COLLOQUIUM MATHEMATICUM

on some representations of almost everywhere CONTINUOUS FUNCTIONS ON \mathbb{R}^{m}

BY
EWA STROŃSKA (Bydgoszcz)

Abstract

It is proved that the following conditions are equivalent: (a) f is an almost everywhere continuous function on $\mathbb{R}^{m} ;(\mathrm{b}) f=g+h$, where g, h are strongly quasicontinuous on $\mathbb{R}^{m} ;(c) f=c+g h$, where $c \in \mathbb{R}$ and g, h are strongly quasicontinuous on \mathbb{R}^{m}.

Let λ^{*} (resp. λ) denote the outer Lebesgue measure (resp. the Lebesgue measure) on \mathbb{R}^{m}. For each $n \in \mathbb{N}$ (the positive integers) and for each sequence $\left(k_{1}, \ldots, k_{m}\right)$ of integers let

$$
P_{k_{1}, \ldots, k_{m}}^{n}=\left[\frac{k_{1}-1}{2^{n}}, \frac{k_{1}}{2^{n}}\right) \times \cdots \times\left[\frac{k_{m}-1}{2^{n}}, \frac{k_{m}}{2^{n}}\right) .
$$

Moreover, let

$$
\mathcal{P}_{n}=\left\{P_{k_{1}, \ldots, k_{m}}^{n} ; k_{1}, \ldots, k_{m} \in \mathbb{Z}\right\} \quad \text { and } \quad \mathcal{P}=\bigcup_{n} \mathcal{P}_{n} .
$$

Observe that:
(1) if $\left(k_{1}, \ldots, k_{m}\right) \neq\left(l_{1}, \ldots, l_{m}\right)$ then $P_{k_{1}, \ldots, k_{m}}^{n} \cap P_{l_{1}, \ldots, l_{m}}^{n}=\emptyset$;
(2) $\mathbb{R}^{m}=\bigcup_{k_{1}, \ldots, k_{m} \in \mathbb{Z}} P_{k_{1}, \ldots, k_{m}}^{n}$;
(3) if $n_{1}>n_{2}$ then for each sequence $\left(k_{1}, \ldots, k_{m}\right)$ of integers there is a unique sequence $\left(l_{1}, \ldots, l_{m}\right)$ of integers such that $P_{k_{1}, \ldots, k_{m}}^{n_{1}} \subset P_{l_{1}, \ldots, l_{m}}^{n_{2}}$;
(4) for each $\mathbf{x} \in \mathbb{R}^{m}$ and each $n \in \mathbb{N}$ there is a unique integer sequence $\left(k_{1}(\mathbf{x}), \ldots, k_{m}(\mathbf{x})\right)$ such that $\mathbf{x} \in P_{k_{1}(\mathbf{x}), \ldots, k_{m}(\mathbf{x})}^{n}=P^{n}(\mathbf{x})$.
For $A \subset \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{m}$ denote by

$$
d_{u}(A, \mathbf{x})=\limsup _{n \rightarrow \infty} \frac{\lambda^{*}\left(A \cap P^{n}(\mathbf{x})\right)}{\lambda\left(P^{n}(\mathbf{x})\right)}, \quad d_{l}(A, \mathbf{x})=\liminf _{n \rightarrow \infty} \frac{\lambda^{*}\left(A \cap P^{n}(\mathbf{x})\right)}{\lambda\left(P^{n}(\mathbf{x})\right)}
$$

the upper and lower density of $A \subset \mathbb{R}$ at \mathbf{x} (cf. [2]).
A point $\mathbf{x} \in \mathbb{R}^{m}$ is called a density point of a set $A \subset \mathbb{R}^{m}$ if there exists a λ-measurable set $B \subset A$ such that $d_{l}(B, \mathbf{x})=1$. The family

$$
\mathcal{T}_{d}=\left\{A \subset \mathbb{R}^{m} ; A \text { is } \lambda \text {-measurable and } d_{l}(A, \mathbf{x})=1 \text { for } \mathbf{x} \in A\right\}
$$

[^0]is a topology called the density topology (with respect to \mathcal{P}) (see $[4,5,13,14]$ for the definitions of the density topologies with respect to other differentiation bases). The topology \mathcal{T}_{d} introduced above with respect to a fixed sequence of binary nets of half-open cubes is stronger than the ordinary density topology ([13]) with respect to arbitrary cubes containing a given point.

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is said to be strongly quasi-continuous (for short, s.q.c.) at a point \mathbf{x} if for every set $A \in \mathcal{T}_{d}$ containing \mathbf{x} and for every $\varepsilon>0$ there is an open set U such that $U \cap A \neq \emptyset$ and $|f(\mathbf{t})-f(\mathbf{x})|<\varepsilon$ for all $\mathbf{t} \in A \cap U$ (cf. [7]).

REMARK 1. In the case $m=1$ the notion of strong quasicontinuity for functions $f: \mathbb{R} \rightarrow \mathbb{R}$ introduced in [7] by Grande with respect to the bilateral density is more general than that above. For example, the function

$$
f(x)= \begin{cases}0 & \text { for } x \leq 0 \\ 1 & \text { for } x>0\end{cases}
$$

is s.q.c. at 0 in the sense of Grande, but it is not s.q.c. at 0 in the above sense.

Evidently, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is s.q.c. at x in the above sense then it is s.q.c. at x in the sense of Grande.

Observe that if for $\mathbf{x} \in \mathbb{R}^{m}$ there is an open set $U \subset \mathbb{R}^{m}$ such that $d_{u}(U, \mathbf{x})>0$ and the restriction $\left.f\right|_{U \cup\{\mathbf{x}\}}$ is continuous at \mathbf{x} then f is s.q.c. at \mathbf{x}.

Moreover, by an elementary proof, we obtain:
REMARK 2. If functions $f_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}, n=1,2, \ldots$, are s.q.c. at a point \mathbf{x} and $\left(f_{n}\right)$ uniformly converges to a function f then f is also s.q.c. at \mathbf{x}.

It is known [8] that every s.q.c. function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is almost everywhere continuous. So, the sum and product of two s.q.c. functions are almost everywhere continuous. We will prove the following:

THEOREM 1. If a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is almost everywhere continuous then there are two s.q.c. functions $g, h: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $f=g+h$.

Proof. Let cl denote closure and

$$
B=\left\{y \in \mathbb{R} ; \lambda\left(\operatorname{cl}\left(f^{-1}(y)\right)\right)>0\right\}
$$

Since f is almost everywhere continuous, the set B is countable. Without loss of generality we can assume that $0 \notin B$, because otherwise we can fix a real $a \notin B$ and consider the function $f-a$.

Let $L(B)$ be the linear span of the set B over the rationals. Since $L(B)$ is countable, there is a positive number $c \in \mathbb{R} \backslash L(B)$. Fix $k \in \mathbb{Z}$ and $n \in \mathbb{N}$.

If

$$
\frac{(k-1) c}{2^{n}} \leq f(x)<\frac{k c}{2^{n}}
$$

then we define

$$
f_{n}(x)=\frac{(k-1) c}{2^{n}} .
$$

Observe that every function $f_{n}, n \in \mathbb{N}$, is almost everywhere continuous and the set $D\left(f_{n}\right)$ of its discontinuity points is closed and of λ-measure zero. Moreover, $D\left(f_{n}\right) \subset D\left(f_{n+1}\right)$ for $n \in \mathbb{N}$.

Step 1. Observe that $D\left(f_{1}\right)$ is closed and of λ-measure zero. For each $\mathbf{x} \in D\left(f_{1}\right)$ there is a unique cube $P^{1}(\mathbf{x}) \in \mathcal{P}_{1}$ such that $\mathbf{x} \in P^{1}(\mathbf{x})$. Observe that $\operatorname{diam}\left(P^{1}(\mathbf{x})\right)<m / 2$. For the cube $P^{1}(\mathbf{x})$ there is a finite family of cubes

$$
Q_{1,1, \mathbf{x}}, \ldots, Q_{i(1,1, \mathbf{x}), 1, \mathbf{x}} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{1}(\mathbf{x})\right) \backslash D\left(f_{1}\right)$ (int denotes interior) and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1,1, \mathbf{x})} Q_{i, 1, \mathbf{x}}\right)}{\lambda\left(P^{1}(\mathbf{x})\right)}>\frac{1}{2} .
$$

Moreover, we assume that if $P^{1}(\mathbf{x})=P^{1}(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in D\left(f_{1}\right)$, then $i(1,1, \mathbf{x})=i(1,1, \mathbf{y})$ and $Q_{i, 1, \mathbf{x}}=Q_{i, 1, \mathbf{y}}$ for $i \leq i(1,1, \mathbf{x})$. Let

$$
S_{1}^{1}=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1,1, \mathbf{x})} Q_{i, 1, \mathbf{x}} .
$$

Observe that

$$
\operatorname{cl}\left(S_{1}^{1}\right) \backslash D\left(f_{1}\right)=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1,1, \mathbf{x})} \operatorname{cl}\left(Q_{i, 1, \mathbf{x}}\right),
$$

and the family $\left\{Q_{i, 1, \mathbf{x}} ; i \leq i(1,1, \mathbf{x})\right.$ and $\left.\mathbf{x} \in D\left(f_{1}\right)\right\}$ is \mathcal{P}-locally finite, i.e. for each $\mathbf{y} \in \mathbb{R}^{m}$ there is an $l \in \mathbb{N}$ such that the family of triples $(i, 1, \mathbf{x})$ with $\mathbf{x} \in D\left(f_{1}\right)$ and $Q_{i, 1, \mathbf{x}} \cap P^{l}(\mathbf{y}) \neq \emptyset$ is finite.

Now, for each $\mathbf{x} \in D\left(f_{1}\right)$ we find the first positive integer $n(1,2, \mathbf{x})$ such that $\operatorname{diam}\left(P^{n(1,2, \mathbf{x})}(\mathbf{x})\right)<1 / 2$ and

$$
\mathbf{x} \in P^{n(1,2, \mathbf{x})}(\mathbf{x}) \subset P^{1}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{1}^{1}\right) .
$$

There is then a finite family of cubes

$$
Q_{1, n(1,2, \mathbf{x}), \mathbf{x}}, \ldots, Q_{i(1, n(1,2, \mathbf{x}), \mathbf{x}), n(1,2, \mathbf{x}), \mathbf{x}} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{n(1,2, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{1}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, n(1,2, \mathbf{x}), \mathbf{x})} Q_{i, n(1,2, \mathbf{x}), \mathbf{x}}\right)}{\lambda\left(P^{n(1,2, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{2}}
$$

Moreover, assume that if $n(1,2, \mathbf{x})=n(1,2, \mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in D\left(f_{1}\right)$, then $i(1, n(1,2, \mathbf{x}), \mathbf{x})=i(1, n(1,2, \mathbf{y}), \mathbf{y})$ and $Q_{i, n(1,2, \mathbf{x}), \mathbf{x}}=Q_{i, n(1,2, \mathbf{y}), \mathbf{y}}$ for $i \leq$ $i(1, n(1,2, \mathbf{x}), \mathbf{x})$. Let

$$
S_{2}^{1}=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, n(1,2, \mathbf{x}), \mathbf{x})} Q_{i, n(1,2, \mathbf{x}), \mathbf{x}}
$$

Observe that

$$
\operatorname{cl}\left(S_{2}^{1}\right) \backslash D\left(f_{1}\right)=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, n(1,2, \mathbf{x}), \mathbf{x})} \operatorname{cl}\left(Q_{i, n(1,2, \mathbf{x}), \mathbf{x}}\right)
$$

and the family $\left\{Q_{i, n(1,2, \mathbf{x}), \mathbf{x}} ; i \leq i(1, n(1,2, \mathbf{x}), \mathbf{x})\right.$ and $\left.\mathbf{x} \in D\left(f_{1}\right)\right\}$ is \mathcal{P}_{-} locally finite.

For $j>2$, we proceed analogously and for each $\mathbf{x} \in D\left(f_{1}\right)$ we find the first positive integer $n(1, j, \mathbf{x})$ such that $\operatorname{diam}\left(P^{n(1, j, \mathbf{x})}(\mathbf{x})\right)<1 / 2^{j-1}$ and

$$
\mathbf{x} \in P^{n(1, j, \mathbf{x})}(\mathbf{x}) \subset P^{n(1, j-1, \mathbf{x})}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{j-1}^{1}\right)
$$

There is then a finite family of cubes

$$
Q_{1, n(1, j, \mathbf{x}), \mathbf{x}}, \ldots, Q_{i(1, n(1, j, \mathbf{x}), \mathbf{x}), n(1, j, \mathbf{x}), \mathbf{x}} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{n(1, j, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{1}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, n(1, j, \mathbf{x}), \mathbf{x})} Q_{i, n(1, j, \mathbf{x}), \mathbf{x}}\right)}{\lambda\left(P^{n(1, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}} .
$$

Moreover, assume that if $n(1, j, \mathbf{x})=n(1, j, \mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in D\left(f_{1}\right)$, then $i(1, n(1, j, \mathbf{x}), \mathbf{x})=i(1, n(1, j, \mathbf{y}), \mathbf{y})$ and $Q_{i, n(1, j, \mathbf{x}), \mathbf{x}}=Q_{i, n(1, j, \mathbf{y}), \mathbf{y}}$ for $i \leq$ $i(1, n(1, j, \mathbf{x}), \mathbf{x})$. Let

$$
S_{j}^{1}=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, n(1, j, \mathbf{x}), \mathbf{x})} Q_{i, n(1, j, \mathbf{x}), \mathbf{x}}
$$

Then

$$
\operatorname{cl}\left(S_{j}^{1}\right) \backslash D\left(f_{1}\right)=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, n(1, j, \mathbf{x}), \mathbf{x})} \operatorname{cl}\left(Q_{i, n(1, j, \mathbf{x}), \mathbf{x}}\right)
$$

and the family $\left\{Q_{i, n(1, j, \mathbf{x}), \mathbf{x}} ; i \leq i(1, n(1, j, \mathbf{x}), \mathbf{x})\right.$ and $\left.\mathbf{x} \in D\left(f_{1}\right)\right\}$ is \mathcal{P}-locally finite.

Let $N_{l}, l \in \mathbb{Z}$, be pairwise disjoint infinite sets of positive integers such that

$$
\mathbb{N}=\bigcup_{l \in \mathbb{Z}} N_{l}
$$

Observe that for each integer l and for each $\mathbf{x} \in D\left(f_{1}\right)$,

$$
d_{u}\left(\bigcup_{j \in N_{l}} \operatorname{int}\left(S_{j}^{1}\right), \mathbf{x}\right)=1
$$

Let

$$
g_{1}(\mathbf{x})= \begin{cases}k c / 2 & \text { if } \mathbf{x} \in S_{j}^{1}, j \in N_{2 k} \\ f_{1}(\mathbf{x}) & \text { elsewhere on } \mathbb{R}^{m}\end{cases}
$$

and let

$$
h_{1}(\mathbf{x})=f_{1}(\mathbf{x})-g_{1}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{m}
$$

Observe that $f_{1}=g_{1}+h_{1}$. Moreover, for each $\mathbf{x} \in \mathbb{R}^{m}$,

$$
\begin{equation*}
d_{u}\left(\operatorname{int}\left(g_{1}^{-1}\left(g_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1, \quad d_{u}\left(\operatorname{int}\left(h_{1}^{-1}\left(h_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1 \tag{*}
\end{equation*}
$$

Indeed, if $\mathbf{x} \in D\left(f_{1}\right)$ and $f_{1}(\mathbf{x})=(k-1) c / 2$ then for each $j \in N_{2 k-1}$ there is a cube $P^{n(1, j, \mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$. But

$$
\frac{\lambda\left(S_{j}^{1} \cap P^{n(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{n(1, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}}
$$

and $g_{1}(\mathbf{x})=f_{1}(\mathbf{x})$, so $d_{u}\left(\operatorname{int}\left(g^{-1}((k-1) c / 2)\right), \mathbf{x}\right)=1$.
If $\mathbf{x} \in S_{j}^{1}$ for some $j \in \mathbb{N}$, then from the construction of g_{1} it follows that $d_{u}\left(\operatorname{int}\left(\left(g_{1}\right)^{-1}\left(g_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1$.

If $\mathbf{x} \in \mathbb{R}^{m} \backslash\left(D\left(f_{1}\right) \cup \bigcup_{j} S_{j}^{1}\right)$ then $\left.d_{u}\left(\left(g_{1}\right)^{-1}\left(g_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1$, since f_{1} is continuous at \mathbf{x}.

If $\mathbf{x} \in D\left(f_{1}\right)$ then $h_{1}(\mathbf{x})=0$. Since $\bigcup_{k \in \mathbb{Z}} \bigcup_{j \in N_{2 k-1}} S_{j}^{1} \subset\left(h_{1}\right)^{-1}(0)$, we have $\left.d_{u}\left(h_{1}^{-1}\left(h_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1$.

If $\mathbf{x} \notin D\left(f_{1}\right)$ then $d_{u}\left(\operatorname{int}\left(h_{1}^{-1}\left(h_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1$, since h_{1} is the difference of the function f_{1} continuous at \mathbf{x} and the function g_{1} such that $d_{u}\left(\operatorname{int}\left(g_{1}^{-1}\left(g_{1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1$ for each $\mathbf{x} \in \mathbb{R}^{m}$.

From ($*$) it follows that g_{1} and h_{1} are s.q.c.
Step $n(n \geq 2)$. For a set $A \subset \mathbb{R}^{m}$ and $\eta>0$ let

$$
\mathcal{O}(A, \eta)=\bigcup_{\mathbf{x} \in A} B(\mathbf{x}, \eta), \quad \text { where } B(\mathbf{x}, \eta)=\left\{\mathbf{t} \in \mathbb{R}^{m} ;|\mathbf{t}-\mathbf{x}|<\eta\right\}
$$

Assume that there are two functions $g_{n-1}, h_{n-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that:

- $f_{n-1}=g_{n-1}+h_{n-1}$;
- $g_{n-1}\left(\mathbb{R}^{m}\right) \cup h_{n-1}\left(\mathbb{R}^{m}\right) \subset\left\{k c / 2^{n-1} ; k \in \mathbb{Z}\right\}$;
- for each $\mathbf{x} \in \mathbb{R}^{m}$,

$$
d_{u}\left(\operatorname{int}\left(g_{n-1}^{-1}\left(g_{n-1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1, \quad d_{u}\left(\operatorname{int}\left(h_{n-1}^{-1}\left(h_{n-1}(\mathbf{x})\right)\right), \mathbf{x}\right)=1
$$

For $k \in \mathbb{Z}$ let

$$
G_{n, k}=g_{n-1}^{-1}\left(k c / 2^{n}\right) \cap D\left(f_{n}\right), \quad H_{n, k}=h_{n-1}^{-1}\left(k c / 2^{n}\right) \cap D\left(f_{n}\right)
$$

(1) If $G_{n,-2^{n}} \neq \emptyset$ then as in the first step, for each $\mathbf{x} \in G_{n,-2^{n}}$ we find the first positive integer $r\left(n, 1,-2^{n}, \mathbf{x}\right)$ such that $\mathbf{x} \in P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}(\mathbf{x}) \subset$ $\mathcal{O}\left(G_{n,-2^{n}}, 1 / 2^{n}\right)$ and

$$
\frac{\lambda\left(P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}(\mathbf{x}) \cap g_{n-1}^{-1}(-c)\right)}{\lambda\left(P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}(\mathbf{x})\right)}>\frac{1}{2} .
$$

Moreover, if $\mathbf{x} \in D\left(f_{n}\right) \backslash D\left(f_{n-1}\right)$ then $P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}(\mathbf{x}) \cap D\left(f_{n-1}\right)=\emptyset$.
There is a finite family of cubes

$$
Q_{1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}}, Q_{2, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}}, \ldots, Q_{i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right), r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in

$$
\left(\operatorname{int}\left(P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}(\mathbf{x})\right) \cap g_{n-1}^{-1}(-c)\right) \backslash D\left(f_{n}\right)
$$

and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)} Q_{\left.i, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)}\right.}{\lambda\left(P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}(\mathbf{x})\right)}>\frac{1}{2}
$$

Moreover, we assume that if $\mathbf{y} \in P^{r\left(n, 1,-2^{n}, \mathbf{x}\right)}$ for some $\mathbf{x}, \mathbf{y} \in G_{n,-2^{n}}$ then $i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)=i\left(1, r\left(n, 1,-2^{n}, \mathbf{y}\right), \mathbf{y}\right)$ and $Q_{i, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}}=$ $Q_{i, r\left(n, 1,-2^{n}, \mathbf{y}\right), \mathbf{y}}$ for $i \leq i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)$. Let

$$
S_{1}^{n,-2^{n}}=\bigcup_{\mathbf{x} \in G_{n,-2^{n}}} \bigcup_{i \leq i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)} Q_{i, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}}
$$

Observe that

$$
\operatorname{cl}\left(S_{1}^{n,-2^{n}}\right) \backslash G_{n,-2^{n}}=\bigcup_{\mathbf{x} \in G_{n,-2^{n}}} \bigcup_{i \leq i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)} \operatorname{cl}\left(Q_{i, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}}\right)
$$

and the family $\left\{Q_{i, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}} ; i \leq i\left(1, r\left(n, 1,-2^{n}, \mathbf{x}\right), \mathbf{x}\right)\right.$ and $\left.\mathbf{x} \in G_{n,-2^{n}}\right\}$ is \mathcal{P}-locally finite.

If $G_{n,-2^{n}}=\emptyset$ then we put $S_{1}^{n,-2^{n}}=\emptyset$.
Next, fix $k \in\left(-2^{n}, 2^{n}\right]$. If $G_{n, k} \neq \emptyset$ then for each $\mathbf{x} \in G_{n, k}$ we find the first positive integer $r(n, 1, k, \mathbf{x})$ such that

$$
\begin{gathered}
\mathbf{x} \in P^{r(n, 1, k, \mathbf{x})}(\mathbf{x}) \subset \mathcal{O}\left(G_{n, k}, 1 / 2^{n}\right) \backslash \bigcup_{-2^{n} \leq i<k} \operatorname{cl}\left(S_{1}^{n, i}\right), \\
\frac{\lambda\left(P^{r(n, 1, k, \mathbf{x})}(\mathbf{x}) \cap g_{n-1}^{-1}\left(k c / 2^{n}\right)\right)}{\lambda\left(P^{r(n, 1, k, \mathbf{x})}(\mathbf{x})\right)}>\frac{1}{2}
\end{gathered}
$$

and moreover, if $\mathbf{x} \in D\left(f_{n}\right) \backslash D\left(f_{n-1}\right)$ then $P^{r(n, 1, k, \mathbf{x})}(\mathbf{x}) \cap D\left(f_{n-1}\right)=\emptyset$.
There is a finite family of cubes

$$
Q_{1, r(n, 1, k, \mathbf{x}), \mathbf{x}}, Q_{2, r(n, 1, k, \mathbf{x}), \mathbf{x}}, \ldots, Q_{i(1, r(n, 1, k, \mathbf{x}), \mathbf{x}), r(n, 1, k, \mathbf{x}), \mathbf{x}} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in

$$
\left(\operatorname{int}\left(P^{r(n, 1, k, \mathbf{x})}(\mathbf{x})\right) \cap g_{n-1}^{-1}\left(k c / 2^{n}\right)\right) \backslash D\left(f_{n}\right)
$$

and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})} Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}}\right)}{\lambda\left(P^{r(n, 1, k, \mathbf{x})}(\mathbf{x})\right)}>\frac{1}{2} .
$$

Moreover, we assume that if $\mathbf{y} \in P^{r(n, 1, k, \mathbf{x})}(\mathbf{x})$ for some $\mathbf{x}, \mathbf{y} \in G_{n, k}$ then $i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})=i(1, r(n, 1, k, \mathbf{y}), \mathbf{y})$ and $Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}}=Q_{i, r(n, 1, k, \mathbf{y}), \mathbf{y}}$ for $i \leq i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})$. Let

$$
S_{1}^{n, k}=\bigcup_{\mathbf{x} \in G_{n, k}} \bigcup_{i \leq i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})} Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}}
$$

and observe that

$$
\operatorname{cl}\left(S_{1}^{n, k}\right) \backslash G_{n, k}=\bigcup_{\mathbf{x} \in G_{n, k}} \bigcup_{i \leq i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})} \operatorname{cl}\left(Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}}\right)
$$

Also observe that the family $\left\{Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}} ; i \leq i(1, r(n, 1, k, \mathbf{x}), \mathbf{x})\right.$ and $\mathbf{x} \in$ $\left.G_{n, k}\right\}$ is \mathcal{P}-locally finite.

If $G_{n, k}=\emptyset$ then we put $S_{1}^{n, k}=\emptyset$. Now, let

$$
S_{1}^{n}=\bigcup_{-2^{n} \leq k \leq 2^{n}} S_{1}^{n, k}
$$

(1') Analogously, if $H_{n, k} \neq \emptyset$ for $k \in\left[-2^{n}, 2^{n}\right]$ then as in (1) for the sets $H_{n, k}$ we construct sets $K_{1}^{n, k}$ and

$$
K_{1}^{n}=\bigcup_{-2^{n} \leq k \leq 2^{n}} K_{1}^{n, k}
$$

which are counterparts of $S_{1}^{n, k}$ and S_{1}^{n} constructed in (1) for the sets $G_{n, k}$, contained in the complement of S_{1}^{n} and having analogous properties.
(2) For $j \geq 2$ and $k \in\left[-2^{n+j-1}, 2^{n+j-1}\right]$ with $G_{n, k} \neq \emptyset$ we find families of cubes $Q_{1, r(n, j, k, \mathbf{x}), \mathbf{x}}, Q_{2, r(n, j, k, \mathbf{x}), \mathbf{x}}, \ldots, Q_{i(1, r(n, j, k, \mathbf{x}), \mathbf{x}), r(n, j, k, \mathbf{x}), \mathbf{x}} \in \mathcal{P}$ whose closures are pairwise disjoint and contained in

$$
\left(\operatorname{int}\left(P^{r(n, j, k, \mathbf{x})}(\mathbf{x})\right) \cap g_{n-1}^{-1}\left(k c / 2^{n}\right)\right) \backslash D\left(f_{n}\right)
$$

and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, r(n, j, k, \mathbf{x}), \mathbf{x})} Q_{i, r(n, 1, k, \mathbf{x}), \mathbf{x}}\right)}{\lambda\left(P^{r(n, j, k, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}} .
$$

Let

$$
S_{j}^{n, k}=\bigcup_{\mathbf{x} \in G_{n, k}} \bigcup_{i \leq i(1, r(n, j, k, \mathbf{x}), \mathbf{x})} Q_{i, r(n, j, k, \mathbf{x}), \mathbf{x}}
$$

Then

$$
\operatorname{cl}\left(S_{j}^{n, k}\right) \backslash G_{n, k}=\bigcup_{\mathbf{x} \in G_{n, k}} \bigcup_{i \leq i(1, r(n, j, k, \mathbf{x}), \mathbf{x})} \operatorname{cl}\left(Q_{i, r(n, j, k, \mathbf{x}), \mathbf{x}}\right)
$$

Also let

$$
S_{j}^{n}=\bigcup_{-2^{n+j-1} \leq k \leq 2^{n+j-1}} S_{j}^{n, k}
$$

If $G_{n, k}=\emptyset$ then we put $S_{1}^{n, k}=\emptyset$.
(2') Now, if $H_{n, k} \neq \emptyset$ for $k \in\left[-2^{n+j-1}, 2^{n+j-1}\right]$ and $j \geq 2$, then for the sets $H_{n, k}$ we construct sets $K_{j}^{n, k}$ and

$$
K_{j}^{n}=\bigcup_{-2^{n+j-1} \leq k \leq 2^{n+j-1}} K_{j}^{n, k}
$$

which are counterparts of $S_{j}^{n, k}$ and S_{j}^{n} constructed in (2) for the sets $G_{n, k}$, contained in the complement of S_{j}^{n} and having analogous properties.

From the above construction it follows that for every $k \in \mathbb{Z}$ we have

- $d_{u}\left(\bigcup_{j \in N_{k}} \operatorname{int}\left(S_{j}^{n}\right), \mathbf{x}\right)=1$ for each $\mathbf{x} \in G_{n, k}$,
- $d_{u}\left(\bigcup_{j \in N_{k}} \operatorname{int}\left(K_{j}^{n}\right), \mathbf{x}\right)=1$ for each $\mathbf{x} \in H_{n, k}$.

Finally, we define $g_{n}, h_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ as follows:

1) $g_{n}(\mathbf{x})=g_{n-1}(\mathbf{x})+c / 2^{n}$ for $\mathbf{x} \in S_{j}^{n}, j \in N_{2 k}, k \in \mathbb{Z}$;
2) $h_{n}(\mathbf{x})=h_{n-1}(\mathbf{x})-c / 2^{n}$ for $\mathbf{x} \in K_{j}^{n}, j \in N_{2 k-1}, k \in \mathbb{Z}$;
3) for $\mathbf{x} \in \mathbb{R}^{m} \backslash \bigcup_{k \in \mathbb{Z}}\left(\bigcup_{j \in N_{2 k}} S_{j}^{n} \cup \bigcup_{j \in N_{2 k-1}} K_{j}^{n}\right)$ let

$$
g_{n}(\mathbf{x})=g_{n-1}(\mathbf{x})+\left(f_{n}(\mathbf{x})-f_{n-1}(\mathbf{x})\right)
$$

4) $h_{n}(\mathbf{x})=f_{n}(\mathbf{x})-g_{n}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$.

As in the first step, we verify that g_{n}, h_{n} are s.q.c. Moreover, observe that:

- by 1) and 3), for $\mathbf{x} \in \mathbb{R}^{m} \backslash \bigcup_{k \in \mathbb{Z}} \bigcup_{j \in N_{2 k-1}} K_{j}^{n}$ we have

$$
\left|g_{n}(\mathbf{x})-g_{n-1}(\mathbf{x})\right| \leq c / 2^{n}
$$

- by 4) (and 2)), for $\mathbf{x} \in K_{j}^{n}, j \in N_{2 k-1}, k \in \mathbb{Z}$ we have

$$
\begin{aligned}
\left|g_{n}(\mathbf{x})-g_{n-1}(\mathbf{x})\right| & =\left|\left(f_{n}(\mathbf{x})-h_{n}(\mathbf{x})\right)-g_{n-1}(\mathbf{x})\right| \\
& =\left|\left(f_{n}(\mathbf{x})-h_{n-1}(\mathbf{x})+c / 2^{n}\right)-g_{n-1}(\mathbf{x})\right| \\
& =\left|f_{n}(\mathbf{x})-\left(f_{n-1}(\mathbf{x})-g_{n-1}(\mathbf{x})\right)+c / 2^{n}-g_{n-1}(\mathbf{x})\right| \\
& \leq\left|f_{n}(\mathbf{x})-f_{n-1}(\mathbf{x})\right|+c / 2^{n}<c / 2^{n-1}
\end{aligned}
$$

So, $\left|g_{n}-g_{n-1}\right|<c / 2^{n-1}$ everywhere on \mathbb{R}^{m}. Similarly we can check that $\left|h_{n}-h_{n-1}\right|<c / 2^{n-2}$ everywhere on \mathbb{R}^{m}.

The sequences $\left(g_{n}\right)_{n}$ and $\left(h_{n}\right)_{n}$ uniformly converge to some functions g and h respectively, which, by Remark 1, are s.q.c. Moreover,

$$
g+h=\lim _{n \rightarrow \infty} g_{n}+\lim _{n \rightarrow \infty} h_{n}=\lim _{n \rightarrow \infty}\left(g_{n}+h_{n}\right)=\lim _{n \rightarrow \infty} f_{n}=f
$$

This finishes the proof.
REMARK 3. If the function f from Theorem 1 is of Baire class $\alpha(\alpha>0)$ then the functions g, h can be found in the same class.

Remark 4. From the proof of Theorem 1 it follows immediately that if U is an open set in \mathbb{R}^{m} and if $f: U \rightarrow \mathbb{R}$ is an almost everywhere continuous function then there are s.q.c. functions $g, h: U \rightarrow \mathbb{R}$ such that $f=g+h$.

REMARK 5. If $U \subset \mathbb{R}^{m}$ is a nonempty open set and $f: U \rightarrow \mathbb{R}$ is a s.q.c. function then for each cube $P \in \mathcal{P}$ the restricted functions $\left.f\right|_{P}$ and $\left.f\right|_{\mathbb{R}^{m} \backslash P}$ are also s.q.c. at all points of their domains.

Now we will investigate products of s.q.c. functions.
THEOREM 2. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be an almost everywhere continuous function such that $\lambda\left(\operatorname{cl}\left(f^{-1}(0)\right) \backslash \operatorname{int}\left(f^{-1}(0)\right)\right)=0$. Then there are s.q.c. functions g, h such that $f=g \cdot h$.

Proof. Set $A=\{\mathbf{x} ; f(\mathbf{x})>0\}, B=\{\mathbf{x} ; f(\mathbf{x})<0\}$ and observe that

$$
\lambda\left(\mathbb{R}^{m} \backslash\left(\operatorname{int}(A) \cup \operatorname{int}(B) \cup \operatorname{int}\left(f^{-1}(0)\right)\right)=0\right.
$$

If $\operatorname{int}(A) \neq \emptyset$ and if O is a component of $\operatorname{int}(A)$ then $\mathbf{x} \mapsto \ln (f(\mathbf{x}))$ for $\mathbf{x} \in O$ is an almost everywhere continuous function, and by Theorem 1, there are s.q.c. functions $g_{O}, h_{O}: O \rightarrow \mathbb{R}$ such that $\ln (f(\mathbf{x}))=g_{O}(\mathbf{x})+h_{O}(\mathbf{x})$ for $\mathbf{x} \in O$. Consequently, $\left.f\right|_{O}=\left.\left(e^{\ln (f)}\right)\right|_{O}=e^{\left.g\right|_{O}} \cdot e^{\left.h\right|_{O}}$ is the product of two s.q.c. functions.

Analogously, if $\operatorname{int}(B) \neq \emptyset$ and if O^{\prime} is a component of $\operatorname{int}(B)$ then $-\left.f\right|_{O^{\prime}}$ is the product of two s.q.c. functions, and consequently, so is $\left.f\right|_{O^{\prime}}$. Hence, there are s.q.c. functions $g_{1}, h_{1}:(\operatorname{int}(A) \cup \operatorname{int}(B)) \rightarrow \mathbb{R}$ such that $\left.f\right|_{\operatorname{int}(A) \cup \operatorname{int}(B)}=g_{1} \cdot h_{1}$.

Now, let

$$
F=\left\{\mathbf{x} \in \operatorname{cl}\left(\operatorname{int}\left(f^{-1}(0)\right)\right) \backslash \operatorname{int}\left(f^{-1}(0)\right) ; d_{u}\left(\operatorname{int}\left(f^{-1}(0)\right), \mathbf{x}\right)>0\right\}
$$

As in the proof of Theorem 1, we can prove that there is a \mathcal{P}-locally finite (in $\operatorname{int}\left(f^{-1}(0)\right)$) family of cubes $Q_{i}^{j} \in \mathcal{P}(i, j \in \mathbb{N})$ whose closures $\operatorname{cl}\left(Q_{i}^{j}\right)$ are pairwise disjoint and contained in $\operatorname{int}\left(f^{-1}(0)\right)$ and such that:

- if $S^{j}=\bigcup_{i \in \mathbb{N}} Q_{i}^{j}$ then $\operatorname{cl}\left(S^{j}\right)=\bigcup_{i \in \mathbb{N}} \operatorname{cl}\left(Q_{i}^{j}\right) ;$
- the sequence $\left(\operatorname{cl}\left(S^{j}\right)\right)_{j}$ converges in the Hausdorff metric to $\operatorname{cl}(F)$;
- for each infinite set $N_{0} \subset \mathbb{N}$ and for each $\mathbf{x} \in F$,

$$
d_{u}\left(\bigcup_{j \in N_{0}} S^{j}, \mathbf{x}\right)>0
$$

Let $\left\{N_{k, l}\right\}$ be a family of pairwise disjoint infinite subsets of \mathbb{N} such that

$$
\mathbb{N}=\bigcup_{k, l=1}^{\infty} N_{k, l}
$$

and let $\left(w_{n}\right)_{n}$ be a one-to-one enumeration of all non-zero rationals.
Since the boundaries $\operatorname{Fr}(A)$ and $\operatorname{Fr}(B)$ are of λ-measure zero, similarly we can prove that there is a locally finite (in $\operatorname{int}(A) \cup \operatorname{int}(B))$ family of cubes
$W_{i}^{j} \in \mathcal{P}$ whose closures are pairwise disjoint and contained in $\operatorname{int}(A) \cup \operatorname{int}(B)$ and such that:

- if $V^{j}=\bigcup_{i \in \mathbb{N}} W_{j}^{j}$ then $\operatorname{cl}\left(V^{j}\right)=\bigcup_{i \in \mathbb{N}} \operatorname{cl}\left(W_{i}^{j}\right)$;
- $\left(\operatorname{cl}\left(V^{j}\right)\right)_{j}$ converges to $\operatorname{cl}((\operatorname{Fr}(A) \cup \operatorname{Fr}(B)) \backslash F)$ in the Hausdorff metric;
- for each infinite set $N_{0} \subset \mathbb{N}$ and for each $\mathbf{x} \in(\operatorname{Fr}(A) \cup \operatorname{Fr}(B)) \backslash F$,

$$
d_{u}\left(\bigcup_{j \in N_{0}} V^{j}, \mathbf{x}\right)>0
$$

Since g_{1} is almost everywhere continuous on its domain, in each cube W_{i}^{j} we can find a finite family of cubes

$$
U_{i, 1}^{j}, \ldots, U_{i, k(i, j)}^{j} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(W_{i}^{j}\right)$ and such that for every cube $U_{i, k}^{j}$ there is a positive real $r(i, j, k)$ such that:

- $\left|g_{1}(\mathbf{x})\right|>r(i, j, k)$ for $\mathbf{x} \in \operatorname{cl}\left(U_{i, k}^{j}\right), i, j \in \mathbb{N}$ and $k \leq k(i, j)$;
- $\operatorname{osc}_{\mathrm{cl}\left(U_{i, k}^{j}\right)} g_{1}<r(i, j, k) / j w_{l}$ for $i, l \in \mathbb{N}, j \in N_{l, i}, k \leq k(i, j)$;
- for each $\mathbf{x} \in(\operatorname{Fr}(A) \cup \operatorname{Fr}(B)) \backslash F$ and for each infinite set $N_{0} \subset \mathbb{N}$,

$$
d_{u}\left(\bigcup_{j \in N_{0}} \bigcup_{i \in \mathbb{N}} \bigcup_{k \leq k(i, j)} U_{i, k}^{j}, \mathbf{x}\right)=d_{u}\left(\bigcup_{j \in N_{0}} V^{j}, \mathbf{x}\right)>0
$$

Fix a point $\mathbf{x}_{i, k}^{j}$ in each cube $\operatorname{int}\left(U_{i, k}^{j}\right), i, j \in \mathbb{N}, k \leq k(i, j)$. Put

$$
g(\mathbf{x})= \begin{cases}w_{k} & \text { if } \mathbf{x} \in S^{n}, n \in N_{2 k, 1}, k \in \mathbb{N} \\ 0 & \text { if } \mathbf{x} \in S^{n}, n \in N_{2 k-1,1}, k \in \mathbb{N} \\ 0 & \text { elsewhere on } f^{-1}(0) \\ \frac{g_{1}(\mathbf{x}) w_{j}}{g_{1}\left(\mathbf{x}_{i, k}^{n}\right)} & \text { if } \mathbf{x} \in U_{i, k}^{n}, i \in \mathbb{N}, n \in N_{j, 1}, k \leq k(i, n) \\ g_{1}(\mathbf{x}) & \text { elsewhere on } \operatorname{int}(A) \cup \operatorname{int}(B) \\ f(\mathbf{x}) & \text { if } \mathbf{x} \in \mathbb{R}^{m} \backslash\left(\operatorname{int}(A) \cup \operatorname{int}(B) \cup f^{-1}(0)\right)\end{cases}
$$

and

$$
h(\mathbf{x})= \begin{cases}0 & \text { if } \mathbf{x} \in S^{n}, n \in N_{2 k, 1}, k \in \mathbb{N}, \\ 1 & \text { if } \mathbf{x} \in S^{n}, n \in N_{2 k-1,1}, k \in \mathbb{N} \\ 0 & \text { elsewhere on } f^{-1}(0), \\ \frac{h_{1}(\mathbf{x}) g_{1}\left(\mathbf{x}_{i, k}^{n}\right)}{w_{j}} & \text { if } \mathbf{x} \in U_{i, k}^{n}, i \in \mathbb{N}, n \in N_{j, 1}, k \leq k(i, n), \\ h_{1}(\mathbf{x}) & \text { elsewhere on } \operatorname{int}(A) \cup \operatorname{int}(B) \\ 1 & \text { if } \mathbf{x} \in \mathbb{R}^{m} \backslash\left(\operatorname{int}(A) \cup \operatorname{int}(B) \cup f^{-1}(0)\right)\end{cases}
$$

Since $g\left(U_{i, k}^{n}\right) \subset\left(w_{j}-1 / j, w_{j}+1 / j\right)$ for all $i, j \in \mathbb{N}, n \in N_{j, 1}, k \leq k(i, n)$, and for each infinite set $N_{0} \subset \mathbb{N}$ we have

$$
d_{u}\left(\bigcup_{j \in N_{0}} U_{i, k}^{j}, \mathbf{x}\right)>0
$$

for each

$$
\mathbf{x} \in H=\mathbb{R}^{m} \backslash\left(\operatorname{int}(A) \cup \operatorname{int}(B) \cup \operatorname{int}\left(f^{-1}(0)\right) \cup F\right),
$$

the function g is s.q.c. at every $\mathbf{x} \in H$.
Evidently, it is also s.q.c. elsewhere on \mathbb{R}^{m}. Analogously, h is s.q.c. Obviously, $f=g \cdot h$ and the proof is complete.

Theorem 3. If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is an almost everywhere continuous function then there are a constant $c \in \mathbb{R}$ and two s.q.c. functions g, h such that $f=$ $c+g \cdot h$.

Proof. Let $c \in \mathbb{R}$ be such that

$$
\lambda\left(\operatorname{cl}\left(f^{-1}(c)\right)\right)=0 .
$$

Then the function $f_{1}=f-c$ satisfies the assumptions of Theorem 2 , and consequently, there are s.q.c. functions g, h such that $f_{1}=g \cdot h$. So, $f=c+g \cdot h$ and the proof is finished.

Remark 6. If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the product of a finite family of s.q.c. functions f_{i}, where $i \leq n$, then f satisfies the following condition:
(H) if $A \subset \operatorname{cl}\left(f^{-1}(0)\right) \backslash f^{-1}(0)$ is such that $d_{l}\left(f^{-1}(0), \mathbf{x}\right)=1$ for each $\mathrm{x} \in A$ then the set A is nowhere dense in $f^{-1}(0)$.

Proof. I repeat the proof of Remark 5 from [6]. Let

$$
B=\left\{\mathbf{x} ; f(\mathbf{x})=0 \text { and } d_{l}\left(f^{-1}(0), \mathbf{x}\right)=1\right\} .
$$

If $B \neq \emptyset$ and A is not nowhere dense in $f^{-1}(0)$, then there is $\mathbf{x} \in A$ and a positive integer $i \leq n$ such that \mathbf{x} is a density point of $f_{i}^{-1}(0)$. Since $f_{i}(\mathbf{x}) \neq 0$ and f_{i} is s.q.c. at \mathbf{x}, we obtain a contradiction. If $B=\emptyset$ then $A=\emptyset$ and the proof is complete.

Let $\left(w_{n}\right)_{n}$ be a sequence of all rationals. From the last remark it follows that the function

$$
f\left(x_{1}, \ldots, x_{m}\right)= \begin{cases}1 / n & \text { for } x_{1}=w_{n} \\ 0 & \text { elsewhere on } \mathbb{R}^{m},\end{cases}
$$

is almost everywhere continuous, but it is not the product of any finite family of s.q.c. functions.

Each strongly quasicontinuous function is also quasicontinuous in the sense of Kempisty.

Recall ([9], [10]) that a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is quasicontinuous at a point $\mathbf{x} \in \mathbb{R}^{m}$ (in the sense of Kempisty) if for each $\varepsilon>0$ and each open set $U \ni \mathbf{x}$ there is a nonempty open set $V \subset U$ such that $f(V) \subset(f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)$.

This is a purely topological notion while the notion of almost continuity is a measure-theoretic one. The sums and products of finitely many quasicontinuous real functions on \mathbb{R}^{m} are cliquish functions, i.e. are discontinuous only at points of some first category sets ([10]). In Borsík's articles [1], [2] it is proved that each cliquish function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the sum of two quasicontinuous functions. The results of the present article have similar corollaries:

Corollary 1. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a cliquish function. Then

$$
f=f_{1}+f_{2} \quad \text { and } \quad f=c+f_{3} \cdot f_{4},
$$

where $c \in \mathbb{R}$ is a constant and $f_{1}, f_{2}, f_{3}, f_{4}$ are quasicontinuous functions.
Proof. By [11] and [12] there is a homeomorphism $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $\lambda\left(h^{-1}(D(f))\right)=0$. The function $\phi(\mathbf{x})=f(h(\mathbf{x})), \mathbf{x} \in \mathbb{R}^{m}$, is almost everywhere continuous. So, by Theorems 1 and 3 there are a constant $c \in \mathbb{R}$ and strongly quasicontinuous functions $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

$$
\phi=\phi_{1}+\phi_{2} \quad \text { and } \quad \phi=c+\phi_{3} \cdot \phi_{4} .
$$

Observe that for $i=1,2,3,4$ the functions $f_{i}=\phi_{i} \circ h^{-1}$ are quasicontinuous,

$$
f=\phi \circ h^{-1}=\phi_{1} \circ h^{-1}+\phi_{2} \circ h^{-1}=f_{1}+f_{2}
$$

and

$$
f=f \circ h^{-1}=c+\left(\phi_{3} \circ h^{-1}\right) \cdot\left(\phi_{4} \circ h^{-1}\right)=c+f_{3} \cdot f_{4}
$$

This finishes the proof.
Corollary 2. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a cliquish function such that the set $\operatorname{cl}\left(f^{-1}(0)\right) \backslash \operatorname{int}\left(f^{-1}(0)\right)$ is nowhere dense in \mathbb{R}^{m}. Then there are two quasicontinuous functions $f_{1}, f_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ with $f=f_{1} \cdot f_{2}$.

Proof. As in the proof of Corollary 1, by [11] and [12], there is a homeomorphism $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $\lambda\left(h^{-1}\left(\operatorname{cl}\left(f^{-1}(0)\right) \backslash \operatorname{int}\left(f^{-1}(0)\right)\right)\right)=0$. Let $\phi(\mathbf{x})=f(h(\mathbf{x}))$ for $\mathbf{x} \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
\lambda\left(\operatorname{cl}\left(\phi^{-1}(0)\right) \backslash \operatorname{int}\left(\phi^{-1}(0)\right)\right) & \left.\left.=\lambda\left(\operatorname{cl}(f \circ h)^{-1}(0)\right) \backslash \operatorname{int}(f \circ h)^{-1}(0)\right)\right) \\
& =\lambda\left(\operatorname{cl}\left(h^{-1}\left(f^{-1}(0)\right)\right) \backslash \operatorname{int}\left(h^{-1}\left(f^{-1}(0)\right)\right)\right) \\
& =\lambda\left(h^{-1}\left(\operatorname{cl}\left(f^{-1}(0)\right) \backslash \operatorname{int}\left(f^{-1}(0)\right)\right)\right)=0 .
\end{aligned}
$$

So, by Theorem 2 there are strongly quasicontinuous functions $\phi_{1}, \phi_{2}: \mathbb{R}^{m}$ $\rightarrow \mathbb{R}$ such that $\phi=\phi_{1} \cdot \phi_{2}$. Put $f_{1}=\phi_{1} \circ h$ and $f_{2}=\phi_{2} \circ h$ and observe that the functions f_{1} and f_{2} are quasicontinuous and

$$
f=\phi \circ h=\left(\phi_{1} \circ h\right) \cdot\left(\phi_{2} \circ h\right)=f_{1} \cdot f_{2} .
$$

This completes the proof.

REFERENCES

[1] J. Borsík, Algebraic structures generated by real quasicontinuous functions, Tatra Mt. Math. Publ. 8 (1996), 175-184.
[2] -, Sums of quasicontinuous functions for nonseparable spaces, Real Anal. Exchange 22 (1996-97), 328-337.
[3] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978.
[4] —, Differentiation of integrals, Amer. Math. Monthly 78 (1971), no. 9, part II, 1-54.
[5] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506.
[6] Z. Grande, On some representations of a.e. continuous functions, Real Anal. Exchange 21 (1995-96), 175-180.
[7] -, On the strong quasi-continuity of functions of two variables, ibid., 236-243.
[8] Z. Grande and E. Strońska, On some properties connected with continuity and measurability, Tatra Mt. Math. Publ. 19 (2000), 117-125.
[9] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1939), 184-197.
[10] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988-89), 259-306.
[11] J. C. Oxtoby and S. M. Ulam, On the equivalence of any set of first category to a set of measure zero, Fund. Math. 31 (1938), 201-206.
[12] J. C. Oxtoby, Measure and Category, 2nd ed., Grad. Texts in Math. 2, Springer, New York, 1980.
[13] S. Saks, Theory of the Integral, Monografie Mat. 7, Warszawa, 1937.
[14] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284.
Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland E-mail: stronska@neostrada.pl

Received 7 April 2004;
revised 18 December 2005

[^0]: 2000 Mathematics Subject Classification: 26B05, 26B35, 54C08, 54C30.
 Key words and phrases: continuity, strong quasicontinuity, density topology, sums of functions, products of functions.

