
Sn,−2n

1 =
⋃

x∈Gn,−2n

⋃

i≤i(1,r(n,1,−2n,x),x)

Qi,r(n,1,−2n,x),x.Observe that
cl(Sn,−2n

1 ) \ Gn,−2n =
⋃

x∈Gn,−2n

⋃

i≤i(1,r(n,1,−2n,x),x)

cl(Qi,r(n,1,−2n,x),x)

and the family {Qi,r(n,1,−2n,x),x; i ≤ i(1, r(n, 1,−2n,x),x) and x ∈ Gn,−2n}is P-loally �nite.If Gn,−2n = ∅ then we put Sn,−2n

1 = ∅.Next, �x k ∈ (−2n, 2n]. If Gn,k 6= ∅ then for eah x ∈ Gn,k we �nd the�rst positive integer r(n, 1, k,x) suh that
x ∈ P r(n,1,k,x)(x) ⊂ O(Gn,k, 1/2n) \

⋃

−2n≤i<k

cl(Sn,i
1 ),

λ(P r(n,1,k,x)(x) ∩ g−1
n−1(kc/2n))

λ(P r(n,1,k,x)(x))
>

1

2and moreover, if x ∈ D(fn) \ D(fn−1) then P r(n,1,k,x)(x) ∩ D(fn−1) = ∅.There is a �nite family of ubes
Q1,r(n,1,k,x),x, Q2,r(n,1,k,x),x, . . . , Qi(1,r(n,1,k,x),x),r(n,1,k,x),x ∈ Pwhose losures are pairwise disjoint and ontained in

(int(P r(n,1,k,x)(x)) ∩ g−1
n−1(kc/2n)) \ D(fn)and suh that

λ(
⋃i(1,r(n,1,k,x),x)

i=1 Qi,r(n,1,k,x),x)

λ(P r(n,1,k,x)(x))
>

1

2
.



ALMOST EVERYWHERE CONTINUOUS FUNCTIONS 325Moreover, we assume that if y ∈ P r(n,1,k,x)(x) for some x,y ∈ Gn,k then
i(1, r(n, 1, k,x),x) = i(1, r(n, 1, k,y),y) and Qi,r(n,1,k,x),x = Qi,r(n,1,k,y),yfor i ≤ i(1, r(n, 1, k,x),x). Let

Sn,k
1 =

⋃

x∈Gn,k

⋃

i≤i(1,r(n,1,k,x),x)

Qi,r(n,1,k,x),xand observe that
cl(Sn,k

1 ) \ Gn,k =
⋃

x∈Gn,k

⋃

i≤i(1,r(n,1,k,x),x)

cl(Qi,r(n,1,k,x),x).

Also observe that the family {Qi,r(n,1,k,x),x; i ≤ i(1, r(n, 1, k,x),x) and x ∈
Gn,k} is P-loally �nite.If Gn,k = ∅ then we put Sn,k

1 = ∅. Now, let
Sn

1 =
⋃

−2n≤k≤2n

Sn,k
1 .

(1′) Analogously, if Hn,k 6= ∅ for k ∈ [−2n, 2n] then as in (1) for the sets
Hn,k we onstrut sets Kn,k

1 and
Kn

1 =
⋃

−2n≤k≤2n

Kn,k
1whih are ounterparts of Sn,k

1 and Sn
1 onstruted in (1) for the sets Gn,k,ontained in the omplement of Sn

1 and having analogous properties.(2) For j ≥ 2 and k ∈ [−2n+j−1, 2n+j−1] with Gn,k 6= ∅ we �nd familiesof ubes Q1,r(n,j,k,x),x, Q2,r(n,j,k,x),x, . . . , Qi(1,r(n,j,k,x),x),r(n,j,k,x),x ∈ P whoselosures are pairwise disjoint and ontained in
(int(P r(n,j,k,x)(x)) ∩ g−1

n−1(kc/2n)) \ D(fn)and suh that
λ(

⋃i(1,r(n,j,k,x),x)
i=1 Qi,r(n,1,k,x),x)

λ(P r(n,j,k,x)(x))
> 1 −

1

2j
.Let

Sn,k
j =

⋃

x∈Gn,k

⋃

i≤i(1,r(n,j,k,x),x)

Qi,r(n,j,k,x),x.Then
cl(Sn,k

j ) \ Gn,k =
⋃

x∈Gn,k

⋃

i≤i(1,r(n,j,k,x),x)

cl(Qi,r(n,j,k,x),x).Also let
Sn

j =
⋃

−2n+j−1≤k≤2n+j−1

Sn,k
j .

If Gn,k = ∅ then we put Sn,k
1 = ∅.



326 E. STRO�SKA
(2′) Now, if Hn,k 6= ∅ for k ∈ [−2n+j−1, 2n+j−1] and j ≥ 2, then for thesets Hn,k we onstrut sets Kn,k

j and
Kn

j =
⋃

−2n+j−1≤k≤2n+j−1

Kn,k
j

whih are ounterparts of Sn,k
j and Sn

j onstruted in (2) for the sets Gn,k,ontained in the omplement of Sn
j and having analogous properties.From the above onstrution it follows that for every k ∈ Z we have

• du(
⋃

j∈Nk
int(Sn

j ),x) = 1 for eah x ∈ Gn,k,
• du(

⋃

j∈Nk
int(Kn

j ),x) = 1 for eah x ∈ Hn,k.Finally, we de�ne gn, hn : R
m → R as follows:1) gn(x) = gn−1(x) + c/2n for x ∈ Sn

j , j ∈ N2k, k ∈ Z;2) hn(x) = hn−1(x) − c/2n for x ∈ Kn
j , j ∈ N2k−1, k ∈ Z;3) for x ∈ R

m \
⋃

k∈Z
(
⋃

j∈N2k
Sn

j ∪
⋃

j∈N2k−1
Kn

j ) let
gn(x) = gn−1(x) + (fn(x) − fn−1(x));4) hn(x) = fn(x) − gn(x) for all x ∈ R

m.As in the �rst step, we verify that gn, hn are s.q.. Moreover, observethat:
• by 1) and 3), for x ∈ R

m \
⋃

k∈Z

⋃

j∈N2k−1
Kn

j we have
|gn(x) − gn−1(x)| ≤ c/2n;

• by 4) (and 2)), for x ∈ Kn
j , j ∈ N2k−1, k ∈ Z we have

|gn(x) − gn−1(x)| = |(fn(x) − hn(x)) − gn−1(x)|

= |(fn(x) − hn−1(x) + c/2n) − gn−1(x)|

= |fn(x) − (fn−1(x) − gn−1(x)) + c/2n − gn−1(x)|

≤ |fn(x) − fn−1(x)| + c/2n < c/2n−1.So, |gn − gn−1| < c/2n−1 everywhere on R
m. Similarly we an hek that

|hn − hn−1| < c/2n−2 everywhere on R
m.The sequenes (gn)n and (hn)n uniformly onverge to some funtions gand h respetively, whih, by Remark 1, are s.q.. Moreover,

g + h = lim
n→∞

gn + lim
n→∞

hn = lim
n→∞

(gn + hn) = lim
n→∞

fn = f.This �nishes the proof.Remark 3. If the funtion f from Theorem 1 is of Baire lass α (α > 0)then the funtions g, h an be found in the same lass.



ALMOST EVERYWHERE CONTINUOUS FUNCTIONS 327Remark 4. From the proof of Theorem 1 it follows immediately that if
U is an open set in R

m and if f : U → R is an almost everywhere ontinuousfuntion then there are s.q.. funtions g, h : U → R suh that f = g + h.Remark 5. If U ⊂ R
m is a nonempty open set and f : U → R is a s.q..funtion then for eah ube P ∈ P the restrited funtions f |P and f |Rm\Pare also s.q.. at all points of their domains.Now we will investigate produts of s.q.. funtions.Theorem 2. Let f : R

m → R be an almost everywhere ontinuous fun-tion suh that λ(cl(f−1(0))\int(f−1(0))) = 0. Then there are s.q.. funtions
g, h suh that f = g · h.Proof. Set A = {x; f(x) > 0}, B = {x; f(x) < 0} and observe that

λ(Rm \ (int(A) ∪ int(B) ∪ int(f−1(0))) = 0.If int(A) 6= ∅ and if O is a omponent of int(A) then x 7→ ln(f(x)) for
x ∈ O is an almost everywhere ontinuous funtion, and by Theorem 1, thereare s.q.. funtions gO, hO : O → R suh that ln(f(x)) = gO(x) + hO(x) for
x ∈ O. Consequently, f |O = (eln(f))|O = eg|O · eh|O is the produt of twos.q.. funtions.Analogously, if int(B) 6= ∅ and if O′ is a omponent of int(B) then
−f |O′ is the produt of two s.q.. funtions, and onsequently, so is f |O′ .Hene, there are s.q.. funtions g1, h1 : (int(A) ∪ int(B)) → R suh that
f |int(A)∪int(B) = g1 · h1.Now, let

F = {x ∈ cl(int(f−1(0))) \ int(f−1(0)); du(int(f−1(0)),x) > 0}.As in the proof of Theorem 1, we an prove that there is a P-loally �nite(in int(f−1(0))) family of ubes Qj
i ∈ P (i, j ∈ N) whose losures cl(Qj

i ) arepairwise disjoint and ontained in int(f−1(0)) and suh that:
• if Sj =

⋃

i∈N
Qj

i then cl(Sj) =
⋃

i∈N
cl(Qj

i );
• the sequene (cl(Sj))j onverges in the Hausdor� metri to cl(F );
• for eah in�nite set N0 ⊂ N and for eah x ∈ F ,

du

(

⋃

j∈N0

Sj ,x
)

> 0.Let {Nk,l} be a family of pairwise disjoint in�nite subsets of N suh that
N =

∞
⋃

k,l=1

Nk,land let (wn)n be a one-to-one enumeration of all non-zero rationals.Sine the boundaries Fr(A) and Fr(B) are of λ-measure zero, similarlywe an prove that there is a loally �nite (in int(A)∪ int(B)) family of ubes
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W j

i ∈ P whose losures are pairwise disjoint and ontained in int(A)∪int(B)and suh that:
• if V j =

⋃

i∈N
W j

j then cl(V j) =
⋃

i∈N
cl(W j

i );

• (cl(V j))j onverges to cl((Fr(A)∪Fr(B)) \F ) in the Hausdor� metri;
• for eah in�nite set N0 ⊂ N and for eah x ∈ (Fr(A) ∪ Fr(B)) \ F ,

du

(

⋃

j∈N0

V j ,x
)

> 0.

Sine g1 is almost everywhere ontinuous on its domain, in eah ube W j
iwe an �nd a �nite family of ubes

U j
i,1, . . . , U

j

i,k(i,j) ∈ Pwhose losures are pairwise disjoint and ontained in int(W j
i ) and suh thatfor every ube U j

i,k there is a positive real r(i, j, k) suh that:
• |g1(x)| > r(i, j, k) for x ∈ cl(U j

i,k), i, j ∈ N and k ≤ k(i, j);

• osc
cl(Uj

i,k
)
g1 < r(i, j, k)/jwl for i, l ∈ N, j ∈ Nl,i, k ≤ k(i, j);

• for eah x ∈ (Fr(A) ∪ Fr(B)) \ F and for eah in�nite set N0 ⊂ N,
du

(

⋃

j∈N0

⋃

i∈N

⋃

k≤k(i,j)

U j
i,k,x

)

= du

(

⋃

j∈N0

V j ,x
)

> 0.

Fix a point x
j
i,k in eah ube int(U j

i,k), i, j ∈ N, k ≤ k(i, j). Put
g(x) =











































wk if x ∈ Sn, n ∈ N2k,1, k ∈ N,
0 if x ∈ Sn, n ∈ N2k−1,1, k ∈ N,
0 elsewhere on f−1(0),
g1(x)wj

g1(xn
i,k)

if x ∈ Un
i,k, i ∈ N, n ∈ Nj,1, k ≤ k(i, n),

g1(x) elsewhere on int(A) ∪ int(B),
f(x) if x ∈ R

m \ (int(A) ∪ int(B) ∪ f−1(0)),and
h(x) =











































0 if x ∈ Sn, n ∈ N2k,1, k ∈ N,
1 if x ∈ Sn, n ∈ N2k−1,1, k ∈ N,
0 elsewhere on f−1(0),
h1(x)g1(x

n
i,k)

wj
if x ∈ Un

i,k, i ∈ N, n ∈ Nj,1, k ≤ k(i, n),
h1(x) elsewhere on int(A) ∪ int(B),
1 if x ∈ R

m \ (int(A) ∪ int(B) ∪ f−1(0)).



ALMOST EVERYWHERE CONTINUOUS FUNCTIONS 329Sine g(Un
i,k) ⊂ (wj − 1/j, wj +1/j) for all i, j ∈ N, n ∈ Nj,1, k ≤ k(i, n),and for eah in�nite set N0 ⊂ N we have

du

(

⋃

j∈N0

U j
i,k, x

)

> 0

for eah
x ∈ H = R

m \ (int(A) ∪ int(B) ∪ int(f−1(0)) ∪ F ),the funtion g is s.q.. at every x ∈ H.Evidently, it is also s.q.. elsewhere on R
m. Analogously, h is s.q.. Ob-viously, f = g · h and the proof is omplete.Theorem 3. If f : R

m → R is an almost everywhere ontinuous funtionthen there are a onstant c ∈ R and two s.q.. funtions g, h suh that f =
c + g · h.Proof. Let c ∈ R be suh that

λ(cl(f−1(c))) = 0.Then the funtion f1 = f − c satis�es the assumptions of Theorem 2, andonsequently, there are s.q.. funtions g, h suh that f1 = g·h. So, f = c+g·hand the proof is �nished.Remark 6. If f : R
m → R is the produt of a �nite family of s.q..funtions fi, where i ≤ n, then f satis�es the following ondition:(H) if A ⊂ cl(f−1(0)) \ f−1(0) is suh that dl(f

−1(0),x) = 1 for eah
x ∈ A then the set A is nowhere dense in f−1(0).Proof. I repeat the proof of Remark 5 from [6℄. Let

B = {x; f(x) = 0 and dl(f
−1(0),x) = 1}.If B 6= ∅ and A is not nowhere dense in f−1(0), then there is x ∈ A and apositive integer i ≤ n suh that x is a density point of f−1

i (0). Sine fi(x) 6= 0and fi is s.q.. at x, we obtain a ontradition. If B = ∅ then A = ∅ and theproof is omplete.Let (wn)n be a sequene of all rationals. From the last remark it followsthat the funtion
f(x1, . . . , xm) =

{

1/n for x1 = wn,
0 elsewhere on R

m,is almost everywhere ontinuous, but it is not the produt of any �nite familyof s.q.. funtions.Eah strongly quasiontinuous funtion is also quasiontinuous in thesense of Kempisty.



330 E. STRO�SKAReall ([9℄, [10℄) that a funtion f : R
m → R is quasiontinuous at a point

x ∈ R
m (in the sense of Kempisty) if for eah ε > 0 and eah open set U ∋ xthere is a nonempty open set V ⊂ U suh that f(V ) ⊂ (f(x)− ε, f(x) + ε).This is a purely topologial notion while the notion of almost ontinuityis a measure-theoreti one. The sums and produts of �nitely many quasi-ontinuous real funtions on R

m are liquish funtions, i.e. are disontinuousonly at points of some �rst ategory sets ([10℄). In Borsík's artiles [1℄, [2℄ itis proved that eah liquish funtion f : R
m → R is the sum of two quasion-tinuous funtions. The results of the present artile have similar orollaries:Corollary 1. Let f : R

m → R be a liquish funtion. Then
f = f1 + f2 and f = c + f3 · f4,where c ∈ R is a onstant and f1, f2, f3, f4 are quasiontinuous funtions.Proof. By [11℄ and [12℄ there is a homeomorphism h : R

m → R
m suhthat λ(h−1(D(f))) = 0. The funtion φ(x) = f(h(x)), x ∈ R

m, is almosteverywhere ontinuous. So, by Theorems 1 and 3 there are a onstant c ∈ Rand strongly quasiontinuous funtions φ1, φ2, φ3, φ4 : R
m → R suh that

φ = φ1 + φ2 and φ = c + φ3 · φ4.Observe that for i = 1, 2, 3, 4 the funtions fi = φi◦h−1 are quasiontinuous,
f = φ ◦ h−1 = φ1 ◦ h−1 + φ2 ◦ h−1 = f1 + f2and

f = f ◦ h−1 = c + (φ3 ◦ h−1) · (φ4 ◦ h−1) = c + f3 · f4.This �nishes the proof.Corollary 2. Let f : R
m → R be a liquish funtion suh that theset cl(f−1(0)) \ int(f−1(0)) is nowhere dense in R

m. Then there are twoquasiontinuous funtions f1, f2 : R
m → R with f = f1 · f2.Proof. As in the proof of Corollary 1, by [11℄ and [12℄, there is a homeo-morphism h : R

m → R
m suh that λ(h−1(cl(f−1(0)) \ int(f−1(0)))) = 0. Let

φ(x) = f(h(x)) for x ∈ R
m. Then

λ(cl(φ−1(0)) \ int(φ−1(0))) = λ(cl(f ◦ h)−1(0)) \ int(f ◦ h)−1(0)))

= λ(cl(h−1(f−1(0))) \ int(h−1(f−1(0))))

= λ(h−1(cl(f−1(0)) \ int(f−1(0)))) = 0.So, by Theorem 2 there are strongly quasiontinuous funtions φ1, φ2 : R
m

→ R suh that φ = φ1 ·φ2. Put f1 = φ1 ◦h and f2 = φ2 ◦h and observe thatthe funtions f1 and f2 are quasiontinuous and
f = φ ◦ h = (φ1 ◦ h) · (φ2 ◦ h) = f1 · f2.This ompletes the proof.
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