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TOWARDS A THEORY OF BASS NUMBERS WITH

APPLICATION TO GORENSTEIN ALGEBRAS

BY

SHIRO GOTO (Kawasaki) and KENJI NISHIDA (Matsumoto)

Abstract. The notion of Gorenstein rings in the commutative ring theory is general-
ized to that of Noetherian algebras which are not necessarily commutative. We faithfully
follow in the steps of the commutative case: Gorenstein algebras will be defined using
the notion of Cousin complexes developed by R. Y. Sharp [Sh1]. One of the goals of the
present paper is the characterization of Gorenstein algebras in terms of Bass numbers.
The commutative theory of Bass numbers turns out to carry over with no extra changes.
Certain algebras having locally finite global dimension are also characterized. The special
case where the algebras are free modules over base rings is explored. Thanks to these
observations, it is clarified how the Gorensteinness is inherited under flat base changes.
In conclusion, a characterization for local algebras to be Gorenstein is given, account-
ing for the reason why the theory behaves so well in the commutative case. Examples
are explored and open problems are given. See [GN2] and [GN3] for further develop-
ments.

1. Introduction. The notion of Gorenstein rings is very well established
in commutative Noetherian ring theory. In this paper we generalize it to
Noetherian algebras that are not necessarily commutative. There might be
divers manners for the generalization but our method will faithfully follow
in the steps of the commutative case. It is somewhat surprising that almost
all of the commutative theory carries over to Noetherian algebras.

Much of the motivation for our work comes from the investigation of
minimal injective resolutions in the commutative case. One may say that
the theory of Gorenstein rings started from the paper of Bass [B2], and the
most glorious stage of the commutative theory was done with it. People
have focused, thereafter, on how to adapt the theory to non-commutative
rings and algebras. For example, Gorenstein rings had grown out of quasi-
Frobenius rings or algebras (cf. [Y]). However, we would like to have a non-
commutative Gorenstein ring theory which would reflect the good results
of the commutative theory. We now therefore begin by giving an approach
towards a unified theory of Gorenstein algebras.
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Throughout this paper, R is a commutative ring and Λ is an R-algebra.
For most of this paper we will furthermore assume that R is a Noetherian
ring and Λ is finitely generated as an R-module. With this notation the
contents of our paper are as follows.
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In Section 2 we will summarize some preliminary results on the rings R
and Λ for later use and further investigation. Proofs will be mostly sketched.
Some of them have their own significance or might not be very familiar
to readers. In such cases we shall indicate detailed proofs. A part of the
observations in Section 3 was already announced in [G2]. We shall restate
a lemma (3.3) obtained by Bass, which was the heart of his paper [B2] and
is eventually the heart of ours too. Before moving to the main task, we
will recall in Section 3 some direct consequences of the lemma. Also, the
normality of the center C(Λ) of Λ will be investigated in the case where the
ring Λ satisfies Serre’s conditions (S2) and (R1) (Proposition 3.12).
In Section 4 we will give the definition of Gorenstein R-algebras (or more

generally, Gorenstein modules), using the notion of Cousin complexes de-
veloped by R. Y. Sharp [Sh1]. Let R be a commutative Noetherian ring.
Then by definition, the ring R is Gorenstein if the local ring Rp has finite
self-injective dimension for all p ∈ SpecR ([B2]). Sharp [Sh1] showed that
R is a Gorenstein ring if and only if the Cousin complex C•R(R) of R pro-
vides a minimal R-injective resolution for R. Following [Sh2], we say that a
finitely generated non-zero R-module M is Gorenstein if the Cousin com-
plex C•R(M) of M provides a minimal R-injective resolution for M . Now,
let Λ be an R-algebra which is a finitely generated R-module, and let M
be a finitely generated non-zero left Λ-module. Then exactly in the same
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manner as in the commutative case, we say that M is a Gorenstein Λ-
module if the Cousin complex C•R(M) of M provides a minimal Λ-injective
resolution for M (Definition 4.6). This condition is equivalent to saying
that M is a Cohen–Macaulay R-module with idΛp

Mp = KdimRp
Mp for all

p ∈ SuppRM (Theorem 4.5), where idΛp
Mp denotes the injective dimension

of the Λp-module Mp and KdimRp
Mp stands for the Krull dimension of the

Rp-module Mp. The R-algebra Λ is said to be a Gorenstein R-algebra if Λ
is a Gorenstein left module over itself. The notion of Gorenstein algebra is
left-right symmetric (Corollary 4.8), and the main result (4.12) of Section
4 asserts that every Gorenstein R-algebra is its own “canonical” module,
provided the base ring R is local. This enables us to do a closer study of
such algebras together with the use of localizations.
One of the sources of our research dates back to [HN], where Hijikata

and the second author explored an interesting class of non-commutative
Bass orders and certain Gorenstein orders as well. Other sources come from
the books of Auslander–Reiten–Smalø [ARS], Simson [Si], and Yoshino [Yo],
where some Gorenstein CM-algebras (especially, their representation types)
are studied from the representation-theoretic point of view. The class of
Gorenstein algebras in our sense contains all the classes of algebras that are
studied in [HN], [AR1], [ARS], [Si], and [Yo].
One of the goals of this paper is the characterization of Gorenstein R-

algebras in terms of Bass numbers, which will be given in Section 5 (Theorem
5.2). The invariants work very well also in the non-commutative case and it
is somewhat surprising to see that the commutative theory of Bass numbers
carries over to our algebras with no extra changes. We will also give, as
a consequence of Theorem 5.2, a characterization (5.5) of certain algebras
having locally finite global dimension. In Section 6 the special case where Λ is
a free R-module will be investigated. Some equivalent conditions for the ring
Λ to be a Gorenstein R-algebra will be given (Theorem 6.4). Thanks to these
observations of Section 6 we can analyze in Section 7 how the Gorensteinness
is inherited under flat base changes (Theorem 7.3). In conclusion we will
give a characterization (7.7) for local algebras to be Gorenstein, which may
account for the reason why the theory behaves so well in the commutative
case. Some examples given in Section 8 illustrate our theory.
See [GN2] and [GN3] for further developments of the theory. (In [GN2],

the present paper is cited with the temporary title: “On Gorenstein R-
algebras”.) In [GN2] the structure of minimal injective resolutions of lat-
tices over isolated Cohen–Macaulay (non-commutative) singularities is de-
termined. In [GN3], under a certain mild condition on Cohen–Macaulay al-
gebras, we establish an equivalence between the finitely generated modules
of finite projective dimension and the finitely generated modules of finite
injective dimension.
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Since our definition of Gorenstein R-algebras Λ involves the condition
that Λ is a Cohen–Macaulay R-module, we give a brief introduction to
Cohen–Macaulay modules. Firstly, let R be a commutative Noetherian local
ring with maximal ideal m and let M be a finitely generated non-zero R-
module. We put

depthRM = inf{i ∈ Z | ExtiR(R/m,M) 6= (0)}

and call it the depth of M . This invariant equals the length of maximal M -
regular sequences contained in m, and the inequality depthRM ≤ KdimRM
holds true in general, where KdimRM stands for the Krull dimension of M
([Ma], p. 100, Theorem 28). We say thatM is a Cohen–Macaulay R-module if
depthRM = KdimRM . A Cohen–Macaulay R-moduleM is called maximal
if depthRM = KdimR (since KdimRM ≤ KdimR). In our paper, however,
Cohen–Macaulay R-modules do not necessarily mean maximal ones. In the
case where the base ring R is not necessarily local, we say that a finitely
generated non-zero R-module M is Cohen–Macaulay if the Rp-module Mp

is Cohen–Macaulay for all p ∈ SuppRM = {p ∈ SpecR | Mp 6= (0)};
see [BH] for detailed investigations. Now, let Λ be an R-algebra and as-
sume that Λ is finitely generated when viewed as an R-module. Let M
be a finitely generated non-zero left Λ-module. Then we say that M is a
Cohen–Macaulay Λ-module if M is Cohen–Macaulay when viewed as an R-
module. Similarly, the algebra Λ is called a Cohen–Macaulay R-algebra if it
is Cohen–Macaulay when viewed as an R-module. Therefore, if KdimR = 0,
Gorenstein R-algebras Λ in our sense are a very special kind of Gorenstein
algebras in the sense of Auslander and Reiten [AR2] (see Section 6), be-
cause idΛΛ = idΛopΛ

op = 0 in our case. Also, Cohen–Macaulay algebras
in the sense of [AR2] are a special kind of Cohen–Macaulay R-algebras in
our sense but Cohen–Macaulay R-algebras in our sense are not necessarily
Cohen–Macaulay in the sense of [AR2].

Before entering into details, let us fix our standard notation. In what
follows let R be a commutative ring and let Λ denote an R-algebra. Let
f : R → Λ be the structure map. We denote by SpecΛ, MinΛ, and MaxΛ
the set of prime ideals, of minimal prime ideals, and of maximal ideals
in Λ, respectively. Let J(Λ) stand for the Jacobson radical of Λ. For each
P ∈ SpecΛ we denote by htΛP the height of P , that is,

htΛP = sup{0 ≤ n ∈ Z | there exists a chain P0 ( P1 ( . . . ( Pn = P

of prime ideals in Λ}.

We put KdimΛ = supP∈SpecΛ htΛP and call it the Krull dimension of Λ.
Unless otherwise specified, all modules mean left modules. For commutative
algebra we use the same notation and terminology as in [AM], [BH], and
[Ma]. See [AF] for general rings and modules terminology. We refer to [MR]
for the theory of non-commutative Noetherian rings and modules.
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2. Preliminaries. The purpose of this section is to summarize some
basic results on R-algebras Λ. We begin with the following.

2.0. General remarks on SpecΛ. For each ideal I in Λ let I∩R = f−1(I).

Proposition 2.0.1 ([MR], Chapter 10). Suppose that Λ is finitely gen-
erated as an R-module and the structure map f : R→ Λ is injective. Then:

(1) (Lying-over) For every prime ideal p in R there is a prime ideal P
in Λ with p = P ∩R.
(2) (Going-up) Let p ⊆ q be prime ideals in R and let P ∈ SpecΛ with

p = P ∩ R. Then there is a prime ideal Q in Λ such that P ⊆ Q and
q = Q ∩R.
(3) (Incomparability) Let P ⊆ Q be prime ideals in Λ. Then P = Q if

and only if P ∩R = Q ∩R.
(4) Let Q ∈ SpecΛ. Then Q ∈MaxΛ if and only if Q ∩R ∈ MaxR.
(5) Let R be a Noetherian ring. Then for each P ∈ MinΛ the prime

ideal p = P ∩R in R consists of zerodivisors for Λ.
(6) KdimR = KdimΛ = KdimR Λ, where KdimR Λ denotes the Krull

dimension of Λ as an R-module.
(7) For each P ∈ SpecΛ we have htΛ P = htΛp

PΛp ≤ KdimRp, where
p = P ∩R. Hence htΛ P is necessarily finite if R is a Noetherian ring.
(8) (Going-down) Suppose that R is a Noetherian integrally closed in-

tegral domain and Λ is a torsionfree R-module. Let p ⊆ q be prime ideals

in R and let Q ∈ SpecΛ with q = Q ∩ R. Then there is a prime ideal P
in Λ such that P ⊆ Q and p = P ∩ R. Hence htΛ P = htR(P ∩ R) for all
P ∈ SpecΛ.

Proof. See [S] for assertion (8).

2.1. Minimal Λ-injective resolutions and localizations over R. Let S be
a multiplicative system in R with S−1Λ 6= (0). The next result is the starting
point of our research. We give a brief proof for completeness.

Proposition 2.1.1 (cf. [B1]). (1) Suppose Λ is a left Noetherian ring.

Then for every essential homomorphism M
α
→ N of Λ-modules the induced

homomorphism S−1M
S−1α
−→ S−1N of S−1Λ-modules remains essential.

(2) Suppose Λ is a left Noetherian ring. Then the S−1Λ-module S−1I is
injective for every injective Λ-module I.
(3) Every injective S−1Λ-module J is injective as a Λ-module.

Proof. (1) Let L be an S−1Λ-submodule of S−1N and let 0 6= y
1 ∈ L

with y ∈ N . We put S = {[(0) :Λ z] | z ∈ Λy and [(0) :Λ z] ∩ f(S) = ∅}.
Then S 6= ∅ since [(0) :Λ y] ∈ S. We have a maximal element [(0) :Λ z] ∈ S

with z ∈ Λy and [(0) :Λ z] ∩ f(S) 6= ∅. Now choose a ∈ Λ and x ∈ M so
that α(x) = az 6= 0. Then az

1 6= 0. For if
az
1 = 0, then for some s ∈ S we
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have s(az) = a(sz) = 0. Therefore the ideal [(0) :Λ sz] of Λ strictly contains
[(0) :Λ z] and so by the maximality of [(0) :Λ z] in S we have [(0) :Λ sz]
∩ f(S) 6= ∅. Hence (ts)z = for some t ∈ S so that [(0) :Λ z] ∩ f(S) 6= ∅,

which is absurd. Thus az1 6= 0 and the homomorphism S−1M
S−1α
−→ S−1N is

essential, since (S−1α)
(
x
1

)
= az
1 ∈ L.

(2) Let L be a finitely generated S−1Λ-module. We choose a finitely
generated Λ-module M so that L = S−1M . Then

Ext1S−1Λ(L, S
−1I) = Ext1S−1Λ(S

−1M,S−1I) ∼= S−1R⊗R Ext
1
Λ(M, I) = (0)

and the injectivity of the S−1Λ-module S−1I follows.
(3) The Λ-module J is injective, because the functor S−1 is exact and

HomΛ(M,J) = HomS−1Λ(S
−1M,J) for every Λ-module M .

For each Λ-module M let EΛ(M) denote the injective envelope of M .

Remark 2.1.2. Proposition 2.1.1(1) is no longer true if Λ is not a left
Noetherian ring. For example, let (R,m) be a Noetherian complete local
integral domain with KdimR > 0. Let E = ER(R/m) and S = R \ {0}. We
denote by Λ the trivial extension of E over R (cf. [Y]). Then Λ ∼= EΛ(E)
but ES−1Λ(S

−1E) = (0).

Corollary 2.1.3 ([B1], Corollary 1.3). Let Λ be a left Noetherian ring
and let

0→M → I0 → I1 → . . .→ Ii → . . .

be a minimal injective resolution of a Λ-module M . Then the sequence

0→ S−1M → S−1I0 → S−1I1 → . . .→ S−1Ii → . . .

is a minimal injective resolution of the S−1Λ-module S−1M .

2.2. Associated prime ideals AssΛM . To begin with we record

Lemma 2.2.1. Let M be a Λ-module. Then SuppRM ⊆ SuppR Λ and
KdimRM ≤ KdimR Λ.

Definition 2.2.2. LetM be a Λ-module and P ∈ SpecΛ. Then P is said
to be an associated prime ideal of M ifM contains a non-zero Λ-submodule
X such that P = [(0) :Λ Y ] for every non-zero Λ-submodule Y of X.

This condition is equivalent to saying thatM contains a non-zero element
x such that P = [(0) :Λ Λy] for every 0 6= y ∈ Λx.
Let AssΛM denote the set of associated prime ideals of M . We have

AssΛ Λ/P = {P} for every P ∈ SpecΛ. If Λ is a commutative ring, then
AssΛM = {P ∈ SpecΛ | P = [(0) :Λ x] for some x ∈M} for every Λ-module
M . This characterization is no more true if Λ is not commutative, as the
following simple example shows. Let Λ = M2(k) be the full matrix ring
over a field k and let M =

(
k 0
k 0

)
. Then AssΛM = {(0)}, but there is no

embedding L→M of Λ-modules.
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Proposition 2.2.3. (1) Let M be a Λ-module and let S = {[(0) :Λ X] |
X is a non-zero Λ-submodule of M}. Suppose that P is a maximal element
in S. Then P is an associated prime ideal of M .

(2) Assume that Λ is a left Noetherian ring and let M be a Λ-module.
Then M = (0) if and only if AssΛM = ∅.
(3) Assume that Λ is a left Noetherian ring and let M be a Λ-module.

Let t ∈ R. Then t acts on M as a non-zerodivisor if and only if f(t) 6∈ P
for any P ∈ AssΛM .
(4) AssΛ L ⊆ AssΛM ⊆ AssΛ L ∪ AssΛN for every exact sequence 0 →

L→M → N → 0 of Λ-modules.
(5) AssΛ[

⊕
α∈ΩMα] =

⋃
α∈Ω AssΛMα for every family {Mα}α∈Ω of

Λ-modules.

(6) AssΛ EΛ(M) = AssΛM for every Λ-module M .

(7) Let M be a Λ-module and let Φ ⊆ AssΛM . Then AssΛN=AssΛM\Φ
and AssΛM/N = Φ for some Λ-submodule N of M .

Proof. See [Bo], Chapter 4. The proof given in the case where Λ is com-
mutative still works.

Lemma 2.2.4. Let M be a non-zero Λ-module. Then the following con-
ditions are equivalent.

(1) EΛ(M) is indecomposable.

(2) M is uniform.

When this is the case, we have #AssΛM ≤ 1.

Proof. The equivalence (1)⇔(2) is well known. To check the last asser-
tion, let P1, P2 ∈ AssΛM and choose non-zero Λ-submodules Xi of M so
that Pi = [(0) :Λ Yi] for every non-zero submodule Yi of Xi (i = 1, 2).
Let Zi be any non-zero submodule of Xi. Then as M is uniform, we have
Z = Z1 ∩ Z2 6= (0), whence P1 = [(0) :Λ Z] = P2. Thus #AssΛM ≤ 1.

Lemma 2.2.5. Let Λ be a left Noetherian ring and I an indecomposable
injective Λ-module. Let S be a multiplicative system in R with S−1Λ 6= (0).
Then:

(1) S−1I = (0) if sx = 0 for some s ∈ S and 0 6= x ∈ I.

(2) #AssR I ≤ 1.

Proof. (1) Let L = Λx. Then I = EΛ(L). Hence by 2.1.3, S
−1I ∼=

ES−1Λ(S
−1L) = (0).

(2) Let p, q ∈ AssR I. Assume p " q and choose t ∈ p so that t 6∈ q.
Then tx = 0 for some 0 6= x ∈ I since p ∈ AssR I. Let S = R \ q. Then
Iq = S−1I = (0) by (1) since tx = 0. This is absurd. Thus p ⊆ q and
#AssR I ≤ 1.
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Proposition 2.2.6. Suppose Λ is a left Noetherian ring and let I be an
indecomposable injective Λ-module. Then:

(1) #AssΛ I = #AssR I = 1.

(2) Let AssΛ I = {P}. Then AssR I = {P ∩R}.

Proof. By 2.2.3(2) and 2.2.4, #AssΛ I = 1. Let AssΛ I = {P} and choose
a non-zero Λ-submodule X of I so that P = [(0) :Λ Y ] for every non-zero Λ-
submodule Y of X. Let p = P∩R. Then since p = [(0) :Λ Λx]∩R = [(0) :R x]
for every 0 6= x ∈ X, we see p ∈ AssR I. Thus AssR I = {p} by 2.2.5(2).

Corollary 2.2.7. Let Λ be a left Noetherian ring. Then:

(1) #AssΛM <∞ for every finitely generated Λ-module M .
(2) AssRM = {P ∩R | P ∈ AssΛM} for every Λ-module M .

Proof. (1) Let EΛ(M) =
⊕
1≤i≤n Ii be a decomposition into a direct

sum of indecomposable submodules ([M], Theorem 2.5). Then AssΛM =
AssΛ EΛ(M) =

⋃
1≤i≤nAssΛ Ii (2.2.3(5)&(6)). Hence AssΛM is finite by

2.2.4.

(2) Let p ∈ AssRM . Then p ∈ AssR I for some indecomposable injective
Λ-submodule I of EΛ(M) ([M]). Let AssΛ I = {P}. Then by 2.2.6, p = P ∩R
whence AssRM ⊆ {P ∩R | P ∈ AssΛM}. The reverse inclusion is clear (cf.
proof of 2.2.6).

Corollary 2.2.8. Let Λ be a left Noetherian ring and M a Λ-module.
Let N be a Λ-submodule of M and assume that M/N is a finitely generated
Λ-module. Let F = AssΛM/N . Then F is a finite set and there exists a fam-

ily {N(P )}P∈F of Λ-submodules of M satisfying the following conditions.

(1) AssΛM/N(P ) = {P} for each P ∈ F.

(2) N =
⋂
P∈FN(P ) in M .

(3) N 6=
⋂
P∈GN(P ) for any subset G of F such that G 6= F.

Proof. Let EΛ(M/N) =
⊕
1≤i≤n Ii be a decomposition into a direct sum

of indecomposable Λ-submodules. Then AssΛ Ii = {Pi} for each 1 ≤ i ≤ n.

Hence F = {Pi | 1 ≤ i ≤ n}. Let ξi : M
ε
→ M/N → EΛ(M/N)

pi
→ Ii (here

ε and pi denote the canonical epimorphism and the ith projection, respec-
tively) andNi = Ker ξi. Then sinceM/Ni is a non-zero submodule of Ii ([M],
Proposition 2.7), by 2.2.3(2) we get AssΛ(M/Ni) = AssΛ Ii = {Pi}. Clearly
N =

⋂
1≤i≤nNi. Let N(P ) =

⋂
1≤i≤nwithPi=P

Ni for each P ∈ F. Then

N =
⋂
P∈FN(P ) and AssΛM/N(P ) = {P}, since M/N(P ) is a non-zero

Λ-submodule of
⊕
1≤i≤nwithPi=P

M/Ni (2.2.3(2)&(5)). Let G ⊆ F be such
that G 6= F and assume that N =

⋂
P∈GN(P ). Then thanks to condition

(1), the embedding M/N →
⊕

P∈GM/N(P ) forces F = AssΛM/N ⊆ G

(2.2.3(4)&(5)), which is impossible. Hence condition (3) is satisfied.
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2.3. Flat and projective dimension modulo non-zerodivisors. Let t ∈ R
and assume t is Λ-regular. Hence t acts on every flat Λ-module as a non-
zerodivisor. Let M = M/tM for each Λ-module M . The next result may
offer the key to a better understanding of the relation between the flat
dimension fdΛM and fdΛM .

Proposition 2.3.1. Let M be a Λ-module and assume that t is a non-
zerodivisor for M . Then the following conditions are equivalent.

(1) M is Λ-flat.

(2) M is Λ-flat and Mt is Λt-flat.

Proof. It is enough to show (2)⇒(1). Let X be a Λop-module. Then from

the exact sequence 0→M
t
→M →M → 0 we get the exact sequence

TorΛ2 (X,M)→ Tor
Λ
1 (X,M)

t
→ TorΛ1 (X,M).

We will show TorΛ2 (X,M) = (0). Let 0 → Y → F → X → 0 be a presen-
tation of X with F Λ-projective. Let . . . → F2 → F1 → F0 → Y → 0 be a
projective resolution of Y . Then since t is a non-zerodivisor for all Y and
Fi’s, reducing modulo tΛ, we get the Λ-projective resolution

. . .→ F 2 → F 1 → F 0 → Y → 0

of Y . As M is Λ-flat and F i ⊗ΛM
∼= Fi ⊗ΛM , we see that the sequence

. . .→ F2 ⊗ΛM → F1 ⊗ΛM → F0 ⊗ΛM → Y ⊗ΛM → 0

is exact. Hence TorΛ1 (Y,M) = (0), so Tor
Λ
2 (X,M) = (0) since Tor

Λ
2 (X,M)

∼= TorΛ1 (Y,M). Therefore t acts on Tor
Λ
1 (X,M) as a non-zerodivisor and so

the canonical map

TorΛ1 (X,M)→ [Tor
Λ
1 (X,M)]t = Tor

Λt
1 (Xt,Mt)

is injective. Thus TorΛ1 (X,M) = (0) as Mt is Λt-flat, whence M is Λ-flat.

Corollary 2.3.2. Let Λ be a left Noetherian ring and M a finitely

generated Λ-module. Assume that t acts on M as a non-zerodivisor. Then
M is Λ-projective if and only if M is Λ-projective and Mt is Lt-projective.

Corollary 2.3.3. (1) Let N be a Λ-module. Then fdΛN = fdΛN +1 if
fdΛN <∞.
(2) ([K], Ch. 4-1, Theorem C) Suppose Λ is a left Noetherian ring and let

N be a finitely generated Λ-module. Then pdΛN = pdΛN+1 if pdΛN <∞.

Proof. It suffices to prove (1). Let n = fdΛN and let 0 → K → F →
N → 0 be a short exact sequence of Λ-modules with F free. Then by the
snake lemma we get the exact sequence

(a) 0→ N → K
α
→ F → N → 0
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of Λ-modules, since t is a non-zerodivisor for F . We have Kt
∼= Ft as Lt-

modules since tN = (0). Let N1 = Imα and split the sequence (a) into

0→ N1 → F → N → 0 and(b)

0→ N → K → N1 → 0.(c)

Then fdΛK < ∞ and fdΛK = fdΛK as Kt is Lt-free (cf. 2.3.1). If n = 0,
then by (b), N1 is Λ-flat so that by (c), K is Λ-flat. Hence fdΛN = 1 since
K is Λ-flat. Similarly if n > 0, then by (b), fdΛN1 = n− 1 and so fdΛK = n
by (c). Hence fdΛN = n+ 1 because fdΛK = fdΛK = n.

The following result is due to [R], Proposition 5.6. We give a brief proof
in our context.

Corollary 2.3.4. Assume R is a Noetherian ring and Λ is finitely gen-
erated as an R-module. Let t ∈ J(R). Then gl.dimΛ = gl.dimΛ + 1 if
gl.dimΛ <∞.

Proof. Let n = gl.dimΛ. Recall that gl.dimΛ = supM pdΛM where M
runs through finitely generated Λ-modules ([Au1]). Then gl.dimΛ ≥ n+ 1,
since pdΛN = pdΛN + 1 for every finitely generated Λ-module N . Let
M be a finitely generated Λ-module. We will show pdΛM ≤ n + 1. Let
′M = {m ∈ M | tim = 0 for some i ≥ 0} and ′′M = M/′M . Then pdΛM ≤
max{pdΛ

′M, pdΛ
′′M}. The exact sequence 0→ ′M →M → ′′M → 0 divides

the problem into the cases (1) tkM = (0) for some k > 0 or (2) every tk

(k ≥ 0) is a non-zerodivisor for M . For case (1) we choose a filtration

M =M0 ⊃M1 ⊃ . . . ⊃Mq = (0)

so that t · (Mi/Mi+1) = (0). Then as pdΛMi/Mi+1 ≤ n + 1 for all 0 ≤ i ≤
q − 1, descending induction on i yields pdΛM ≤ n + 1. Consider case (2).
Let N be a finitely generated Λ-module. Let i > n and look at the exact
sequence

ExtiΛ(M,N)
t
→ ExtiΛ(M,N)→ Exti+1Λ (M,N)

induced from the exact sequence 0→M
t
→M→M→0. Then Exti+1Λ (M,N)

= (0) as pdΛM ≤ n + 1. Hence ExtiΛ(M,N) = t · ExtiΛ(M,N) so that
ExtiΛ(M,N) = (0) by Nakayama’s lemma. Thus pdΛM ≤ n.

We need the following result to compute fdΛE
i
Λ(Λ).

Theorem 2.3.5. Let I be a Λ-module and assume that t acts on I as
an epimorphism. Let J = [(0) :I t]. Then fdΛI = max{fdΛJ + 1, fdΛtIt}.

Proof. Let 0 → I1 → F0 → I → 0 be a presentation of I with F0
projective. Then the sequence

(a) 0→ [I1]t → [F0]t → It → 0
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of Λt-modules is exact. Look at the commutative diagram

0

J

0 I1 F0 I 0

0 I1 F0 I 0

0

��

��
// //

t
��

//

t
��

//

t

��
// // // //

��

with exact rows and columns. Then by the snake lemma we get a split exact
sequence 0→ J → I1 → F 0 → 0 of Λ-modules. Let

(b) I1 = J ⊕ F 0,

n = fdΛI, and m = max{fdΛJ + 1, fdΛtIt}. Firstly we will show n ≥ m.
If n = 0, then I is flat and t acts on I as an isomorphism. Hence m = 0.
Assume n ≥ 1. Then fdΛtIt ≤ n. We have fdΛI1 ≤ n − 1 as fdΛI1 = n − 1
and t is a non-zerodivisor for I1. Hence by (b) we get fdΛJ ≤ n− 1 and so
n ≥ m. Let us check n ≤ m. If J = (0), then I = It and fdΛI = fdΛtIt as
every flat Λt-module is Λ-flat, whence n ≤ m. Let J 6= (0). Then m ≥ 1
and fdΛJ ≤ m − 1. Hence decomposition (b) shows fdΛI1 ≤ m − 1. Let
0 → L → Fm−1 → . . . → F1 → I1 → 0 be an exact sequence of Λ-modules
with Fi’s projective. Then both the induced sequences

0→ Lt → [Fm−1]t → . . .→ [F1]t → [I1]t → 0 and(c)

0→ L→ Fm−1 → . . .→ F 1 → I1 → 0(d)

are exact. Hence, as fdΛtIt ≤ m, from sequences (a) and (c) it follows that
Lt is Λt-flat. On the other hand decomposition (b) shows fdΛI1 ≤ m− 1 as
fdΛJ ≤ m−1. Therefore from sequence (d) it follows that L is Λ-flat. Hence
by 2.3.1, L is Λ-flat so that fdΛI1 ≤ m− 1 and we have fdΛI ≤ m.

2.4. Injective dimension modulo non-zerodivisors. Let S be a multiplica-
tive system in R with S−1Λ 6= (0). For each Λ-module M let

′M = {m ∈M | sm = 0 for some s ∈ S} and ′′M =M/′M.

Then every s ∈ S is a non-zerodivisor for ′′M . The functors ′[∗] and ′′[∗] are
compatible with direct sums.

Lemma 2.4.1. Suppose Λ is a left Noetherian ring and let I be an injec-
tive Λ-module. Then:
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(1) Both ′I and ′′I are injective Λ-modules.

(2) I ∼= ′I ⊕ ′′I.

(3) The canonical map ′′I → S−1′′I is bijective and S−1I ∼= S−1′′I.

Proof. (1)&(2) It suffices to show that ′I is injective. We may assume I
is indecomposable ([M], Theorem 2.5). Then either ′I = I or ′I = (0) (2.2.5).

(3) Let J be an indecomposable direct summand of ′′I. Then every s ∈ S
acts on J as a monomorphism and so as an isomorphism too. Hence every
s ∈ S acts on ′′I as an isomorphism so that ′′I ∼= S−1′′I. The second assertion
follows from the fact that S−1′I = (0).

Proposition 2.4.2. Let M be a Λ-module and let F1 = {P | P ∈
AssΛM and P ∩f(S) 6= ∅} and F2 = {P | P ∈ AssΛM and P ∩f(S) = ∅}.
Then:

(1) S−1P ∈ AssS−1Λ S
−1M if P ∈ F2.

(2) AssS−1Λ S
−1M = {S−1P | P ∈ F2} if Λ is a left Noetherian ring.

(3) Suppose Λ is a left Noetherian ring. Then M contains a unique Λ-
submodule L with AssΛ L = F1 and AssΛM/L = F2.

Proof. (1) Let P ∈ F2 and Q = S
−1P . Let us show Q ∈ AssS−1Λ S

−1M .
Choose a non-zero cyclic submodule X = Λx of M so that P = [(0) :Λ Λy]
for every 0 6= y ∈ X. Then every s ∈ S is a non-zerodivisor for X and the
canonical map X → S−1X is injective. We will check

Q = [(0) :S−1Λ S
−1(Λy)] for 0 6= y

s ∈ S
−1X (y ∈ X, s ∈ S).

The inclusion ⊆ is clear. To see the opposite inclusion let a
t ∈ [(0) :S−1Λ

S−1(Λy)] with a ∈ Λ and t ∈ S. Then a
1 ∈ [(0) :S−1Λ S−1(Λy)] and so

a · Λy = (0) as the canonical map Λy → S−1(Λy) is injective. Hence a ∈
P = [(0) :Λ Λy] so that

a
t ∈ Q = S

−1P . Therefore Q = [(0) :S−1Λ S
−1(Λy)]

and Q ∈ AssS−1Λ S
−1M .

(2) Let I = EΛ(M) and look at the decomposition I =
′I ⊕ ′′I given

by 2.4.1(2). We put N = M ∩ ′′I. Then every s ∈ S is a non-zerodivisor
for N and the map N → S−1N is injective. Let Q ∈ AssS−1Λ S

−1M . Then
Q ∈ AssS−1Λ S

−1N as S−1N = S−1M (2.4.1(3)). Choose a non-zero cyclic

S−1Λ-submodule X̃ of S−1N , say X̃ = S−1 · n1 = S
−1(Λn) with n ∈ N , so

that Q = [(0) :S−1Λ Ỹ ] for every non-zero S
−1Λ-submodule Ỹ of X̃. We put

P = Q ∩ Λ. We will show P = [(0) :Λ Z] for every non-zero Λ-submodule Z
of Λn. Let a ∈ P . Then a

1 · S
−1Z = (0) as a1 ∈ Q and Q = [(0) :S−1Λ S

−1Z].
Hence aZ = (0) as the map Z → S−1Z is injective. Thus P ⊆ [(0) :Λ Z].
Conversely, let a ∈ [(0) :Λ Z]. Then a

1 ∈ Q since a
1 · S

−1Z = (0) and
Q = [(0) :S−1Λ S

−1Z]. Therefore a ∈ Q ∩ Λ = P . Hence P = [(0) :Λ Z] and
so P ∈ AssΛM .
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(3) Let L = M ∩ ′I this time. Then S−1L = (0) whence AssΛ L ⊆ F1
by (1). We have AssΛM/L ⊆ F2 by 2.2.3(3), as M/L is a submodule of
′′I and every s ∈ S acts on ′′I as a non-zerodivisor. Thus AssΛ L = F1 and
AssΛM/L = F2. Let L

′ be a Λ-submodule of M with AssΛ L
′ = F1 and

AssΛM/L′ = F2. Then by (2), AssS−1Λ S
−1L′ = ∅ whence S−1L′ = (0) so

that L′ ⊆M ∩ ′I = L. We must show L′ = L. If L′ 6= L, then AssΛ L/L
′ 6= ∅

and so S−1(L/L′) 6= (0) by (2) because AssΛ L/L
′ ⊆ AssΛM/L′ = F2. This

is impossible since S−1L = (0).

We now come to the main result of this subsection.

Theorem 2.4.3. Suppose Λ is a left Noetherian ring and let

0→M → E0Λ(M)→ E
1
Λ(M)→ . . .→ EiΛ(M)→ . . .

be a minimal injective resolution of a Λ-module M . Then:

(1) EiS−1Λ(S
−1M) ∼= ′′EiΛ(M) for all i ∈ Z. (Here we put EiΛ(M) = (0)

if i < 0 by convention.)

(2) Suppose every s ∈ S acts on M as a non-zerodivisor. Then the

Λ-module N = (S−1M)/M has a minimal injective resolution of the form

0→ N → ′E1Λ(M)→
′E2Λ(M)→ . . .→ ′Ei+1Λ (M)→ . . .

and EiΛ(M)
∼= EiS−1Λ(N)⊕ E

i
S−1Λ(S

−1M) for all i ∈ Z.

Proof. (1) This follows from 2.1.3 and 2.4.1(3).

(2) Note that ′E0Λ(M) = (0) since every s ∈ S is a non-zerodivisor for
E0Λ(M). We identify

′′EiΛ(M) = E
i
S−1Λ(S

−1M) and look at the following
commutative diagram:

0 0 0 0

0 S−1M ′′E0Λ(M)
′′E1Λ(M)

. . . ′′EiΛ(M)
′′Ei+1
Λ
(M) . . .

0 M E0Λ(M) E1Λ(M)
. . . EiΛ(M) Ei+1

Λ
(M) . . .

0 0 ′E1Λ(M)
. . . ′EiΛ(M)

′Ei+1
Λ
(M) . . .

0 0 0 0

// // //

OO

//

OO

αi−1// αi //

OO

//

OO

// //

OO

//

OO

//

OO

βi−1 // βi //

εi

OO

//

εi+1

OO

//

OO

//

OO

//

OO

γi−1// γi //

OO

//

OO

OO OO OO OO

with columns and first two rows exact. Then by the long exact sequence of
cohomology modules we see that the sequence

(∗) 0→ N → ′E1Λ(M)→ . . .→ ′EiΛ(M)→ . . .

is exact, so that it gives rise to an injective resolution of N . The minimality
of (∗) follows from the fact that the functor ′[∗] is left exact and preserves
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essential monomorphisms. We have EiΛ(M)
∼= Ei−1Λ (N)⊕ E

i
S−1Λ(S

−1M) by
2.4.1(2).

Corollary 2.4.4. Suppose Λ is a left Noetherian ring. If M is a Λ-
module such that every s ∈ S acts on M as a non-zerodivisor , then

idΛM = max{idΛ(S
−1M)/M + 1, idS−1Λ S

−1M}.

Corollary 2.4.5. Let M be a Λ-module. Let t ∈ R and assume that
t is Λ-regular and acts on M as a non-zerodivisor. Let Λ = Λ/tΛ and
M =M/tM . Let Ji = [(0) :EiΛ(M)

t] for i ∈ Z. Then:

(1) The Λ-module M has a minimal injective resolution of the form

0→M → J1 → . . .
βi−1
−→ J i

βi
→ J i+1 → . . .

(2) ([B1], Theorem 2.2) If Λ is a left Noetherian ring , then

idΛM = max{idΛM + 1, idΛtMt}.

(3) If Λ is a left Noetherian ring , then

fdΛE
i
Λ(M) = max{fdΛE

i−1
Λ
(M) + 1, fdΛtE

i
Λt(Mt)}

for all i ∈ Z.

Proof. (1) Let Ii = EiΛ(M) (i ∈ Z). Then we get a short exact sequence

0→ J i → Ii
t
→ Ii → 0 for each i ∈ Z. Look at the commutative diagram

0 0 0 0

0 M I0 I1 . . . Ii Ii+1 . . .

0 M I0 I1 . . . Ii Ii+1 . . .

0 J1 . . . J i J i+1 . . .

0 0 0 0

// // //

OO

//

OO

αi−1 // αi //

OO

//

OO

// //

t

OO

//

t

OO

//

t

OO

αi−1 // αi //

t

OO

//

t

OO

//

OO

//

OO

βi−1 // βi //

OO

//

OO

OO OO OO OO

with exact columns. Each J i is an injective Λ-module and as in the proof of
2.4.3 we see the Λ-module M has a minimal injective resolution of the form

0→M → J1 → . . .
βi−1
−→ J i

βi
→ J i+1 → . . .

(2)&(3) Note that ′Ii = (0) if and only if J i = (0). Then by 2.4.3(2),
idΛ(Mt/M) = idΛM , whence by 2.4.4 we get idΛM = max{idΛM + 1,
idΛtMt}. Assertion (3) is a direct consequence of 2.3.5.
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2.5. The structure of injective Λ-modules. In this subsection we assume
that R is a Noetherian ring and the R-algebra Λ is finitely generated when
viewed as an R-module. Let P ∈ SpecΛ and p = P ∩R. Then Λp/PΛp is a
simple Artinian ring. Hence Λp/PΛp

∼= Mm(D) for some integer m > 0 and
a division ring D. The integer m is uniquely determined by P . Write m =
m(P ). We have m(P ) = 1 if Λ is commutative or more generally if Λp/PΛp

is a division ring. Let S(P ) denote the simple Λp/PΛp-module. Let M be a
Λ-module. Then by 2.4.2(2), P ∈ AssΛM if and only if PΛp ∈ AssΛp

Mp.
The latter condition is equivalent to saying that S(P ) is contained in Mp as
a Λp-submodule. Since Λp/PΛp

∼= S(P )m, we get the equivalence between
the first three conditions in the following lemma.

Lemma 2.5.1. Let M be a Λ-module and P ∈ SpecΛ. Let p = P ∩ R.
Then the following conditions are equivalent.

(1) P ∈ AssΛM .
(2) HomΛp

(S(P ),Mp) 6= (0).
(3) HomΛp

(Λp/PΛp,Mp) 6= (0).
(4) There is an embedding Λ/P → Mn of Λ-modules for some integer

n > 0.

When this is the case, one may choose n = m(P ).

Proof. It suffices to show (1)⇒(4). Since S(P ) ⊆Mp we have an embed-
ding β : Λp/PΛp = [Λ/P ]p → [Mp]

m = [Mm]p. Notice that

Rp ⊗R HomΛ(Λ/P,M
m) = HomΛp

([Λ/P ]p, [M
m]p).

We write β = α
t with α ∈ HomΛ(Λ/P,M

m) and t ∈ R \ p. Then α
1 :

[Λ/P ]p → [M
m]p is a monomorphism as so is β, while the canonical map

Λ/P
h
→ [Λ/P ]p is injective. Hence the commutativity of the diagram

Λ/P Mm

[Λ/P ]p [Mm]p

α //

h
��

h
��α

1 //

(here Mm h
→ [Mm]p denotes the canonical map) implies that α : Λ/P →

Mm is also a monomorphism.

By 2.2.6 we see that #AssΛ I = 1 for every indecomposable injective
Λ-module I. Let us add the following.

Proposition 2.5.2. (1) Let I be an indecomposable injective Λ-module
with AssΛ I = {P}. Then I

m ∼= EΛ(Λ/P ) for m = m(P ).
(2) Let P ∈ SpecΛ and m = m(P ). Then Im ∼= EΛ(Λ/P ) for every

indecomposable direct summand I of EΛ(Λ/P ).
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(3) Let I and J be indecomposable injective Λ-modules. Then I ∼= J if
and only if AssΛ I = AssΛ J .

Proof. (1) Let p = P ∩ R. Then I = Ip and EΛ(Λ/P ) = EΛp
(Λp/PΛp)

since every s ∈ R \ p acts on I and EΛ(Λ/P ) as an isomorphism, while Ip ∼=
EΛp
(S(P )) and EΛp

(Λp/PΛp) ∼= EΛp
(S(P ))m since Ip is an indecomposable

injective Λp-module with S(P ) ⊆ Ip and Λp/PΛp
∼= S(P )m. Hence Im =

[Ip]
m ∼= EΛp

(S(P ))m ∼= EΛp
(Λp/PΛp) = EΛ(Λ/P ).

(2) This follows from (1) since AssΛ I = {P}.
(3) Assume AssΛ I = AssΛ J , say AssΛ I = AssΛ J = {P}. Then by (1),

Im ∼= EΛ(Λ/P ) ∼= J
m for m = m(P ). Hence I ∼= J .

Let P ∈ SpecΛ. Then EΛ(Λ/P ) contains a unique (up to isomorphism)
indecomposable direct summand, which we denote by I(P ).

Corollary 2.5.3 ([GW], Theorem 8.14). The correspondence P 7→ I(P )
yields a bijection between SpecΛ and the set of isomorphism classes of in-
decomposable injective Λ-modules.

Let M be a Λ-module and i ∈ Z. Let

EiΛ(M) =
⊕

α∈Ωi(M)

Iα

be a decomposition into a direct sum of indecomposable submodules ([M],
Theorem 2.5). For each P ∈ SpecΛ we put

Ωi(P,M) = {α ∈ Ωi(M) | AssΛ Iα = {P}}.

Then {Ωi(P,M)}P∈SpecΛ gives rise to a partition of Ω
i(M) and

EiΛ(M)
∼=
⊕

P∈SpecΛ

I(P )(Ω
i(P,M)).

Definition 2.5.4. Let µi(P,M) = #Ωi(P,M)/m(P ) and call it the ith
Bass number of M with respect to P . Then we have the symbolic direct
sum decomposition

EiΛ(M) =
⊕

P∈SpecΛ

EΛ(Λ/P )
µi(P,M).

In general 0 ≤ µi(P,M) ∈ Q or µi(P,M) =∞. We explore the invariant
µi(P,M) in Section 5.

Proposition 2.5.5. Let P ∈ SpecΛ and p = P ∩ R. Then I(P ) is a
direct summand of HomR(Λ

op,ER(R/p)).

Proof. Choose x ∈ I(P ) so that p = [(0) :R x] and let L = Λx. Then
I(P ) = EΛ(L) because I(P ) is indecomposable, while ER(L) ∼= ER(R/p)

n

(n > 0) as AssR L = {p}. We have natural embeddings

L ⊆ HomR(Λ
op, L) ⊆ HomR(Λ

op,ER(L)) = HomR(Λ
op,ER(R/p))

n
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of Λ-modules. Therefore I(P ) is a direct summand of the injective Λ-module
HomR(Λ

op,ER(R/p)) as I(P ) = EΛ(L).

To end this subsection let us note the following. We always have AssΛ Λ ⊇
MinΛ if Λ is a commutative Noetherian ring ([Ma], p. 50, (7.D), Theorem 9).
This is no more true if Λ is not commutative even if Λ is a Cohen–Macaulay
R-module. Let k be a field and let Λ =

[
k k
0 k

]
. Then AssΛ Λ =

{[
0 k
0 k

]}
but

MinΛ =
{[
0 k
0 k

]
,
[
k k
0 0

]}
= SpecΛ. On the other hand we have

Proposition 2.5.6. AssΛ Λ ⊆ MinΛ if Λ is a Cohen–Macaulay R-
module.

Proof. Let Q ∈ AssΛ Λ and choose P ∈ MinΛ so that P ⊆ Q. Then
Q∩R ∈ AssR Λ (2.2.7(2)). Therefore as Q∩R is minimal in SuppR Λ ([BH],
Theorem 2.1.2(a)) and P ∩ R ∈ SuppR Λ, we get P ∩ R = Q ∩ R. Hence
P = Q by 2.0.1(3) and Q ∈MinΛ.

The next result is known. Since we need it later so often, we outline its
proof for completeness.

Proposition 2.5.7. Let R be a local ring and assume Λ is a Cohen–
Macaulay R-module. Let M be a finitely generated non-zero Λ-module and
k = KdimR Λ−KdimRM . Let a be an ideal of R such that a ⊆ [(0) :R M ]
and KdimR/a = KdimRM . Then a contains a Λ-regular sequence of
length k.

Proof. By 2.2.1, k ≥ 0. Let n = KdimR Λ. Then KdimR/p = n for all p ∈
AssR Λ ([BH], 2.1.2(a)). Therefore if k > 0, then a 6⊆ p for any p ∈ AssR Λ as
KdimRM = KdimR/a. Since AssR Λ is a finite set (2.2.7(1)), by [AM], 1.11,
one may choose t ∈ a so that t 6∈

⋃
p∈AssR Λ

p. Then t is Λ-regular (2.2.3(3)).

Let Λ = Λ/tΛ. Since M is a Λ-module and KdimR Λ = KdimR Λ− 1 ([BH],
2.1.2(c)), a successive use of this procedure will guarantee the existence of
Λ-regular sequences of length k inside of a.

2.6.Matlis duality. In this subsection we assume that (R,m) is a Noethe-
rian complete local ring and Λ is a finitely generated R-module. Hence
mΛ ⊆ P for all P ∈ MaxΛ and MaxΛ is a finite set. The ring Λ/J is
semisimple and Artinian, where J =

⋂
P∈MaxΛ P denotes the Jacobson rad-

ical of Λ. Let E = ER(R/m) and let [∗]
∨ = HomR(∗,E) denote the Matlis

duality. We begin with the following.

Proposition 2.6.1. The functor [∗]∨ = HomR(∗,E) gives rise to a du-
ality between Noetherian Λ-modules and Artinian Λop-modules.

Proof. Thanks to [M] (Sect. 4), we only have to check that every Ar-
tinian Λ-module M is Artinian as an R-module. Let L = [(0) :M J ] be
the socle of M . Then L is essential in M and EΛ(L) = EΛ(M). Since L
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is finitely generated, we have a decomposition EΛ(L) =
⊕
1≤α≤n Iα into a

finite direct sum of indecomposable Λ-submodules. Recall that AssΛ L =
AssΛ EΛ(L) =

⋃
1≤α≤nAssΛ Iα. Then

⋃
1≤α≤nAssΛ Iα ⊆ MaxΛ as JL = (0)

and so AssR Iα = {m} for all 1 ≤ α ≤ n (2.0.1(4) and 2.2.7(2)). Hence
by 2.5.5 each Iα is a direct summand of HomR(Λ

op,E). Therefore by [M]
(Sect. 4), Iα is an Artinian R-module. Thus EΛ(L) = EΛ(M) is Artinian as
an R-module and hence so is M .

The following corollary is a direct consequence of 2.6.1.

Corollary 2.6.2. (1) Let M be a finitely generated Λ-module. Then M
is Λ-projective if and only if M∨ is Λop-injective.
(2) Let γ : M → N be a homomorphism of finitely generated Λop-

modules and assume that γ is an essential epimorphism. Then the induced
map γ∨ : N∨ →M∨ is an essential monomorphism of Λ-modules.

Corollary 2.6.3. (1) For each simple Λop-module T the Λ-module T∨

is simple and [(0) :Λop T
∨] = [(0) :Λ T ].

(2) ([Λ/J ]op)∨ ∼= Λ/J .
(3) (Λop)∨ ∼= EΛ(Λ/J).

Proof. (1) The fact that T∨ is simple is now clear. To see [(0) :Λop T
∨] =

[(0) :Λ T ], it suffices to show [(0) :Λop T
∨] ⊇ [(0) :Λ T ] as T = T∨∨. Note

(aϕ)(x) = ϕ(xa) = 0 for all a ∈ [(0) :Λ T ], ϕ ∈ T∨, and x ∈ T . Hence
[(0) :Λ T ] · T

∨ = (0).
(2) For each P ∈ MaxΛ let T(P ) (resp. S(P )) denote the simple (Λ/P )op-

module (resp. the simple Λ/P -module). Then

Λ/J ∼=
⊕

P∈MaxΛ

S(P )m(P ) and [Λ/J ]op ∼=
⊕

P∈MaxΛ

T(P )m(P ).

Taking the Matlis dual of both sides in the second isomorphism, we have
([Λ/J ]op)∨ ∼=

⊕
P∈MaxΛ[T(P )

∨]m(P ). Hence ([Λ/J ]op)∨ ∼= Λ/J as T(P )∨ ∼=
S(P ) for all P ∈ MaxΛ by (1).
(3) The epimorphism ε : Λop → [Λ/J ]op yields the essential monomor-

phism ε∨ : Λ/J=([Λ/J ]op)∨→(Λop)∨ (cf. 2.6.2). Hence (Λop)∨=EΛ(Λ/J).

Corollary 2.6.4. Suppose KdimR = 0. Then:

(1) Λ ∼= (Λop)∨ if and only if Λop ∼= Λ∨.
(2) Λ is an injective Λ-module if and only if Λop is an injective Λop-

module.

(3) Suppose Λ is self-injective and let [∗]∗ = HomΛ(∗, Λ) denote the
Λ-dual. Then the canonical map θM : M → M∗∗ is an isomorphism for all
finitely generated Λ-modules M .

Proof. (1) Note that Λop ∼= (Λop)∨∨ and we have Λop ∼= (Λop)∨∨ =
[(Λop)∨]∨ ∼= Λ∨ if Λ ∼= (Λop)∨.
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(2) ([ARS], Proposition 3.1) The functor [∗]∨ = HomR(∗,E) establishes
a duality between Noetherian Λ-modules and Noetherian Λop-modules as
KdimR = 0. Let {Pi}1≤i≤n be the non-isomorphic finitely generated in-
decomposable projective Λ-modules (hence n = #MaxΛ). Then if Λ is
an injective Λ-module, each P∨i is Λ

op-projective by 2.6.2, since Pi is Λ-
injective. Therefore {P∨i }1≤i≤n are the non-isomorphic finitely generated
indecomposable projective Λop-modules, because the number of the isomor-
phism classes of finitely generated indecomposable projective Λop-modules
is n = #MaxΛ. Hence Λop is Λop-injective, since it is isomorphic to a direct
sum of copies of P∨i ’s and each P

∨
i is an injective Λ

op-module.
(3) The assertion is obviously true if M is free. Let 0 → N → F →

M → 0 be an exact sequence of finitely generated Λ-modules with F free.
Then as Λ is self-injective, the sequence 0→M∗ → F ∗ → N∗ → 0 is exact
and so the sequence 0→ N∗∗ → F ∗∗ → M∗∗ → 0 is still exact since Λop is
self-injective. Look at the commutative diagram

0 N F M 0

0 N∗∗ F ∗∗ M∗∗ 0

// //

θN
��

//

θF
��

//

θM
��

// // // //

Then since θF is an isomorphism, θM is an epimorphism for any finitely
generated Λ-module M , while θN is always a monomorphism. Therefore θN
is also an isomorphism, so that θM must be an isomorphism too.

2.7. Local duality theorem. In this subsection we assume that R is a
Noetherian ring and Λ is a left Noetherian ring. We denote by Λ-Mod (resp.
R-Mod) the category of Λ-modules (resp. R-modules). Let a be an ideal
in R. For each M ∈ R-Mod and i ∈ Z we define

Hia(M) = limn→∞
ExtiR(R/a

n,M)

and we call it the ith local cohomology module of M with respect to a

([Gr]). The correspondence M 7→ Hia(M) defines a functor and {H
i
a(∗)}i∈Z

are derived functors of

H0a(∗) = limn→∞
HomR(R/a

n, ∗) : R-Mod→ R-Mod.

If M ∈ Λ-Mod, then naturally Hia(M) ∈ Λ-Mod and we have defined addi-
tive functors Hia(∗) : Λ-Mod→ Λ-Mod.

Proposition 2.7.1. Let I be an injective Λ-module. Then H0a(I) is an
injective Λ-module and Hia(I) = (0) for all i > 0.

Proof. The functors Hia(∗) are compatible with direct sums. So we may
assume I is indecomposable. Let AssΛ I = {P} and put p = P ∩ R. Then
each x ∈ I is killed by some power of p as AssR I = {p}, whence p ⊆ q for all
q ∈ SuppR I. Firstly we consider the case where a ⊆ p. Let 0→ I → E0 →
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E1 → . . . → Ei → . . . be a minimal injective resolution of the R-module I
and let

Ei =
⊕

q∈SpecR

ER(R/q)
µi(q,I).

Then µi(q, I) = 0 for every q ∈ SpecR such that a 6⊆ q. Therefore

Ei =
⊕

q∈SpecRwith a⊆q

ER(R/q)
µi(q,I).

If q ⊇ a, then each x ∈ ER(R/q) is killed by some power of a, so that
H0a(ER(R/q)) = ER(R/q). Hence

H0a(E
i) =

⊕

q∈SpecRwith a⊆q

H0a(ER(R/q))
µi(q,I) = Ei.

Thus H0a(I) = I and Hia(I) = (0) for all i > 0, as the functors {H
i
a(∗)}i∈Z

are defined to be derived functors of Hia(∗) = limn→∞HomR(R/a
n, ∗) :

R-Mod→ R-Mod. Suppose a 6⊆ p and choose s 6∈ a\p. Then as AssR I = {p}
and I is indecomposable, the element s acts on I as an isomorphism. Hence
it also acts on Hia(I) as an isomorphism. Thus H

i
a(I) = (0) for all i ∈ Z since

each x ∈ Hia(I) = limn→∞ Ext(R/a
n, I) is killed by some power of s.

Corollary 2.7.2. The functors Hia(∗) : Λ-Mod → Λ-Mod (i ∈ Z) are
derived functors of

H0a(∗) = limn→∞
HomR(R/a

n, ∗) : Λ-Mod→ Λ-Mod.

Hence for each M ∈ Λ-Mod, the ith local cohomology module Hia(M) of M
may be computed as the ith cohomology module of the complex of Λ-modules

H0a(I
•) : . . .→ 0→ H0a(I

0)→ H0a(I
1)→ . . .→ H0a(I

i)→ . . . ,

where I• : 0 → M → I0 → I1 → . . . → Ii → . . . denotes a Λ-injective
resolution of M .

Proof. The first assertion follows directly from 2.7.1 (use the uniqueness
of derived functors). The second assertion is clear.

For the moment suppose that (R,m) is a local ring with KdimR = d.
When R is m-adically complete, we put KR = [H

d
a(R)]

∨ and call it the
canonical module of R. When R is not necessarily m-adically complete, an R-
module K is said to be the canonical module of R if KR#

∼= R#⊗RK, where
R# denotes the m-adic completion of R. The canonical module is uniquely
determined (up to isomorphism) for R (if it exists) and will be denoted by
KR. If R is a homomorphic image of a Gorenstein local ring S, the ring R has
the canonical module KR and KR ∼= Ext

g
R(R,S) (g = KdimS − KdimR).

In the case where R is a Cohen–Macaulay local ring, R has the canonical
module KR if and only if R is a homomorphic image of a Gorenstein local
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ring ([Re]). See [HK] and [BH] for the basic properties and the general theory
of canonical modules.

We close this subsection with the following.

Local Duality Theorem 2.7.3 ([Gr]). Let (R,m) be a Cohen–Mac-
aulay complete local ring with KdimR = d and assume that Λ is finitely
generated as an R-module. Let KR denote the canonical module of R. Then
for each finitely generated Λ-module M and i ∈ Z there is a natural isomor-
phism

HomR(H
i
m(M),ER(R/m))

∼= Extd−iR (M,KR)

of Λop-modules.

Proof. For each finitely generated R-module M and i ∈ Z we have a
natural isomorphism

θiM : HomR(H
i
m(M),ER(R/m))→ Ext

d−i
R (M,KR)

of R-modules ([Gr]; see [HK] for a purely ring-theoretic proof). Therefore
for a given finitely generated Λ-module M we have the isomorphism θiM
of R-modules as well. The isomorphism θiM is not only an isomorphism of
R-modules but also an isomorphism of Λop-modules, because the naturality
of {θiM}i∈Z implies that these maps {θ

i
M}i∈Z are compatible with the action

of the ring Λop.

2.8. Cousin complexes. Cousin complexes for coherent sheaves were orig-
inally constructed by Grothendieck [Gr] in algebraic geometry. Subsequently
Sharp [Sh1] gave a purely ring-theoretic method of construction. Sharp’s
method still works for modules over our algebras Λ. Let us give a brief
survey of his construction.

For this purpose we need the following.

Lemma 2.8.1. Assume that R is a Noetherian ring and let M be a Λ-
module. Let U , U ′ be subsets of SuppR Λ and assume that U ⊇ SuppRM
and every p ∈ U \ U ′ is minimal in U . Then:

(1) The map

ξ :M ∋ m 7→

{
m

1

}

p∈U\U ′
∈
⊕

p∈U\U ′

Mp

is well defined and is an essential homomorphism of Λ-modules.

(2) SuppR[Coker ξ] ∪ SuppR[Ker ξ] ⊆ U
′.

Proof. See [Sh1].

Suppose that R is a Noetherian ring and let M be a Λ-module. For each
i ∈ Z we put U iR(M) = {p ∈ SuppRM | KdimRp

Mp ≥ i}. Now let Mi = (0)
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for i ≤ −2 and M−1 = M . Let i ≥ 0 be an integer and assume that a
complex

. . .
∂i−3
−→M i−2 ∂i−2−→M i−1

of Λ-modules such that SuppR[Coker ∂j−2] ⊆ U jR(M) for j ≤ i has already
been constructed (this assumption is satisfied for i = 0). Let

M i =
⊕

p∈U iR(M)\U
i+1
R (M)

[Coker ∂i−2]p

and let ∂i−1 : M
i−1 ε
→ Coker ∂i−2

ξ
→ M i where ε is the canonical epimor-

phism and ξ denotes the homomorphism given by 2.8.1. Then ∂i−1∂i−2 = 0
and SuppR[Coker ∂i−1] ⊆ U i+1R (M) by 2.8.1. Hence inductively we get a
complex of Λ-modules of the form

. . .→ 0→M=M−1
∂−1
−→M0

∂0→M1 → . . .→M i ∂i→M i+1 → . . . ,

which we denote by C•R(M) and call the Cousin complex for M . The basic
properties of Cousin complexes C•R(M) and their applications are thoroughly
discussed by Sharp [Sh1]–[Sh5]. Let us list some of them which we need later
in this paper.

Proposition 2.8.2. (1) M i=
⊕

p∈SuppRM with KdimRp
Mp=i
[Coker ∂i−2]p

for all i ≥ 0.
(2) SuppR[Coker ∂i−2] ⊆ U

i
R(M) for all i ≥ 0.

(3) The homomorphism ∂i−1 :M
i−1 →M i is essential for all i ≥ 0.

(4) Suppose that (R,m) is a local ring and let M be a Λ-module. Then
Hpm(M

i) = (0) for all 0 ≤ i < KdimRM and p ∈ Z.
(5) Suppose that Λ is finitely generated as an R-module and let M be

a non-zero finitely generated Λ-module. Then M is a Cohen–Macaulay R-
module if and only if C•R(M) is exact. When this is the case,

M i ∼=
⊕

p∈SuppRM with KdimRp
Mp=i

HipRp
(Mp)

for all i ≥ 0.

Proof. See [Sh1], [Sh4], and [Sh5].

3. A lemma of Bass. In the rest of this paper we assume that R is a
Noetherian ring and Λ is finitely generated as an R-module. Let J = J(Λ)
denote the Jacobson radical of Λ. The main purpose of this section is to
recall Lemma 3.3 below. This lemma was originally given by Bass in his
famous paper [B2] on the ubiquity of Gorenstein rings. It is still referred
to in commutative algebra but seems less familiar to non-commutative al-
gebraists. We shall give a brief proof and discuss some consequences of it.
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Given a finitely generated Λ-module M and P ∈ SpecΛ, we denote by
µi(P,M) the ith Bass number ofM with respect to P (see Definition 2.5.4).
To begin with we record

Lemma 3.1. Suppose that R is a local ring with maximal ideal m. Let

M be a non-zero finitely generated Λ-module and i ∈ Z. Then the following
conditions are equivalent.

(1) ExtiΛ(Λ/J,M) 6= (0).
(2) µi(P,M) > 0 for some P ∈ MaxΛ.
(3) AssΛ E

i
Λ(M) ∩MaxΛ 6= ∅.

(4) m ∈ AssR E
i
Λ(M).

Proof. Let 0 → M → I0
α0→ I1

α1→ . . . → Ii
αi→ Ii+1 → . . . be a minimal

injective resolution of M . Then HomΛ(Λ/J, αi) = 0 and Ext
i
Λ(Λ/J,M) =

HomΛ(Λ/J, I
i) for all i > 0, as Λ/J is a semisimple Artinian ring. Hence

ExtiΛ(Λ/J,M) 6= (0) if and only if I
i contains a non-zero socle if and only if

AssΛ E
i
Λ(M)∩MaxΛ 6= ∅. That is to say, µ

i(P,M) > 0 for some P ∈ MaxΛ,
which is equivalent to saying that m ∈ AssR I

i (cf. 2.2.7(2)).

In the case where (R,m) is a local ring, for each non-zero finitely gener-
ated Λ-module M we put

depthRM = inf{i ∈ Z | ExtiR(R/m,M) 6= (0)}

and call it the depth of M . This invariant equals the length of maximal
M -regular sequences contained in the maximal ideal m in R ([Ma], p. 100,
Theorem 28). See [BH] for detailed investigations. Here let us add the fol-
lowing characterization.

Corollary 3.2. Suppose that R is a local ring with maximal ideal m
and let M be a non-zero finitely generated Λ-module. Then

depthRM = inf{i ∈ Z | ExtiΛ(Λ/J,M) 6= (0)}

= inf{i ∈ Z | µi(P,M) > 0 for some P ∈MaxΛ}

= inf{i ∈ Z | m ∈ AssR E
i
Λ(M)}

= inf{i ∈ Z | Him(M) 6= (0)}.

Proof. Let m = depthRM and n = inf{i ∈ Z | ExtiΛ(Λ/J,M) 6= (0)}.
We will show m = n by induction on m. Suppose m = 0. Then n = 0 by 3.1,
as m ∈ AssRM ⊆ AssR E

0
Λ(M). Let m > 0 and assume our equality holds

true for m− 1. Let t ∈ m be M -regular. Since t · ExtiΛ(Λ/J,M) = (0), from

the exact sequence 0→M
t
→M →M/tM → 0 we get the exact sequence

(∗) 0→ ExtiΛ(Λ/J,M)→ Ext
i
Λ(Λ/J,M/tM)→ Exti+1Λ (Λ/J,M)→ 0

of R-modules for each i ∈ Z. By the hypothesis on m we have Extm−1Λ (Λ/J,
M/tM) 6= (0) and ExtiΛ(Λ/J,M/tM) = (0) for i < m− 1 as depthRM/tM
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= m− 1. Hence by (∗), ExtiΛ(Λ/J,M) = (0) for all i < m, from which again
by (∗) it follows that ExtmΛ (Λ/J,M) = Ext

m−1
Λ (Λ/J,M/tM) 6= (0). Thus

m = n. See [HK] (Satz 4.10) for the last equality.

The next result is due to Bass [B2] and will play a key role in this paper.
Let us give an outline of its proof.

Lemma 3.3 ([B2], (3.1) Lemma). Let M be a finitely generated Λ-modu-
le. Let p, q ∈ SpecR and assume that p ⊆ q and KdimRq/pRq = 1. Then
q ∈ AssR E

i+1
Λ (M) if p ∈ AssR E

i
Λ(M).

Proof. Passing to the localizationΛq, we may assume (R, q) is a local ring
and KdimR/p = 1. Let A = J(Λp)∩Λ and t ∈ q \ p. Then KdimΛ/(A+ tΛ)
= 0. Look at the exact sequence

ExtiΛ(Λ/A,M)
t
→ ExtiΛ(Λ/A,M)→ Ext

i+1
Λ (Λ/(A+ tΛ),M)

of R-modules induced from 0 → Λ/A
t
→ Λ/A → Λ/(A + tΛ) → 0. Then

since

[ExtiΛ(Λ/A,M)]p = Ext
i
Λp
(Λp/AΛp,Mp) = Ext

i
Λp
(Λp/J(Λp),Mp) 6= (0),

by Nakayama’s lemma we see that Exti+1Λ (Λ/(A+ tΛ),M) 6= (0). Therefore

Exti+1Λ (S,M) 6= (0) for some composition factor S of Λ/(A + tΛ) whence

q ∈ AssR E
i+1
Λ (M) by 3.1.

Remark 3.4. Lemma 3.3 is no longer true if we replace AssR E
i
Λ(M)

with AssΛ E
i
Λ(M). See Example 8.8.

We summarize some direct consequences of Lemma 3.3.

Corollary 3.5. Let M be a finitely generated non-zero Λ-module.

(1) Let (R,m) be a local ring and let p ∈ AssR E
i
Λ(M). Then m ∈

AssR E
i+KdimR/p
Λ (M).

(2) Suppose idΛM=n<∞. Then AssR E
n
Λ(M)⊆MaxR and AssΛ E

n
Λ(M)

⊆ MaxΛ. The Λ-module EnΛ(M) contains an essential socle.
(3) (Auslander) Let (R,m) be a local ring. Then

idΛM = sup{i ∈ Z | ExtiΛ(Λ/J,M) 6= (0)}.

Hence idΛ#M
# = idΛM where R

# is the m-adic completion of R, Λ# =
R# ⊗R Λ, and M

# = R# ⊗RM .
(4) KdimRM ≤ idΛM .

Proof. (1) See 3.3.
(2) By 3.3 we have AssR E

i
Λ(M) ⊆ MaxR, whence AssΛ E

n
Λ(M) ⊆ MaxΛ

by 2.0.1(4) and 2.2.7(2). See 2.5.4 for the last assertion.
(3) Let m = sup{i ∈ Z | ExtiΛ(Λ/J,M) 6= (0)} < ∞. If E

i
Λ(M) 6= (0)

with i > m, by 3.3 we have m ∈ AssR E
j
Λ(M) for some j ≥ i. Hence by 3.1
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we get ExtjΛ(Λ/J,M) 6= (0), which is absurd. The second assertion follows
from the isomorphism

ExtiΛ(Λ/J,M) = R
# ⊗R Ext

i
Λ(Λ/J,M)

∼= ExtiΛ#(Λ
#/J(Λ#),M#).

(4) Let p = p0 ⊆ p1 ⊆ . . . ⊆ pk = q be a saturated chain of prime
ideals in SuppRM with p ∈ MinRM and q ∈ MaxR. Then by 3.3 we have
q ∈ AssR E

k
Λ(M), as p ∈ AssRM . Hence k ≤ idΛM , so that KdimRM ≤

idΛM .

Corollary 3.6. Let M be a finitely generated Λ-module. Let t ∈ J(R).
Assume that t is Λ-regular and acts on M as a non-zerodivisor. Let Λ =
Λ/tΛ and M =M/tM . Then idΛM = idΛM + 1.

Proof. By 2.4.5(2) it is enough to show that idΛM+1 ≥ idΛM . We may
assume k = idΛM <∞. Then by 2.4.5(1), t is a non-zerodivisor for EiΛ(M)
for all i ≥ k + 2. Let i ≥ k + 2 and assume AssR E

i
Λ(M) 6= ∅. Then by 3.3

we have AssR E
i
Λ(M) ∩MaxR 6= ∅ for some j ≥ i. Hence t is a zerodivisor

for EiΛ(M) = (0) as t ∈ J(R). This argument forces AssR E
i
Λ(M) = ∅ for all

i ≥ k + 2 so that EiΛ(M) = (0). Hence idΛM ≤ k + 1.

The following result generalizes the main theorem of Iwanaga and Sato
[IS].

Theorem 3.7. Suppose (R,m) is a local ring and let t = depthR Λ.
Let M be a finitely generated non-zero Λ-module and assume that idΛM = n
<∞. Then:

(1) t ≤ n.

(2) The Λ-modules EtΛ(Λ) and E
n
Λ(M) have no common non-zero direct

summand if t 6= n.

Proof. Let x = x1, . . . , xt be a maximal Λ-regular sequence and let

K. = K.(x;R) : 0→ Kt
σ
→ Kt−1 → . . .→ K1 → K0

be the Koszul complex ofR generated by the sequence x. We identifyKt = R
and Kt−1 = Rt. Hence the homomorphism σ : Kt → Kt−1 is given by
σ(1) = (−x1, x2, . . . , (−1)

txt). Let a = (x1, x2, . . . , xt)R. Then the complex

Λ⊗R K. : 0→ Λ⊗R Kt
Λ⊗Rσ−−→ Λ⊗R Kt−1 → . . .→ Λ⊗R K1 → Λ⊗R K0

gives rise to a minimal free resolution of the Λ-module Λ/aΛ. Apply
HomΛ(∗,M) to it. Then identifying M

t = HomΛ(Λ⊗R Kt−1,M) and M =
HomΛ(Λ⊗R Kt,M), we get the exact sequence

M t τ
→M → ExttΛ(Λ/aΛ,M)→ 0,
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where the homomorphism τ is given by

τ



m1
...
mt


 =

∑

1≤i≤t

(−1)iximi.

Hence

M/aM = ExttΛ(Λ/aΛ,M) 6= (0)

and we have t ≤ n. Assume that EtΛ(Λ) and E
n
Λ(M) have a common inde-

composable direct summand, say I. Then by 3.5(2), I = EΛ(S) for some
simple Λ-module S. Since E0Λ/aΛ(Λ/aΛ) = [(0) :EtΛ(Λ) a] by 2.4.5(1) and

S ⊆ EtΛ(Λ), we get S ⊆ Λ/aΛ. Look at the exact sequence

ExtnΛ(Λ/aΛ,M)→ Ext
n
Λ(S,M)→ Ext

n+1
Λ (C,M) = (0)

induced from the exact sequence 0 → S → Λ/aΛ → C → 0. Then we have
ExtnΛ(Λ/aΛ,M) 6= (0), as Ext

n
Λ(S,M) = HomΛ(S,E

n
Λ(M)) 6= (0) by our

choice of S. Hence n ≤ t.

Corollary 3.8 ([IS], Theorem). Suppose that 0 < idΛ Λ = n < ∞.
Then E0Λ(Λ) and E

n
Λ(Λ) have no common non-zero direct summand.

Proof. If E0Λ(Λ) and E
n
Λ(Λ) have a common indecomposable direct sum-

mand EΛ(S) with S a simple Λ-module, then depthR Λ = 0 by 3.2. This is
impossible.

We say that Λ is a local ring if Λ/J(Λ) is a simple Artinian ring. Hence Λ
contains a unique maximal ideal and there is a unique (up to isomorphism)
simple Λ-module.

Corollary 3.9 ([R], Corollary 2.15). Suppose that both R and Λ are
local rings. Then idΛM = depthR Λ for every finitely generated non-zero
Λ-module M of idΛM <∞.

Proof. Let t = depthR Λ. Then by 3.2, E
t
Λ(Λ) contains at least one

simple Λ-submodule, while by 3.5(2), EnΛ(M) contains an essential socle.
Thus idΛM = t by 3.7.

Corollary 3.10 ([V], Theorem 3.1). Suppose that both R and Λ are
local rings. Then Λ is a Cohen–Macaulay R-module and idΛ Λ = KdimΛ if
idΛ Λ <∞.

Proof. We have idΛ Λ = depthR Λ by 3.9, while idΛ Λ ≥ KdimR Λ by
3.5(4). Hence Λ is a Cohen–Macaulay R-module and idΛ Λ = KdimR Λ =
KdimΛ.

Suppose R is a regular local ring with KdimR = d and Λ is local. Let the
structure map f : R→ Λ be injective and assume that idΛ Λ <∞. Then by
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3.10, Λ is a free R-module and idΛ Λ = KdimΛ = KdimR. In Section 6 we
shall show that a minimal injective resolution of Λ is given by the complex

0→ Λ = Λ⊗R R→ Λ⊗R E
0 → Λ⊗R E

1 → . . .→ L⊗R E
d → 0,

where 0 → R → E0 → E1 → . . . → Ed → 0 denotes a minimal injective
resolution of R (cf. 6.5). In Section 7 we will give a characterization of local
R-algebras Λ satisfying the condition in 3.10 (cf. 7.7).

Question 3.11. Assume Λ is a local ring. Is it true that Λ is a Cohen–
Macaulay R-module if there is a non-zero finitely generated Λ-module M
with idΛM <∞? This question is an analogue of a famous problem of Bass
[B2] that Roberts [Ro3] settled affirmatively.

Following [V], let us make a few remarks on the normality in the center
C(Λ) of Λ.

Proposition 3.12. Suppose Λ satisfies the following two conditions:

(1) depthRp
Λp ≥ min{KdimΛp, 2} for every p ∈ SuppR Λ.

(2) gl.dimΛp ≤ 1 for every p ∈ SuppR Λ with KdimΛp ≤ 1.

Then C(Λ) is a normal ring.

Proof. Let C = C(Λ). Choose q ∈ SpecC and put p = q ∩ R. Then
p ∈ SuppR Λ and KdimCq = KdimΛq ≤ KdimΛp since Λq = [Λp]qCq

.
If KdimΛp ≥ 2, by condition (1) the ideal pRp contains a Λp-regular se-
quence x, y of length two. Hence depthCq

Λq ≥ 2 as (x, y)Cp ⊆ qCp, so
that KdimΛq ≥ 2. Therefore if KdimΛq ≤ 1, then KdimΛp ≤ 1 and
gl.dimΛp ≤ 1 by condition (2), whence gl.dimΛq ≤ 1 as Λq = [Λp]qCp

.
Suppose KdimΛp = 1. Then pRp contains at least one Λp-regular element,
say x. Therefore depthCq

Λq ≥ 1 since xCp ⊆ qCp. Thus the C-algebra Λ
satisfies conditions (1) and (2). Look at the exact sequence

0→ C → Λ
δ
→ EndC Λ

of C-modules, where the map δ : Λ → EndC Λ is defined by δ(a)(x) =
ax− xa. Then the localized sequence

(∗) 0→ Cq → Λq
δ
→ EndCq

Λq

is still exact. Hence Cq = C(Λq). If KdimCq ≥ 2, then by (∗) we have
depthCq

Cq ≥ 2 because depthCq
(EndCq

Λq) ≥ 1 and depthCq
Λq ≥ 2 (cf.

[BH], 1.2.9). If KdimCq = 1, then depthCq ≥ 1 since depthCq
Λq ≥ 1. Thus

depthCq ≥ min{KdimCq, 2} for all q ∈ SpecC. Let KdimCq = 1. Then as
gl.dimΛq ≤ 1, Cq = C(Λq) is an integral domain and Λq is Cq-torsionfree
([V], Lemma 2.1 and Proposition 2.3). Hence by [BC], Theorem 7.1, Cq is a
DVR. Thus C is a normal ring ([Ma], Theorem 39).
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Corollary 3.13. Suppose that Λ is a Cohen–Macaulay R-module. Then
C(Λ) is a normal ring if gl.dimΛp ≤ 1 for every p ∈ SuppR Λ with KdimΛp

≤ 1.

4. Gorenstein R-algebras. Unless otherwise specified, in this section
we assume that R is a local ring with maximal ideal m and KdimR = d.
Let n = KdimΛ = KdimR Λ. The purpose is to give the definition and basic
properties of Gorenstein R-algebras.
We begin with the following

Lemma 4.1. Suppose M is a Cohen–Macaulay R-module with idΛM =
KdimRM = s. Then:

(1) EsΛ(M)
∼= Hsm(M).

(2) Mp is a Cohen–Macaulay Rp-module and idΛp
M = KdimRp

Mp for

all p ∈ SuppRM .
(3) Let p ∈ SpecR. Then p ∈ AssR E

i
Λ(M) if and only if p ∈ SuppRM

and KdimRp
Mp = i.

Proof. (1) Let 0 → M → I0 → I1 → . . . → Is → 0 be a minimal
injective resolution of M . Then by 3.2 and 3.5(3), m ∈ AssR I

i if and only
if i = s, while H0m(I

s) = Is by 3.5(2). Hence by 2.7.2, EsΛ(M)
∼= Hsm(M).

(2)&(3) Let p ∈ SuppRM . It is well known thatMp is a Cohen–Macaulay
Rp-module ([Se], p. 89, Chapter IV, Théorème 6). Let k = idΛp

Mp and

m = KdimRp
Mp. Then s ≥ k, while k ≥ m by 3.5(4). We have p ∈ AssR I

k

since AssRp
[Ik]p = {pRp} by 3.5(2). Therefore m ∈ AssR I

k+KdimR/p so
that k + KdimR/p ≤ s. Hence k ≤ m as s = KdimRp

Mp + KdimR/p for
all p ∈ SuppRM([Se], p. 89, Chapter IV, Théorème 6). Assertion (3) now
follows from the proof of (1).

Lemma 4.2. Let M be a finitely generated non-zero Λ-module with
KdimRM = s and assume that M is a Cohen–Macaulay R-module. Then
Hsm(M) has a minimal injective resolution of the form

0→ Hsm(M)→ H
0
m(E

s
Λ(M))→ H

0
m(E

s+1
Λ (M))→ . . .→ H0m(E

i
Λ(M))→ . . .

Proof. Let 0→ M → I0 → I1 → . . .→ Is → . . . be a minimal injective
resolution of M . Then H0m(I

i) = (0) as m 6∈ AssR I
i for i < s by 3.2,

while Him(M) = (0) for i > s ([HK], Satz 4.12). Each H0m(I
i) is an injective

Λ-module (cf. 2.7.1). Hence from (2.7.2) we get the injective resolution

0→ Hsm(M)→ H
0
m(I

s)→ H0m(I
s+1)→ . . .→ H0m(I

i)→ . . .

of Hsm(M), whose minimality follows from the fact that the functor H
0
m(∗)

is left exact and preserves essential monomorphisms.

Proposition 4.3. Let M be a finitely generated non-zero Λ-module with
KdimRM = s. Then the following conditions are equivalent.
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(1) M is a Cohen–Macaulay R-module and idΛM = s.
(2) M is a Cohen–Macaulay R-module and Hsm(M) is Λ-injective.
(3) ExtiΛ(Λ/J,M) = (0) for i 6= s.
(4) m 6∈ AssR E

i
Λ(M) for i 6= s.

Proof. (1)⇒(4). See 3.2.
(3)⇔(4). See 3.1.
(4)⇒(2). M is a Cohen–Macaulay R-module since depthRM ≥ s by

3.2. As H0m(E
i
Λ(M)) = (0) for i 6= s, Hsm(M) = H

0
m(E

s
Λ(M)) and H

s
m(M) is

Λ-injective (cf. 2.7.1 and 2.7.2).
(2)⇒(1). By 4.2, H0m(E

i
Λ(M)) = (0) for all i > s. Assume EiΛ(M) 6= (0)

for some i > s and choose p ∈ AssRE
i
Λ(M). Let j = i + KdimR/p ≥ i.

Then, by 3.5(1), m ∈ AssR E
j
Λ(M) and H

0
m(E

j
Λ(M)) 6= (0), which is absurd.

Thus EiΛ(M) = (0) for all i > s whence idΛM = s, by 3.5(4).

Corollary 4.4. Let M be a finitely generated non-zero Λ-module and
assume that M is a Cohen–Macaulay R-module with KdimRM = s.

(1) Suppose that R is a d-dimensional Cohen–Macaulay local ring with
canonical module KR. Then idΛM = s if and only if Extd−sR (M,KR) is a
projective Λop-module.
(2) Suppose that Λ is a Cohen–Macaulay R-module. Then KdimΛ = s

if idΛM = s.

Proof. (1) Let R# denote the m-adic completion of R. Then KR#
∼=

R# ⊗R KR ([HK], Definition 5.6). Hence passing to R
#, by 3.5(3) we may

assume R is complete. By 4.3, idΛM = s if and only if H
s
m(M) is Λ-injective,

while by 2.6.2(1) the latter condition is equivalent to saying that [Hsm(M)]
∨

is Λop-projective. Hence the assertion follows from 2.7.3.
(2) By 3.5(3) we may assume R is complete. Thanks to Cohen’s struc-

ture theorem [C], we may furthermore assume that R is a Gorenstein local
ring. Let n = KdimΛ and d = KdimR. Then by (1), Extd−sR (M,R) is a

direct summand of [Λop]k with k > 0. Hence Him(Ext
d−s
R (M,R)) is a direct

summand of Him(Λ
op)k so that Him(Ext

d−s
R (M,R)) = (0) for all i 6= n ([HK],

4.10 and 4.12). Thus KdimR Ext
d−s
R (M,R) = n and hence s = n ([BH],

3.3.10).

We now come to the definition of Gorenstein R-algebras. In Theorem 4.5
and Definition 4.6 below the ring R is not assumed to be a local ring.

Theorem 4.5. Let R be an arbitrary commutative Noetherian ring , Λ
a module-finite R-algebra, and M a finitely generated non-zero Λ-module.
Then the following two conditions are equivalent.

(1) The Cousin complex C•R(M) provides a minimal injective resolution
for M .
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(2) M is a Cohen–Macaulay R-module such that idΛp
Mp = KdimRp

Mp

for all p ∈ SuppRM .

Proof. By 2.8.2(3)&(5) it suffices to show that, assuming M is Cohen–
Macaulay, M i is injective for all i ≥ 0 if and only if idΛp

Mp = KdimRp
Mp

for all p ∈ SuppRM . Let i ≥ 0 be an integer. Then because

M i ∼=
⊕

p∈SuppRM with KdimRp
Mp=i

HipRp
(Mp)

(cf. 2.8.2(5)), we see by 2.1.1(2)&(3) that M i is Λ-injective if and only
if HipRp

(Mp) is Λp-injective for all p ∈ SuppRM with KdimRp
Mp = i.

By 4.3 the latter condition is equivalent to saying that idΛp
M = i for all

p ∈ SuppRM with KdimRp
Mp = i.

Definition 4.6. Let R be an arbitrary commutative Noetherian ring, Λ
a module-finite R-algebra, and M a finitely generated non-zero Λ-module.
Then M is said to be a Gorenstein Λ-module if the Cousin complex C•R(M)
of M provides a minimal Λ-injective resolution for M . We say that Λ is a
left Gorenstein R-algebra if Λ is a Gorenstein module over itself.

By Corollary 4.8 proved below, the definition of Gorenstein algebra is
left-right symmetric.
LetM be a finitely generated non-zero Λ-module. By 4.5,M is a Goren-

stein Λ-module if and only if Mp is a Gorenstein Λp-module for all p ∈
SuppRM . Hence the condition of M being a Gorenstein Λ-module is lo-
cal. And when R is local, our alternative definition 4.5(2) of a Gorenstein
R-algebra is the same as that of Vasconcelos [V], who used the term moder-
ated Gorenstein algebra. In a more general situation Brown and Hajarnavis
[BHa2] already investigated this kind of rings, which they call injectively
homogeneous.
We return to the former assumption that (R,m) is a local ring. We denote

by R# the m-adic completion of R. Let Λ# = R#⊗RΛ andM
# = R#⊗RM

for each Λ-module M .

Lemma 4.7. Let R be a local ring and M a finitely generated non-zero
Λ-module. Then:

(1) M is a Gorenstein Λ-module if and only if M is a Cohen–Macaulay
R-module and idΛM = KdimRM .
(2) Let t ∈ m be regular for both Λ and M . Let Λ = Λ/tΛ and M =

M/tM . Then M is a Gorenstein Λ-module if and only if M is a Gorenstein
Λ-module.
(3) M# is a Gorenstein Λ#-module if and only if M is a Gorenstein

Λ-module.

Proof. See 3.5(3), 3.6, and 4.1.
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Corollary 4.8. Let R be a local ring. The following conditions are
equivalent.

(1) Λ is a Gorenstein R-algebra.

(2) Λop is a Gorenstein R-algebra.

When this is the case, fdΛE
i
Λ(Λ) = i for all 0 ≤ i ≤ KdimΛ.

Proof. (1)⇔(2). Reducing modulo an ideal of R generated by a maximal
Λ-regular sequence, we may assume that KdimΛ = 0 (cf. 4.7(2)) and, pass-
ing to the ring R/[(0) :R Λ], we may furthermore assume that KdimR = 0.
Then Λ is self-injective if and only if so is Λop (cf. 2.6.4(2)), whence the equiv-
alence follows. We check the last equality by induction on n = KdimΛ. We
have nothing to prove for n = 0. Suppose that n > 0 and our equality holds
true for n − 1. Let t ∈ m be Λ-regular and put Λ = Λ/tΛ. Let 0 ≤ i ≤ n.
Then

fdΛtE
i
Λt(Λt) = sup

p

fdΛp
EiΛp
(Λp)

where p runs through the prime ideals p in SuppR Λ with t 6∈ p. Because
p 6= m for any p ∈ SuppR Λ with t 6∈ p, we infer by the hypothesis on n that
fdΛtE

i
Λt
(Λt) = supp fdΛp

EiΛp
(Λp) ≤ i and fdΛE

i−1
Λ
(Λ) = i− 1 as well. Hence

by 2.4.5(3), fdΛE
i
Λ(Λ) = i for 0 ≤ i ≤ n.

Lemma 4.9. Let Λ be a Gorenstein R-algebra with KdimΛ = n. Then
ExtnΛ(S,Λ) 6= (0) for any simple Λ-module S.

Proof. Let t ∈ m be Λ-regular and let R = R/tR, Λ = Λ/tΛ. Then
ExtnΛ(S,Λ)

∼= Extn−1
Λ
(S,Λ) as tS = (0). Hence passing to the ring Λ, by

4.7(2) we may assume n = 0. Also passing to the ring R/[(0) :R Λ], we
may furthermore assume KdimR = 0. Then S ∼= HomΛ(HomΛ(S,Λ), Λ) by
2.6.4(3) so that HomΛ(S,Λ) 6= (0).

Corollary 4.10 (Iwanaga). The following conditions are equivalent.

(1) Λ is a Gorenstein R-algebra.

(2) idΛ Λ = k <∞ and E
k
Λ(Λ) ⊇ S for all simple Λ-modules S.

Proof. (1)⇒(2). See 4.9.

(2)⇒(1). By 3.2 and 3.7(2) we have depthR Λ = k, whence by 3.5(4),
Λ is a Gorenstein R-algebra.

Proposition 4.11. Let Λ be a Gorenstein R-algebra with KdimΛ = n
and let M be a finitely generated non-zero Λ-module. Then:

(1) ([N], Proposition 1.6) depthRM+sup{i ∈ Z |ExtiΛ(M,Λ) 6=(0)}=n.

(2) KdimRM + inf{i ∈ Z | ExtiΛ(M,Λ) 6= (0)} = n.
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(3) Let j(M) = n−KdimRM . Then the R-moduleM is Cohen–Macaulay
if and only if ExtiΛ(M,Λ) = (0) for all i 6= j(M). When this is the case,

Ext
j(M)
Λ (M,Λ) 6= (0).
(4) depthRM + pdΛM = n if pdΛM <∞.
(5) idΛM = n if idΛM <∞.
(6) The following conditions are equivalent.

(a) M is a projective Λ-module.
(b) M is a Gorenstein Λ-module.
(c) M is a Cohen–Macaulay R-module with KdimRM=n and idΛM

<∞.

(7) idΛM <∞ if and only if pdΛM <∞.

Proof. (1) Induction on m = depthRM . If m = 0, then M contains a
simple Λ-submodule S. From the exact sequence 0→ S →M → C → 0 we
have

ExtnΛ(M,Λ)→ ExtnΛ(S,Λ)→ Ext
n+1
Λ (C,Λ) = (0),

whence ExtnΛ(M,Λ) 6= (0) as ExtnΛ(S,Λ) 6= (0) by 4.9. Assume that m > 0
and our assertion holds true for m − 1. Let t ∈ m be M -regular and put
M = M/tM . Then depthRM = m − 1. Let i ∈ Z and look at the exact
sequence

(∗) ExtiΛ(M,Λ)
t
→ ExtiΛ(M,Λ)→ Exti+1Λ (M,Λ)→ Exti+1Λ (M,Λ)

given by the exact sequence 0 → M
t
→ M → M → 0. Then ExtiΛ(M,Λ) =

(0) for all i > n−m by Nakayama’s lemma, since Exti+1Λ (M,Λ) = (0) by hy-

pothesis. On the other hand, as Extn−m+1Λ (M,Λ) 6= (0) but Extn−m+1Λ (M,Λ)
= (0), sequence (∗) for i = n−m shows Extn−mΛ (M,Λ) 6= (0).
(2) Induction on n. Firstly suppose KdimRM = n and choose p ∈

SuppRM so that KdimR/p = n. Then p ∈ SuppR Λ and KdimRp
Λp = 0.

Hence Λp is self-injective and so by 2.6.4(3),

Mp
∼= HomΛp

(HomΛp
(Mp, Λp), Λp).

We have HomΛp
(Mp, Λp) 6= (0) as Mp 6= (0). Hence HomΛ(M,Λ) 6= (0).

Suppose now that n > 0 and our assertion holds true for n − 1. We may
assume that KdimRM < n. Choose t ∈ [(0) :R M ] so that t is Λ-regular (cf.
2.5.7). Let Λ = Λ/tΛ. Then ExtiΛ(M,Λ) ∼= ExtΛ(M,Λ). As Λ is a Gorenstein
R-algebra with KdimΛ = n− 1, KdimRM + inf{i ∈ Z | Exti

Λ
(M,Λ) 6= (0)}

= n− 1 whence KdimRM + inf{i ∈ Z | ExtiΛ(M,Λ) 6= (0)} = n.
(3) See (1) and (2).
(4) Recall that pdΛM = sup{i ∈ Z | ExtiΛ(M,Λ) 6= (0)} if pdΛM <∞.
(5) Let k = idΛM . Then n = depthR Λ ≤ k by 3.7(1), while n = k by

3.7(2) and 4.9.
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(6) (a)⇒(c). M is a Cohen–Macaulay R-module with KdimRM = n,
since M is a direct summand of Λk (k > 0). We have idΛM < ∞ as
idΛ Λ <∞.

(c)⇒(b). By (5), idΛM = n. Hence M is Gorenstein.

(b)⇒(a). By (5), KdimRM = idΛM = n. We will show that M is Λ-
projective. Suppose n = 0. Passing to the ring R/[(0) :R Λ], we may assume
KdimR = 0. Let [∗]∨ = HomR(∗,ER(R/m)) be the Matlis dual. Then M

∨

is a direct summand of [Λop]k with k > 0 (cf. 2.6.2(1)). Hence M = M∨∨

is a direct summand of ([Λop]∨)k and so M is Λ-projective because [Λop]∨

is Λ-projective (cf. 2.6.2(1) and 4.8). Assume that n > 0 and our assertion
holds true for n− 1. Let t ∈ m be regular for both Λ and M . Let Λ = Λ/tΛ
andM =M/tM . Then by hypothesisM is Λ-projective. To see thatM is Λ-
projective, it suffices to show thatMt is Λt-projective (cf. 2.3.2). Recall that
pdΛtMt = supp pdΛp

Mp, where p runs through prime ideals p ∈ SuppRM
with t 6∈ p. Let p ∈ SuppRM with t 6∈ p. Then KdimRp

Mp = n−KdimR/p
([Se], p. 89, Chapter IV, Théorème 6). HenceMp is a Gorenstein Λp-module
with KdimRp

Mp = KdimΛp < n. Therefore by the hypothesis on n, Mp

is Λp-projective so that pdΛtMt = supp pdΛp
Mp = 0. Thus Mt is Λt-

projective.

(7) It is enough to show the “only if ” part. Let k = n− depthRM and
choose an exact sequence

0→ L→ Fk−1 → Fk−2 → . . .→ F0 →M → 0

of Λ-modules so that each Fi is finitely generated and projective. Then L is
a Cohen–Macaulay R-module with KdimR L = n ([BH], Proposition 1.2.9).
We have idΛ L < ∞ since idΛM < ∞. Hence by (5), L is a Gorenstein
Λ-module so that by (6), L is Λ-projective. Hence pdΛM <∞.

For each i ∈ Z let Ci(Λ) denote the full subcategory of Λ-Mod consisting
of all the finitely generated Λ-modules M such that either M = (0) or M is
a Cohen–Macaulay R-module with KdimRM = i.

We now come to the main result of this section.

Theorem 4.12. Assume that Λ is a Cohen–Macaulay R-module with
KdimΛ = n. Then the following conditions are equivalent.

(1) Λ is a Gorenstein R-algebra.

(2) ExtpΛ(M,Λ) = (0) for all M ∈ Cn(Λ) and p 6= 0.

(3) ExtpΛ(M,Λ) = (0) for all 0 ≤ i ≤ n, M ∈ Ci(Λ), and p 6= n− i.

When this is the case, Extn−iΛ (M,Λ) ∈ Ci(Λ
op) for all M ∈ Ci(Λ) and we

have a natural isomorphism

M ∼= Extn−iΛ (Ext
n−i
Λ (M,Λ), Λ).
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Hence the correspondence M 7→ Extn−iΛ (M,Λ) yields an equivalence between
the categories Ci(Λ) and Ci(Λ

op) (0 ≤ i ≤ n).

Proof. By 4.11(3) we only have to show that (2) implies (1), and the
equivalence of the categories. Look at the exact sequence

0→M → Fn−1 → Fn−2 → . . .→ F0 → Λ/J → 0

of Λ-modules with each Fi finitely generated and projective. Then M ∈
Cn(Λ) ([BH], Proposition 1.2.9) and so Ext

p
Λ(M,Λ) = (0) for p 6= 0. Hence

ExtiΛ(Λ/J,Λ) = (0) for i > n, so that idΛ Λ = n (3.5(3)&(4)) and Λ is a
Gorenstein R-algebra. Let us show that for all 0 ≤ i ≤ n and M ∈ Ci(Λ)
there is a natural isomorphism

M ∼= Extn−iΛ (Ext
n−i
Λ (M,Λ), Λ).

We begin with the following.

Claim 1. Extn−iΛ (M,Λ) ∈ Ci(Λ
op) for all 0 ≤ i ≤ n and M ∈ Ci(Λ).

Proof. Firstly note that KdimR Ext
n−i
Λ (M,Λ) ≤ i since [(0) :R M ] ·

Extn−iΛ (M,Λ) = (0). Therefore we have nothing to prove for i = 0. Assume
that i > 0 and our assertion holds true for i − 1. Let t ∈ m be a non-
zerodivisor for M . We put M = M/tM and apply the functors ExtpΛ(∗, Λ)

(p ∈ Z) to the exact sequence 0 → M
t
→ M → M → 0. Then since

M ∈ Ci−1(Λ), by condition (3) we get the short exact sequence

0→ Extn−iΛ (M,Λ)→ Extn−iΛ (M,Λ)→ Extn−i+1Λ (M,Λ)→ 0.

Hence Extn−iΛ (M,Λ) ∈ Ci(Λ
op) as Extn−i+1Λ (M,Λ) ∈ Ci−1(Λ

op) by the as-
sumption on i.

We now proceed by descending induction on i. Thanks to 4.8 and con-
dition (2), the proof of the case i = n is the same as that of 2.6.4(3). We
assume that i < n and our assertion holds true for i+ 1.

Claim 2. (1) Let M be a finitely generated non-zero Λ-module with
KdimRM = j. Then for each j ≤ k ≤ n there exists an exact sequence
0→ K → L→M → 0 of Λ-modules with L ∈ Ck(Λ). We have K ∈ Ci+1(Λ)
if M ∈ Ci(Λ) and L ∈ Ci+1(Λ).

(2) Let M1,M2 ∈ Ci(Λ) and let ϕ : M1 → M2 be a homomorphism of
Λ-modules. Let 0 → Kq → Lq → Mq → 0 (q = 1, 2) be exact sequences
of Λ-modules with Kq, Lq ∈ Ci+1(Λ). Then one may choose exact sequences

0→ K̃q → L̃q →Mq → 0 (q = 1, 2) of Λ-modules with K̃q, L̃q ∈ Ci+1(Λ) and

homomorphisms αq : K̃q → Kq, βq : L̃q → Lq (q = 1, 2), and ̺ : K̃1 → K̃2,
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η : L̃1 → L̃2 so that the diagrams

0 K̃q L̃q Mq 0

0 Kq Lq Mq 0

// //

αq

��

//

βq

��

//����������
// // // //

(q = 1, 2)

0 K̃1 L̃1 M1 0

0 K̃2 L̃2 M2 0

// //

̺

��

//

η

��

//

ϕ

��
// // // //

are commutative.

Proof. (1) Let 0 → N → F → M → 0 be a presentation of the Λ-
module M with F finitely generated and projective. Choose an ideal a of
R so that a is generated by a Λ-regular sequence contained in [(0) :R M ]
of length n − k (cf. 2.5.7). Let L = F/aF and let L → M = M/aM
be the homomorphism induced from F → M . Then the exact sequence
0 → K → L → M → 0 satisfies the required conditions (cf. [BH], Proposi-
tion 1.2.9).

(2) Firstly note that KdimR/([(0) :R L1] ∩ [(0) :R L2]) = i + 1 because
KdimR/[(0) :R Lq] = KdimLq = i + 1 (q = 1, 2). This time we choose
the ideal a of R so that a is generated by a Λ-regular sequence contained
in [(0) :R L1] ∩ [(0) :R L2] of length n − i − 1. Then aLq = aMq = (0)
(q = 1, 2). Let 0 → Nq → Fq → Mq → 0 be a presentation of the Λ-
module Mq with Fq finitely generated and projective (q = 1, 2). Choose
homomorphisms ψq : Fq → Lq (q = 1, 2) and ψ : F1 → F2 so that the
diagrams

Fq Mq

Lq Mq

//

ψq
��

����������
//

(q = 1, 2)

F1 M1

F2 M2

//

ψ
�� ��

//

are commutative. Let L̃q = Fq/aFq and βq : L̃q → Lq, η : L̃1 → L̃2 be the

induced homomorphisms. Then letting K̃q = Ker(L̃q → Mq), we get the
required commutative diagrams

0 K̃q L̃q Mq 0

0 Kq Lq Mq 0

// //

αq

��

//

βq

��

//����������
// // // //

(q = 1, 2)
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0 K̃1 L̃1 M1 0

0 K̃2 L̃2 M2 0

// //

̺

��

//

η

��

//

ϕ

��
// // // //

where the homomorphisms αq : K̃q → Kq and ̺ : K̃1 → K̃2 are the restric-
tions of βq and ηq respectively.

Now let M ∈ Ci(Λ) and choose an exact sequence

(∗) 0→ K → L→M → 0

of Λ-modules so thatK,L ∈ Ci+1(Λ). Then applying the functors Ext
p
Λ(∗, Λ)

(p ∈ Z), by condition (3) we have the exact sequence

0→ Extn−i−1Λ (L,Λ)→ Extn−i−1Λ (K,Λ)
∆
→ Extn−iΛ (M,Λ)→ 0

of Λop-modules, where ∆ denotes the connecting homomorphism. Since

Extn−i−1Λ (L,Λ),Extn−i−1Λ (K,Λ) ∈ Ci+1(Λ
op)

and

Extn−iΛ (M,Λ) ∈ Ci(Λ
op)

by Claim 1, by condition (3) applied to the Gorenstein R-algebra Λop we
get the exact sequence

(∗∗) 0→ Extn−i−1Λ (Extn−i−1Λ (K,Λ), Λ)→ Extn−i−1Λ (Extn−i−1Λ (L,Λ), Λ)

→ Extn−iΛ (Ext
n−i
Λ (M,Λ), Λ)→ 0

of Λ-modules. By the hypothesis on i we may identify

K = Extn−i−1Λ (Extn−i−1Λ (K,Λ), Λ)

and

L = Extn−i−1Λ (Extn−i−1Λ (L,Λ), Λ).

Then comparing sequence (∗∗) with the original exact sequence (∗), we have
the required isomorphism

θM :M → Ext
n−i
Λ (Ext

n−i
Λ (M,Λ), Λ)

of Λ-modules.

Claim 3. The isomorphism θM is natural in M and does not depend on
the choice of exact sequences (∗) above.

Proof. Let j = n− i and let

0 K1 L1 M1 0

0 K2 L2 M2 0

// //

̺

��

//

η

��

//

ϕ

��
// // // //
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be a commutative diagram with exact rows such that Kq, Lq ∈ Ci+1(Λ) and
Mq ∈ Ci(Λ) (q = 1, 2). Apply the functors Ext

p
Λ(Ext

p
Λ(∗, Λ), Λ) (p ∈ Z) to

get commutative diagrams

0 Kq Lq Mq 0

0 Extj−1
Λ
(Extj−1

Λ
(Kq, Λ)) Extj−1

Λ
(Extj−1

Λ
(Lq, Λ)) Extj

Λ
(Extj

Λ
(Mq, Λ)) 0

// //���������� //���������� //

θM
��

// // // //

with exact rows (q = 1, 2). Then since L1 →M1 is an epimorphism, all the
faces in the diagram

L1 M1

Extj−1Λ (Ext
j−1
Λ (L1, Λ)) Extj−1Λ (Ext

j−1
Λ (M1, Λ))

L2 M2

Extj−1Λ (Ext
j−1
Λ (L2, Λ)) Extj−1Λ (Ext

j−1
Λ (M2, Λ))

//

η
��

ϕ

��

θM1
uukkkkkkkkkk

∆ //
llllllllllllllllllll

Extj−1Λ (Extj−1Λ (η,Λ))

��
Extj−1Λ (Extj−1Λ (ϕ,Λ))

��

//
θM2

uukkkkkkkkkk
∆

//
llllllllllllllllllll

is commutative. Thanks to Claim 2(2), letting M =M1 =M2 and ϕ = 1M ,
the commutativity of the particular face

M1 ExtjΛ(Ext
j
Λ(M1, Λ), Λ)

M2 ExtjΛ(Ext
j
Λ(M2, Λ), Λ)

θM1 //

ϕ

��
ExtjΛ(Ext

j
Λ(ϕ,Λ),Λ)

��
θM2 //

shows that the isomorphism θM does not depend on the choice of exact
sequences (∗) above and hence its naturality does not either.

Corollary 4.13. Suppose Λ is a Gorenstein R-algebra with KdimΛ =
n and let S be a simple Λ-module. Then ExtnΛ(S,Λ) is a simple Λ

op-module.

For each finitely generated non-zero Λ-moduleM we put j(M)=KdimR Λ
−KdimRM .
The next result 4.14(1) shows that if Λ is a Gorenstein R-algebra, then

every finitely generated Λ-module M satisfies Auslander’s condition so that
Λ is an Auslander–Gorenstein ring in the sense of [Bj]. The result 4.14(2)
answers a question posed by [Bj], p. 144, in our context.

Corollary 4.14. Let Λ be a Gorenstein R-algebra with KdimΛ = n
and let M be a finitely generated non-zero Λ-module.

(1) Let j ∈ Z. Then ExtjΛ(X,Λ) = (0) for any Λ
op-submodule X of

ExtjΛ(M,Λ) and for i < j.
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(2) Let j = j(M). Then j(Y ) = j for every non-zero Λop-submodule Y

of ExtjΛ(M,Λ).

Proof. (1) Assume ExtiΛ(X,Λ) 6= (0) and choose p ∈ SuppRX so that
KdimRX = KdimR/p. Then by 4.11(2), n ≤ KdimR/p + i, while n =
KdimR/p+KdimRp

Λp ([Se], p. 89, Chapter IV, Théorème 6). Hence idΛp
Λp

= KdimRp
Λp ≤ i so that ExtjΛp

(Mp, Λp) = (0) as i < j. Thus Xp = (0),
which is absurd.
(2) Let i = KdimRM and choose an exact sequence 0→K→L→M→0

of Λ-modules with L ∈ Ci(Λ) (Claim 2(1), proof of 4.12). As KdimRK ≤ i

we get Extj−1Λ (K,Λ) = (0) by 4.11(2) and so the exact sequence yields the
embedding

0→ ExtjΛ(M,Λ)→ ExtjΛ(L,Λ).

Hence AssR Y ⊆ AssR Ext
j
Λ(L,Λ). Therefore KdimR Y = KdimR Ext

j
Λ(L,Λ)

= i by [BH], Theorem 2.1.2(a), since ExtjΛ(L,Λ) ∈ Ci(Λ
op) by 4.12. Thus

j(Y ) = j.

Let A,P,X and Y denote the full subcategories of Λ-Mod such that

A = {finitely generated Λ-modules M},

P = {P ∈ A | P is Λ-projective},

X = Cn(Λ),

Y = {Y ∈ A | idΛ Y <∞}.

The following result shows that (X ,Y) is an AB-context [AB] for A in
the sense of Hashimoto.

Corollary 4.15. Suppose Λ is a Gorenstein R-algebra with KdimΛ
= n. Then:

(1) X
⋂
Y = P.

(2) ExtpΛ(X,P ) = (0) for all X ∈ X , P ∈ P and p > 0.
(3) (a) A is abelian and X and Y are additive categories.
(b) X ∈ X if Y ∈ X and X is a direct summand of Y .
(c) X ∈ Y if Y ∈ Y and X is a direct summand of Y .

(4) Let 0→ X → Y → Z → 0 be an exact sequence in A. Then

(a) Y ∈ X if X,Z ∈ X .
(b) X ∈ X if Y, Z ∈ X .
(c) Z ∈ Y if X,Y ∈ Y.
(d) Y ∈ Y if X,Z ∈ Y.

(5) Each M ∈ A has a finite X -resolution.
(6) Let X ∈ X . Then there exists an exact sequence 0 → X → P →

Y → 0 in A with P ∈ P and Y ∈ X .
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Proof. (1) See 4.11(6).

(2) See 4.11(3).

(3)&(4) Use 3.2 and [BH], Proposition 1.2.9.

(5) See the proof of 4.11(7).

(6) Let [∗]∗ = HomΛ(∗, Λ) be the Λ-dual. Firstly take a presentation
0 → L → F → X∗ → 0 of the Λop-module X∗ with F finitely generated
and projective. Then as L,X∗ ∈ Cn(Λ

op) by 4.12, identifying X = X∗∗, we
get the required exact sequence 0→ X → F ∗ → L∗ → 0 of Λ-modules with
Y = L∗ ∈ X = Cn(Λ).

For a Λ-module M let

ExtΛ-dimM = sup{i ∈ Z | ExtiΛ(M,Λ) 6= (0)}.

In general ExtΛ-dimM ≤ pdΛM , and we have equality if pdΛM <∞ and
M is finitely generated.

The next result generalizes [G1] (Theorem 1).

Corollary 4.16. Let R be an arbitrary commutative Noetherian ring
and Λ a module-finite R-algebra. We consider the following three conditions.

(1) Λ is a Gorenstein R-algebra.

(2) ExtΛ-dimM <∞ for every finitely generated Λ-module M .
(3) idΛp

Λp <∞ for all p ∈ SuppR Λ.

Then the implications (1)⇒(2)⇒(3) hold true.

Proof. (2)⇒(3). Let A = J(Λp) ∩ Λ and k = ExtΛ-dimΛ/A. Then

ExtiΛp
(Λp/J(Λp), Λp) = Rp ⊗R Ext

i
Λ(Λ/A, Λ) = (0) for all i > k.

Hence idΛp
Λp <∞ (cf. 3.5(3)).

(1)⇒(2). Firstly we note the following, which readily follows from the
long exact sequence of ExtiΛ(Mj , Λ)’s.

Claim 1. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence
of finitely generated Λ-modules. Then if any two of Mj’s have finite ExtΛ-
dimension, so does the remaining one.

Now assume that Λ is a Gorenstein R-algebra but ExtΛ-dimM is infinite
for some finitely generated Λ-module M . By Claim 1 we may assume M to
be cyclic, say M = Λ/L for some left ideal L in Λ. Choose L so that it is
maximal among the left ideals L in Λ with ExtΛ-dimΛ/L infinite. Then we
have

Claim 2. ♯AssΛM = 1.

Proof. Let F = AssΛM and assume ♯F > 1. Choose a family {L(P )}P∈F

of left ideals of Λ satisfying the three conditions stated in 2.2.8. Choose
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∅ 6= G ⊆ F so that G 6= F and put G′ = F \ G. Then L 6=
⋂
P∈G L(P ) and

L 6=
⋂
P∈G′ L(P ). We look at the exact sequence

0→M → Λ/
⋂

P∈G

L(P )⊕Λ/
⋂

P∈G′

L(P )→ Λ/
[ ⋂

P∈G

L(P ) +
⋂

P∈G′

L(P )
]
→ 0.

The maximality of L implies that the ExtΛ-dimensions of Λ/
⋂
P∈G L(P ),

Λ/
⋂
P∈G′ L(P ), and Λ/[

⋂
P∈G L(P ) +

⋂
P∈G′ L(P )] are finite and so by

Claim 1, ExtΛ-dimM must be finite, contrary to assumption. Thus ♯AssΛM
= 1.

Let AssΛM = {P} and p = P ∩R. Then AssRM = {p} (2.2.7(2)).

Claim 3. pnΛ ⊆ L for some integer n > 0.

Proof. As AssRp
Mp = {pRp}, (pRp)

n ·Mp = (0) for some n > 0. Hence
pnΛ ⊆ L since the canonical map M →Mp is injective.

Let k = KdimRp
Λp. Then since Λ is a Cohen–Macaulay R-module, the

prime ideal p of R contains a Λ-regular sequence x1, x2, . . . , xk of length
k (cf. proof of [Ma], Theorem 30 iii)). Let n > 0 be an integer such that
pnΛ ⊆ L. Then the sequence xn1 , x

n
2 , . . . , x

n
k is still Λ-regular ([Ma], Theorem

26) and (xn1 , x
n
2 , . . . , x

n
k)Λ ⊆ L. Let Λ = Λ/(x

n
1 , x

n
2 , . . . , x

n
k)Λ. Then because

ExtiΛ(M,Λ) ∼= ExtΛ(M,Λ) for all i ∈ Z, passing to the ring Λ, we may
assume that k = KdimRp

Λp = 0. Hence p ∈ AssR Λ.

Claim 4. Let t ∈ R \ p. Then there is an integer k = k(t) depending on

t such that the map ExtiΛ(M,Λ)
t
→ ExtiΛ(M,Λ) is bijective for all i > k.

Proof. As AssRM = {p}, t is a non-zerodivisor forM . Hence L 6= L+tΛ.

Look at the exact sequence 0 → M
t
→ M → Λ/[L + tΛ] → 0. Then the

maximality of L shows that k = ExtΛ-dimΛ/[L + tΛ] < ∞. Therefore

ExtiΛ(M,L)
t
→ ExtiΛ(M,Λ) is an isomorphism if i > k.

This claim allows us, in order to produce a contradiction, to freely localize
Λ at any t ∈ R \ p. For example, choose t ∈

⋂
q∈AssR Λ\{p}

q so that t 6∈ p

and passing to the algebra Λt, assume that AssR Λ = {p}. Hence pNΛ = (0)
for some integer N > 0. Then since each piΛ/pi+1Λ is a finitely generated
R/p-module, we may choose an element t ∈ R \ p so that [piΛ/pi+1Λ]t is
Rt-free for every 0 ≤ i ≤ N − 1 (cf. [Bo], Ch. 2, Sect. 5, No. 1). Hence
we may assume, from the beginning, that piΛ/pi+1Λ is R/p-free for every
0 ≤ i ≤ N − 1. Let q ∈ SuppR Λ and look at the canonical exact sequences

0→ pi+1Λq → piΛq → piΛq/p
i+1Λq → 0

(0 ≤ i ≤ N − 1) of Λq-modules. Then because each piΛq/p
i+1Λq is a free

Rq/pRq-module and pNΛq = (0), descending induction on i shows that
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depthRq
Λq = depthRq

Rq/pRq ([BH], 1.2.9). Since AssRM = {p}, the same
technique works to reduce the problem to the case where depthRq

Mq =
depthRq

Rq/pRq for all q ∈ SuppR Λ = SuppRM . Now notice that

KdimRq
Λq ≥ KdimRq

Mq ≥ depthRq
Mq = depthRq

Rq/pRq

= depthRq
Λq = KdimRq

Λq.

Then Mq is a Cohen–Macaulay Rq-module with KdimRq
Mq = KdimRq

Λq.
Hence by 4.12,

Rq ⊗R Ext
i
Λ(M,Λ) = ExtiΛq

(Mq, Λq) = (0)

for all i > 0 and q ∈ SuppR Λ. Therefore Ext
i
Λ(M,Λ) = (0) for all i > 0,

which is the required contradiction. Thus ExtΛ-dimM <∞ for every finitely
generated Λ-module M .

5. Characterization of Gorenstein R-algebras in terms of Bass
numbers. The purpose of this section is to characterize Gorenstein R-
algebras in terms of Bass numbers µi(P,Λ) (see Definition 2.5.4). To begin
with we record

Lemma 5.1. Let P ∈ SpecΛ, i ∈ Z, M a Λ-module, and µi(P,M) the
ith Bass number of M with respect to P .

(1) Let S be a multiplicative system in R with P ∩ f(S) = ∅. Then
µi(S−1P, S−1M) = µi(P,M).

(2) Suppose R is a local ring and P ∈ MaxΛ. Then

µi(P,M) =
ℓΛ/P (Ext

i
Λ(Λ/P,M))

m(P )
=
ℓΛ/P (HomΛ(Λ/P,E

i
Λ(M)))

m(P )
.

(Here ℓΛ/P (∗) denotes the length of composition series.)

(3) 0 ≤ µi(P,M) ∈ Q if M is finitely generated.

(4) Suppose (R,m) is a local ring and P ∈ MaxΛ. Let R# denote the
m-adic completion of R. Then µi(P#,M#) = µi(P,M).

(5) Let t ∈ P ∩R be a non-zerodivisor for both Λ and M . Let P = P/tΛ
and M =M/tM . Then µi−1(P,M) = µi(P,M).

Proof. Let us maintain the same notation as in 2.5. We look at the direct
sum decomposition EiΛ(M) =

⊕
Q∈SpecΛ I(Q)

(Ωi(Q,M)).

(1) Let Q ∈ SpecΛ with Q ∩ f(S) = ∅. Then every s ∈ S acts on
EΛ(Λ/Q) as an isomorphism so that by 2.1.3,

EΛ(Λ/Q) = S
−1EΛ(Λ/Q) = ES−1Λ(S

−1Λ/S−1Q),

whence m(Q) = m(S−1Q) and I(Q) = S−1I(Q) = I(S−1Q). On the other
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hand S−1I(Q) = (0) ifQ∩f(S) 6= ∅, since S−1EΛ(Λ/Q) = (0). Consequently,

S−1EiΛ(M) =
⊕

Q∈SpecΛ

S−1I(Q)(Ω
i(Q,M))

=
⊕

Q∈SpecΛwithQ∩f(S)=∅

I(S−1Q)(Ω
i(Q,M))

and we have µi(S−1P, S−1M) = µi(P,M) as m(S−1P ) = m(P ).

(2) Let S(P ) denote the simple Λ/P -module. Then from the isomor-
phisms

ExtiΛ(Λ/P,M) = HomΛ(Λ/P,E
i
Λ(M))

=
⊕

Q∈SpecΛ

HomΛ(Λ/P, I(Q))
(Ωi(Q,M))

= HomΛ(Λ/P, I(P ))
(Ωi(P,M)) (2.5.1)

= S(P )(Ω
i(P,M))

of Λ/P -modules we have

ℓΛ/P (Ext
i
Λ(Λ/P,M)) = ℓΛ/P (HomΛ(Λ/P,E

i
Λ(M))) = ♯Ω

i(P,M).

Hence the results follow.

(3) Passing to the localization Λp with p = P ∩R, by (1) we may assume
that R is a local ring and P ∈ MaxΛ. Hence assertion (3) immediately
follows from (2) as ℓΛ/P (Ext

i
Λ(Λ/P,M)) is finite.

(4) This follows from (2) and the isomorphisms

ExtiΛ(Λ/P,M) = R
# ⊗R Ext

i
Λ(Λ/P,M) = Ext

i
Λ#(Λ

#/P#,M#).

Note that m(P ) = m(P#) since Λ/P = R# ⊗R Λ/P = Λ
#/P#.

(5) Let Λ = Λ/tΛ. We have

Ei−1
Λ
(Λ) = HomΛ(Λ,E

i
Λ(Λ)) (2.4.5(1))

=
⊕

Q∈SpecΛ

HomΛ(Λ, I(Q))
(Ωi(Q,M))

=
⊕

Q∈SpecΛwith f(t)∈Q

HomΛ(Λ, I(Q))
(Ωi(Q,M)) (2.2.3(3)).

Let Q ∈ SpecΛ be such that t ∈ Q and put Q = Q/tΛ. Then because
HomΛ(Λ,EΛ(Λ/Q)) = EΛ(Λ/Q), we have HomΛ(Λ, I(Q)) = I(Q) and m(Q)
= m(Q). Hence

Ei−1
Λ
(Λ) =

⊕

Q∈SpecΛwith f(t)∈Q

I(Q)(Ω
i(Q,M))

so that µi−1(P ,M) = µi(P,M).
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We now give the characterization (5.2) of Gorenstein R-algebras Λ in
terms of Bass numbers µi(P,Λ). Condition (3) in it corresponds to the ho-
mogeneity condition in [BHa2].

Theorem 5.2. The following conditions are equivalent.

(1) Λ is a Gorenstein R-algebra.
(2) (a) KdimΛP∩R = htΛ P for every P ∈ SpecΛ.
(b) Let P ∈ SpecΛ and i ∈ Z. Then µi(P,Λ) > 0 if and only if

i = htΛ P .

(3) (a) KdimΛP∩R = htΛ P for every P ∈MaxΛ.
(b) Let P ∈ MaxΛ and i ∈ Z. Then µi(P,Λ) > 0 if and only if

i = htΛ P .

To prove the theorem we need the following, which assures the catenarity
in Cohen–Macaulay R-algebras.

Proposition 5.3 ([GN1], Corollary (1.3)). Assume that R is a local
ring and Λ is a Cohen–Macaulay R-module. Then Λ is a catenary ring
and KdimΛ = KdimΛ/Q + htΛQ for every Q ∈ SpecΛ. The equality
k = htΛQ − htΛ P holds true for every pair P ⊆ Q of prime ideals in
Λ and for every saturated chain P = P0 ⊂ P1 ⊂ . . . ⊂ Pk = Q of prime
ideals between P and Q.

Proof of Theorem 5.2. (1)⇒(2). Let P ∈ SpecΛ and p = P∩R. Then by
5.3 we have KdimΛp = htΛp

PΛp = htΛ P , because Λp is a Cohen–Macaulay
Rp-module and PΛp ∈ MaxΛp. If µ

i(P,Λ) > 0, then P ∈ AssΛ E
i
Λ(Λ).

Therefore p ∈ AssR E
i
Λ(Λ) by 2.2.7(2) and so KdimΛp = i by 4.1(3),

whence htΛ P = i. Conversely, let i = htΛ P . Then since PΛp ∈ MaxΛp

and KdimΛp = i, by 4.9 and 2.5.1 we deduce that PΛp ∈ AssΛp
EiΛp
(Λp).

Hence P ∈ AssΛ E
i
Λ(Λ) by 2.4.2(2) and so µ

i(P,Λ) > 0.
(2)⇒(3). This is clear.
(3)⇒(1). Let p ∈ MaxR ∩ SuppR Λ and choose P ∈ MaxΛ so that

p = P ∩ R. Let i = htΛ P . Then by (a), KdimΛp = i. Now assume p ∈
AssR E

k
Λ(Λ) for some k 6= i. Then by 2.2.7(2) we may chooseQ ∈ AssΛ E

k
Λ(Λ)

so that p = Q ∩ R. Then Q ∈ MaxΛ since p ∈ MaxR (2.0.1(4)). Therefore
by assumption (b), k = htΛQ while by (a), htΛQ = KdimΛp = i. This is
impossible. Thus P 6∈ AssR E

k
Λ(Λ) if k 6= i. Hence by 2.4.2(2) and 4.3, Λp is

a Gorenstein Rp-algebra.

For the moment let P ∈MaxΛ and p = P∩R. Then ℓR(Λ/P ) <∞ as p ∈
MaxR. Hence every s ∈ R \ p acts on Λ/P as an automorphism, so that the
canonical map ExtiΛ(Λ/P,M)→ [Ext

i
Λ(Λ/P,M)]p = Ext

i
Λp
(Λp/PΛp,Mp) is

bijective for every Λ-module M and i ∈ Z. Therefore ExtiΛ(Λ/P,M) 6= (0)
if and only if µi(P,M) > 0 (cf. 5.1(1)) and pdΛ Λ/P = pdΛp

Λp/PΛp. In
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particular, if Λ is a Gorenstein R-algebra, by 5.2 we get ExtΛ-dimΛ/P =
htΛ P = KdimΛp < ∞. This observation shows the implication (1)⇒(2)
in

Corollary 5.4. The following conditions are equivalent.

(1) Λ is a Gorenstein R-algebra.

(2) ExtΛ-dimΛ/P = ExtΛ-dimΛ/Q < ∞ for all P,Q ∈ MaxΛ with
P ∩R = Q ∩R.

When this is the case, ExtΛ-dimΛ/P = htΛ P = KdimΛP∩R for every
P ∈MaxΛ.

Proof. (2)⇒(1). Let p ∈ MaxR∩SuppR Λ. Let k = ExtΛ-dimΛ/P with
P ∈ MaxΛ such that p = P ∩ R. Then for all Q ∈ MaxΛ with p = Q ∩ R
we get

ExtkΛp
(Λp/QΛp, Λp) = (0)

for i > k. Therefore idΛp
Λp = k by 3.5(3) and hence Λp is a Gorenstein

Rp-algebra by 4.10.

Corollary 5.5. The following conditions are equivalent.

(1) Λ is a Cohen–Macaulay R-module and gl.dimΛp = KdimΛp for all

p ∈ SuppR Λ.

(2) pdΛ Λ/P = pdΛ Λ/Q <∞ for all P,Q ∈ MaxΛ with P ∩R = Q∩R.

When this is the case, pdΛ Λ/P = htΛ P = KdimΛP∩R for all P ∈ MaxΛ
and pdΛM <∞ for every finitely generated Λ-module M . The center C(Λ)
of Λ is a normal ring.

Proof. (1)⇒(2). We have idΛp
Λp = gl.dimΛp for all p ∈ SuppR Λ since

gl.dimΛp < ∞, so that Λ is a Gorenstein R-algebra. Let P ∈ MaxΛ and
put p = P ∩ R. Then pdΛ Λ/P = ExtΛ-dimΛ/P = KdimΛp by 5.4 since
pdΛ Λ/P = pdΛp

Λp/PΛp <∞.

(2)⇒(1). By 5.4, Λ is a Gorenstein R-algebra. Let p ∈ MaxR∩SuppR Λ
and let k = KdimΛp. Then pdΛp

Λp/QΛp = k for all Q ∈ MaxΛ with
p = Q ∩ R, whence gl.dimΛp = k. Therefore gl.dimΛp = KdimΛp for all
p ∈ SuppR Λ (cf. 4.1(2)).

To see the last assertions let M be a finitely generated Λ-module. Then
ExtΛ-dimM <∞ by 4.15. Let k = ExtΛ-dimM . We want to show pdΛM =
k. Let i ∈ Z and assume ExtiΛ(M,N) 6= (0) for some Λ-module N . Choose
p ∈ SuppR Ext

i
Λ(M,N) and let j = pdΛp

Mp = ExtΛp
−dimMp. Then i ≤ j

since ExtiΛ(Mp, Np) 6= (0), while j ≤ k since ExtjΛ(Mp, Λp) 6= (0). Thus
i ≤ k so that pdΛM = k. See 3.13 for the normality of C(Λ).
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Corollary 5.6. Suppose that R is an integrally closed integral domain
and Λ is R-torsionfree. Then the following conditions are equivalent.

(1) Λ is a Gorenstein R-algebra.

(2) Let P ∈ MaxΛ and i ∈ Z. Then µi(P,Λ) > 0 if and only if i = htΛ P .

Proof. See 5.2(3) and use 2.0.1(8).

For commutative Gorenstein R-algebras Λ the Bass numbers µi(P,Λ) are
always integers and are equal to δi,htΛ P ([B2]). It is however a total fallacy
to suppose that this is still true if Λ is non-commutative (cf. Example 8.6).
Brown and Hajarnavis erroneously claimed [BHa2] (Theorem 5.5) that this
holded for injectively homogeneous rings with finite self-injective dimension.
And this drives us to the question when the equality µi(P,L) = δi,htΛ P
holds true for general Gorenstein R-algebras Λ. Here we give some basic
observations (5.7 and 5.9), which we continue in Section 7.

Theorem 5.7. Suppose that R is a Cohen–Macaulay local ring with
canonical module KR and assume that Λ is a Cohen–Macaulay R-module
with KdimR Λ = KdimR = n. Let L = HomR(Λ

op,KR). Then µ
i(P,L) =

δi,htΛ P for every P ∈ SpecΛ and i ∈ Z. In particular L is a Gorenstein
Λ-module with KdimR L = n.

Proof. By [BH] (Theorem 3.3.10), L is a Cohen–Macaulay R-module
with KdimR Λ = n. Let P ∈ SpecΛ and i ∈ Z. We put p = P ∩ R.
Then p ∈ SuppR Λ and KdimRp

Λp = n − KdimR/p = KdimRp ([Se],
p. 89, Chapter IV, Théorème 6). Since K(Rp)

∼= (KR)p ([BH], 3.3.5(b)),
Lp
∼= HomR((Λp)

op,K(Rp)). Therefore by 5.1(1), passing to the localization
Λp, we may assume that p = m and P ∈ MaxΛ. Then htΛ P = n by 5.3.
Suppose n > 0 and choose t ∈ m so that t is R-regular. Note that t is
also regular for KR and Λ. Let Λ = Λ/tΛ, P = P/tΛ, and R = R/tR.
Then L/tL ∼= HomR((Λ)

op,KR) ([BH], 3.3.3) since KR/tKR
∼= KR ([BH],

3.3.5(a)), while htΛ P = KdimΛ = n− 1 by 5.3. Therefore thanks to 5.1(5),
passing to the ring Λ/(x1, . . . , xn)Λ for some system x1, . . . , xn of parame-
ters of R, we may assume n = 0. Let J = J(Λ) be the Jacobson radical of Λ.
Then since L = [Λop]∨ (the Matlis dual of Λop) ([BH], 3.3.4(a)), by 2.6.3(3)
we have L = EΛ(Λ/J). Hence µ

i(P,L) = 0 for i 6= 0, while µ0(P,L) = 1 as
HomΛ(Λ/P,L) = HomΛ(Λ/P,EΛ(Λ/J)) = HomΛ(Λ/P,Λ/J) = Λ/P .

Corollary 5.8. Suppose that R is a Cohen–Macaulay local ring with
canonical module KR and assume that Λ is a Cohen–Macaulay R-module
with KdimR Λ = KdimR = n. Then the following conditions are equivalent.

(1) Λop ∼= HomR(Λ,KR) as Λ
op-modules.

(2) µn(P,Λ) = 1 for every P ∈ MaxΛ.
(3) µi(P,Λ) = δi,htΛ P for every P ∈ SpecΛ and i ∈ Z.
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Proof. (1)⇒(3). See 5.7.
(3)⇒(2). This is clear.
(2)⇒(1). We argue by induction on n. Let n = 0. Since µ0(P,L) = 1 for

all P ∈ MaxΛ, we get

E0Λ(Λ) =
⊕

P∈MaxΛ

EΛ(Λ/P ) = EΛ(Λ/J(Λ)) = [Λ
op]∨ (2.6.3(3)),

where [∗]∨ stands for the Matlis dual. Note that ℓR(Λ) = ℓR([Λ
op]∨) and

Λ = E0Λ(Λ) = [Λ
op]∨ as Λ ⊆ E0Λ(Λ) = [Λ

op]∨. Assume that n > 0 and
our assertion holds true for n − 1. Choose t ∈ m so that t is R-regular.
Let R = R/tR and Λ = Λ/tΛ. Then by 5.1(5), µn−1(Q,Λ) = 1 for every
Q ∈ MaxΛ and so by the hypothesis on n we have (Λ)op ∼= HomR(Λ,KR).
Let L = HomR(Λ,KR). Then by Nakayama’s lemma L is a cyclic Λ

op-
module, since L/tL ∼= HomR(Λ,KR) ([BH], 3.3.3 and 3.3.5). Let ϕ : Λ

op →
L be an epimorphism of Λop-modules and put K = Kerϕ. We want to
show K = (0). Assume the contrary and choose p ∈ AssRK. Then since
p ∈ AssR Λ

op, we see KdimR/p = n, whence KdimRp = 0. Because Lp
∼=

HomR([Λp]
op,K(Rp)) and K(Rp) = ERp

(Rp/pRp), we have ℓRp
([Λp]

op) =
ℓRp
([Λp]

∨) = ℓRp
(Lp) <∞. Therefore the induced epimorphism ϕp : Λ

op
p →

Lp is an isomorphism, which forces Kp = (0). This contradicts the fact that
p ∈ AssRK. Hence K = (0) and ϕ : Λ

op → L is an isomorphism.

Question 5.9. Suppose R is a local ring and let n = KdimΛ. Is it true
that Λ is a Gorenstein R-algebra if µn(P,Λ) = 1 for every P ∈ MaxΛ? This
is true when Λ is commutative and KdimΛ = htΛ P for all P ∈ MaxΛ (cf.
[Ro2]).

6. The case where Λ is R-free. In this section we assume that R is
a local ring with maximal ideal m. Let κ = R/m and ∆ = κ ⊗R Λ. The
purpose is to prove Theorem 6.4 below.
We begin with the following.

Lemma 6.1. Assume Λ is a finitely generated free R-module. Then
idΛ Λ⊗R ER(κ) = id∆∆.

Proof. Let E = ER(κ) and let

0→ Λ⊗R E → I0 → I1 → . . .→ Ii → . . .

be a minimal injective resolution of Λ⊗R E. Then because

HomΛ(∆,Λ⊗R E) ∼= Λ⊗R HomR(κ,E) ∼= Λ⊗R κ = ∆

and ExtiR(κ,Λ⊗R E) = (0) for all i > 0, the complex

0→ HomΛ(∆,Λ⊗R E)→ HomΛ(∆, I
0)

→ HomΛ(∆, I
1)→ . . .→ HomΛ(∆, I

i)→ . . .
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of ∆-modules is exact and gives rise to a minimal injective resolution of ∆.
Notice that HomΛ(∆, I

i) 6= (0) if and only if m ∈ AssR I
i. The latter con-

dition is equivalent to saying that Ii 6= (0), because SuppR Λ ⊗R E = {m}.
Thus idΛ Λ⊗R E = id∆∆.

Proposition 6.2. Assume Λ is a finitely generated free R-module.
Then:

(1) Every injective Λ-module I is R-injective.
(2) idΛ Λ = id∆∆+ idRR.
(3) R is a regular local ring if gl.dimΛ <∞.
(4) gl.dimΛ = gl.dim∆+KdimR if gl.dim∆ <∞ and R is regular.

Proof. (1) We may assume I = I(P ) for some P ∈ SpecΛ. Then I is a
direct summand of HomR(Λ

op,ER(R/p)) with p = P ∩ R (2.5.5), so that
the Λ-module I is R-injective since HomR(Λ

op,ER(R/p)) = ER(R/p)
r with

r = rankΛ.
(2) To see that idΛ Λ = idRR+id∆∆, we may assume R is a Gorenstein

ring. In fact, if idRR+id∆∆ <∞, R is certainly Gorenstein. Let 0→ Λ→
I0 → I1 → . . . → Ii → . . . be a minimal injective resolution of Λ. Then
by (1) it is an injective resolution of the R-module Λ as well, whence R is
Gorenstein if idΛ Λ < ∞. Thus, in order to prove idΛ Λ = idRR + id∆∆,
without loss of generality we may assume R is a Gorenstein ring. Passing
to the R/q-algebra Λ/qΛ for some ideal q of R generated by a system of
parameters, by 3.6 we may furthermore assume that d = 0. But then the
equality idΛ Λ = id∆∆ follows from 6.1 since ER(κ) = R.
(3) As Λ is R-free and ∆ = κ ⊗R Λ, the Λ-projective resolution of

∆ involves an R-free resolution of κ. Hence R is a regular local ring if
gl.dimΛ <∞.
(4) See 2.3.4 and use the fact that the maximal ideal m of R is generated

by a regular sequence of length d.

Corollary 6.3. Assume Λ is a finitely generated free R-module and R
is a Gorenstein ring. Then

idΛ Λ⊗R ER(R/p) = idΛp/pΛp
Λp/pΛp ≤ id∆∆

for all p ∈ SpecR.

Proof. The first equality follows from 6.1, because

idΛ Λ⊗R ER(R/p) = idΛ Λp ⊗Rp
ERp
(Rp/pRp)

= idΛp
Λp ⊗Rp

ERp
(Rp/pRp).

To prove the inequality we may assume id∆∆ <∞. Hence idΛ Λ = id∆∆+
idRR <∞ (6.2(2)). Therefore letting k = idΛp

Λp, we have p ∈ AssR E
k
Λ(Λ)

since pRp ∈ AssRp
EΛp
(Λp) by 3.5(2). Thus m ∈ AssR E

k+KdimR/p
Λ (Λ) by
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3.5(1) so that

k +KdimR/p ≤ idΛ Λ = KdimR+ id∆∆.

Thus k ≤ KdimRp+id∆∆, while k=KdimRp+idΛp/pΛp
Λp/pΛp by 6.2(2).

Hence idΛp/pΛp
Λp/pΛp ≤ id∆∆.

We now come to the main result of this section (Theorem 6.4), in which
the equivalence of assertions (4) and (5) was given by Endo [En]. We are
grateful to him for pointing out this.

Theorem 6.4. Assume Λ is a finitely generated free R-module and R is
a Gorenstein ring. Let

0→ R→ E0 → E1 → . . .→ Ed → 0

be a minimal injective resolution of R. Then the following conditions are
equivalent.

(1) Λ is a Gorenstein R-algebra.

(2) HomR(Λ,R) is a projective Λ
op-module.

(3) idΛ Λ = d.
(4) id∆∆ = 0.

(5) idΛp/pΛp
Λp/pΛp = 0 for all p ∈ SpecR.

(6) The Λ-module Λ⊗R E is injective for every injective R-module E.
(7) The minimal injective resolution of Λ is given by

0→ Λ = Λ⊗R R→ ΛRE
0 → Λ⊗R E

1 → . . .→ Λ⊗R E
d → 0.

Hence EiΛ(Λ)
∼=
⊕

p∈SpecRwith KdimRp=i
Λ⊗R ER(R/p) for all i ∈ Z.

Proof. Recall Λ is a Cohen–Macaulay R-module with dimR Λ = d. See
4.4(1), 6.1–6.3 for the implications (1)⇔(2)⇔(3)⇔(4)⇔(5) and (6)⇒(4). We
have (5)⇒(6) and (7)⇒(6), since every injective R-module is a direct sum
of copies of {ER(R/p)}p∈SpecR. It suffices to show the implication (1)⇒(7).
As Λ is R-free, the sequence

0→ Λ = Λ⊗R R→ Λ⊗R E
0 → Λ⊗R E

1 → . . .→ Λ⊗R E
d → 0

is exact and gives rise to an injective resolution of Λ. Choose a minimal
injective resolution

0→ Λ→ I0 → I1 → . . .→ Id → 0

of Λ and a family {ϕi : Ii → Λ⊗R E
i}0≤i≤d of monomorphisms so that the

diagram

0 Λ = Λ⊗R R Λ⊗R E
0 Λ⊗R E

1 . . . Λ⊗R E
d 0

0 Λ I0 I1 . . . Id 0

// //������������ // // // //

// // //

ϕ0

OO

//

ϕ1

OO

// //

ϕd

OO
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is commutative. We will show by induction on d that each ϕi is an isomor-
phism. We may assume that d > 0 and our assertion holds true for d − 1.
Hence [ϕi]p is an isomorphism for all 0 ≤ i ≤ d and p ∈ SpecR \ {m}.
Let 0 ≤ i ≤ d be an integer and assume that ϕi is not an epimorphism. Let
C = Cokerϕi. Then AssRC = {m} whence m ∈ AssRE

i as Λ⊗RE
i ∼= Ii⊕C.

Consequently, we have i = d, since

Λ⊗R E
i ∼=

⊕

p∈SpecRwith KdimRp=i

Λ⊗R ER(R/p)

and Λ is R-free (2.2.3(5)). Thus ϕi is an isomorphism for all 0 ≤ i < d so
that ϕd is also an isomorphism.

We say that Λ is a local ring if Λ/J(Λ) is a simple Artinian ring.

Corollary 6.5 (cf. [R], Theorem 2.16). Let R be regular and assume
Λ is a local ring such that the structure map f : R → Λ is injective and
idΛ Λ < ∞. Then Λ is a Gorenstein R-algebra which is a free R-module
with KdimΛ = KdimR. The minimal injective resolution of Λ is given by
the complex

0→ Λ = Λ⊗R R→ Λ⊗R E
0 → Λ⊗R E

1 → . . .→ Λ⊗R E
d → 0,

where 0 → R → E0 → E1 → . . . → Ed → 0 denotes a minimal injective
resolution of R.

7. Flat base changes. In this section we assume that R is a local ring
with maximal ideal m. Let κ = R/m. The purpose is to prove Theorem 7.5
below. It sharpens Corollary 5.8 concerning the question when the equality
µi(P,Λ) = δi,htΛ P holds true for Gorenstein R-algebras Λ. To do this we
need some technique of reduction to the case where R is complete.

Let ϕ : (R,m, κ) → (S, n,K) be a local homomorphism of Noetherian
local rings. We put Γ = S ⊗R Λ. Let m = KdimΓ, n = KdimΛ, and k =
KdimS/mS. We consider the problem of when Γ inherits Gorensteinness
from Λ. We begin with the following.

Lemma 7.1. Let P ∈ MaxΛ. Then:

(1) idS⊗R(Λ/P ) S ⊗R (Λ/P ) = idS/mS S/mS.

(2) The following conditions are equivalent.

(a) S ⊗R (Λ/P ) is a Gorenstein S-algebra.

(b) S/mS is a Gorenstein ring.

When this is the case, µk(Q,S⊗R (Λ/P )) = 1 for all Q ∈ Max(S⊗R (Λ/P )).
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Proof. (1) We have Homκ(Λ/P, κ) ∼= [Λ/P ]
op since Λ/P is a simple

κ-algebra. Therefore

HomK(K ⊗κ (Λ/P ),K) ∼= K ⊗κ Homκ(Λ/P, κ) ∼= [K ⊗κ (Λ/P )]
op

so idK⊗κ(Λ/P )K⊗κ (Λ/P )=0. Hence idS⊗R(Λ/P ) S⊗R (Λ/P )=idS/mS S/mS
by 6.2(2), as S ⊗R (Λ/P ) = (S/mS)⊗κ (Λ/P ) is S/mS-free.
(2) See 6.4. By 5.8 we get µk(Q,S⊗R (Λ/P )) = 1 for all Q ∈ Max(S ⊗R

(Λ/P )).

Lemma 7.2. Suppose the homomorphism ϕ : R → S is flat. Let Q ∈
MaxΓ and put P = Q ∩Λ. Then µ0(Q,Γ ) = µ0(Q,S ⊗R (Λ/P )) · µ

0(P,Λ).

Proof. Note that P ∈ MaxΛ and Γ/PΓ ∼= S⊗R (Λ/P ). Then the equal-
ity follows from the isomorphisms

HomΓ (Γ/Q, Γ ) ∼= HomΓ (Γ/Q,HomΓ (Γ/PΓ, Γ ))
∼= HomΓ (Γ/Q, S ⊗R HomΛ(Λ/P,Λ))

∼= HomΓ (Γ/Q, S ⊗R [(Λ/P )
µ0(P,Λ)])

∼= HomΓ (Γ/Q, S ⊗R (Λ/P ))
µ0(P,Λ)

∼= (Γ/Q)µ
0(Q,S⊗R(Λ/P ))·µ

0(P,Λ).

Theorem 7.3. Suppose that the morphism ϕ : R → S is flat. Then the
following conditions are equivalent.

(1) Γ is a Gorenstein S-algebra.
(2) Λ is a Gorenstein R-algebra and S/mS is a Gorenstein ring.

When this is the case, µm(Q,Γ ) = µn(Q ∩ Λ,Λ) for all Q ∈MaxΓ .

Proof. Recall thatm=n+k and depthS Γ =depthR Λ+depthS/mS S/mS
([Ma], Theorems 19 and 50). Hence Γ is a Cohen–Macaulay S-module if and
only if Λ is a Cohen–Macaulay R-module and S/mS is a Cohen–Macaulay
ring. Therefore we may assume that the S-module Γ is Cohen–Macaulay.
Thanks to 4.7(3) and 5.1(4), we may assume that both the local rings R
and S are complete. Passing to the ring R/[(0) :R Λ], we may furthermore
assume that KdimR = n and KdimS = m.
(2)⇒(1). We have KS = S⊗RKR ([BH], 3.3.14) as S/mS is a Gorenstein

ring. Since

HomS(Γ,KS) ∼= HomS(Γ, S ⊗R KR) ∼= S ⊗R HomR(Λ,KR)

as Γ op-modules and HomR(Λ,KR) is Λ
op-projective (4.4(1)), HomS(Γ,KS)

is Γ op-projective. Hence by 4.4(1), Γ is Gorenstein.
(1)⇒(2) and the last assertion. Passing to the ring S/b with an ideal

b generated by a maximal S/mS-regular sequence contained in n, we may
assume that k = 0 ([BH], Lemma 1.2.17; see also 4.7(2) and 5.1(5)); hence
m = n. Passing to the ring R/a with an ideal a generated by a system of



GORENSTEIN ALGEBRAS 241

parameters of R, we may assume that m = n = 0. Also, passing to the ring
R/[(0) :R Λ], we may assume that R and S are contained in Λ and Γ . Now
let M be a finitely generated Λ-module. Then

S ⊗R Ext
1
Λ(M,Λ) ∼= Ext1Γ (S ⊗RM,Γ ) = (0)

since idΓ Γ = 0; and as the morphism ϕ : R → S is faithfully flat, we get
Ext1Λ(M,Λ) = (0). Thus idΛ Λ = 0. Hence HomR(Λ,KR) is Λ

op-projective
(2.6.2(1)) and so HomS(Γ, S⊗RKR) = S⊗RHomR(Λ,KR) is Γ

op-projective.
Therefore HomS(Γ, S ⊗R KR) is Γ

op-injective so that by [E], Theorem 2,
S ⊗R KR is an injective S-module. Since KR = ER(κ), we see that

HomS(S ⊗R KR, S ⊗R KR) ∼= S ⊗R HomR(KR,KR) ∼= S ⊗R R = S

([M]), whence the S-module S⊗RKR is indecomposable. Thus KS = S⊗RKR
(note KS = ES(K)) and S/mS is a Gorenstein ring ([BH], 3.3.14). The last
assertion follows from 7.1 and 7.2.

Since we cannot find a reference for the following result, we give a brief
proof for completeness.

Proposition 7.4. Suppose the morphism ϕ : R → S is flat. Then for
each P ∈ SpecΛ there is at least one Q ∈ SpecΓ such that P = Q ∩ Λ.

Proof. We may assume P = (0). Passing to the ring R/[(0) :R Λ], we
may furthermore assume the structure map f : R→ Λ is injective. Let Q be
a minimal prime ideal in Γ and let q = Q∩R. Then each t ∈ q is a zerodivisor
for Λ since Q ∈ MinΓ (2.0.1(5)). Therefore thanks to the flatness of ϕ, t is
also a zerodivisor for Λ. This forces q = (0) since Λ is a prime ring. Thus
Q ∩ Λ = (0) (2.0.1(3)).

We now turn to the main subject.

Theorem 7.5. Let Λ be a Gorenstein R-algebra with KdimΛ = n and
assume that µn(P,Λ) = 1 for all P ∈ MaxΛ. Then µi(P,Λ) = δi,htΛ P for
all i ∈ Z and P ∈ SpecΛ. Hence

EiΛ(Λ) =
⊕

P∈SpecΛwith htΛ P=i

EΛ(Λ/P )

for i ∈ Z.

Proof. If R is complete, thanks to the structure theorem of Cohen [C],
R is a homomorphic image of a regular local ring, say T . Let g = KdimT −
KdimΛ. Then [(0) :T Λ] contains a T -regular sequence of length g. Let a

denote the ideal generated by this sequence. Then passing to T/a, we may
assume R is a Gorenstein local ring with KdimR = KdimΛ, so that the
assertion follows from 5.8.
To study the general case we look at the completion Λ# = R#⊗RΛ of Λ.

Note that MaxΛ# = {PΛ# | P ∈ MaxΛ} since Λ#/J(Λ#) = Λ/J(Λ). Then
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by 5.1(4), µn(P,Λ) = 1 for all P ∈ MaxΛ# and hence by 5.8, µi(Q,Λ#) =
δi,ht

Λ#
Q for all i ∈ Z and Q ∈ SpecΛ#. Let P ∈ SpecΛ with htΛ P = i and

choose Q ∈ SpecΛ# so that P = Q∩Λ (7.4). Let j = htΛQ, q = Q∩R
#, and

p = P ∩ R. Then we have a flat local homomorphism Rp → R#q since p =
q∩R. As Λ#q is a Gorenstein R

#
q-algebra and PΛp = QΛ

#
q∩Λp, by 5.1(1)

and 7.3 we see µi(P,Λ) = µi(PΛp, Λp) = µ
j(QΛ#q, Λ

#
q) = µ

j(Q,Λ#) = 1,
which implies the assertion since µk(P,Λ) = 0 if k 6= i (cf. 5.2).

Corollary 7.6. Let Λ be a Gorenstein R-algebra with KdimΛ = n
and suppose that all m(P ) (P ∈ MaxΛ) have the same value independent
of the choice of P ∈ MaxΛ. Let i ∈ Z. Then µi(P,Λ) = δi,htΛ P for every
P ∈ SpecΛ and EiΛ(Λ) =

⊕
P∈SpecΛwith htΛ P=i

EΛ(Λ/P ).

Proof. By 7.5 it is enough to show µn(P,Λ) = 1 for all P ∈ MaxΛ.
As htΛ P = n for all P ∈ MaxΛ (5.3), after reduction modulo a system
of parameters of R we may assume by 5.1(1) that KdimΛ = 0. Also, after
reduction modulo [(0) :R Λ], we may furthermore assume that KdimR = 0.
Hence the maximal ideal m of R is nilpotent and any idempotent of Λ/J(Λ)
can be lifted to one of Λ. Now our proof follows that of [DK], Theorem 9.3.2.
Let us finish it for completeness.

Let P ∈ MaxΛ and put n = m(P ). Then Λ/J(Λ) =
∏
P∈MaxΛMn(D(P ))

with D(P ) division rings. Let S(P ) be a simple Λ/P -module and let P(P )
be the Λ-projective cover of it. Then Λ = [

⊕
P∈MaxΛ P(P )]

n since Λ/J(Λ) =
[
⊕

P∈MaxΛ S(P )]
n. Let [∗]∨ be the Matlis dual. Then since Λ is self-injective,

by 2.6.2, {P(P )∨}P∈MaxΛ are finitely generated indecomposable projective
Λop-modules. It follows that Λop ∼= [

⊕
P∈MaxΛ P(P )

∨]n because Λ/J(Λ) =∏
P∈MaxΛMn(D(P )). Thus Λ

op ∼= Λ∨ and so Λ ∼= [Λop]∨ (2.6.4(1)), whence
µ0(P,Λ) = 1 for all P ∈ MaxΛ (5.8).

Concluding this section, we apply our observations to local R-algebras
Λ, that is, to the case where the ring Λ/J(Λ) is a simple ring. The next
result may account for the reason why the theory behaves so well in the
commutative case.

Corollary 7.7. Suppose that Λ is a local ring with KdimΛ = n. Let
M = J(Λ). Then the following conditions are equivalent.

(1) idΛ Λ <∞.

(2) Λ is a Gorenstein R-algebra.

(3) Λ is a Cohen–Macaulay R-module and Hnm(Λ)
∼= EnΛ(Λ).

(4) Λ is a Cohen–Macaulay R-module and Hnm(Λ) is Λ-injective.

(5) ExtiΛ(Λ/M, Λ) = (0) if i 6= n and ExtnΛ(Λ/M, Λ) ∼= Λ/M.

(6) m 6∈ AssR E
i
Λ(Λ) if i 6= n.
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(7) µi(M, Λ) = δi,n for every i ∈ Z.

(8) µi(P,Λ) = δi,htΛ P for every i ∈ Z and P ∈ SpecΛ, that is, Λ has
the minimal injective resolution 0→Λ→E0→E1→ . . .→Ei→ . . .→En→0,
where

Ei =
⊕

P∈SpecΛwith htΛ P=i

EΛ(Λ/P ).

When Λ is a Cohen–Macaulay R-module and R is an n-dimensional
Cohen–Macaulay local ring with canonical module KR, then each of the con-
ditions (1)–(8) is equivalent to the following :

(9) HomR(Λ,KR) is Λ
op-projective.

(10) Λop ∼= HomR(Λ,KR) as Λ
op-modules.

Proof. See 3.10, 4.3, 4.4(1), 5.8 and 7.6.

8. Examples. In this section we gather several examples to illustrate
our theorems. Throughout let R denote a commutative Noetherian ring. To
begin with we record

Example 8.1. Let R be Gorenstein and let Λ = Mn(R) (n > 0). Then
Λ is a Gorenstein R-algebra with µi(P,Λ) = δi,htΛ P for every i ∈ Z and
P ∈ SpecΛ. There is a bijection p 7→ pΛ = Mn(p) between SpecR and
SpecΛ and

EiΛ(Λ) =
⊕

p∈SpecRwith KdimRp=i

EΛ(Λ/pΛ)

for all i ∈ Z.

Example 8.2. Let R be a Gorenstein normal local ring with KdimR = 2
and let M be a 2-dimensional Cohen–Macaulay R-module. Let Λ=EndRM .
Then Λ is a Gorenstein R-algebra with KdimΛ = 2 and µi(P,Λ) = δi,htΛ P
for every i ∈ Z and P ∈ SpecΛ.

Proof. Since depthR Λ ≥ 2, Λ is a Cohen–Macaulay R-module with
KdimΛ = 2, while Λ ∼= HomR(Λ,R) as Λ-bimodules ([Au2]). Hence by
4.4(1), Λ is a Gorenstein R-algebra. See 5.8 for the last assertion.

Let R be a Cohen–Macaulay local ring with canonical module KR. Let
Λ be an R-algebra which is finitely generated as an R-module. Assume
that Λ is a Cohen–Macaulay R-module with KdimR Λ = KdimR = n. Let
L = HomR(Λ,KR). We denote by Γ = Λ ⋉ L the trivial extension of the
Λ-bimodule L. (Hence Γ = Λ ⊕ L as additive groups, the multiplication
in Γ is given by (a, x)·(b, y) = (ab, ay + xb), and the R-algebra structure
g : R → Γ of Γ is defined so that g(r) = (f(r), 0) for each r ∈ R, where
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f : R → Λ denotes the R-algebra structure of Λ; see [Y].). Then we have
the following.

Example 8.3. Γ is a Gorenstein R-algebra with µi(P, Γ ) = δi,htΓ P for
every P ∈ SpecΓ and i ∈ Z.

Proof. It is clear that Γ is a Cohen–Macaulay R-module with KdimΓ =
n. It is routine to check that the canonical isomorphism

Γ = Λ⊕ L
∼= L⊕ Λ (twist)
∼= L⊕HomR(HomR(Λ,KR),KR)

= HomR(Λ,KR)⊕HomR(L,KR)
∼= HomR(Γ,KR)

of R-modules is actually a homomorphism of Γ -bimodules. Hence Γ is a
Gorenstein R-algebra and µi(P, Γ ) = δi,htΓ P for every P ∈ SpecΓ and
i ∈ Z (4.4(1) and 5.8).

Example 8.4. Let (R,m, κ) be a Cohen–Macaulay local ring with KdimR
= d and let M be a Gorenstein R-module with µd(m,M) = r. Let Λ =
EndRM . Then:

(1) Λ is a local ring and the correspondence p 7→ pΛ yields a bijection
between SpecR and SpecΛ.

(2) M is an indecomposable Gorenstein Λ-module with µd(mΛ,M)
= 1/r.

(3) For every i ∈ Z,

EiΛ(M) =
⊕

p∈SpecRwith KdimRp=i

EΛ(Λ/pΛ)
1/r.

(4) Any Gorenstein Λ-module L is isomorphic to a finite direct sum of
copies of M .

Proof. (1) Let R# be the m-adic completion of R. Then M# ∼= [KR# ]
r

([Sh3]). Hence Λ# = Mr(R
#) asR# = EndR#(KR#) ([BH], 3.3.4). Therefore

Λ is a free R-module of rank r2. The ring Λ is a local ring with unique
maximal ideal mΛ since Λ/mΛ = Λ#/mΛ# = Mr(R/m). Hence the algebra
Λp is a local ring with maximal ideal pΛp for all p ∈ SpecR because Mp is
a Gorenstein Rp-module ([Sh2]). We have pΛ = pΛp ∩ Λ since Λ is R-free.
Therefore pΛ is a prime ideal of Λ and the correspondence p 7→ pΛ yields a
bijection between SpecR and SpecΛ.

(2) Let a be an ideal of R generated by a system of parameters. Then
M/aM is a Gorenstein R/a-module and Λ/aΛ = EndR/aM/aM ([Sh2] and
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[BH], 3.3.3). Hence to show (2), passing to the ring R/a, by 4.7 and 5.1(5)
we may assume d = 0. Then M = [ER(κ)]

r and Λ = Mr(R). Therefore
M is an indecomposable injective Λ-module and µ0(mΛ,M) = 1/r since
m(mΛ) = r.

(3) Let P ∈ SpecΛ and p = P ∩ R. Then P = pΛ by (1) and so by (2)
and 5.1(1),

µi(P,M) = µi(PΛp,Mp) = µ
i(pΛp,Mp) = (1/r)δi,htΛ p

for every i ∈ Z. Hence

EiΛ(M) =
⊕

p∈SpecRwith KdimRp=i

EΛ(Λ/pΛ)
1/r.

(4) Passing to the completion R# of R, we may assume that R is
complete. We have KdimR L = d by 4.4(2). Moreover, by (2) and 4.4(1),
HomR(M,KR) and HomR(L,KR) are finitely generated projective Λ

op-mo-
dules. Therefore since the ring Λop is local (by (1)) and HomR(M,KR) is
indecomposable as a Λop-module ((2) and [BH], 3.3.10), HomR(L,KR) ∼=
HomR(M,KR)

k for some k > 0. Hence

L ∼= HomR(HomR(L,KR),KR)

∼= HomR(HomR(M
k,KR),KR) ∼=M

k.

Remark 8.5. For each integer r ≥ 1 there is a Cohen–Macaulay normal
local ring (R,m) with KdimR = 2 having an indecomposable Gorenstein
R-module M with µ2(m,M) = r. See [Ni].

Example 8.6. Let (R,m, κ) be a regular local ring with KdimR = d > 0
and let 0 6= t ∈ m. The R-algebra

Λ =



R R R
tR R R
tR R R




has the following properties.

(1) Λ is a Gorenstein R-algebra with KdimΛ = d.

(2) For each p ∈ SpecR let S(p) = {P ∈ SpecΛ | P ∩R = p}. Then

S(p) =












p R R
tR R R
tR R R


 ,



R R R
tR p p

tR p p






 if t ∈ p,








p p p

tp p p

tp p p






 if t 6∈ p.
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(3) For each i ∈ Z,

EiΛ(Λ) =




⊕

p∈SpecRwith KdimRp=i and t∈p

EΛ


Λ
/



p R R
tR R R
tR R R





2


⊕




⊕

p∈SpecRwith KdimRp=i and t∈p

EΛ


Λ
/


R R R
tR p p

tR p p





1/2



⊕




⊕

p∈SpecRwith KdimRp=i and t6∈p

EΛ


Λ
/



p p p

tp p p

tp p p






 .

Proof. (1) Λ is a Cohen–Macaulay R-module with KdimΛ = d since it
is R-free. Let [∗]∗ = HomR(∗, R). We put

e1 =



1 0 0
0 0 0
0 0 0


 , e2 =



0 0 0
0 1 0
0 0 0


 , e3 =



0 0 0
0 0 0
0 0 1


 .

Then Λ ∼= Λe1 ⊕ [Λe2]
2. We have [Λe1]

∗ ∼= e2Λ and [Λe2]
∗ ∼= e1Λ. Therefore

Λ∗ ∼= [e1Λ]
2 ⊕ e2Λ, whence by 4.4 our R-algebra Λ is Gorenstein.

(2) Let J = J(Λ). Then

J(Λ) =




m R R
tR m m

tR m m




and Λ/J = κ×M2(κ). The maximal ideals of Λ are given by

m1 =




m R R
tR R R
tR R R


 and m2 =



R R R
tR m m

tR m m


 .

The right Λ-module e1Λ is the projective cover of Λ/m1 and [e2Λ]
2 is that

of Λ/m2. Let p ∈ SpecR. If t ∈ p, then

Λp =



Rp Rp Rp

tRp Rp Rp

tRp Rp Rp




and the above observation shows the maximal ideals of Λp are

P1(p) =




pRp Rp Rp

tRp Rp Rp

tRp Rp Rp


 and P2(p) =



Rp Rp Rp

tRp pRp pRp

tRp pRp pRp


 .
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Hence

S(p) = {Pi(p) ∩ Λ | i = 1, 2} =








p R R
tR R R
tR R R


 ,



R R R
tR p p

tR p p






 .

If t 6∈ p, then Λp = M3(Rp), which is a local ring with maximal ideal pΛp.
Hence

S(p) =








p p p

tp p p

tp p p






 .

(3) Let R# be the m-adic completion of R and let [∗]∨ denote the Matlis
dual. Then since Ed

Λ#
(Λ#) ∼= Hd

m#
(Λ#) ∼= [HomR#(Λ

#, R#)]∨ by 2.7.3

and 4.1, we have Ed
Λ#
(Λ#) ∼= ([e1Λ

#]∨)2 ⊕ [e2Λ
#]∨. On the other hand

EΛ#(Λ
#/m#1 )

∼= [e1Λ
#]∨ and EΛ#(Λ

#/m#2 )
∼= ([e2Λ

#]∨)2 by 2.6.2, since

e1Λ
# is the projective cover of Λ#/m#1 and [e2Λ

#]2 is that of Λ#/m#2 . Hence

Ed
Λ#
(Λ#) ∼= EΛ#(Λ

#/m#1 )
2⊕EΛ#(Λ

#/m#2 )
1/2. Therefore µd(m1, Λ) = 2 and

µd(m2, Λ) = 1/2 by 5.1(4), so that we have

EdΛ(Λ)
∼= EΛ(Λ/m1)

2 ⊕ EΛ(Λ/m2)
1/2.

Now let P ∈ SpecΛ and put p = P ∩ R. Let i = KdimRp. Then htΛ P = i
(5.3). We have

µi(P,Λ) = µi(PΛp, Λp) =





2 if t ∈ p and P =




p R R
tR R R
tR R R


 ,

1

2
if t ∈ p and P =



R R R
tR p p

tR p p


 .

If t 6∈ p, then

P =




p p p

tp p p

tp p p




and Λp = M3(Rp), whence µ
i(P,Λ) = µi(PΛp, Λp) = 1 (8.1). Thus E

i
Λ(Λ)

has the required form.

Example 8.7. Let R be a Gorenstein ring and let n ≥ 2 be an integer.
The R-algebra

Λ = {[aij ] ∈ Mn(R) | aij = 0 if i < j}

of lower triangular matrices has the following properties.

(1) KdimΛ = KdimR and idΛ Λ = idRR + 1. Hence Λ is not a Goren-
stein R-algebra.
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(2) Let S(p) = {P ∈ SpecΛ | P ∩ R = p} for p ∈ SpecR. Then the set
S(p) consists of the n elements Pk(p) = {[aij ∈ Λ | akk ∈ p} (1 ≤ k ≤ n).

(3) For each i ∈ Z,

EiΛ(Λ) =
⊕

p∈SpecRwith KdimRp=i

EΛ(Λ/Pn(p))
n

⊕
⊕

p∈SpecRwith KdimRp=i−1

⊕

1≤k≤n−1

EΛ(Λ/Pk(p)).

Proof. Since Λ is R-free, Λ is a Cohen–Macaulay R-module with KdimΛ
= KdimR. We have S ⊗R Λ = {[aij ] ∈ Mn(S) | aij = 0 if i < j} for every
commutative R-algebra S.

(1) Note that idΛ Λ = supp∈SpecR idΛp
Λp. Passing to the localization Λp

with p ∈ SpecR, we may assume (R,m, κ) is a local ring. Then the κ-algebra
k ⊗R Λ is hereditary and idΛ Λ = idRR+ 1 by 6.2(2).

(2) For the moment suppose that (R,m, κ) is a local ring. Let J = J(Λ).
Then

J = {[aij ] ∈ Λ | aii ∈ m for all 1 ≤ i ≤ n},

Λ/J = κ × . . .× κ (n times), and MaxΛ = {Pk(m) | 1 ≤ k ≤ n}. We have
m(P ) = 1 for every P ∈ MaxΛ. As Λp = {[aij] ∈ Mn(Rp) | aij = 0 if i < j},
passing to Λp, we get S(p) = {Pk(pRp) ∩ Λ | 1 ≤ k ≤ n} = {Pk(p) | 1 ≤
k ≤ n}.

(3) Let p ∈ SpecR and P = Pk(p) with 1 ≤ k ≤ n. Let h = KdimRp.
Then h = htΛ P (cf. 5.3). It suffices to show

µi(P,Λ) =





n if k = n and i = h,
0 if k = n and i 6= h,
1 if k 6= n and i = h+ 1,
0 if k 6= n and i 6= h+ 1.

To check it, first we pass to the localization Λp and secondly we reduce Λ
by a system of parameters of the base ring. Moreover, by 5.1 we may reduce
the problem to the case where (R,m) is a local ring with KdimR = 0.
Hence p = m and idΛ Λ = 1 by (1). For each 1 ≤ k ≤ n let ek ∈ Λ with
[ek]ij = 1 if i = j = k and [ek]ij = 0 otherwise. Let Pk = Λek and Qk = ekΛ.
Let [∗]∨ = HomR(∗, R) denote the Matlis dual. Then the canonical exact
sequence

0→ Λ→ Pn1 →
⊕

2≤k≤n

P1/Pk → 0

of Λ-modules provides a minimal injective resolution for Λ, because idΛ Λ =
1 and P1 = [Qn]

∨ is an indecomposable injective Λ-module (2.6.2(1)). It is
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routine to check P1/Pk = [Qk−1]
∨ for 2 ≤ k ≤ n so that

E0Λ(Λ) = EΛ(Λ/Pn(m))
n and E1Λ(Λ) =

⊕

1≤k≤n−1

EΛ(Λ/Pk(m)).

Thus the assertions follow (recall that m(P ) = 1 for all P ∈ MaxΛ).

Example 8.8. Let (R,m, κ) be a regular local ring with KdimR = d and
let K = Q(R) be the quotient field of R. The R-algebra

L =

[
R R
m R

]

has the following properties.

(1) KdimΛ=d, depthR Λ=min{d, 1}, and gl.dimΛ=idΛ Λ=max{d, 1}.
(2) For each p ∈ SpecR let S(p) = {P ∈ SpecΛ | P ∩R = p}. Then

S(p) =





{
P1 =

[
m R
m R

]
, P2 =

[
R R
m m

]}
if p = m,

{
p p

p p

}
if p 6= m.

(3) The minimal injective resolution of Λ has the form:

(d = 0) 0→ Λ→ EΛ(Λ/P1)
2 → EΛ(Λ/P2)→ 0,

(d = 1) 0→ Λ→ M2(K)→ EΛ(Λ/P1)⊕ EΛ(Λ/P2)→ 0,

(d ≥ 2) 0→ Λ→ M2(K)→ E
1 → . . .→ Ed → 0,

where E1 =
[⊕

p∈SpecRwith htR p=1 EΛ
(
Λ
/[ p p

p p

])]
⊕ EΛ(Λ/P2) for i = 1,

Ei =
[⊕

p∈SpecRwith htR p=i EΛ
(
Λ
/[ p p

p p

])]
⊕ EΛ(Λ/P1)

( di−1) for 2 ≤ i < d,

and Ed = EΛ(Λ/P1)
d+1.

Proof. It suffices to show that gl.dimΛ = max{d, 1}, since gl.dimΛ =
idΛ Λ if gl.dimΛ < ∞. Let J = J(Λ). Then J =

[
m R
m m

]
and Λ/J = κ × κ.

Hence MaxΛ = S(m) = {P1,P2} where P1 =
[

m R
m R

]
, P2 =

[
R R
m m

]
. We

have m(P ) = 1 for all P ∈ MaxΛ. Let Si = Λ/Pi (i = 1, 2) and e1 =
[
1 0
0 0

]
,

e2 =
[
0 0
0 1

]
. Then S1 and S2 have the presentations

0→ m · Λe2 → Λe1 → S1 → 0 and 0→ Λe1 → Λe2 → S2 → 0.

Hence pdΛ S2 = 1. Let L = Λe2. Let x = x1, . . . , xd be a minimal system of
generators of m and let

K• = K•(x;R) : 0→ Kd → Kd−1 → . . .→ K1
ε
→ R = K0

be the Koszul complex of R generated by the sequence. Then K• is a minimal
free resolution of κ = R/m and the complex

L⊗RK• : 0→ L⊗RKd → L⊗RKd−1 → . . .→ L⊗RK1
L⊗Rε−−→ L = L⊗RK0
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gives rise to a minimal projective resolution of the Λ-module L/mL, since
L ∼= R2 as R-modules and mΛ ⊆ J . Hence pdΛ S1 = d (note Im(L ⊗R K1
L⊗Rε−−→ L = L ⊗R K0) = mL). Thus gl.dimΛ = max{pdΛ S1, pdΛ S2} =
max{d, 1}.
(2) If p 6= m, then Λp = M2(Rp), whence Λp contains the unique maximal

ideal pΛp = M2(pRp). Thus S(p) =
{[ p p

p p

]}
, because

[ p p

p p

]
= pΛp ∩ Λ.

(3) Let p ∈ SpecR be different from m and put P =
[ p p

p p

]
. Then

by 8.1 we have µi(P,Λ) = δi,htΛ P for every i ∈ Z because µi(P,Λ) =
µi(M2(pRp),M2(Rp)) by 5.1(1). We will show

Claim. If i ∈ Z, then µi(P2, Λ) = δi,1. Furthermore:

(a) µi(P1, Λ) = 2δi,0 for d = 0, µ
i(P1, Λ) = δi,1 for d = 1, and for d ≥ 2

we have

(b) µi(P1, Λ) =





(
d
i−1

)
if 2 ≤ i < d,

d+ 1 if i = d,
0 otherwise.

Proof. Let [∗]∗ = HomΛ(∗, Λ). Take the Λ-dual of the presentation 0→
Λe1 → Λe2 → S2 → 0 of S2. Then because S

∗
2 = (0) and [Λei]

∗ ∼= eiΛ
(i = 1, 2), we get the short exact sequence

0→ e2Λ
ε
→ e1Λ→ Ext

1
Λ(S2, Λ)→ 0

where ε : e2Λ→e1Λ is the map ε
([
0 0
a b

])
=
([
a b
0 0

])
. Hence ℓΛ/P2(Ext

1
Λ(S2, Λ))

= ℓκ(Ext
1
Λ(S2, Λ)) = 1 so that µ

i(P2, Λ) = δi,1 for all i ∈ Z.
(a) (d = 0) Note that S1 ∼= Λe1 and [Λe1]

∗ ∼= e1Λ =
[
R R
0 0

]
.

(d = 1) See 7.6. Recall that Λ is a Gorenstein R-algebra with m(P ) = 1
for all P ∈ MaxΛ (cf. (1)).
(b) (d ≥ 2) We have µi(P1, Λ) = 0 if i ≤ 1 or i > d (cf. 3.7). Let

2 ≤ i ≤ d. Then by the presentation 0 → mL → Λe1 → S1 → 0 of S1 with
L = Λe2 we naturally have the isomorphism

ExtiΛ(S1, Λ)
∼= ExtiΛ(L/mL,Λ).

Now take the Λ-dual of the above projective resolution L⊗RK• of L/mL and
note that HomΛ(L⊗RK•, Λ) = HomR(K•, L

∗) as complexes of Λop-modules.
Then

ExtiΛ(L/mL,Λ)
∼= ExtiR(R/m, L

∗).

Therefore since L∗ ∼= e2Λ =
[
0 0
m R

]
, we get

ℓΛ/P1(Ext
i
Λ(L/mL,Λ)) = ℓκ(Ext

i
Λ(L/mL,Λ)) = ℓκ(Ext

i
R(R/m, L

∗))

= ℓκ(Ext
i
R(R/m,m)) + ℓκ(Ext

i
R(R/m, R)).

Hence µi(P1, Λ) =
(
d
i−1

)
if 2 ≤ i < d and µi(P1, Λ) = d + 1 because R is a

regular local ring with KdimR = d ≥ 2.
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In Example 8.8 let d = 2. Then the minimal injective resolution of Λ has
the following form:

0→ Λ→ M2(K)→




⊕

p∈SpecR, htR p=1

EΛ

(
Λ
/ [ p p

p p

])
⊕ EΛ(Λ/P2)

→ EΛ(Λ/P1)
3 → 0.

Let p be any height 1 prime ideal in R and put P =
[ p p

p p

]
. Then htΛ P = 1,

htΛP2 = 2, and P ⊆ P2. We have µ
2(P2, Λ) = 0 while µ

1(P,Λ) = 1. This
shows that Lemma 3.3 of Bass is no more true if we replace AssR E

i
Λ(M)

with AssΛ E
i
Λ(M). We have pdΛ Λ/P2 = 1 < htΛP2 = 2 and Λ is not

a Cohen–Macaulay R-module, since KdimΛ = 2 but depthR Λ = 1. This
provides a counterexample to [A] ((1.1) Theorem (ii)) and the claim of
Brown and Hajarnavis [BHa1] (p. 199, ↓16, proof of Theorem 2.5) that
rank(M) ≤ prdimR(R/M) as well.

Question 8.9. Let R be a commutative Noetherian local ring with max-
imal ideal m. Then µi(m, R) > 0 if depthRR ≤ i ≤ idRR ([Ro1]). Let Λ be a
module-finiteR-algebra and i ∈ Z. Is it true that m ∈ AssR EiΛ(Λ) if and only
if depthR Λ ≤ i ≤ idΛ Λ? The answer is affirmative if Λ is Cohen–Macaulay
as an R-module.

REFERENCES

[AF] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer,
1991.

[A] M. Artin, Maximal orders of global dimension and Krull dimension two, Invent.
Math. 84 (1986), 195–222.

[AM] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra,
Addison-Wesley, 1969.

[Au1] M. Auslander, On the dimension of modules and algebras (III). Homological
dimension, Nagoya Math. J. 9 (1955), 67–77.

[Au2] —, Rational singularities and almost split exact sequences, Trans. Amer. Math.
Soc. 293 (1986), 511–531.

[AB] M. Auslander and R. O. Buchweitz, The homological theory of maximal Cohen–
Macaulay approximations, Mem. Soc. Math. France 38 (1989), 5–37.

[AR1] M. Auslander and I. Reiten, The CM type of CM algebras, Adv. Math. 73 (1989),
1–23.

[AR2] —, —, Applications of contravariantly finite subcategories, ibid. 86 (1991), 111–
152.

[ARS] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Alge-
bras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

[B1] H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102
(1962), 18–29.

[B2] —, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.



252 S. GOTO AND K. NISHIDA

[BC] G. M. Bergman and P. M. Cohn, The centres of 2-firs and hereditary rings,
Proc. London Math. Soc. (3) 23 (1971), 83–98.

[Bj] J.-E. Björk, The Auslander condition on Noetherian rings, in: Sém. d’Algèbre
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