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TOWARDS A THEORY OF BASS NUMBERS WITH
APPLICATION TO GORENSTEIN ALGEBRAS

BY

SHIRO GOTO (Kawasaki) and KENJI NISHIDA (Matsumoto)

Abstract. The notion of Gorenstein rings in the commutative ring theory is general-
ized to that of Noetherian algebras which are not necessarily commutative. We faithfully
follow in the steps of the commutative case: Gorenstein algebras will be defined using
the notion of Cousin complexes developed by R. Y. Sharp [Shl]. One of the goals of the
present paper is the characterization of Gorenstein algebras in terms of Bass numbers.
The commutative theory of Bass numbers turns out to carry over with no extra changes.
Certain algebras having locally finite global dimension are also characterized. The special
case where the algebras are free modules over base rings is explored. Thanks to these
observations, it is clarified how the Gorensteinness is inherited under flat base changes.
In conclusion, a characterization for local algebras to be Gorenstein is given, account-
ing for the reason why the theory behaves so well in the commutative case. Examples
are explored and open problems are given. See [GN2] and [GN3] for further develop-
ments.

1. Introduction. The notion of Gorenstein rings is very well established
in commutative Noetherian ring theory. In this paper we generalize it to
Noetherian algebras that are not necessarily commutative. There might be
divers manners for the generalization but our method will faithfully follow
in the steps of the commutative case. It is somewhat surprising that almost
all of the commutative theory carries over to Noetherian algebras.

Much of the motivation for our work comes from the investigation of
minimal injective resolutions in the commutative case. One may say that
the theory of Gorenstein rings started from the paper of Bass [B2], and the
most glorious stage of the commutative theory was done with it. People
have focused, thereafter, on how to adapt the theory to non-commutative
rings and algebras. For example, Gorenstein rings had grown out of quasi-
Frobenius rings or algebras (cf. [Y]). However, we would like to have a non-
commutative Gorenstein ring theory which would reflect the good results
of the commutative theory. We now therefore begin by giving an approach
towards a unified theory of Gorenstein algebras.
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Throughout this paper, R is a commutative ring and A is an R-algebra.
For most of this paper we will furthermore assume that R is a Noetherian
ring and A is finitely generated as an R-module. With this notation the
contents of our paper are as follows.
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In Section 2 we will summarize some preliminary results on the rings R
and A for later use and further investigation. Proofs will be mostly sketched.
Some of them have their own significance or might not be very familiar
to readers. In such cases we shall indicate detailed proofs. A part of the
observations in Section 3 was already announced in [G2]. We shall restate
a lemma (3.3) obtained by Bass, which was the heart of his paper [B2] and
is eventually the heart of ours too. Before moving to the main task, we
will recall in Section 3 some direct consequences of the lemma. Also, the
normality of the center C(A) of A will be investigated in the case where the
ring A satisfies Serre’s conditions (S2) and (R;) (Proposition 3.12).

In Section 4 we will give the definition of Gorenstein R-algebras (or more
generally, Gorenstein modules), using the notion of Cousin complexes de-
veloped by R. Y. Sharp [Shl]. Let R be a commutative Noetherian ring.
Then by definition, the ring R is Gorenstein if the local ring R, has finite
self-injective dimension for all p € Spec R ([B2]). Sharp [Shl] showed that
R is a Gorenstein ring if and only if the Cousin complex C%(R) of R pro-
vides a minimal R-injective resolution for R. Following [Sh2], we say that a
finitely generated non-zero R-module M is Gorenstein if the Cousin com-
plex C% (M) of M provides a minimal R-injective resolution for M. Now,
let A be an R-algebra which is a finitely generated R-module, and let M
be a finitely generated non-zero left A-module. Then exactly in the same
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manner as in the commutative case, we say that M is a Gorenstein A-
module if the Cousin complex C%(M) of M provides a minimal A-injective
resolution for M (Definition 4.6). This condition is equivalent to saying
that M is a Cohen-Macaulay R-module with ids, M, = Kdimg, M, for all
p € Suppr M (Theorem 4.5), where id 4, M, denotes the injective dimension
of the A,-module M, and Kdimg, M, stands for the Krull dimension of the
Ry-module M,. The R-algebra A is said to be a Gorenstein R-algebra if A
is a Gorenstein left module over itself. The notion of Gorenstein algebra is
left-right symmetric (Corollary 4.8), and the main result (4.12) of Section
4 asserts that every Gorenstein R-algebra is its own “canonical” module,
provided the base ring R is local. This enables us to do a closer study of
such algebras together with the use of localizations.

One of the sources of our research dates back to [HN], where Hijikata
and the second author explored an interesting class of non-commutative
Bass orders and certain Gorenstein orders as well. Other sources come from
the books of Auslander—Reiten—Smalg [ARS], Simson [Si], and Yoshino [Yo],
where some Gorenstein CM-algebras (especially, their representation types)
are studied from the representation-theoretic point of view. The class of
Gorenstein algebras in our sense contains all the classes of algebras that are
studied in [HN], [AR1], [ARS], [Si], and [Yo].

One of the goals of this paper is the characterization of Gorenstein R-
algebras in terms of Bass numbers, which will be given in Section 5 (Theorem
5.2). The invariants work very well also in the non-commutative case and it
is somewhat surprising to see that the commutative theory of Bass numbers
carries over to our algebras with no extra changes. We will also give, as
a consequence of Theorem 5.2, a characterization (5.5) of certain algebras
having locally finite global dimension. In Section 6 the special case where A is
a free R-module will be investigated. Some equivalent conditions for the ring
A to be a Gorenstein R-algebra will be given (Theorem 6.4). Thanks to these
observations of Section 6 we can analyze in Section 7 how the Gorensteinness
is inherited under flat base changes (Theorem 7.3). In conclusion we will
give a characterization (7.7) for local algebras to be Gorenstein, which may
account for the reason why the theory behaves so well in the commutative
case. Some examples given in Section 8 illustrate our theory.

See [GN2] and [GN3] for further developments of the theory. (In [GN2],
the present paper is cited with the temporary title: “On Gorenstein R-
algebras”.) In [GN2] the structure of minimal injective resolutions of lat-
tices over isolated Cohen—-Macaulay (non-commutative) singularities is de-
termined. In [GN3], under a certain mild condition on Cohen-Macaulay al-
gebras, we establish an equivalence between the finitely generated modules
of finite projective dimension and the finitely generated modules of finite
injective dimension.
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Since our definition of Gorenstein R-algebras A involves the condition
that A is a Cohen—Macaulay R-module, we give a brief introduction to
Cohen—Macaulay modules. Firstly, let R be a commutative Noetherian local
ring with maximal ideal m and let M be a finitely generated non-zero R-
module. We put

depthp M = inf{i € Z | Extlz(R/m, M) # (0)}

and call it the depth of M. This invariant equals the length of maximal M-
regular sequences contained in m, and the inequality depthp M < KdimrpM
holds true in general, where KdimgM stands for the Krull dimension of M
([Ma], p. 100, Theorem 28). We say that M is a Cohen—Macaulay R-module if
depthp M = Kdimp M. A Cohen-Macaulay R-module M is called mazimal
if depthp M = Kdim R (since Kdimp M < Kdim R). In our paper, however,
Cohen—Macaulay R-modules do not necessarily mean maximal ones. In the
case where the base ring R is not necessarily local, we say that a finitely
generated non-zero R-module M is Cohen-Macaulay if the Ry-module M,
is Cohen-Macaulay for all p € Suppr M = {p € SpecR | M, # (0)};
see [BH] for detailed investigations. Now, let A be an R-algebra and as-
sume that A is finitely generated when viewed as an R-module. Let M
be a finitely generated non-zero left A-module. Then we say that M is a
Cohen—Macaulay A-module if M is Cohen—Macaulay when viewed as an R-
module. Similarly, the algebra A is called a Cohen—Macaulay R-algebra if it
is Cohen—Macaulay when viewed as an R-module. Therefore, if Kdim R = 0,
Gorenstein R-algebras A in our sense are a very special kind of Gorenstein
algebras in the sense of Auslander and Reiten [AR2] (see Section 6), be-
cause idgA = idep A°? = 0 in our case. Also, Cohen—Macaulay algebras
in the sense of [AR2] are a special kind of Cohen-Macaulay R-algebras in
our sense but Cohen—Macaulay R-algebras in our sense are not necessarily
Cohen-Macaulay in the sense of [AR2].

Before entering into details, let us fix our standard notation. In what
follows let R be a commutative ring and let A denote an R-algebra. Let
f : R — A be the structure map. We denote by Spec A, Min A, and Max A
the set of prime ideals, of minimal prime ideals, and of maximal ideals
in A, respectively. Let J(A) stand for the Jacobson radical of A. For each
P € Spec A we denote by ht P the height of P, that is,
ht P = sup{0 < n € Z | there exists a chain PhC P, C...C P, =P

of prime ideals in A}.
We put Kdim A = suppegpec 4 htaP and call it the Krull dimension of A.
Unless otherwise specified, all modules mean left modules. For commutative
algebra we use the same notation and terminology as in [AM], [BH], and
[Ma]. See [AF] for general rings and modules terminology. We refer to [MR]
for the theory of non-commutative Noetherian rings and modules.
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2. Preliminaries. The purpose of this section is to summarize some
basic results on R-algebras A. We begin with the following.

2.0. General remarks on Spec A. For each ideal I in Alet INR = f~1(I).

PRrROPOSITION 2.0.1 ([MR], Chapter 10). Suppose that A is finitely gen-
erated as an R-module and the structure map f : R — A is injective. Then:

(1) (Lying-over) For every prime ideal p in R there is a prime ideal P
m A with p=PNR.

(2) (Going-up) Let p C q be prime ideals in R and let P € Spec A with
p = PN R. Then there is a prime ideal Q in A such that P C @Q and
qg=QNR.

(3) (Incomparability) Let P C @ be prime ideals in A. Then P = Q if
and only if PNR=QNR.

(4) Let Q € Spec A. Then Q € Max A if and only if @ N R € MaxR.

(5) Let R be a Noetherian ring. Then for each P € Min A the prime
ideal p = PN R in R consists of zerodivisors for A.

(6) Kdim R = Kdim A = Kdimpg A, where Kdimg A denotes the Krull
dimension of A as an R-module.

(7) For each P € Spec A we have hty P = hty, PA, < Kdim Ry, where
p=PNR. Hence ht4 P is necessarily finite if R is a Noetherian ring.

(8) (Going-down) Suppose that R is a Noetherian integrally closed in-
tegral domain and A is a torsionfree R-module. Let p C q be prime ideals
i R and let Q) € Spec A with ¢ = Q N R. Then there is a prime ideal P
in A such that P C @ and p = PN R. Hence hty P = htr(P N R) for all
P € Spec A.

Proof. See [S] for assertion (8). m

2.1. Minimal A-injective resolutions and localizations over R. Let S be
a multiplicative system in R with S~'A # (0). The next result is the starting
point of our research. We give a brief proof for completeness.

PROPOSITION 2.1.1 (cf. [B1]). (1) Suppose A is a left Noetherian ring.
Then for every essential homomorphism M > N of A-modules the induced

homomorphism S™'M S g STIN of S~'A-modules remains essential.

(2) Suppose A is a left Noetherian ring. Then the S~'A-module S™'I is
injective for every injective A-module I.

(3) Every injective S~! A-module J is injective as a A-module.

Proof. (1) Let L be an S~!'A-submodule of S™'N and let 0 # ¥ € L
with y € N. We put & = {[(0) :4 2] | 2 € Ay and [(0) :4 2] N f(S) = 0}.
Then & # () since [(0) :1 y] € &. We have a maximal element [(0) :4 2] € &
with z € Ay and [(0) :4 2] N f(S) # 0. Now choose a € A and € M so
that a(x) = az # 0. Then % # 0. For if ¥ = 0, then for some s € S we
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have s(az) = a(sz) = 0. Therefore the ideal [(0) :4 sz] of A strictly contains
[(0) :4 2] and so by the maximality of [(0) :x 2] in & we have [(0) :4 sz]
N f(S) # 0. Hence (ts)z = for some t € S so that [(0) :x 2] N f(S) # 0,

—1
which is absurd. Thus 4% # 0 and the homomorphism SV ¢ SN is
essential, since (S~ 'a)(%) = % € L.

(2) Let L be a finitely generated S~!A-module. We choose a finitely

generated A-module M so that L = S~'M. Then
Extg 1 ,(L, S™1) = Extg_14,(S™'M,S7'T) =2 ST R @g Ext} (M, I) = (0)
and the injectivity of the S~'A-module S~'I follows.

(3) The A-module J is injective, because the functor S~! is exact and
Hom (M, J) = Homg-1,4(S~1M, J) for every A-module M. =

For each A-module M let E, (M) denote the injective envelope of M.

REMARK 2.1.2. Proposition 2.1.1(1) is no longer true if A is not a left
Noetherian ring. For example, let (R,m) be a Noetherian complete local
integral domain with Kdim R > 0. Let E = Egr(R/m) and S = R\ {0}. We
denote by A the trivial extension of E over R (cf. [Y]). Then A = E,(F)
but Eg-1,(S71E) = (0).

COROLLARY 2.1.3 ([B1], Corollary 1.3). Let A be a left Noetherian ring

and let
0-M-—->I">T1"—5 . . ST — ...

be a minimal injective resolution of a A-module M. Then the sequence
0-8"'"M—-5' 57— . 57—
is a minimal injective resolution of the S~ A-module S~'M.
2.2. Associated prime ideals Assy M. To begin with we record

LEMMA 2.2.1. Let M be a A-module. Then Suppr M C Suppr A and
KdimRM < KdimR A.

DEFINITION 2.2.2. Let M be a A-module and P € Spec A. Then P is said
to be an associated prime ideal of M if M contains a non-zero A-submodule
X such that P = [(0) :4 Y] for every non-zero A-submodule Y of X.

This condition is equivalent to saying that M contains a non-zero element
x such that P = [(0) :4 Ay] for every 0 # y € Ax.

Let Assq M denote the set of associated prime ideals of M. We have
Assy A/P = {P} for every P € SpecA. If A is a commutative ring, then
Assy M = {P € Spec A | P =[(0) : z] for some x € M} for every A-module
M. This characterization is no more true if A is not commutative, as the
following simple example shows. Let A = My(k) be the full matrix ring
over a field k and let M = (]]Z 8) . Then Assy M = {(0)}, but there is no
embedding L — M of A-modules.



GORENSTEIN ALGEBRAS 197

PROPOSITION 2.2.3. (1) Let M be a A-module and let & = {[(0) :4 X] |
X is a non-zero A-submodule of M'}. Suppose that P is a maximal element
in &. Then P is an associated prime ideal of M.

(2) Assume that A is a left Noetherian ring and let M be a A-module.
Then M = (0) if and only if Assy M = (.

(3) Assume that A is a left Noetherian ring and let M be a A-module.
Let t € R. Then t acts on M as a non-zerodivisor if and only if f(t) € P
for any P € Assq M.

(4) Assp L C Assgy M C Assy LU Assy N for every exact sequence 0 —
L— M — N —0 of A-modules.

(5) AssA[@Ppco Mol = Upen Assa My for every family {Ma}aco of
A-modules.

(6) AsspE4(M) = Assp M for every A-module M.

(7) Let M be a A-module and let & C Assy M. Then Assy N =Assy M\P
and Assp M/N = @ for some A-submodule N of M.

Proof. See [Bo], Chapter 4. The proof given in the case where A is com-
mutative still works. m

LEMMA 2.2.4. Let M be a non-zero A-module. Then the following con-
ditions are equivalent.

(1) EA(M) is indecomposable.
(2) M is uniform.

When this is the case, we have # Assp M < 1.

Proof. The equivalence (1)<(2) is well known. To check the last asser-
tion, let P, P» € Assy M and choose non-zero A-submodules X; of M so
that P, = [(0) :4 Y] for every non-zero submodule Y; of X; (i = 1,2).
Let Z; be any non-zero submodule of X;. Then as M is uniform, we have
Z =27Z1NZy# (0), whence P, =[(0) :g Z] = P5. Thus #Assy M <1. =

LEMMA 2.2.5. Let A be a left Noetherian ring and I an indecomposable

injective A-module. Let S be a multiplicative system in R with S™'A # (0).
Then:

(1) 7T = (0) if s = 0 for some s € S and 0 # z € I.
(2) #Asspl < 1.

Proof. (1) Let L = Axz. Then I = E4(L). Hence by 2.1.3, S7!1I =
Eg-1,4(S7'L) = (0).

(2) Let p,q € Assgl. Assume p € q and choose ¢ € p so that t & q.
Then tz = 0 for some 0 # = € I since p € Assgl. Let S = R\ q. Then
I, = S7I = (0) by (1) since tz = 0. This is absurd. Thus p C q and
H#Asspl<1. =
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PROPOSITION 2.2.6. Suppose A is a left Noetherian ring and let I be an
indecomposable injective A-module. Then:

(1) #AsspI = #Asspl =1.
(2) Let Assp I ={P}. Then AsspI = {P N R}.

Proof. By 2.2.3(2) and 2.2.4, # Assy I = 1. Let Ass, I = {P} and choose
a non-zero A-submodule X of I so that P = [(0) :4 Y] for every non-zero A-
submodule Y of X. Let p = PNR. Then since p = [(0) :x Az]NR = [(0) :r ]
for every 0 # z € X, we see p € Assp . Thus AssgI = {p} by 2.2.5(2). =

COROLLARY 2.2.7. Let A be a left Noetherian ring. Then:

(1) # Assp M < oo for every finitely generated A-module M.
(2) Assg M ={PNR|P e Assy M} for every A-module M.

Proof. (1) Let EA(M) = €,<,<, i be a decomposition into a direct
sum of indecomposable submodules ([M], Theorem 2.5). Then Assq M =
AssfEA(M) = Uy<j<p, Assal; (2.2.3(5)&(6)). Hence Assq M is finite by
2.2.4.

(2) Let p € Assg M. Then p € Assg I for some indecomposable injective
A-submodule I of E4(M) ([M]). Let Assy I = {P}. Then by 2.2.6,p = PNR
whence Assp M C{PNR| P € AssyM}. The reverse inclusion is clear (cf.
proof of 2.2.6). m

COROLLARY 2.2.8. Let A be a left Noetherian ring and M a A-module.
Let N be a A-submodule of M and assume that M/N is a finitely generated
A-module. Let § = Assp M/N. Then § is a finite set and there exists a fam-
ily {N(P)}peg of A-submodules of M satisfying the following conditions.

(1) Assp M/N(P) = {P} for each P € §.
(2) N =Npez N(P) in M.
(3) N # Npee N(P) for any subset & of § such that & # §.

Proof. Let Ex(M/N) = ,<,<, Li be a decomposition into a direct sum
of indecomposable A-submodules. Then Assy I; = {P;} for each 1 < i < n.
Hence § = {P; |1 <i<n}. Let & : M = M/N — Eo(M/N) 2 I; (here
¢ and p; denote the canonical epimorphism and the i¢th projection, respec-
tively) and IV; = Ker &;. Then since M/N; is a non-zero submodule of I; ([M],
Proposition 2.7), by 2.2.3(2) we get Assg(M/N;) = Assp I; = {P;}. Clearly
N = Micicn Ni- Let N(P) = Nicicpwithp—p Ni for each P € §. Then
N = ﬂPe& N(P) and Assy M/N(P) = {P}, since M/N(P) is a non-zero
A-submodule of @ ;< witn p.—p M/Ni (2.2.3(2)&(5)). Let & C § be such
that & # § and assume that N = [\pce N(P). Then thanks to condition
(1), the embedding M/N — @ pces M/N(P) forces § = Assgy M/N C &
(2.2.3(4)&(5)), which is impossible. Hence condition (3) is satisfied. =
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2.3. Flat and projective dimension modulo non-zerodivisors. Let t € R
and assume t is A-regular. Hence ¢ acts on every flat A-module as a non-
zerodivisor. Let M = M/tM for each A-module M. The next result may
offer the key to a better understanding of the relation between the flat
dimension fd4M and de]W .

PROPOSITION 2.3.1. Let M be a A-module and assume that t is a non-
zerodivisor for M. Then the following conditions are equivalent.

(1) M is A-flat.

(2) M is A-flat and My is A-flat.

Proof. Tt is enough to show (2)=-(1). Let X be a A°P-module. Then from

the exact sequence 0 — M LM — M —0we get the exact sequence
Torl (X, M) — Tor{"(X, M) % Torl(X, M).

We will show Tory (X, M) = (0). Let 0 — Y — F — X — 0 be a presen-

tation of X with F' A-projective. Let ... - F» — F; — Fp — Y — 0 be a

projective resolution of Y. Then since ¢ is a non-zerodivisor for all Y and

F;’s, reducing modulo tA, we get the A-projective resolution

.—Fy—-F—-Fy—Y —0
of Y. As M is A-flat and F; ®1 M = F; @4 M, we see that the sequence
o PR M->F M —->Fyo,M—->Y 4 M —0

is exact. Hence Tor{! (Y, M) = (0), so Tory (X, M) = (0) since Tors (X, M)
> Tor{!(Y, M). Therefore t acts on Tor{' (X, M) as a non-zerodivisor and so
the canonical map

Tor{ (X, M) — [Tori!(X, M)]; = Tor{*(X;, My)
is injective. Thus Tor{! (X, M) = (0) as M; is A;-flat, whence M is A-flat. u
COROLLARY 2.3.2. Let A be a left Noetherian ring and M a finitely

generated A-module. Assume that t acts on M as a non-zerodivisor. Then
M is A-projective if and only if M is A-projective and My is L¢-projective.

COROLLARY 2.3.3. (1) Let N be a A-module. Then fdgaN = fd1N +1 if
fdzN < 00.

(2) ([K], Ch. 4-1, Theorem C) Suppose A is a left Noetherian ring and let
N be a finitely generated A-module. Then pd, N = pdi N+1 ifpdz N < oc.

Proof. 1t suffices to prove (1). Let n = fd;N and let 0 - K — F —
N — 0 be a short exact sequence of A-modules with F' free. Then by the
snake lemma we get the exact sequence

(a) 0-N—-KXF—-N-=0
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of A-modules, since t is a non-zerodivisor for F. We have K; = F; as L;-
modules since tN = (0). Let N; = Im « and split the sequence (a) into

(b) 0N —F—N-—0 and
(c) 0—-N—K-— N —0.

Then fd/—ll? < oo and fd K = fd/—ll? as K is Ly-free (cf. 2.3.1). If n = 0,
then by (b), Ny is A-flat so that by (c), K is A-flat. Hence fd4N = 1 since
K is A-flat. Similarly if n > 0, then by (b), f{d5N; = n—1 and so fd;K =n
by (c). Hence fdyN = n + 1 because fd4K = fd;lf? =n.m

The following result is due to [R], Proposition 5.6. We give a brief proof
in our context.

COROLLARY 2.3.4. Assume R is a Noetherian ring and A is finitely gen-
erated as an R-module. Let t € J(R). Then gl.dimA = gl.dimA + 1 if
gl.dim A < oo.

Proof. Let n = gl.dim A. Recall that gl.dim A = sup,; pd, M where M
runs through finitely generated A-modules ([Aul]). Then gl.dimA > n + 1,
since pdy N = pd; N + 1 for every finitely generated A-module N. Let
M be a finitely generated A-module. We will show pdy M < n + 1. Let
'M = {m € M | t'm = 0 for some i > 0} and "M = M/'M. Then pd, M <
max{pd, ‘M, pd ,"M}. The exact sequence 0 — 'M — M — "M — 0 divides
the problem into the cases (1) t*M = (0) for some k > 0 or (2) every t*
(k > 0) is a non-zerodivisor for M. For case (1) we choose a filtration

M=My>M >...O>M,;=(0)

so that ¢ - (M;/M;4+1) = (0). Then as pdy M;/M;11 <n+1forall 0 <i<
q — 1, descending induction on i yields pd, M < n + 1. Consider case (2).
Let N be a finitely generated A-module. Let ¢ > n and look at the exact
sequence

Ext’y (M, N) & Ext’,(M, N) — Ext’ "} (M, N)

induced from the exact sequence 0— M LM — M —0. Then Extil‘*'l(]W ,N)
= (0) as pdy M < n + 1. Hence Exty(M,N) = t - Ext)y(M, N) so that
ExtY% (M, N) = (0) by Nakayama’s lemma. Thus pdy M <n. =

We need the following result to compute fd o E% (A).

THEOREM 2.3.5. Let I be a A-module and assume that t acts on I as
an epimorphism. Let J = [(0) :r t]. Then fd I = max{fd;J + 1,fdx,I;}.

Proof. Let 0 — Iy — Fy — I — 0 be a presentation of I with Fjy
projective. Then the sequence

(a) 0— L] — [Folt = It = 0
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of A;-modules is exact. Look at the commutative diagram
0

with exact rows and columns. Then by the snake lemma we get a split exact
sequence 0 — J — I1 — Fy — 0 of A-modules. Let

(b) I =J®Fo,

n = fdsI, and m = max{fd;J + 1,fds,[;}. Firstly we will show n > m.
If n = 0, then [ is flat and ¢t acts on [ as an isomorphism. Hence m = 0.
Assume n > 1. Then fdy,I; < n. We have fd/—l.fl <n-1lasfdsl1 =n—-1
and t is a non-zerodivisor for I. Hence by (b) we get fd;J < n — 1 and so
n > m. Let us check n < m. If J = (0), then I = I and fdsI = fdy,I; as
every flat A;-module is A-flat, whence n < m. Let J # (0). Then m > 1
and fd5J < m — 1. Hence decomposition (b) shows fd1l; < m — 1. Let
0—-L—F, 1— ... F; — I; — 0 be an exact sequence of A-modules
with F;’s projective. Then both the induced sequences

(c) 0—L; — [mel]t " [Fl]t — [Il]t — 0 and

(d) 0O—-L—F, 1—...—F—I,—0

are exact. Hence, as fds, It < m, from sequences (a) and (c) it follows that
L, is A4-flat. On the other hand decomposition (b) shows fdj/1 < m —1 as

fd5J < m— 1. Therefore from sequence (d) it follows that L is A-flat. Hence
by 2.3.1, L is A-flat so that fd4l; < m — 1 and we have fd I < m. =

2.4. Injective dimension modulo non-zerodivisors. Let S be a multiplica-
tive system in R with S~™1A # (0). For each A-module M let

'M ={m € M| sm =0 for some s € S} and "M = M/'M.

Then every s € S is a non-zerodivisor for "M. The functors ’[x] and ”[*] are
compatible with direct sums.

LEMMA 2.4.1. Suppose A is a left Noetherian ring and let I be an injec-
tive A-module. Then:



202 S. GOTO AND K. NISHIDA

(1) Both'T and "I are injective A-modules.
2) I=2Te".
(3) The canonical map "I — S~T is bijective and S—'I = S~1"T.

Proof. (1)&(2) It suffices to show that I is injective. We may assume [
is indecomposable ([M], Theorem 2.5). Then either T = I or T = (0) (2.2.5).

(3) Let J be an indecomposable direct summand of ”I. Then every s € S
acts on J as a monomorphism and so as an isomorphism too. Hence every
s € S acts on "I as an isomorphism so that ”I = S~1”I. The second assertion
follows from the fact that S~ = (0). =

PROPOSITION 2.4.2. Let M be a A-module and let Fy = {P | P €
Assg M and PN f(S) # 0} and Fo ={P | P € Assy M and PN f(S) =0}.
Then:

(1) S™1P € Assg 1, S™IM if P € F.
(2) Assg-14S7IM = {S7IP | P € 7} if A is a left Noetherian ring.
)

(3) Suppose A is a left Noetherian ring. Then M contains a unique A-
submodule L with Assy L = F; and Assy M/L = F».

Proof. (1) Let P € Fo and Q = S™'P. Let us show Q € Assg-1, S~ ' M.
Choose a non-zero cyclic submodule X = Az of M so that P = [(0) :4 Ay]
for every 0 # y € X. Then every s € S is a non-zerodivisor for X and the
canonical map X — S~!X is injective. We will check

Q=10):5-14 S HAy)] for0#£%eSIX (ye X,s€89).

The inclusion C is clear. To see the opposite inclusion let ¢ € [(0) :g-14
S~1(Ay)] with a € A and t € S. Then ¢ € [(0) :5-14 S™'(Ay)] and so
a- Ay = (0) as the canonical map Ay — S~!(Ay) is injective. Hence a €
P =(0) :p Ay] so that ¢ € Q = S~'P. Therefore Q = [(0) :5-14 S~!(Ay)]
and Q € Assg-1, S M.

(2) Let I = E4(M) and look at the decomposition I = T @ "I given
by 2.4.1(2). We put N = M N"I. Then every s € S is a non-zerodivisor
for N and the map N — S™!'N is injective. Let Q € Assg-14 S~ 'M. Then
Q € Assg 1, SN as STIN = S71M (2.4. 1( )) Choose a non-zero cyclic
S~ A-submodule X of S™!N, say X = §~1.2 = §~1(An) with n € N, so

that Q = [(0) :g-1, Y] for every non-zero S~ 1/1 submodule Y of X. We put
P =QnN A We will show P =[(0):4 Z] for every non-zero /A-submodule Z
of An. Let a € P. Then $-57'Z = (0)as $ € Q and Q = [(0) :5-14 S Z].
Hence aZ = (0) as the map Z — S71Z is injective. Thus P C [(0) :4 Z].
Conversely, let a € [(0) 14 Z]. Then ¢ € Q since §-S7'Z = (0 ) and
Q =1[(0):g-14 S712]. Therefore a€@QNA=P.Hence P=1[(0):4 Z] and
so P e AssA M.
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(3) Let L = M N'T this time. Then S™'L = (0) whence Assy L C Fy
by (1). We have Assy M/L C Fy by 2.2.3(3), as M/L is a submodule of
"T and every s € S acts on "I as a non-zerodivisor. Thus Assy L = F; and
Assy M/L = Fo. Let L' be a A-submodule of M with Assy L' = F; and
Assg M/L' = F». Then by (2), Assg-14 S™1L = () whence S™'L' = (0) so
that L' C M NI = L. We must show L' = L. If L' # L, then Assy L/L' # ()
and so S~Y(L/L’) # (0) by (2) because Assy L/L' C Assy M/L' = F». This
is impossible since S~!L = (0). m

We now come to the main result of this subsection.
THEOREM 2.4.3. Suppose A is a left Noetherian ring and let
0— M —EYM)—-EY(M)— ... - EY{(M)— ...
be a minimal injective resolution of a A-module M. Then:
(1) BS_, ,(S™'M) = "E}\ (M) for all i € Z. (Here we put B4 (M) = (0)
if i <0 by convention.)

(2) Suppose every s € S acts on M as a non-zerodivisor. Then the
A-module N = (S~*M)/M has a minimal injective resolution of the form

0— N —'EY(M) —"E4(M) — ... - 'EfFY (M) — ...
and EY(M) = EL_ ,(N)®EL_, ((ST'M) for all i € Z.
Proof. (1) This follows from 2.1.3 and 2.4.1(3).
(2) Note that "EQ(M) = (0) since every s € S is a non-zerodivisor for
ES (M). We identify "EY (M) = E%_, ,(S7'M) and look at the following

commutative diagram:
0 0 0
foo

== "E} (M) == "B (M) — -

T T T e Tam
(

0 M EY (M) EY M)—>~~~BL;EZ'A(M)ﬂ>EiA+1(M)_>...
| T T U

0 0 'BY (M) — - IS E (M) B (M) — -
T T T T
0 0 0 0

with columns and first two rows exact. Then by the long exact sequence of
cohomology modules we see that the sequence

is exact, so that it gives rise to an injective resolution of N. The minimality
of (x) follows from the fact that the functor ’[«] is left exact and preserves
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essential monomorphisms. We have EY (M) = E{ 1(N) @ EL_ ,(ST'M) by
2.4.1(2). =

COROLLARY 2.4.4. Suppose A is a left Noetherian ring. If M is a A-
module such that every s € S acts on M as a non-zerodivisor, then

idy M = max{id4(S™'M)/M + 1,idg-1, S~ M}.

COROLLARY 2.4.5. Let M be a A-module. Let t € R and assume that

t is A-regular and acts on M as a non-zerodivisor. Let A = AJtA and
M = M/tM. Let J; = [(0) :gi (ary t] for i € Z. Then:

(1) The A-module M has a minimal injective resolution of the form
0 M—Jt— . Bt g B it
2) (|B1], Theorem 2.2) If A is a left Noetherian ring, then
(
idg M = max{ids M + 1,id4, M}
(3) If A is a left Noetherian ring, then
fdAE) (M) = max{fd;E"~" (M) + 1,fd, E}, (M;)}
for all 1 € Z.
Proof. (1) Let I' = E4(M) (i € Z). Then we get a short exact sequence

0— Ji — I 5 I' — 0 for each i € Z. Look at the commutative diagram

0 0 0 0
0 M 70 It co L p Y i
Tt ¢ t ¢ ¢
0 M 70 It co L p Y i
0 Jl Pi-1 Jz Bi Ji+1—>...
0 0 0 0

with exact columns. Each Ji is an injective A-module and as in the proof of
2.4.3 we see the A-module M has a minimal injective resolution of the form
O—>J\7—>J1—>...Bi—_1>Ji&>J"+l—>...

(2)&(3) Note that I' = (0) if and only if J* = (0). Then by 2.4.3(2),
ida(My/M) = idz M, whence by 2.4.4 we get idy M = max{idy M + 1,
idy, M;}. Assertion (3) is a direct consequence of 2.3.5. m
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2.5. The structure of injective A-modules. In this subsection we assume
that R is a Noetherian ring and the R-algebra A is finitely generated when
viewed as an R-module. Let P € Spec A and p = PN R. Then A,/PA, is a
simple Artinian ring. Hence A, /PA, = M,,(D) for some integer m > 0 and
a division ring D. The integer m is uniquely determined by P. Write m =
m(P). We have m(P) = 1 if A is commutative or more generally if A,/PA,
is a division ring. Let S(P) denote the simple A, /PA,-module. Let M be a
A-module. Then by 2.4.2(2), P € Assy M if and only if PA, € Assy, M,.
The latter condition is equivalent to saying that S(P) is contained in M, as
a Ap-submodule. Since A,/PA, = S(P)™, we get the equivalence between
the first three conditions in the following lemma.

LEMMA 2.5.1. Let M be a A-module and P € Spec A. Let p = PN R.

Then the following conditions are equivalent.

(1) P € Assy M.

(2) Homy, (S(P), My)  (0).

(3) Hom, (Ap/PAy, My) # (0).

(4) There is an embedding A/P — M"™ of A-modules for some integer
n > 0.

When this is the case, one may choose n = m(P).

Proof. 1t suffices to show (1)=-(4). Since S(P) C M, we have an embed-
ding 8 : A, /PA, = [A/P], — [M,]™ = [M™],. Notice that

R, ®g Hom,(A/P, M™) = Homy, ([A/P],, [M™]).

We write 3 = ¢ with @ € Homp(A/P,M™) and t € R\ p. Then ¢ :
[A/P], — [M™], is a monomorphism as so is 3, while the canonical map

A/P LN [A/P], is injective. Hence the commutativity of the diagram
A/P M™

ok

[A/P]p —=[M™],

(here M™ LN [M™], denotes the canonical map) implies that o : A/P —
M™ is also a monomorphism. =

By 2.2.6 we see that # Assy I = 1 for every indecomposable injective
A-module I. Let us add the following.

PROPOSITION 2.5.2. (1) Let I be an indecomposable injective A-module
with Asspy I = {P}. Then I"™ = E,(A/P) for m = m(P).

(2) Let P € SpecA and m = m(P). Then I"™ = E,(A/P) for every
indecomposable direct summand I of E,(A/P).
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(3) Let I and J be indecomposable injective A-modules. Then I = J if
and only if AsspaI = Assy J.

Proof. (1) Let p = PN R. Then I = I, and E4(A/P) = By, (A,/PA,)
since every s € R\ p acts on I and E4(A/P) as an isomorphism, while I, =
Ey4, (S(P)) and Ex, (Ap/PAy) = Ex, (S(P))™ since I, is an indecomposable
injective Ay-module with S(P) C I, and A,/PA, = S(P)™. Hence I"™ =
[I]™ =2 Ep, (S(P))™ =2 Eg, (Ay/PA,) = Ex(A/P).

(2) This follows from (1) since Assy I = {P}.

(3) Assume Assg I = Assy J, say Assp I = Assy J = {P}. Then by (1),
I = E/ (A/P) = J™ for m = m(P). Hence I = J. u

Let P € Spec A. Then E4(A/P) contains a unique (up to isomorphism)
indecomposable direct summand, which we denote by I(P).

COROLLARY 2.5.3 ([GW], Theorem 8.14). The correspondence P+ 1(P)
yields a bijection between Spec A and the set of isomorphism classes of in-
decomposable injective A-modules.

Let M be a A-module and ¢ € Z. Let
Ey(M)= D I
aeNi(M)
be a decomposition into a direct sum of indecomposable submodules ([M],
Theorem 2.5). For each P € Spec A we put

Q(P,M)={acQ(M)|Assy I, = {P}}.
Then {2/(P, M)} pespec 4 gives rise to a partition of £2/(M) and
Ey(M)= P 1(P) M),
PeSpec A

DEFINITION 2.5.4. Let p'(P, M) = #£2°(P, M)/m(P) and call it the ith
Bass number of M with respect to P. Then we have the symbolic direct
sum decomposition

Ey(M)= @ Eaa/Py P,
PeSpec A
In general 0 < pi(P, M) € Q or (P, M) = co. We explore the invariant
pi(P, M) in Section 5.
PROPOSITION 2.5.5. Let P € SpecA and p = PN R. Then I(P) is a
direct summand of Hompg(A°P?, Er(R/p)).

Proof. Choose = € I(P) so that p = [(0) :g z] and let L = Az. Then
I(P) = EA(L) because I(P) is indecomposable, while Er(L) = Er(R/p)"
(n > 0) as Assg L = {p}. We have natural embeddings

L C Homp(A%, L) C Homp(A°?, Ex(L)) = Homp(A, Ex(R/p))"
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of A-modules. Therefore I(P) is a direct summand of the injective A-module
Homp (AP, Egr(R/p)) as I(P) = E4(L).

To end this subsection let us note the following. We always have Assq A D
Min A if A is a commutative Noetherian ring ([Ma], p. 50, (7.D), Theorem 9).
This is no more true if A is not commutative even if A is a Cohen—Macaulay
R-module. Let k be a field and let A = [’8 ]]Z] Then Assg A = {[8 z]} but

Min A = {[8 ’;], [lg ’8]} = Spec A. On the other hand we have

PROPOSITION 2.5.6. Assg A C MinA if A is a Cohen—Macaulay R-
module.

Proof. Let Q € Assq A and choose P € Min A so that P C @. Then
QNR e Assp A (2.2.7(2)). Therefore as QN R is minimal in Suppy 4 ([BH],
Theorem 2.1.2(a)) and P N R € Suppr A4, we get PN R = Q N R. Hence
P=Q by 20.1(3) and @ € Min A. =

The next result is known. Since we need it later so often, we outline its
proof for completeness.

PROPOSITION 2.5.7. Let R be a local ring and assume A is a Cohen—
Macaulay R-module. Let M be a finitely generated non-zero A-module and
k = Kdimpr A — Kdimp M. Let a be an ideal of R such that a C [(0) :r M]
and KdimR/a = Kdimgp M. Then a contains a A-regular sequence of
length k.

Proof. By2.2.1,k > 0. Let n = Kdimpg A. Then Kdim R/p = nforallp €
Assp A ([BH], 2.1.2(a)). Therefore if £ > 0, then a € p for any p € Assg A as
Kdimp M = Kdim R/a. Since Assg A is a finite set (2.2.7(1)), by [AM], 1.11,
one may choose ¢ € a so that ¢ & (J,c g, 4 - Then ¢ is A-regular (2.2.3(3)).
Let A = A/tA. Since M is a A-module and Kdimp A = Kdimgr A — 1 ([BH],
2.1.2(c)), a successive use of this procedure will guarantee the existence of
A-regular sequences of length k inside of a. =

2.6. Matlis duality. In this subsection we assume that (R, m) is a Noethe-
rian complete local ring and A is a finitely generated R-module. Hence
mA C P for all P € MaxA and Max A is a finite set. The ring A/J is
semisimple and Artinian, where J = [ pcpyax 4 P denotes the Jacobson rad-
ical of A. Let E = Eg(R/m) and let [*]¥ = Hompg(*, E) denote the Matlis
duality. We begin with the following.

PROPOSITION 2.6.1. The functor [x]V = Hompg(x,E) gives rise to a du-
ality between Noetherian A-modules and Artinian A°P-modules.

Proof. Thanks to [M] (Sect. 4), we only have to check that every Ar-
tinian A-module M is Artinian as an R-module. Let L = [(0) :as J] be
the socle of M. Then L is essential in M and E,(L) = Ex(M). Since L
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is finitely generated, we have a decomposition E4(L) = @<, I« into a
finite direct sum of indecomposable A-submodules. Recall that Assy L =
AsspEA(L) = Uj<gq<pn Assalo. Then <<, Assa I € Max A as JL = (0)
and so Assgl, = {m} for all 1 < a < n (2.0.1(4) and 2.2.7(2)). Hence
by 2.5.5 each I, is a direct summand of Hompg (AP, E). Therefore by [M]
(Sect. 4), I, is an Artinian R-module. Thus E4(L) = E4(M) is Artinian as
an R-module and hence so is M.

The following corollary is a direct consequence of 2.6.1.

COROLLARY 2.6.2. (1) Let M be a finitely generated A-module. Then M
is A-projective if and only if MV is A°P-injective.

(2) Let v : M — N be a homomorphism of finitely generated A°P-
modules and assume that v is an essential epimorphism. Then the induced
map v : NV — MV is an essential monomorphism of A-modules.

COROLLARY 2.6.3. (1) For each simple A°°-module T' the A-module T
is simple and [(0) :pop TV] = [(0) :4 T7.

(2) ([A/J]P)Y = A/J.

(3) (A°P)Y = EA(A/]).

Proof. (1) The fact that T is simple is now clear. To see [(0) :gop TV] =
[(0) :4 T}, it suffices to show [(0) :gop TV] D [(0) :x T] as T = TVV. Note
(ap)(z) = p(za) = 0 for all @ € [(0) :4 T], ¢ € TV, and = € T. Hence
(0) =4 T)- TV = (0).

(2) For each P € Max A let T(P) (resp. S(P)) denote the simple (A/P)°P-
module (resp. the simple A/P-module). Then

AT @ s and [A/S)P= TP
PeMax A PeMax A

Taking the Matlis dual of both sides in the second isomorphism, we have
([4/7]°P)" 2 @ pergax a[T(P) ™). Hence ([4/J]P)Y = A/ T as T(P)" =
S(P) for all P € Max A by (1).

(3) The epimorphism ¢ : A°? — [A/J]°P yields the essential monomor-
phisme¥ : A/J=([A/J]°P)Y — (A°P)V (cf. 2.6.2). Hence (A°P)V =E4(A/J). u

COROLLARY 2.6.4. Suppose Kdim R = 0. Then:

(1) A= (A°P)Y if and only if AP = AV,

(2) A is an injective A-module if and only if A°P is an injective A°P-
module.

(3) Suppose A is self-injective and let [*]* = Homx(*, A) denote the
A-dual. Then the canonical map O : M — M** is an isomorphism for all
finitely generated A-modules M .

Proof. (1) Note that A°P = (A°P)¥Y and we have A% = (A°P)VV =
[(AP)V]Y =2 AV if A 22 (AP)V.
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(2) ([ARS], Proposition 3.1) The functor [¥]¥ = Hompg(*, E) establishes
a duality between Noetherian A-modules and Noetherian A°P-modules as
Kdim R = 0. Let {P;}1<i<n be the non-isomorphic finitely generated in-
decomposable projective A-modules (hence n = # MaxA). Then if A is
an injective A-module, each P is A°P-projective by 2.6.2, since P; is A-
injective. Therefore {P,’}1<i<, are the non-isomorphic finitely generated
indecomposable projective A°P-modules, because the number of the isomor-
phism classes of finitely generated indecomposable projective A°P-modules
is n = # Max A. Hence A°P is A°P-injective, since it is isomorphic to a direct
sum of copies of P)’s and each P is an injective A°P-module.

(3) The assertion is obviously true if M is free. Let 0 - N — F —
M — 0 be an exact sequence of finitely generated A-modules with F' free.
Then as A is self-injective, the sequence 0 — M* — F* — N* — 0 is exact
and so the sequence 0 — N** — F** — M** — 0 is still exact since A°P is
self-injective. Look at the commutative diagram

0 N F M 0
Lk
0 N e M* —>0
Then since Op is an isomorphism, #3; is an epimorphism for any finitely

generated A-module M, while 0y is always a monomorphism. Therefore 0
is also an isomorphism, so that #3; must be an isomorphism too. m

2.7. Local duality theorem. In this subsection we assume that R is a
Noetherian ring and A is a left Noetherian ring. We denote by A-Mod (resp.
R-Mod) the category of A-modules (resp. R-modules). Let a be an ideal
in R. For each M € R-Mod and i € Z we define

Hi (M) = lim Ext%(R/a", M)

and we call it the ith local cohomology module of M with respect to a
([Gr]). The correspondence M — HY (M) defines a functor and {H}(x)}iez
are derived functors of

HO (%) = 7}1_{1;0 Hompg(R/a", %) : R-Mod — R-Mod.

If M € A-Mod, then naturally H: (M) € A-Mod and we have defined addi-
tive functors H? () : A-Mod — A-Mod.

PROPOSITION 2.7.1. Let I be an injective A-module. Then HY(I) is an
injective A-module and HY(I) = (0) for all i > 0.

Proof. The functors HY (%) are compatible with direct sums. So we may
assume [ is indecomposable. Let Assq I = {P} and put p = PN R. Then

each x € [ is killed by some power of p as Assg I = {p}, whence p C ¢ for all
q € Supppg I. Firstly we consider the case where a C p. Let 0 — I — E° —
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E' — ... — E' — ... be a minimal injective resolution of the R-module I
and let

E'= P Er(R/qH @D

q€Spec R

Then p'(q, 1) = 0 for every q € Spec R such that a € q. Therefore

E= @  Es®areD
q€Spec Rwith aCq
If ¢ O a, then each x € Er(R/q) is killed by some power of a, so that
HO(Br(R/a)) = Er(R/q). Hence

HQ(E') = . HY(Br(R/q))" ) = B'.
q€Spec Rwith aCq
Thus HY(I) = I and H,(I) = (0) for all i > 0, as the functors {H%(x)}iez
are defined to be derived functors of H’ () = lim, .., Homg(R/a", *) :
R-Mod — R-Mod. Suppose a Z p and choose s ¢ a\p. Then as Assp [ = {p}
and I is indecomposable, the element s acts on I as an isomorphism. Hence
it also acts on H% () as an isomorphism. Thus H (I) = (0) for all i € Z since
each x € H! (I) = lim,,_, o, Ext(R/a™, I) is killed by some power of s. m

COROLLARY 2.7.2. The functors Hi(x) : A-Mod — A-Mod (i € Z) are
derived functors of

HY (%) = lim Homp(R/a", %) : A-Mod — A-Mod.

Hence for each M € A-Mod, the ith local cohomology module H: (M) of M
may be computed as the ith cohomology module of the complex of A-modules

HI*y: ...—0—-HY(") - HYTY) - ... - HYIY) — ...,

where I®* : 0 - M — I — I' — ... — I' — ... denotes a A-injective
resolution of M.

Proof. The first assertion follows directly from 2.7.1 (use the uniqueness
of derived functors). The second assertion is clear. m

For the moment suppose that (R, m) is a local ring with Kdim R = d.
When R is m-adically complete, we put Kr = [HY(R)]Y and call it the
canonical module of R. When R is not necessarily m-adically complete, an R-
module K is said to be the canonical module of R if Kps = R¥ @ K, where
R# denotes the m-adic completion of R. The canonical module is uniquely
determined (up to isomorphism) for R (if it exists) and will be denoted by
Kpg. If R is a homomorphic image of a Gorenstein local ring S, the ring R has
the canonical module K and Kgr = Ext%(R, S) (¢ = Kdim S — Kdim R).
In the case where R is a Cohen—Macaulay local ring, R has the canonical
module K if and only if R is a homomorphic image of a Gorenstein local
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ring ([Re]). See [HK] and [BH] for the basic properties and the general theory
of canonical modules.
We close this subsection with the following.

LocaL DuaLiTY THEOREM 2.7.3 ([Gr]). Let (R,m) be a Cohen—Mac-
aulay complete local ring with Kdim R = d and assume that A is finitely
generated as an R-module. Let K denote the canonical module of R. Then
for each finitely generated A-module M and i € Z there is a natural isomor-
phism

Homp(Hi, (M), Eg(R/m)) = Ext% (M, Kg)

of A°P-modules.

Proof. For each finitely generated R-module M and ¢ € Z we have a
natural isomorphism

0?\4 : HOHIR(H;,L(M), ER(R/m)) - EXth_i(M7 KR)

of R-modules ([Gr]; see [HK] for a purely ring-theoretic proof). Therefore
for a given finitely generated A-module M we have the isomorphism 9}'\/[
of R-modules as well. The isomorphism 95\4 is not only an isomorphism of
R-modules but also an isomorphism of A°P-modules, because the naturality
of {0, }icz implies that these maps {6}, };cz are compatible with the action
of the ring A°P. u

2.8. Cousin compleres. Cousin complexes for coherent sheaves were orig-
inally constructed by Grothendieck [Gr] in algebraic geometry. Subsequently
Sharp [Shl] gave a purely ring-theoretic method of construction. Sharp’s
method still works for modules over our algebras A. Let us give a brief
survey of his construction.

For this purpose we need the following.

LEMMA 2.8.1. Assume that R is a Noetherian ring and let M be a A-
module. Let U, U’ be subsets of Suppp A and assume that U O Suppp M
and every p € U\ U’ is minimal in U. Then:

(1) The map
f:MBmH{?} c P M,
peU\U’ peU\U’

is well defined and is an essential homomorphism of A-modules.
(2) Suppp[Coker &] U Suppp[Ker&] C U’.

Proof. See [Shl]. =

Suppose that R is a Noetherian ring and let M be a A-module. For each
i € Z we put Ug(M) = {p € Suppp M | Kdimp, M, > i}. Now let M; = (0)
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for i < —2 and M~! = M. Let i > 0 be an integer and assume that a
complex

O;_: P .
i 3y /L ki3 il

of A-modules such that Suppg[Coker 0;_o] C U }J%(M ) for j < i has already
been constructed (this assumption is satisfied for i = 0). Let

M= @ [Coker 0;_2],
pEUR(MN\UL (M)

and let 9,1 : M1 = Coker d;_» £ M? where ¢ is the canonical epimor-
phism and § denotes the homomorphism given by 2.8.1. Then 8;-10;—2 = 0
and Suppp[Coker 9;_1] C Ui (M) by 2.8.1. Hence inductively we get a
complex of A-modules of the form

0 M=MT I O o S g
which we denote by C%(M) and call the Cousin complex for M. The basic
properties of Cousin complexes C%,(M) and their applications are thoroughly
discussed by Sharp [Sh1]-[Sh5]. Let us list some of them which we need later
in this paper.

PROPOSITION 2.8.2. (1) M' =@, csupp,, M with Kdimp, My—i[CoKer di—alp
for all © > 0.

(2) Suppp|Coker ;] C UkL(M) for all i > 0.

(3) The homomorphism 0;_1 : M*™1 — M? is essential for all i > 0.

(4) Suppose that (R, m) is a local ring and let M be a A-module. Then
Hb, (M%) = (0) for all 0 <i < Kdimg M and p € Z.

(5) Suppose that A is finitely generated as an R-module and let M be
a non-zero finitely generated A-module. Then M is a Cohen—Macaulay R-
module if and only if CR{(M) is exact. When this is the case,

M? @ ;Rp (My)

pESuppp M with Kdimp, Mp,=i

I

for all © > 0.
Proof. See [Shl], [Sh4], and [Sh5]. m

3. A lemma of Bass. In the rest of this paper we assume that R is a
Noetherian ring and A is finitely generated as an R-module. Let J = J(A)
denote the Jacobson radical of A. The main purpose of this section is to
recall Lemma 3.3 below. This lemma was originally given by Bass in his
famous paper [B2] on the ubiquity of Gorenstein rings. It is still referred
to in commutative algebra but seems less familiar to non-commutative al-
gebraists. We shall give a brief proof and discuss some consequences of it.
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Given a finitely generated A-module M and P € SpecA, we denote by
p' (P, M) the ith Bass number of M with respect to P (see Definition 2.5.4).
To begin with we record

LEMMA 3.1. Suppose that R is a local ring with mazrimal ideal m. Let
M be a non-zero finitely generated A-module and i € Z. Then the following
conditions are equivalent.

(1) Exty (A/J, M) # (0).

(2) (P, M) >0 for some P € Max A.

(3) Assy EY (M) N Max A # (.

(4) m € Assp EY (M).

Proof. Let 0 = M — 18 12 X 1+l . be a minimal
injective resolution of M. Then Hom(A/J, ;) = 0 and Ext’y(A/J, M) =
Hom,(A/J, T*) for all i > 0, as A/J is a semisimple Artinian ring. Hence
ExtY(A/J, M) # (0) if and only if I’ contains a non-zero socle if and only if
Assp EY(M)NMax A # (. That is to say, u'(P, M) > 0 for some P € Max A,
which is equivalent to saying that m € Assg I* (cf. 2.2.7(2)). =

In the case where (R, m) is a local ring, for each non-zero finitely gener-
ated A-module M we put

depthp M = inf{i € Z | Extl,(R/m, M) # (0)}
and call it the depth of M. This invariant equals the length of maximal
M-regular sequences contained in the maximal ideal m in R ([Ma], p. 100,

Theorem 28). See [BH] for detailed investigations. Here let us add the fol-
lowing characterization.

COROLLARY 3.2. Suppose that R is a local ring with maximal ideal m
and let M be a non-zero finitely generated A-module. Then

depthp M = inf{i € Z | Ext!(A/J, M) # (0)}
=inf{i € Z | u'(P, M) > 0 for some P € Max A}
=inf{i € Z | m € Assg E{,(M)}
—inf{i € Z | H. (M) # (0)}.
Proof. Let m = depthy M and n = inf{i € Z | Ext}(A/J, M) # (0)}.
We will show m = n by induction on m. Suppose m = 0. Then n = 0 by 3.1,

asm € Assg M C Assgp EQ(M). Let m > 0 and assume our equality holds
true for m — 1. Let ¢ € m be M-regular. Since ¢ - Ext%(A/J, M) = (0), from

the exact sequence 0 — M LM M J/tM — 0 we get the exact sequence
(x) 0 — Ext’(A/J, M) — Exty(A/J, M/tM) — Ext'{*(A/J, M) — 0

of R-modules for each i € Z. By the hypothesis on m we have Exty 1A/,
M/tM) # (0) and ExtYy(A/J, M/tM) = (0) for i < m — 1 as depthy M /tM
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= m — 1. Hence by (), Ext%(A/J, M) = (0) for all i < m, from which again
by (x) it follows that Exty(A/J, M) = Ext’y~*(A/J, M/tM) # (0). Thus
m = n. See [HK] (Satz 4.10) for the last equality. m

The next result is due to Bass [B2] and will play a key role in this paper.
Let us give an outline of its proof.

LeEmMA 3.3 ([B2], (3.1) Lemma). Let M be a finitely generated A-modu-
le. Let p,q € Spec R and assume that p C q and Kdim Ry/pRq = 1. Then
q € Assg EH(M) if p € AsspEYy(M).

Proof. Passing to the localization A4, we may assume (R, q) is a local ring
and KdimR/p = 1. Let A = J(A,)N A and ¢t € g\ p. Then Kdim A/(A +tA)
= 0. Look at the exact sequence

Exty (A/2, M) 5 Extly (4/2, M) — Ext’ ! (4/ (% +tA), M)
of R-modules induced from 0 — A/2A 4 A/A — A/(A+tA) — 0. Then

since
[Ext’y (A/2, M)], = EXtiAp (Ap /ANy, My) = EXtilp (Ap/J(Ap), My) # (0),

by Nakayama’s lemma we see that Ext’™ (A/(20+tA), M) # (0). Therefore
Ext’*(S, M) # (0) for some composition factor S of A/(2 + tA) whence
q€ AssgEf'(M) by 3.1. m

REMARK 3.4. Lemma 3.3 is no longer true if we replace Assg Ey(M)
with Assy EY(M). See Example 8.8.

We summarize some direct consequences of Lemma 3.3.

COROLLARY 3.5. Let M be a finitely generated non-zero A-module.

(1) Let (R,m) be a local ring and let p € AssgE{(M). Then m €
Assg ETKdlm Bfe (M).

(2) Supposeidy M =n<oo. Then Assg E"{(M)CMax R and Assj E'} (M)
C Max A. The A-module E{(M) contains an essential socle.

(3) (Auslander) Let (R,m) be a local ring. Then

idy M = sup{i € Z | Exty(A/J, M) # (0)}.

Hence id y# M# = idy M where R¥ is the m-adic completion of R, A# =
R#* @p A, and M#* = R#* @ M.

(4) Kdimpg M < idy M.

Proof. (1) See 3.3.

(2) By 3.3 we have Assg EY{ (M) C Max R, whence Ass, E (M) C Max A
by 2.0.1(4) and 2.2.7(2). See 2.5.4 for the last assertion. ‘

(3) Let m = sup{i € Z | Ext)(A/J, M) # (0)} < oc. If EY(M) # (0)
with ¢ > m, by 3.3 we have m € Assg E’, (M) for some j > i. Hence by 3.1
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we get Extﬂ(/l/ J, M) # (0), which is absurd. The second assertion follows
from the isomorphism

Ext’y(A/J, M) = R* ®p Ext’y(A/J, M) = Ext’y, (A% /J(A#), M¥).

(4) Let p = po € p1 € ... C pr = q be a saturated chain of prime
ideals in Suppp M with p € Ming M and q € Max R. Then by 3.3 we have
qe ASSRE'jl(M), as p € Assg M. Hence k < idy M, so that Kdimg M <
idyM. m

COROLLARY 3.6. Let M be a finitely generated A-module. Let t € J(R).
Assume that t is A-regular and acts on M as a non-zerodivisor. Let A =
AJtA and M = M/tM. Then idg M =idz M + 1.

Proof. By 2.4.5(2) it is enough to show that idg M +1 > id4 M. We may
assume k = idg M < co. Then by 2.4.5(1), t is a non-zerodivisor for E'|(M)
for all i > k + 2. Let i > k + 2 and assume Assg E4, (M) # (0. Then by 3.3
we have Assp EY (M) N MaxR # ) for some j > i. Hence ¢ is a zerodivisor
for EY (M) = (0) as t € J(R). This argument forces Assg E} (M) = 0 for all
i >k + 2 so that E% (M) = (0). Hence idg M < k+1. =

The following result generalizes the main theorem of Iwanaga and Sato

18]

THEOREM 3.7. Suppose (R,m) is a local ring and let t = depthp A.
Let M be a finitely generated non-zero A-module and assume that idy M =n
< oo. Then:

(1) t <n.

(2) The A-modules EY(A) and E (M) have no common non-zero direct
summand if t # n.

Proof. Let x = x1,...,x: be a maximal A-regular sequence and let
K.=K.(z; R) : 0—>Kti>Kt_1—>...—>K1—>K0

be the Koszul complex of R generated by the sequence z. We identify K; = R
and K;_1 = R'. Hence the homomorphism o : K; — K;_1 is given by
o(1) = (—z1,22,...,(—1)'z¢). Let a = (z1,22,...,2¢)R. Then the complex

ARrK.: 0—>/1®RK15/M/1®RK15_1—>...—>/1®RK1—>/1®RK0

gives rise to a minimal free resolution of the A-module A/aA. Apply
Hom(*, M) to it. Then identifying M* = Hom(A @ K;—1, M) and M =
Homp (A ®pg K¢, M), we get the exact sequence

M" 5L M — Exthy(A/aA, M) — 0,
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where the homomorphism 7 is given by

mq

my 1<i<t

Hence
M/aM = Ext!y(A/aA, M) # (0)

and we have ¢ < n. Assume that E’|(A) and Ej(M) have a common inde-
composable direct summand, say I. Then by 3.5(2), I = E(S) for some
simple A-module S. Since E(/)l/aA(/l/a/l) = [(0) g1y o] by 2.4.5(1) and
S C EY(A), we get S C A/aA. Look at the exact sequence

Ext’}(A/aA, M) — Ext’} (S, M) — Ext’;™(C, M) = (0)
induced from the exact sequence 0 — S — A/aA — C — 0. Then we have
Exti(A/aA, M) # (0), as Ext’{(S, M) = Homu(S,E"{(M)) # (0) by our
choice of S. Hence n <t. m

COROLLARY 3.8 ([IS], Theorem). Suppose that 0 < idpA = n < oo.
Then EY(A) and E’(A) have no common non-zero direct summand.

Proof. 1f E%(A) and E”(A) have a common indecomposable direct sum-
mand E,(S) with S a simple A-module, then depthp A = 0 by 3.2. This is
impossible. u

We say that A is a local ring if A/J(A) is a simple Artinian ring. Hence A
contains a unique maximal ideal and there is a unique (up to isomorphism)
simple A-module.

COROLLARY 3.9 ([R], Corollary 2.15). Suppose that both R and A are
local rings. Then idg M = depthp A for every finitely generated non-zero
A-module M of idg M < .

Proof. Let t = depthp A. Then by 3.2, E(A) contains at least one
simple A-submodule, while by 3.5(2), E (M) contains an essential socle.
Thus idy M =t by 3.7. =

COROLLARY 3.10 ([V], Theorem 3.1). Suppose that both R and A are
local rings. Then A is a Cohen—Macaulay R-module and idg A = Kdim A if
idy A < o00.

Proof. We have idy A = depthr A by 3.9, while idy A > Kdimgr A by

3.5(4). Hence A is a Cohen-Macaulay R-module and idg A = Kdimp A =
KdimA. =

Suppose R is a regular local ring with Kdim R = d and A is local. Let the
structure map f : R — A be injective and assume that id4 A < co. Then by
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3.10, A is a free R-module and id4 A = Kdim A = Kdim R. In Section 6 we
shall show that a minimal injective resolution of A is given by the complex

OHA:A®RR—>A®REO—>A®RE1—>...—>L®REd—>O,

where 0 - R — E° — E' — ... — E? — 0 denotes a minimal injective
resolution of R (cf. 6.5). In Section 7 we will give a characterization of local
R-algebras A satisfying the condition in 3.10 (cf. 7.7).

QUESTION 3.11. Assume A is a local ring. Is it true that A is a Cohen—
Macaulay R-module if there is a non-zero finitely generated A-module M
with id4 M < oco? This question is an analogue of a famous problem of Bass
[B2] that Roberts [Ro3] settled affirmatively.

Following [V], let us make a few remarks on the normality in the center
C(A) of A.

PROPOSITION 3.12. Suppose A satisfies the following two conditions:

(1) depthp, Ay > min{Kdim A,,2} for every p € Suppp A.
(2) gl.dim A, <1 for every p € Suppg A with Kdim A, <1.

Then C(A) is a normal ring.

Proof. Let C = C(A). Choose q € SpecC and put p = qN R. Then
p € Suppr 4 and KdimCy = Kdim A, < Kdim A4, since Ay = [Ap]qc, -
If Kdim A, > 2, by condition (1) the ideal pR, contains a Ay-regular se-
quence z,y of length two. Hence depthg, Aq > 2 as (z,y)Cy C qCy, so
that Kdim A; > 2. Therefore if KdimA; < 1, then KdimA, < 1 and
gl.dimA, < 1 by condition (2), whence gl.dimA, < 1 as Ay = [A]qc,-
Suppose Kdim A, = 1. Then pR, contains at least one Ay,-regular element,
say x. Therefore depthg, Aq > 1 since zC, C qCy. Thus the C-algebra A
satisfies conditions (1) and (2). Look at the exact sequence

0—C— A% EndoA

of C-modules, where the map § : 4 — Endc A is defined by d(a)(x) =
ax — xa. Then the localized sequence

(%) 0 — Cyq — Ag > Ende, 44

is still exact. Hence Cy = C(A4q). If KdimCy > 2, then by (%) we have
depthy, Cq > 2 because depthe, (Endc, Aq) > 1 and depthe, Aq > 2 (cf.
[BH], 1.2.9). If Kdim Cy = 1, then depth Cy > 1 since depthg, Aq > 1. Thus
depth Cyq > min{Kdim Cy, 2} for all q € SpecC. Let Kdim Cy = 1. Then as
gldimA, <1, Cy = C(44) is an integral domain and A, is Cq-torsionfree
([V], Lemma 2.1 and Proposition 2.3). Hence by [BC], Theorem 7.1, Cy is a
DVR. Thus C' is a normal ring ([Ma], Theorem 39). m
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COROLLARY 3.13. Suppose that A is a Cohen—Macaulay R-module. Then
C(A) is a normal ring if gl.dim A, <1 for everyp € Suppg A with Kdim A,
<1.

4. Gorenstein R-algebras. Unless otherwise specified, in this section
we assume that R is a local ring with maximal ideal m and Kdim R = d.
Let n = Kdim A = Kdimpg A. The purpose is to give the definition and basic
properties of Gorenstein R-algebras.

We begin with the following

LEMMA 4.1. Suppose M is a Cohen—Macaulay R-module with idy M =
Kdimrp M = s. Then:

(1) B (M) = H, (M),

(2) M, is a Cohen—Macaulay Ry-module and idy, M = Kdimpg, M, for
all p € Suppr M.

(3) Let p € Spec R. Then p € Assg EY{(M) if and only if p € Suppr M
and Kdimpg, M, = i.

Proof. (1) Let 0 — M — I — ' — ... — I®* — 0 be a minimal
injective resolution of M. Then by 3.2 and 3.5(3), m € Assg I’ if and only
if i = s, while HY, (I®) = I°® by 3.5(2). Hence by 2.7.2, ES (M) = HS, (M).

(2)&(3) Let p € Suppg M. It is well known that M, is a Cohen-Macaulay
Ry-module ([Se], p. 89, Chapter IV, Théoreme 6). Let k& = idy, M, and
m = Kdimp, M,. Then s > k, while k > m by 3.5(4). We have p € Assg I*
since Assg, [I¥], = {pR,} by 3.5(2). Therefore m € Assp [FKdmA/p g4
that k& + Kdim R/p < s. Hence k < m as s = Kdimp, M, + Kdim R/p for
all p € Suppg M([Se|, p. 89, Chapter IV, Théoreme 6). Assertion (3) now
follows from the proof of (1). m

LEMMA 4.2. Let M be a finitely generated non-zero A-module with
Kdimrp M = s and assume that M is a Cohen—Macaulay R-module. Then
H3 (M) has a minimal injective resolution of the form
0 — HE (M) — HY (B4 (M) — Hy (ESHH (M) — ... — HL(EY(M)) — ...

Proof. Let 0 — M — I° — I' — ... — I* — ... be a minimal injective
resolution of M. Then HY (IY) = (0) as m ¢ Assg I’ for i < s by 3.2,
while H:, (M) = (0) for i > s ([HK], Satz 4.12). Each HY, (I?) is an injective
A-module (cf. 2.7.1). Hence from (2.7.2) we get the injective resolution

0 — H (M) — HO (I°) - HY (') — ... = HO.(I') — ...
of HS, (M), whose minimality follows from the fact that the functor HY ()
is left exact and preserves essential monomorphisms. =

PROPOSITION 4.3. Let M be a finitely generated non-zero A-module with
Kdimg M = s. Then the following conditions are equivalent.
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(1) M is a Cohen—Macaulay R-module and idy M = s.

(2) M is a Cohen—Macaulay R-module and HE (M) is A-injective.
(3) Exty(A/J, M) = (0) fori # s.

(4) m € Assp EY (M) fori # s.

Proof. (1)=(4). See 3.2.

(3)<(4). See 3.1.

(4)=(2). M is a Cohen-Macaulay R-module since depthp M > s by
3.2. As HY (E, (M) = (0) for i # s, HS (M) = HY (ES(M)) and H, (M) is
A-injective (cf. 2.7.1 and 2.7.2).

(2)=(1). By 4.2, HY (E{,(M)) = (0) for all i > s. Assume E' (M) # (0)
for some i > s and choose p € AssgEY(M). Let j = i + Kdim R/p > i.
Then, by 3.5(1), m € Assp B (M) and HY, (E/,(M)) # (0), which is absurd.
Thus EY, (M) = (0) for all ¢ > s whence idy M = s, by 3.5(4). =

COROLLARY 4.4. Let M be a finitely generated non-zero A-module and
assume that M is a Cohen—Macaulay R-module with Kdimp M = s.

(1) Suppose that R is a d-dimensional Cohen—Macaulay local ring with
canonical module Kr. Then idg M = s if and only if Ext%_S(M, Kgr) is a
projective A°P-module.

(2) Suppose that A is a Cohen—Macaulay R-module. Then Kdim A = s
ifidg M = s.

Proof. (1) Let R* denote the m-adic completion of R. Then Kps =
R* ®r Kg ([HK], Definition 5.6). Hence passing to R*, by 3.5(3) we may
assume R is complete. By 4.3,id4 M = s if and only if Hf (M) is A-injective,
while by 2.6.2(1) the latter condition is equivalent to saying that [HE (M)]Y
is A°P-projective. Hence the assertion follows from 2.7.3.

(2) By 3.5(3) we may assume R is complete. Thanks to Cohen’s struc-
ture theorem [C], we may furthermore assume that R is a Gorenstein local
ring. Let n = Kdim A and d = Kdim R. Then by (1), Extf,l%_s(M, R) is a
direct summand of [A°P)* with k > 0. Hence Hi, (Ext% *(M, R)) is a direct
summand of H?, (A°P)¥ so that H;(Extf{s(M, R)) = (0) for all 7 # n ([HK],
4.10 and 4.12). Thus KdimpExt% *(M,R) = n and hence s = n ([BH],
3.3.10). =

We now come to the definition of Gorenstein R-algebras. In Theorem 4.5
and Definition 4.6 below the ring R is not assumed to be a local ring.

THEOREM 4.5. Let R be an arbitrary commutative Noetherian ring, A
a module-finite R-algebra, and M a finitely generated non-zero A-module.
Then the following two conditions are equivalent.

(1) The Cousin complex C% (M) provides a minimal injective resolution
for M.
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(2) M is a Cohen—Macaulay R-module such that idx, M, = Kdimpg, M,
for all p € Suppr M.

Proof. By 2.8.2(3)&(5) it suffices to show that, assuming M is Cohen—
Macaulay, M" is injective for all i > 0 if and only if ids, M, = Kdimg, M,
for all p € Suppr M. Let ¢ > 0 be an integer. Then because

M D b, (M)
pESuppp M with Kdimpg, My=i
(cf. 2.8.2(5)), we see by 2.1.1(2)&(3) that M is A-injective if and only
if Hyp (My) is Ap-injective for all p € Suppp M with Kdimg, M, = i.
By 4.3 the latter condition is equivalent to saying that idj, M = i for all
p € Suppp M with Kdimg, M, = i. =

1%

DEFINITION 4.6. Let R be an arbitrary commutative Noetherian ring, A
a module-finite R-algebra, and M a finitely generated non-zero A-module.
Then M is said to be a Gorenstein A-module if the Cousin complex C% (M)
of M provides a minimal A-injective resolution for M. We say that A is a
left Gorenstein R-algebra if A is a Gorenstein module over itself.

By Corollary 4.8 proved below, the definition of Gorenstein algebra is
left-right symmetric.

Let M be a finitely generated non-zero A-module. By 4.5, M is a Goren-
stein A-module if and only if M, is a Gorenstein Ay,-module for all p €
Suppr M. Hence the condition of M being a Gorenstein A-module is lo-
cal. And when R is local, our alternative definition 4.5(2) of a Gorenstein
R-algebra is the same as that of Vasconcelos [V], who used the term moder-
ated Gorenstein algebra. In a more general situation Brown and Hajarnavis
[BHa2] already investigated this kind of rings, which they call injectively
homogeneous.

We return to the former assumption that (R, m) is a local ring. We denote
by R the m-adic completion of R. Let A% = R* ®@p A and M# = R* @p M
for each A-module M.

LEMMA 4.7. Let R be a local ring and M a finitely generated non-zero
A-module. Then:

(1) M is a Gorenstein A-module if and only if M is a Cohen—Macaulay
R-module and idg M = Kdimpg M.

(2) Let t € m be regular for both A and M. Let A = AJtA and M =
M/tM. Then M is a Gorenstein A-module if and only if M is a Gorenstein
A-module.

(3) M# is a Gorenstein A% -module if and only if M is a Gorenstein
A-module.

Proof. See 3.5(3), 3.6, and 4.1. m
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COROLLARY 4.8. Let R be a local ring. The following conditions are
equivalent.

(1) A is a Gorenstein R-algebra.
(2) A°P is a Gorenstein R-algebra.

When this is the case, fd4EY(A) =i for all 0 < i < Kdim A.

Proof. (1)<(2). Reducing modulo an ideal of R generated by a maximal
A-regular sequence, we may assume that Kdim A = 0 (cf. 4.7(2)) and, pass-
ing to the ring R/[(0) :g A], we may furthermore assume that Kdim R = 0.
Then A is self-injective if and only if so is A°P (cf. 2.6.4(2)), whence the equiv-
alence follows. We check the last equality by induction on n = Kdim A. We
have nothing to prove for n = 0. Suppose that n > 0 and our equality holds
true for n — 1. Let t € m be A-regular and put A = A/tA. Let 0 < i < n.
Then

fd, By, (A;) = supfda, EYy (4,)
P

where p runs through the prime ideals p in Suppp A with ¢ € p. Because
p # m for any p € Suppg A with ¢ € p, we infer by the hypothesis on n that
fda, By, (Ar) = sup, fda, By (4p) < and fd7E " (A) = i — 1 as well. Hence
by 2.4.5(3), fdyE%(A) =ifor 0 <i<n. =

LEMMA 4.9. Let A be a Gorenstein R-algebra with Kdim A = n. Then
Ext} (S, A) # (0) for any simple A-module S.

Proof. Let t € m be A-regular and let R = R/tR, A = A/tA. Then
Ext’ (S, A4) = Ext%ﬁl(S, A) as tS = (0). Hence passing to the ring A, by
4.7(2) we may assume n = 0. Also passing to the ring R/[(0) :r A], we
may furthermore assume Kdim R = 0. Then S = Hom (Hom4(S, A), A) by
2.6.4(3) so that Hom,4(S, 4) # (0). =

COROLLARY 4.10 (Iwanaga). The following conditions are equivalent.
(1) A is a Gorenstein R-algebra.
(2) idy A=k < 0o and EX(A) D S for all simple A-modules S.

Proof. (1)=(2). See 4.9.
(2)=-(1). By 3.2 and 3.7(2) we have depthp A = k, whence by 3.5(4),
A is a Gorenstein R-algebra. =

PROPOSITION 4.11. Let A be a Gorenstein R-algebra with Kdim A = n

and let M be a finitely generated non-zero A-module. Then:

(1) ([N], Proposition 1.6) depthp M +sup{i € Z |Ext’{(M, A)#(0)}=n.
(2) Kdimp M + inf{i € Z | Ext',(M, A) # (0)} = n.
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(3) Let j(M) = n—Kdimpg M. Then the R-module M is Cohen—Macaulay
if and only if Ext',(M,A) = (0) for all i # j(M). When this is the case,
Ext!\™) (M, 4) # (0).

(4) depthg M +pdy, M =n if pdy M < co.

(5) ida M =nif idy M < oo.

(6) The following conditions are equivalent.

(a) M is a projective A-module.

(b) M is a Gorenstein A-module.

(¢) M is a Cohen—Macaulay R-module with Kdimg M =n and idy M
< Q.

(7) ida M < oo if and only if pdy M < oo.

Proof. (1) Induction on m = depthp M. If m = 0, then M contains a
simple A-submodule S. From the exact sequence 0 - S — M — C' — 0 we
have

Ext’j (M, A) — Ext’} (S, A) — Ext"/(C, A) = (0),

whence Ext’} (M, A) # (0) as Ext’{(S, A) # (0) by 4.9. Assume that m > 0
and our assertion holds true for m — 1. Let ¢ € m be M-regular and put
M = M/tM. Then depthp M = m — 1. Let i € Z and look at the exact
sequence

(x)  Bxt’y (M, A) 5 Exti (M, A) — Ext’ ' (M, A) — Ext’}' (M, A)

given by the exact sequence 0 — M LM - M- 0. Then ExtYy (M, A) =
(0) for all i > n—m by Nakayama’s lemma, since Ext’{! (M, A) = (0) by hy-
pothesis. On the other hand, as Ext”""1 (M, A) # (0) but Ext} ™ +1(M, A)
= (0), sequence (x) for i = n — m shows Ext",”™ (M, A) # (0).

(2) Induction on n. Firstly suppose Kdimp M = n and choose p €
Suppg M so that Kdim R/p = n. Then p € Suppg A and Kdimpg, 4, = 0.
Hence A, is self-injective and so by 2.6.4(3),

M, = Hom,, (Homu, (M,, Ay), Ay).

We have Homy, (M, Ay) # (0) as M, # (0). Hence Homu (M, A) # (0).
Suppose now that n > 0 and our assertion holds true for n — 1. We may
assume that Kdimg M < n. Choose t € [(0) :r M] so that ¢ is A-regular (cf.
2.5.7). Let A = A/tA. Then Ext’(M, A) = Ext (M, A). As A is a Gorenstein
R-algebra with Kdim A = n — 1, Kdimg M + inf{i € Z | Exti/—l(M, A) #(0)}
=n — 1 whence Kdimg M + inf{i € Z | Ext,(M, A) # (0)} = n.

(3) See (1) and (2).

(4) Recall that pd, M = sup{i € Z | Exty, (M, A) # (0)} if pd, M < oo.

(5) Let k = idy M. Then n = depthp A < k by 3.7(1), while n = k by
3.7(2) and 4.9.
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(6) (a)=(c). M is a Cohen—Macaulay R-module with Kdimg M = n,
since M is a direct summand of A* (k > 0). We have idgy M < oo as
idgA < 0.

(¢)=(b). By (5), idds M = n. Hence M is Gorenstein.

(b)=(a). By (5), Kdimr M = idg M = n. We will show that M is A-
projective. Suppose n = 0. Passing to the ring R/[(0) :r A], we may assume
Kdim R = 0. Let [«]¥ = Hompg(x, Egr(R/m)) be the Matlis dual. Then MY
is a direct summand of [A°P)* with k& > 0 (cf. 2.6.2(1)). Hence M = M"Y
is a direct summand of ([A°P]Y)* and so M is A-projective because [A°P]Y
is A-projective (cf. 2.6.2(1) and 4.8). Assume that n > 0 and our assertion
holds true for n — 1. Let ¢ € m be regular for both A and M. Let A = A/tA
and M = M /tM. Then by hypothesis M is A-projective. To see that M is A-
projective, it suffices to show that M; is As;-projective (cf. 2.3.2). Recall that
pd,, My = sup, pdA'0 M, , where p runs through prime ideals p € Suppp M
with ¢ & p. Let p € Suppg M with ¢t € p. Then Kdimpg, M, = n —Kdim R/p
([Se], p. 89, Chapter IV, Théoreme 6). Hence M, is a Gorenstein A,-module
with Kdimg, M, = Kdim A, < n. Therefore by the hypothesis on n, M,
is Ap-projective so that pd,, M; = sup,pd, M, = 0. Thus M; is A;-
projective.

(7) It is enough to show the “only if” part. Let k = n — depthp M and
choose an exact sequence

O—-L—F,1—>F,9—...oFp—M-—0

of A-modules so that each Fj is finitely generated and projective. Then L is
a Cohen-Macaulay R-module with Kdimp L = n ([BH], Proposition 1.2.9).
We have idg L < oo since idg M < oo. Hence by (5), L is a Gorenstein
A-module so that by (6), L is A-projective. Hence pd 4 M < co. =

For each i € Z let C;(A) denote the full subcategory of A-Mod consisting
of all the finitely generated A-modules M such that either M = (0) or M is
a Cohen—Macaulay R-module with Kdimg M = 1.

We now come to the main result of this section.

THEOREM 4.12. Assume that A is a Cohen—Macaulay R-module with
Kdim A = n. Then the following conditions are equivalent.

(1) A is a Gorenstein R-algebra.

(2) Extly (M, A) = (0) for all M € C,(A) and p # 0.

(3) Extly (M, A) = (0) for all 0 <i<n, M € Ciy(A), and p#n —i.
When this is the case, Ext’y “(M, A) € C;(A°P) for all M € C;(A) and we

have a natural isomorphism

M = Ext"™ (Ext""(M, A), A).
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Hence the correspondence M +— Extﬁfi(M, A) yields an equivalence between
the categories C;(A) and C;(A°P) (0 < i < n).

Proof. By 4.11(3) we only have to show that (2) implies (1), and the
equivalence of the categories. Look at the exact sequence

0O—-M—F,1—Fy9—...>Fp—A/J—0

of A-modules with each F; finitely generated and projective. Then M €
Cn(A) ([BH], Proposition 1.2.9) and so Ext) (M, A) = (0) for p # 0. Hence
ExtY%(A/J,A) = (0) for i > n, so that idg A = n (3.5(3)&(4)) and A is a
Gorenstein R-algebra. Let us show that for all 0 < ¢ < n and M € C;(A)
there is a natural isomorphism

M = Extﬁ_"(ExtT/ﬁ_i(M, A), A).
We begin with the following.
Cram 1. Ext} " (M, A) € C;(A°P) for all 0 <i <n and M € C;(A).

Proof. Firstly note that Kdimpg Ext”, *(M,A) < i since [(0) :g M] -
Ext" (M, A) = (0). Therefore we have nothing to prove for i = 0. Assume
that ¢ > 0 and our assertion holds true for ¢ — 1. Let ¢ € m be a non-
zerodivisor for M. We put M = M/tM and apply the functors Ext’(x, A)
(p € Z) to the exact sequence 0 — M L M — M — 0. Then since
M € C;_1(A), by condition (3) we get the short exact sequence

0 — BExt’y (M, A) — Ext"(M, A) — Ext";"*1(M, A) — 0.
Hence Ext’y (M, A) € C;(A°P) as Ext” "T1(M, A) € C;_1(A°P) by the as-

sumption on ¢. m

We now proceed by descending induction on ¢. Thanks to 4.8 and con-
dition (2), the proof of the case i = n is the same as that of 2.6.4(3). We
assume that ¢ < n and our assertion holds true for 7 + 1.

CrAM 2. (1) Let M be a finitely generated non-zero A-module with
Kdimr M = j. Then for each j < k < n there exists an exact sequence
0— K —L— M — 0 of A-modules with L € C(A). We have K € C;;1(A)
ZfM € CZ(A) and L € Cprl(/l).

(2) Let My, My € Ci(A) and let ¢ : My — My be a homomorphism of
A-modules. Let 0 — K, — Ly — M, — 0 (¢ = 1,2) be exact sequences
of A-modules with K, Ly € Ci41(A). Then one may choose exact sequences
0— I?q — Eq — My — 0 (¢ =1,2) of A-modules with IN(q, Eq € Cit1(A) and
homomorphisms oy : IN(q — K, By Eq — Ly (¢=1,2), and o : Ky — kg,
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n: El — EQ so that the diagrams
K,
I
K,

0 K Ly My 0

LT

2 L2 M2 0

0

L,
P e
Lq

0

are commutative.

Proof. (1) Let 0 = N — F — M — 0 be a presentation of the A-
module M with F' finitely generated and projective. Choose an ideal a of
R so that a is generated by a A-regular sequence contained in [(0) :gr M]
of length n — k (cf. 2.5.7). Let L = F/aF and let L — M = M/aM
be the homomorphism induced from F' — M. Then the exact sequence
0 - K — L — M — 0 satisfies the required conditions (cf. [BH], Proposi-
tion 1.2.9).

(2) Firstly note that Kdim R/([(0) :r L1] N [(0) :r L2]) = i + 1 because
Kdim R/[(0) :r Ly} = KdimL; = i+ 1 (¢ = 1,2). This time we choose
the ideal a of R so that a is generated by a A-regular sequence contained
in [(0) :r L1] N [(0) :r Lo] of length n — ¢ — 1. Then aL, = aM, = (0)
(¢ =1,2). Let 0 - Ny, — F; — M, — 0 be a presentation of the A-
module M, with F, finitely generated and projective (¢ = 1,2). Choose
homomorphisms v, : F; — Lg (¢ = 1,2) and ¢ : Fi — F5 so that the
diagrams

Fq—>Mq F1—>M1
of e o
L,—— M, Fy —— My

are commutative. Let Eq = F,/aF, and f, : Zq — Ly, m: Ly — Lo be the
induced homomorphisms. Then letting K, = Ker(L, — M,), we get the
required commutative diagrams

0

K, L, M, 0
PR e
K, L, M, 0
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0 K Ly M, 0

Pk

0 Ko Lo Mo 0

where the homomorphisms ay : I?q — Ky and o : K 1 — [?2 are the restric-
tions of 3, and 7, respectively. m

Now let M € C;(A) and choose an exact sequence
() 0—-K—-L—-M-—0
of A-modules so that K, L € C;41(A). Then applying the functors Ext’ (x, A)
(p € Z), by condition (3) we have the exact sequence

0 — Ext " 1(L, A) — Ext? (K, A) 3 Ext” (M, A) — 0
of A°P-modules, where A denotes the connecting homomorphism. Since
Exty (L, A), Ext" (K, A) € Ci11(A°P)
and ‘
Ext" (M, A) € C;(A°P)

by Claim 1, by condition (3) applied to the Gorenstein R-algebra A°P we
get the exact sequence

(+%) 0 — Ext/; " HExt" " HK, A), A) — Ext" " HExtT (L, A), A)
— Bxt’t (BExty (M, A),A) — 0
of A-modules. By the hypothesis on i we may identify
K = Ext} " HExt} (K, A), A)
and
L =Ext} " Ext} (L, A), A).

Then comparing sequence (**) with the original exact sequence (x), we have
the required isomorphism

On M — Ext” " (Extt (M, A), A)
of A-modules.

CrLAM 3. The isomorphism 0y is natural in M and does not depend on
the choice of exact sequences (%) above.

Proof. Let j =n —i and let
0 K Ly M, 0

|

0 Ky Lo Mo 0
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be a commutative diagram with exact rows such that K, L, € C;11(A) and
My € Ci(A) (¢ = 1,2). Apply the functors Ext!) (Ext? (x, A), A) (p € Z) to
get commutative diagrams

0 Kq Ly My 0

l/GM

0 — Ext/ " (Ext! ! (Kq, A)) = Ext’, " (Ext’, ! (Lg, A)) — Ext?, (Ext’, (Mg, 4)) =0

with exact rows (¢ = 1,2). Then since L; — M) is an epimorphism, all the
faces in the diagram

L1 Ml

Ext’ ! (Ext/ (L1, A)) 2> Extd (Bxt) (M, A)) @

|
Lo

/ Ext) ! (Extd ! (¢,A4)) O,

Ext’, ' (Ext) (L2, A)) ——5— Ext/, ' (Ext/, ' (Mo, A))

Extj/.x_l(Ext]/'l_l(n,A)) M2

is commutative. Thanks to Claim 2(2), letting M = M; = Ms and ¢ = 1y,
the commutativity of the particular face

0 . .
My —— Ext’, (Ext’, (M, A), A)
© lEth‘ (Ext?, (,4),4)
0 . .
My —2> Ext’, (Ext’,(My, A), A)

shows that the isomorphism #3; does not depend on the choice of exact
sequences (*) above and hence its naturality does not either. m

COROLLARY 4.13. Suppose A is a Gorenstein R-algebra with Kdim A =
n and let S be a simple A-module. Then Ext"}(S, A) is a simple A°P-module.

For each finitely generated non-zero A-module M we put j(M)=Kdimpg A
— Kdimpg M.

The next result 4.14(1) shows that if A is a Gorenstein R-algebra, then
every finitely generated A-module M satisfies Auslander’s condition so that
A is an Auslander—Gorenstein ring in the sense of [Bj]. The result 4.14(2)
answers a question posed by [Bj], p. 144, in our context.

COROLLARY 4.14. Let A be a Gorenstein R-algebra with KdimA = n

and let M be a finitely generated non-zero A-module.

(1) Let j € Z. Then Extil(X, A) = (0) for any A°P-submodule X of
Ext’, (M, A) and for i < j.
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(2) Let j = j(M). Then j(Y) = j for every non-zero A°P-submodule Y
of Ext) (M, A).

Proof. (1) Assume Ext% (X, A) # (0) and choose p € Suppy X so that
Kdimgp X = Kdim R/p. Then by 4.11(2), n < Kdim R/p + ¢, while n =
Kdim R/p+Kdimpg, 4, ([Se, p. 89, Chapter IV, Théoreme 6). Hence id 4, A,
= Kdimp, A, < i so that Ext]/1p (M, Ay) = (0) as i < j. Thus X, = (0),
which is absurd.

(2) Let ¢ = Kdimpg M and choose an exact sequence 0— K — L— M —0
of A-modules with L € C;(A) (Claim 2(1), proof of 4.12). As Kdimg K <
we get ExtjA_l(K, A) = (0) by 4.11(2) and so the exact sequence yields the
embedding ' 4

0 — Ext’, (M, A) — Ext’ (L, A).
Hence Assp Y C Assp Extfl(L, A). Therefore Kdimgr Y = Kdimp EX‘UA(L, A)
= i by [BH], Theorem 2.1.2(a), since Ext’,(L, A) € C;(A°) by 4.12. Thus
j(Y)=j.m

Let A, P, X and Y denote the full subcategories of A-Mod such that

A = {finitely generated A-modules M},
P ={P e A| P is A-projective},

X =Cy(A),

Y={Y eA|idaY < o0}.

The following result shows that (X,)) is an AB-context [AB] for A in
the sense of Hashimoto.

COROLLARY 4.15. Suppose A is a Gorenstein R-algebra with Kdim A
=n. Then:
(HxXxNY="r.
(2) Extfy (X, P) = (0) for all X € X, P € P and p > 0.
(3) (a) A is abelian and X and Y are additive categories.
(b) X e X if Y € X and X is a direct summand of Y.
(c) XeYif YeY and X is a direct summand of Y.

(4) Let 0 - X =Y — Z — 0 be an exact sequence in A. Then
(a)YeXifX,ZeX.
by X eXifY,ZecX.
(c)ZeYif X,Y €.
AYeYifX,Ze).
(5) Each M € A has a finite X -resolution.

(6) Let X € X. Then there exists an exact sequence 0 — X — P —
Y —-0in AwithPeP and Y € X.
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Proof. (1) See 4.11(6).

(2) See 4.11(3).

(3)&(4) Use 3.2 and [BH], Proposition 1.2.9.

(5) See the proof of 4.11(7).

(6) Let [«]* = Homa(*,A) be the A-dual. Firstly take a presentation
00— L — F — X* — 0 of the A°°’-module X* with F' finitely generated
and projective. Then as L, X* € C,(A°P) by 4.12, identifying X = X™**, we
get the required exact sequence 0 — X — F* — L* — 0 of A-modules with
Y =L*€ X =Ch(A). u

For a A-module M let
Ext -dim M = sup{i € Z | Exty, (M, A) # (0)}.

In general Ext -dim M < pd, M, and we have equality if pd4 M < oo and
M is finitely generated.
The next result generalizes [G1] (Theorem 1).

COROLLARY 4.16. Let R be an arbitrary commutative Noetherian ring
and A a module-finite R-algebra. We consider the following three conditions.
(1) A is a Gorenstein R-algebra.
(2) Extp-dim M < oo for every finitely generated A-module M.
(3) ida, Ay < 00 for all p € Suppg A.
Then the implications (1)=-(2)=-(3) hold true.
Proof. (2)=(3). Let A = J(A4p) N A and k = Ext,-dim A/A. Then
Ext)y (Ap/J(4p), Ap) = Ry @ Ext’y(A/2, A) = (0)  for all i > k.

Hence idy, A, < 0o (cf. 3.5(3)).
(1)=(2). Firstly we note the following, which readily follows from the
long exact sequence of Ext’y(M;, A)’s.

CrAmM 1. Let 0 — My — My — Ms — 0 be a short exact sequence
of finitely generated A-modules. Then if any two of M;’s have finite Ext -
dimension, so does the remaining one.

Now assume that A is a Gorenstein R-algebra but Ext4-dim M is infinite
for some finitely generated A-module M. By Claim 1 we may assume M to
be cyclic, say M = A/L for some left ideal L in A. Choose L so that it is
maximal among the left ideals L in A with Ext,-dim A/L infinite. Then we
have

CLAIM 2. tAssq M = 1.

Proof. Let § = Assy M and assume £§ > 1. Choose a family {L(P)}peg
of left ideals of A satisfying the three conditions stated in 2.2.8. Choose
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0 #® C §sothat & # § and put & = F\ &. Then L # (\pcg L(P) and
L # Npee: L(P). We look at the exact sequence

0—M—A/ (LP)oA/ N L(P)_>A/[ N L@+ L(P)] 0.

Pes Peca’ Pes Peca’

The maximality of L implies that the Ext -dimensions of A/(pce L(P),
A/ Npee L(P), and A/[Npeg L(P) + pee L(P)] are finite and so by
Claim 1, Ext 4-dim M must be finite, contrary to assumption. Thus fAssy M

=1 =
Let Assg M = {P} and p = PN R. Then Assg M = {p} (2.2.7(2)).
Cram 3. p"A C L for some integer n > 0.

Proof. As Assg, M, = {pRy}, (pR,)" - M, = (0) for some n > 0. Hence
p" A C L since the canonical map M — M, is injective. m

Let k = Kdimg, A,. Then since A is a Cohen-Macaulay R-module, the
prime ideal p of R contains a A-regular sequence x1,x2,...,x; of length
k (ctf. proof of [Ma], Theorem 30 iii)). Let n > 0 be an integer such that
p"A C L. Then the sequence 7, 2%, ..., x} is still A-regular ([Ma], Theorem
26) and (27, 2%,...,27)A C L. Let A = A/(2%, 2%, ..., x})A. Then because
ExtYy (M, A) = Ext1(M, A) for all i € 7, passing to the ring A, we may
assume that & = Kdimpg, A, = 0. Hence p € Assg 4.

CrLAM 4. Let t € R\ p. Then there is an integer k = k(t) depending on
t such that the map Ext’ (M, A) 4 Ext!(M, A) is bijective for all i > k.

Proof. As Assgp M = {p}, t is a non-zerodivisor for M. Hence L # L+tA.
Look at the exact sequence 0 — M LM A/[L + tA] — 0. Then the
maximality of L shows that k& = Exts-dim A/[L + tA] < oo. Therefore
Ext’,(M, L) 4 Ext’,(M, A) is an isomorphism if i > k.

This claim allows us, in order to produce a contradiction, to freely localize
A at any t € R\ p. For example, choose t € anAssR/l\{p} q so that ¢ & p
and passing to the algebra A, assume that Assg A = {p}. Hence pV A = (0)
for some integer N > 0. Then since each p’A/pi™!A is a finitely generated
R/p-module, we may choose an element t € R\ p so that [p‘A/pT1A]; is
Ry-free for every 0 <4 < N —1 (cf. [Bo|, Ch. 2, Sect. 5, No. 1). Hence
we may assume, from the beginning, that p'A/p"*t1A is R/p-free for every
0<i< N —1. Let q € Suppp A and look at the canonical exact sequences

0 — piJrlAq N pZAq N piAq/pi+1Aq =0

(0 <i < N —1) of Aj-modules. Then because each p‘A,/pi™1A4, is a free
Ry /pRg-module and pN¥A; = (0), descending induction on i shows that
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depthp Aq = depthp Rq/pRq ([BHJ, 1.2.9). Since Assg M = {p}, the same
technique works to reduce the problem to the case where deptthI M, =
dep‘chpLq R,/pR, for all g € Suppgr A = Suppgr M. Now notice that

Kdimpg, Aq > Kdimpg, My > depthp My = depthp, R,/pRy
= depthRq Aq = Kdimpg, Aq.

Then M, is a Cohen-Macaulay R4-module with Kdimg, My = Kdimpg, A.
Hence by 4.12,

Rq ®p Ext!y(M, A) = Ext}y (Mg, Aq) = (0)

for all i > 0 and q € Suppp A. Therefore Ext’(M, A) = (0) for all i > 0,
which is the required contradiction. Thus Exts-dim M < oo for every finitely
generated A-module M. u

5. Characterization of Gorenstein R-algebras in terms of Bass
numbers. The purpose of this section is to characterize Gorenstein R-
algebras in terms of Bass numbers p!(P, A) (see Definition 2.5.4). To begin
with we record

LEMMA 5.1. Let P € SpecA, i € Z, M a A-module, and p'(P, M) the
ith Bass number of M with respect to P.

(1) Let S be a multiplicative system in R with P N f(S) = 0. Then
p'(STIP,STIM) = p' (P, M).
(2) Suppose R is a local ring and P € Max A. Then
Cprp(Ext)y(A/P,M))  £y/p(Homa(A/P,EY(M)))
m(P) - m(P)

:U’i(P7M) =

(Here £4/p(*) denotes the length of composition series.)

(3) 0 < p(P,M) € Q if M is finitely generated.

(4) Suppose (R,m) is a local ring and P € Max A. Let R* denote the
m-adic completion of R. Then p'(P#, M#) = u'(P, M).

(5) Lett € PN R be a non-zerodivisor for both A and M. Let P = P/tA
and M = M/tM. Then p'=Y(P, M) = p*(P,M).

Proof. Let us maintain the same notation as in 2.5. We look at the direct
sum decomposition E (M) = @QespeCAI(Q)(QZ(Q’M)).
(1) Let @ € SpecA with @ N f(S) = 0. Then every s € S acts on
EA(A/Q) as an isomorphism so that by 2.1.3,
Ex(4/Q) = ST'EA(4/Q) = Eg-14(S714/571Q),
whence m(Q) = m(S71Q) and I(Q) = S7(Q) = I(S7!Q). On the other
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hand S~'I(Q) = (0 )ifQﬂf( ) # ), since STIEA(A/Q) = (0). Consequently,

STIEL (M @ STH(Q (QZ Q,M))
QESpec A
— @ 1(571Q)(Qi(Q7M))
Q€Spec Awith QNf(S)=0
and we have p'(S~1P,S7IM) = p#(P, M) as m(S~1P) = m(P).
(2) Let S(P) denote the simple A/P-module. Then from the isomor-
phisms
Exty(A/P, M) = Hom(A/P,E(M))
@ Homa(4/P1(Q) (@)
QESpec A
= Hom(A/P,1(P))(Z'(PM)  (251)
= §(P)(2(PM))
of A/P-modules we have
Ca/p(Bxty(A/ P, M)) = Ly/p(Homy(A/ P, Ey(M))) = 42'(P, M).
Hence the results follow.

(3) Passing to the localization A, with p = PN R, by (1) we may assume
that R is a local ring and P € Max A. Hence assertion (3) immediately
follows from (2) as £, p(Ext}(A/P, M)) is finite.

(4) This follows from (2) and the isomorphisms

Ext!(A/P,M) = R* @p Ext’,(A/P, M) = Ext’\, (A*/P# M#).
Note that m(P) = m(P#) since A/P = R* ®g A/P = A# | P#.
(5) Let A = A/tA. We have
ES1(A) = Homa (4, Ey(4))  (2.4.5(1))
@ Hom(41(Q)) &M
QESpec A
= b Hom (4, 1(Q))2(@M)  (2.2.3(3)).
QeSpec Awith f(¢)€eQ
Let @ € Spec/ be such that ¢ € @ and put @_: Q/tA. Then because
HomA(/l EA(4/Q)) = E3(A/Q), we have Hom4(A4,1(Q)) = I(Q) and m(Q)
m(Q). Hence
E%—l( A) = @ ()2 (@M)
Q€Spec Awith f(t)eQ
so that pi~Y(P,M) = u*(P,M). =
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We now give the characterization (5.2) of Gorenstein R-algebras A in
terms of Bass numbers p'(P, A). Condition (3) in it corresponds to the ho-
mogeneity condition in [BHa2].

THEOREM 5.2. The following conditions are equivalent.

(1) A is a Gorenstein R-algebra.
(2) (a) Kdim Apng = hty P for every P € Spec A.
(b) Let P € SpecA and i € Z. Then u'(P,A) > 0 if and only if
i =hts P.

(3) (a) Kdim Apng = hty P for every P € Max A.
(b) Let P € Max A and i € Z. Then u‘(P,A) > 0 if and only if
i =hty P.

To prove the theorem we need the following, which assures the catenarity
in Cohen—Macaulay R-algebras.

PRrROPOSITION 5.3 ([GN1], Corollary (1.3)). Assume that R is a local
ring and A is a Cohen—Macaulay R-module. Then A is a catenary ring
and KdimA = Kdim A/Q + ht, Q for every @Q € SpecA. The equality
k = htyQ — hty P holds true for every pair P C Q of prime ideals in
A and for every saturated chain P = Py C P C ... C P, = Q of prime
ideals between P and Q.

Proof of Theorem 5.2. (1)=-(2). Let P € Spec A and p = PNR. Then by
5.3 we have Kdim A, = ht,, PA, = ht, P, because A, is a Cohen-Macaulay
Ry-module and PA, € MaxA,. If p*(P,A) > 0, then P € Assy EY(A).
Therefore p € AssgEY(A) by 2.2.7(2) and so KdimA, = i by 4.1(3),
whence hty P = ¢. Conversely, let i = ht, P. Then since PA, € Max A,
and Kdim A, = 4, by 4.9 and 2.5.1 we deduce that PA, € Assy, Eilp (Ap).
Hence P € Assy EY(A) by 2.4.2(2) and so (P, A) > 0.

(2)=(3). This is clear.

(3)=(1). Let p € MaxR N Supprp A and choose P € Max A so that
p = PN R. Let i = hty P. Then by (a), Kdim A, = i. Now assume p €
Assg E¥ (A) for some k # i. Then by 2.2.7(2) we may choose @ € Ass, EX (A)
so that p = @ N R. Then @ € Max A since p € Max R (2.0.1(4)). Therefore
by assumption (b), k& = ht4 @ while by (a), ht4 @ = Kdim A, = . This is
impossible. Thus P ¢ Assg EX(A) if k # i. Hence by 2.4.2(2) and 4.3, A, is
a Gorenstein Ry-algebra. m

For the moment let P € Max A and p = PNR. Then {p(A/P) < coasp €
Max R. Hence every s € R\ p acts on A/P as an automorphism, so that the
canonical map Ext’ (A/P, M) — [Ext’(A/P, M)], = Exti/lP (Ap/PAy, M,y) is
bijective for every A-module M and i € Z. Therefore Ext%(A/P, M) # (0)
if and only if p!(P, M) > 0 (cf. 5.1(1)) and pdy A/P = pdy, Ay/PAp. In
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particular, if A is a Gorenstein R-algebra, by 5.2 we get Exts-dim A/P =
hty P = Kdim A, < oo. This observation shows the implication (1)=(2)
in

COROLLARY 5.4. The following conditions are equivalent.

(1) A is a Gorenstein R-algebra.
(2) Exty-dimA/P = Exts-dimA/Q < oo for all P,Q € Max A with
PNR=QNR.

When this is the case, Extp-dim A/P = hty P = Kdim Apng for every
P € Max A.

Proof. (2)=(1). Let p € Max RNSupppr A. Let k = Exts-dim A/ P with
P € Max A such that p = PN R. Then for all Q € MaxA withp=QNR
we get

EXt]flp (4p/QAp, Ay) = (0)

for i+ > k. Therefore idy, A, = k by 3.5(3) and hence A, is a Gorenstein
Ry-algebra by 4.10. =

COROLLARY 5.5. The following conditions are equivalent.

(1) Ais a Cohen—-Macaulay R-module and gl.dim A, = Kdim A, for all
p € Suppp A.
(2) pdy A/P =pdy A/Q < oo for all P,Q € Max A with PONR = QNR.

When this is the case, pdy A/P = hty, P = Kdim Apng for all P € Max A
and pdy M < oo for every finitely generated A-module M. The center C(A)
of A is a normal ring.

Proof. (1)=(2). We have idy, 4, = gl.dim A, for all p € Suppg A since
gl.dim A, < oo, so that A is a Gorenstein R-algebra. Let P € Max /A and
put p = PN R. Then pdy A/P = Exts-dim A/P = Kdim A, by 5.4 since
pdg A/P =pd,, Ay/PAy < 0.

(2)=(1). By 5.4, A is a Gorenstein R-algebra. Let p € Max RN Suppp 4
and let k& = KdimA,. Then pd,, A, /QA, = k for all Q € MaxA with
p = Q@ N R, whence gl.dim A, = k. Therefore gl.dim A, = Kdim A4, for all
p € Suppp A (cf. 4.1(2)).

To see the last assertions let M be a finitely generated A-module. Then
Ext4-dim M < oo by 4.15. Let k = Ext-dim M. We want to show pd; M =
k. Let i € Z and assume Ext’ (M, N) # (0) for some A-module N. Choose
p € Suppg Ext’y (M, N) and let j = pd, M, = Ext,, —dim M. Then i < j
since Ext’(My, N,) # (0), while j < k since Extil(Mp,Ap) # (0). Thus
i < k so that pd, M = k. See 3.13 for the normality of C(A). =



GORENSTEIN ALGEBRAS 235

COROLLARY 5.6. Suppose that R is an integrally closed integral domain
and A is R-torsionfree. Then the following conditions are equivalent.

(1) A is a Gorenstein R-algebra.
(2) Let P € Max A and i € Z. Then u*(P, A) > 0 if and only if i = ht5 P.

Proof. See 5.2(3) and use 2.0.1(8). =

For commutative Gorenstein R-algebras A the Bass numbers p’( P, A) are
always integers and are equal to d; ht, p ([B2]). It is however a total fallacy
to suppose that this is still true if A is non-commutative (cf. Example 8.6).
Brown and Hajarnavis erroneously claimed [BHa2] (Theorem 5.5) that this
holded for injectively homogeneous rings with finite self-injective dimension.
And this drives us to the question when the equality p(P,L) = diht, P
holds true for general Gorenstein R-algebras A. Here we give some basic
observations (5.7 and 5.9), which we continue in Section 7.

THEOREM 5.7. Suppose that R is a Cohen—Macaulay local ring with
canonical module Kr and assume that A is a Cohen—Macaulay R-module
with Kdimg A = Kdim R = n. Let L = Hompg (AP, Kg). Then p'(P,L) =
Oint, p for every P € SpecA and i € Z. In particular L is a Gorenstein
A-module with Kdimg L = n.

Proof. By [BH] (Theorem 3.3.10), L is a Cohen-Macaulay R-module
with KdimgpA = n. Let P € SpecA and ¢ € Z. We put p = PN R.
Then p € Suppgp A and Kdimg, 4, = n — Kdim R/p = Kdim R, ([Se],
p. 89, Chapter IV, Théoreme 6). Since K(g ) = (Kg)y, ([BH], 3.3.5(b)),
Ly, = Hompg((A4,)°P, K(g,)). Therefore by 5.1(1), passing to the localization
Ay, we may assume that p = m and P € MaxA. Then hty P = n by 5.3.
Suppose n > 0 and choose ¢ € m so that t is R-regular. Note that ¢ is
also regular for Kg and A. Let A = A/tA, P = P/tA, and R = R/tR.

Then L/tL = Homp((A)°?,Kz) ([BH], 3.3.3) since Kr/tKr = Ky ([BH],
3.3.5(a)), while hty P = Kdim A = n — 1 by 5.3. Therefore thanks to 5.1(5),
passing to the ring A/(x1,...,z,)A for some system x1,...,z, of parame-
ters of R, we may assume n = 0. Let J = J(A) be the Jacobson radical of A.
Then since L = [A°P]Y (the Matlis dual of A°P) ([BH], 3.3.4(a)), by 2.6.3(3)
we have L = E4(A/J). Hence pi(P, L) = 0 for i # 0, while u°(P, L) = 1 as
Hom,(A/P,L) = Homa(A/P,EA(A/J)) = Homa(A/P,A/J) = A/P.

COROLLARY 5.8. Suppose that R is a Cohen—Macaulay local ring with
canonical module Kr and assume that A is a Cohen—Macaulay R-module
with Kdimp A = Kdim R = n. Then the following conditions are equivalent.

(1) A°? =2 Homp (A, KRr) as A°P-modules.
(2) p"(P,A) =1 for every P € Max A.
(3) ui(P, A) = i, p for every P € Spec A and i € 7.
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Proof. (1)=(3). See 5.7.

(3)=(2). This is clear.

(2)=-(1). We argue by induction on n. Let n = 0. Since u’(P, L) = 1 for
all P € Max A, we get

BS(A) = @D Ea(4/P) =Ea(4/I(A) = [A%)  (2.6.3(3)),
PeMax A

where [%]¥ stands for the Matlis dual. Note that ¢r(A) = r([A°P]Y) and
A = EQ(A) = [A°P]Y as A C E§(A) = [A°P]Y. Assume that n > 0 and
our assertion holds true for n — 1. Choose t € m so that ¢ is R-regular.
Let R = R/tR and A = A/tA. Then by 5.1(5), u"~}(Q, A) = 1 for every
@ € Max A and so by the hypothesis on n we have (4)°° = Homg(A4, Kz).
Let L = Hompg(A,Kg). Then by Nakayama’s lemma L is a cyclic A°P-
module, since L/tL = Homz(A,Kz) ([BH], 3.3.3 and 3.3.5). Let ¢ : AP —
L be an epimorphism of A°P-modules and put K = Keryp. We want to
show K = (0). Assume the contrary and choose p € Assg K. Then since
p € Assg A°P, we see Kdim R/p = n, whence Kdim R, = 0. Because L, =
HOHIR([AP] p K( )) and K(R )y = ERP (Rp/pRp) we have €R ([Ap]OP) =
CR, ([Ap]Y) = LR, (Lp) < 0. Therefore the induced ep1morphlsm op o A —
L, is an isomorphism, which forces K, = (0). This contradicts the fact that
p € Assg K. Hence K = (0) and ¢ : A°? — L is an isomorphism. =

QUESTION 5.9. Suppose R is a local ring and let n = Kdim A. Is it true
that A is a Gorenstein R-algebra if u"(P, A) = 1 for every P € Max A? This
is true when A is commutative and Kdim A = ht, P for all P € Max A (cf.
[Ro2]).

6. The case where A is R-free. In this section we assume that R is
a local ring with maximal ideal m. Let Kk = R/m and A = k ®r A. The
purpose is to prove Theorem 6.4 below.

We begin with the following.

LEMMA 6.1. Assume A is a finitely generated free R-module. Then
idg A®g Eg(k) =ida A.

Proof. Let E = Egr(r) and let
0> AQrE —>1'>I'— ... 5T —
be a minimal injective resolution of A ® g E. Then because
Homp(A,A®r E) 2 A®r Hompg(k, F) 2 AQr k= A
and Extl(k, A®@pg E) = (0) for all 4 > 0, the complex
0 — Hom,(A,A®p E) — Homy (A, I°)
— Homy (A, I') — ... — Homy (A, IY) —
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of A-modules is exact and gives rise to a minimal injective resolution of A.
Notice that Hom (A, I?) # (0) if and only if m € Assg I*. The latter con-
dition is equivalent to saying that I # (0), because Suppp A @ E = {m}.
Thus idpi AQr E =idpa A.

PROPOSITION 6.2. Assume A is a finitely generated free R-module.
Then:

(1) Bvery injective A-module I is R-injective.

(2) idg A =ida A+idg R.

(3) R is a regular local ring if gl.dim A < oo.

(4) gl.dim A = gl.dim A + Kdim R if gl.dim A < co and R is regular.

Proof. (1) We may assume I = I(P) for some P € SpecA. Then I is a
direct summand of Hompg(A°?,Er(R/p)) with p = PN R (2.5.5), so that
the A-module I is R-injective since Hompg (AP, Er(R/p)) = Er(R/p)" with
r = rank A.

(2) To see that idy A = idgr R+ida A, we may assume R is a Gorenstein
ring. In fact, if idg R+ida A < 0o, R is certainly Gorenstein. Let 0 — A —
I - ' - ... - I" - ... be a minimal injective resolution of A. Then
by (1) it is an injective resolution of the R-module A as well, whence R is
Gorenstein if idg A < oco. Thus, in order to prove idy A = idg R 4 ida A,
without loss of generality we may assume R is a Gorenstein ring. Passing
to the R/g-algebra A/qA for some ideal q of R generated by a system of
parameters, by 3.6 we may furthermore assume that d = 0. But then the
equality idg A = ida A follows from 6.1 since Eg(k) = R.

(3) As A is R-free and A = k ®p A, the A-projective resolution of
A involves an R-free resolution of k. Hence R is a regular local ring if
gl.dim A < oo.

(4) See 2.3.4 and use the fact that the maximal ideal m of R is generated
by a regular sequence of length d. =

COROLLARY 6.3. Assume A is a finitely generated free R-module and R
is a Gorenstein ring. Then

idy A®gr Er(R/p) =1idy, jpa, Ap/pAp <ida A
for all p € Spec R.
Proof. The first equality follows from 6.1, because
idg A®gr Er(R/p) = ida Ay ®g, Er, (Ry/pRy)
= idy, Ay ®r, Er, (Ry/pRy).

To prove the inequality we may assume ida A < co. Hence idq A = ida A+
idg R < 0o (6.2(2)). Therefore letting k = id4, A,, we have p € Assg E¥ (A)

since pR, € Assg, E4,(Ap) by 3.5(2). Thus m € Assg EllerKdimR/p(A) by
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3.5(1) so that
k+Kdim R/p <idy A = Kdim R 4 ida A.
Thus k < Kdim Ry +ida A, while k=Kdim R, +idy, /4, Ap/pAp by 6.2(2).
Hence id 4, jpa, Ap/pAp <ida A. m
We now come to the main result of this section (Theorem 6.4), in which

the equivalence of assertions (4) and (5) was given by Endo [En|. We are
grateful to him for pointing out this.

THEOREM 6.4. Assume A is a finitely generated free R-module and R is
a Gorenstein ring. Let

0-R—E"-FE' —-. .. FE" >0

be a minimal injective resolution of R. Then the following conditions are
equivalent.

(1) A is a Gorenstein R-algebra.

(2) Hompg(A, R) is a projective A°P-module.

(3) idp A =d.

(4) ida A =0.

(5) ida, /pa, Ap/PAp =0 for all p € Spec R.

(6) The A-module A @ E is injective for every injective R-module E.
(7) The minimal injective resolution of A is given by

0—>A=A®rR— ARE’ 5 A®rE' - ... > A@pr E* — 0.

Hence B (A) = @pespec R with Kdim ry=i 4 ©r Er(R/p) for all i € Z.

Proof. Recall A is a Cohen—Macaulay R-module with dimp A = d. See
4.4(1), 6.1-6.3 for the implications (1)< (2)<(3)<(4)<(5) and (6)=(4). We
have (5)=(6) and (7)=-(6), since every injective R-module is a direct sum
of copies of {Er(R/p)}pespec r- It suffices to show the implication (1)=(7).
As A is R-free, the sequence

O—>A:A®RR—>A®REO—>A®RE1—>...—>/1®REd—>0

is exact and gives rise to an injective resolution of A. Choose a minimal
injective resolution

0—-A—I1Y=T1" - . 7140

of A and a family {¢*: I' — A ®g E'}o<i<q of monomorphisms so that the
diagram

0—A=AQrR—AQrE*—AQrE'— - —A®r E4—0

I ¥

0 A IO Il . Id 0
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is commutative. We will show by induction on d that each ¢’ is an isomor-
phism. We may assume that d > 0 and our assertion holds true for d — 1.
Hence [¢%], is an isomorphism for all 0 < i < d and p € Spec R\ {m}.
Let 0 < i < d be an integer and assume that ¢ is not an epimorphism. Let
C = Coker '. Then Assg C' = {m} whence m € Assp B’ as A®QprE* = I'®C.
Consequently, we have i = d, since

A®RrE' b A@rEr(R/p)
p€ESpec Rwith Kdim Ry =1

and A is R-free (2.2.3(5)). Thus ¢° is an isomorphism for all 0 < i < d so
that ¢? is also an isomorphism. =

We say that A is a local ring if A/J(A) is a simple Artinian ring.

COROLLARY 6.5 (cf. [R], Theorem 2.16). Let R be reqular and assume
A is a local ring such that the structure map f : R — A is injective and
idy A < oo. Then A is a Gorenstein R-algebra which is a free R-module
with Kdim A = Kdim R. The minimal injective resolution of A is given by
the complex

0>A=A®rR—>AQrE* > AQrE'— ... > A@r E¢— 0,

where 0 - R — E° — E' — ... — E% — 0 denotes a minimal injective
resolution of R.

7. Flat base changes. In this section we assume that R is a local ring
with maximal ideal m. Let K = R/m. The purpose is to prove Theorem 7.5
below. It sharpens Corollary 5.8 concerning the question when the equality
pi(P,A) = 0int, p holds true for Gorenstein R-algebras A. To do this we
need some technique of reduction to the case where R is complete.

Let ¢ : (R,m,k) — (S,n, K) be a local homomorphism of Noetherian
local rings. We put I' = S ®g A. Let m = KdimI',n = Kdim A, and k =
Kdim S/mS. We consider the problem of when I" inherits Gorensteinness
from A. We begin with the following.

LEMMA 7.1. Let P € Max A. Then:

(1) idsgp(a/p) S ®r (A/P) = idg/mg S/mS.

(2) The following conditions are equivalent.
(a) S®gr (A/P) is a Gorenstein S-algebra.
(b) S/mS is a Gorenstein ring.

When this is the case, i*(Q, S®@r(A/P)) =1 for all Q € Max(S®g (A/P)).
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Proof. (1) We have Homy(A/P,k) = [A/P]°P? since A/P is a simple
k-algebra. Therefore
Homg (K ®, (A/P),K) = K ®, Hom,(A/P, k) = [K ®, (A/P)]?
SO idK®H(A/P) K®y (A/P) =0. Hence idS®R(A/P) S®pr (A/P) :idS/mS S/mS
by 6.2(2), as S ®g (A/P) = (S/mS) ®, (A/P) is S/mS-free.
(2) See 6.4. By 5.8 we get 1*(Q, S ®g (A/P)) =1 for all Q € Max(S ®r
(A/P)). =
LEMMA 7.2. Suppose the homomorphism ¢ : R — S is flat. Let QQ €
Max I and put P = QN A. Then p°(Q, ") = u°(Q, S ®g (A/P)) - u°(P, A).
Proof. Note that P € Max A and I'/PI" =2 S®p (A/P). Then the equal-
ity follows from the isomorphisms
Homp(I'/Q, ') = Homp(I'/Q, Homp(I'/ P, T'))
=~ Homp(I'/Q, S ®r Hom(A/P, A))
>~ Homp(I'/Q,S ®r [(A/P)* (V)
~ Homp(I'/Q. S ®r (4/P))" "
> ([/Q)H(QS@r(A/P)u(PA)

THEOREM 7.3. Suppose that the morphism ¢ : R — S is flat. Then the
following conditions are equivalent.

(1) I' is a Gorenstein S-algebra.
(2) A is a Gorenstein R-algebra and S/mS is a Gorenstein ring.

When this is the case, p™(Q, ') = p™"(Q N A, A) for all Q € Max I

Proof. Recall that m=n-+k and depthg I'=depthy A+depthg,, g S/mS
([Ma], Theorems 19 and 50). Hence I is a Cohen-Macaulay S-module if and
only if A is a Cohen—-Macaulay R-module and S/mS is a Cohen—-Macaulay
ring. Therefore we may assume that the S-module I is Cohen—Macaulay.
Thanks to 4.7(3) and 5.1(4), we may assume that both the local rings R
and S are complete. Passing to the ring R/[(0) :r 4], we may furthermore
assume that Kdim R = n and Kdim S = m.

(2)=(1). We have Kg = S®rKr ([BH], 3.3.14) as S/mS is a Gorenstein
ring. Since

Homg(I',Kg) =2 Homg (I, S ®r Kgr) = S @ Homp(A4,Kg)
as I'"°P-modules and Homp(A, Kg) is A°P-projective (4.4(1)), Homg (I, Kg)
is I"°P-projective. Hence by 4.4(1), I" is Gorenstein.

(1)=-(2) and the last assertion. Passing to the ring S/b with an ideal
b generated by a maximal S/mS-regular sequence contained in n, we may

assume that £ = 0 ([BH], Lemma 1.2.17; see also 4.7(2) and 5.1(5)); hence
m = n. Passing to the ring R/a with an ideal a generated by a system of
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parameters of R, we may assume that m = n = 0. Also, passing to the ring
R/[(0) :r A], we may assume that R and S are contained in A and I'. Now
let M be a finitely generated A-module. Then

S @r BExty (M, A) = Exth(S @ M, I") = (0)

since idp I = 0; and as the morphism ¢ : R — S is faithfully flat, we get
Exth (M, A) = (0). Thus idg A = 0. Hence Hompg(A,Kg) is A°P-projective
(2.6.2(1)) and so Homg (I, S®rKr) = S®@rHompg(A, Kg) is I'°P-projective.
Therefore Homg(I', S ®r Kgr) is I'°P-injective so that by [E], Theorem 2,
S ®r Kg is an injective S-module. Since Kr = Er(k), we see that

Homg(S ®r Kg, S ®gr Kg) = S ®r Homgr(Kgr,Kgr) = S®@r R =S

([M]), whence the S-module S® gK g is indecomposable. Thus Kg = S®rKg
(note Kg = Eg(K)) and S/mS is a Gorenstein ring ([BH], 3.3.14). The last
assertion follows from 7.1 and 7.2. =

Since we cannot find a reference for the following result, we give a brief
proof for completeness.

PROPOSITION 7.4. Suppose the morphism ¢ : R — S is flat. Then for
each P € Spec A there is at least one QQ € Spec I’ such that P =Q N A.

Proof. We may assume P = (0). Passing to the ring R/[(0) :r A], we
may furthermore assume the structure map f : R — A is injective. Let Q be
a minimal prime ideal in I" and let ¢ = QN R. Then each t € q is a zerodivisor
for A since @ € MinI" (2.0.1(5)). Therefore thanks to the flatness of ¢, ¢ is
also a zerodivisor for A. This forces q = (0) since A is a prime ring. Thus
QNA=(0) (2.0.1(3)). =

We now turn to the main subject.

THEOREM 7.5. Let A be a Gorenstein R-algebra with Kdim A = n and
assume that p"(P,A) = 1 for all P € MaxA. Then pu'(P,A) = §;yt, p for
all i € Z and P € Spec A. Hence

E}y(4) = D EA(A/P)

PeSpec Awith ht 4 P=t
forieZ.

Proof. If R is complete, thanks to the structure theorem of Cohen [C],
R is a homomorphic image of a regular local ring, say T'. Let g = Kdim T —
Kdim A. Then [(0) :7 A] contains a T-regular sequence of length g. Let a
denote the ideal generated by this sequence. Then passing to 7'/a, we may
assume R is a Gorenstein local ring with Kdim R = Kdim A, so that the
assertion follows from 5.8.

To study the general case we look at the completion A# = R#*@pr A of A.
Note that Max A# = {PA# | P € Max A} since A% /J(A#) = A/J(A). Then
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by 5.1(4), u™(P, A) = 1 for all P € Max A% and hence by 5.8, p*(Q, A%) =
6¢7htA# @ for all i € Z and @ € Spec A#. Let P € Spec A with hty P =i and
choose Q € Spec A7 so that P = QNA (7.4). Let j = ht, Q, g = QNR*, and
p = PN R. Then we have a flat local homomorphism R, — R#q since p =
qNR. As A% is a Gorenstein R¥ ;-algebra and PA, = QA% ;N Ay, by 5.1(1)
and 7.3 we see p'(P,A) = p'(PAy, Ap) = uj(Q/l#q,/l#q) =17 (Q, A7) =1,
which implies the assertion since u*(P, A) = 0if k # i (cf. 5.2). =

COROLLARY 7.6. Let A be a Gorenstein R-algebra with KdimA = n
and suppose that all m(P) (P € Max A) have the same value independent
of the choice of P € Max A. Let i € Z. Then p*(P,A) = §;jn, p for every

P € Spec A and EZ‘AM) = @PESpecAwith ht, P=i EA(A/P).

Proof. By 7.5 it is enough to show p"(P,A) = 1 for all P € Max A.
As hty P = n for all P € Max A (5.3), after reduction modulo a system
of parameters of R we may assume by 5.1(1) that Kdim A = 0. Also, after
reduction modulo [(0) :g A], we may furthermore assume that Kdim R = 0.
Hence the maximal ideal m of R is nilpotent and any idempotent of A/J(A)
can be lifted to one of A. Now our proof follows that of [DK], Theorem 9.3.2.
Let us finish it for completeness.

Let P € Max A and put n = m(P). Then A/J(A) = [] peprax 4 Mn(D(P))
with D(P) division rings. Let S(P) be a simple A/P-module and let P(P)
be the A-projective cover of it. Then A = [P pcypay 4 P(P)]" since A/J(A) =
(D peniax 4 S(P)]"- Let [%]¥ be the Matlis dual. Then since A is self-injective,
by 2.6.2, {P(P)"}pemax are finitely generated indecomposable projective
A°P-modules. It follows that AP = [P poyiax 4 P(P)Y]" because A/J(A) =
[ perax 4 Mn(D(P)). Thus A°P = AV and so A = [A°P]Y (2.6.4(1)), whence
pl(P,A) =1 for all P € Max A (5.8). =

Concluding this section, we apply our observations to local R-algebras
A, that is, to the case where the ring A/J(A) is a simple ring. The next
result may account for the reason why the theory behaves so well in the
commutative case.

COROLLARY 7.7. Suppose that A is a local ring with Kdim A = n. Let
M = J(A). Then the following conditions are equivalent.

(1) idg A < .

(2) A is a Gorenstein R-algebra.

(3) A is a Cohen-Macaulay R-module and H, (A) = E’{(A).

(4) A is a Cohen—Macaulay R-module and HY,(A) is A-injective.
(5) Ext’y(A/M, A) = (0) if i #n and Ext’(A/IM, A) = A/IN.
(6) m & Assgr E\(A) if i # n.
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(7) pt (M, A) = 6;, for every i € Z.

(8) u'(P,A) = dint, p for every i € Z and P € Spec A, that is, A has
the minimal injective resolution 0—A—E’-E!' - . . E —. . -E"—0,
where

E' = ay) E(A/P).

PeSpec A with ht 4 P=i

When A is a Cohen—Macaulay R-module and R is an n-dimensional
Cohen—Macaulay local ring with canonical module Kg, then each of the con-
ditions (1)—(8) is equivalent to the following:

(9) Homp(A,Kg) is A°P-projective.
(10) A°P = Hompg(A,KRr) as A°P-modules.

Proof. See 3.10, 4.3, 4.4(1), 5.8 and 7.6. =

8. Examples. In this section we gather several examples to illustrate
our theorems. Throughout let R denote a commutative Noetherian ring. To
begin with we record

EXAMPLE 8.1. Let R be Gorenstein and let A = My (R) (n > 0). Then
A is a Gorenstein R-algebra with p'(P,A) = 6;w,p for every i € Z and
P € SpecA. There is a bijection p — pA = M,(p) between Spec R and
Spec A and
E'y(A) = & Ea(A/pA)

pESpec R with Kdim Ry, =1
for all i € Z.

EXAMPLE 8.2. Let R be a Gorenstein normal local ring with Kdim R = 2
and let M be a 2-dimensional Cohen—Macaulay R-module. Let A=Endr M.
Then A is a Gorenstein R-algebra with Kdim A =2 and p*(P, A) = §;pt, p
for every i € Z and P € Spec A.

Proof. Since depthp A > 2, A is a Cohen-Macaulay R-module with
Kdim A = 2, while A = Hompg(4, R) as A-bimodules ([Au2]). Hence by
4.4(1), A is a Gorenstein R-algebra. See 5.8 for the last assertion. =

Let R be a Cohen—Macaulay local ring with canonical module Kg. Let
A be an R-algebra which is finitely generated as an R-module. Assume
that A is a Cohen—Macaulay R-module with Kdimpr A = Kdim R = n. Let
L = Homp(A,Kg). We denote by I' = A x L the trivial extension of the
A-bimodule L. (Hence I' = A @ L as additive groups, the multiplication
in I' is given by (a,z)-(b,y) = (ab,ay + zb), and the R-algebra structure
g: R — I' of I' is defined so that g(r) = (f(r),0) for each r € R, where
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f: R — A denotes the R-algebra structure of A; see [Y].). Then we have
the following.

EXAMPLE 8.3. I is a Gorenstein R-algebra with p'(P,I") = §; wt,. p for
every P € SpecI’ and i € Z.

Proof. 1t is clear that I" is a Cohen—Macaulay R-module with Kdim I" =
n. It is routine to check that the canonical isomorphism

I'=A&L
=LPA (twist)
~ . & Homg(Homp(A, Kg),Kr)
= Hompg(A,Kg) ® Homg(L, Kg)
=~ Homp (I, KRg)

of R-modules is actually a homomorphism of I'-bimodules. Hence I" is a
Gorenstein R-algebra and p'(P,I") = 0;n, p for every P € SpecI and
i€Z(44(1) and 5.8). =

EXAMPLE 8.4. Let (R, m, k) be a Cohen—Macaulay local ring with Kdim R
= d and let M be a Gorenstein R-module with pu®(m, M) = r. Let A =
Endr M. Then:

(1) A is a local Ting and the correspondence p — pA yields a bijection
between Spec R and Spec A.

(2) M is an indecomposable Gorenstein A-module with u®(mA, M)
=1/r.

(3) For every i € Z,

iy (M) = P Ea(A/p)".
p€eSpec R with Kdim Ry, =1

(4) Any Gorenstein A-module L is isomorphic to a finite direct sum of
copies of M.

Proof. (1) Let R” be the m-adic completion of R. Then M# 2 [K px]"
([Sh3]). Hence A# = M,.(R*) as R* = End g (Kpz«) ([BH], 3.3.4). Therefore
A is a free R-module of rank 72. The ring A is a local ring with unique
maximal ideal mA since A/mA = A% /mA# = M,(R/m). Hence the algebra
Ay is a local ring with maximal ideal pA, for all p € Spec R because M, is
a Gorenstein Ry-module ([Sh2]). We have pA = pA, N A since A is R-free.
Therefore pA is a prime ideal of A and the correspondence p — pA yields a
bijection between Spec R and Spec A.

(2) Let a be an ideal of R generated by a system of parameters. Then
M/aM is a Gorenstein R/a-module and A/aA = Endg/q M/aM ([Sh2] and
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[BH], 3.3.3). Hence to show (2), passing to the ring R/a, by 4.7 and 5.1(5)
we may assume d = 0. Then M = [Egr(x)]” and A = M,(R). Therefore
M is an indecomposable injective A-module and p®(mA, M) = 1/r since
m(mA) = r.

(3) Let P € Spec/A and p = PN R. Then P = pA by (1) and so by (2)
and 5.1(1),

p'(P,M) = p'(PAy, My) = ' (pAy, Mp) = (1/7) i1t 5 p
for every i € Z. Hence

B} (M) = P Ea(A/pA)".
peSpec Rwith Kdim R, =1

(4) Passing to the completion R# of R, we may assume that R is
complete. We have Kdimp L = d by 4.4(2). Moreover, by (2) and 4.4(1),
Homp(M,Kpr) and Hompg(L,Kg) are finitely generated projective A°P-mo-
dules. Therefore since the ring A°P is local (by (1)) and Hompg(M,Kpg) is
indecomposable as a A°°-module ((2) and [BH], 3.3.10), Hompg(L,Kg) =
Homp(M,Kg)* for some k > 0. Hence

L= HOH]R(HOH]R(L, KR), KR)
>~ Homp(Homp(M*, Kg),Kg) = M*. u
REMARK 8.5. For each integer r > 1 there is a Cohen—Macaulay normal

local ring (R, m) with Kdim R = 2 having an indecomposable Gorenstein
R-module M with p?(m, M) = r. See [Ni].

EXAMPLE 8.6. Let (R,m, k) be a reqular local ring with Kdim R =d > 0
and let 0 #t € m. The R-algebra

R R R
A= |tR R R
tR R R
has the following properties.
(1) A is a Gorenstein R-algebra with Kdim A = d.

(2) For each p € Spec R let S(p) = {P € SpecA | PN R =yp}. Then

(([» R R R R R
tR R R|, |tR p p ift €p,
[tR R R tR p p

(p p P
tp p op| g iftep.
[tp p b
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(3) For each i € Z,

2_

' p R R
W(A) = & Es|4/|[tR R R
pESpec R with Kdim R, =i and t€p tR R R

- 1/2

=

R

@ @ Ex /1/ t P
pESpec R with Kdim R, =i and t€p p
) @ EA /1/ t ]

| pESpec R with Kdim Ry, =i and t&p | p p p

EG:U

R
p
p

Proof. (1) A is a Cohen-Macaulay R-module with Kdim A = d since it
is R-free. Let [*]* = Hompg(*, R). We put

1 0 0 0 0 0 0 0 0
eg=10 0 0O, e=|0 1 0, e=|(0 0 O
0 0 O 0 0 0 0 0 1

Then A 2 Aey @ [Aez)?. We have [Ae1]* 22 eaA and [Aeg]* =2 eg A. Therefore
A* =2 [e1A4]? @ ea A, whence by 4.4 our R-algebra A is Gorenstein.
(2) Let J = J(A). Then
m R R
JA)=|tR m m
tR m m

and A/J = k x Ma(k). The maximal ideals of A are given by

m R R R R R
m=|[tR R R and mo=[tR m m
tR R R tR m m

The right A-module e; A is the projective cover of A/m; and [epA]? is that
of A/my. Let p € Spec R. If t € p, then

RP RP RP
tR, R, R,

and the above observation shows the maximal ideals of A, are

pR, R, R, R, Ry, R,
Pi(p) = [tRy R, R, | and Pa(p)= |tR, pR, pR,
tRy Ry Ry tRy pR, pRy
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Hence
p R R R R R
Sp)={Pip)nAli=12} =< |tR R R|,|tR p p
tR R R tR p p

If t & p, then A, = M3(R,), which is a local ring with maximal ideal pA,.
Hence
pop P
Sp)=1{ |t » ¥
th p b
(3) Let R# be the m-adic completion of R and let []" denote the Matlis
dual. Then since E4,(A#) = H?  (A#) = [Homps (A%, R¥)]Y by 2.7.3
and 4.1, we have Ejll#(/l#) >~ ([e1A7]V)2 @ [e247]Y. On the other hand
E iz (A% /m¥) = [e1A#]Y and B4 (A% /m¥) = ([eaA#]Y)? by 2.6.2, since
e1 A# is the projective cover of A%/ mfﬁ and [eaA7]? is that of A%/ mf. Hence
Ed, (A#) = EA#(A#/m#)Q@EA#(A#/m#)l/z. Therefore u?(my, A) = 2 and
pd(mg, A) = 1/2 by 5.1(4), so that we have

E4(A) 2 Ex(A/m;)? @ Eg(A/mg)' /2.

Now let P € Spec A and put p = PN R. Let i = Kdim R,. Then hty P =1
(5.3). We have

o R R
2 iftepand P=|tR R R]|,
HP,A) = p'(PA,, A LR AR
,UJ<7 ) :U'( P P) -R R R-
— iftepand P= [tR p p
( [tR p p
If t € p, then
b p b
P=1tp p p
th p p

and A, = M3(Ry), whence pu'(P, A) = p*(PAy, Ap) = 1 (8.1). Thus Ef(A)
has the required form. =
EXAMPLE 8.7. Let R be a Gorenstein ring and let n > 2 be an integer.
The R-algebra
A= {[aij] S Mn(R) ‘ Qi = 0 if’i < j}
of lower triangular matrices has the following properties.

(1) KdimA = Kdim R and idy A =idr R+ 1. Hence A is not a Goren-
stein R-algebra.
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(2) Let S(p) = {P € SpecA | PN R = p} for p € Spec R. Then the set
S(p) consists of the n elements Py (p) = {laij; € A| apr € p} (1 <k <n).
(3) For each i € Z,

E}y(4) = D EA(A/Bn(p))"

peSpec R with Kdim R, =1

o &P D Ea/Bilp).

pESpec R with Kdim R, =i—1 1<k<n—1

Proof. Since A is R-free, A is a Cohen—Macaulay R-module with Kdim A
= Kdim R. We have S @r A = {[ai;] € M,(S) | aj; = 01if i < j} for every
commutative R-algebra S.

(1) Note that id4 A = supyegpec g 1, Ap. Passing to the localization A,
with p € Spec R, we may assume (R, m, ) is a local ring. Then the x-algebra
k ®g A is hereditary and idy A =idg R + 1 by 6.2(2).

(2) For the moment suppose that (R, m, k) is a local ring. Let J = J(A).
Then

J ={laij] € A|a; e mforall 1 <i<n},

A)J =k % ... x kK (n times), and Max A = {Py(m) | 1 <k < n}. We have
m(P) =1 for every P € Max A. As A, = {[ai;] € Mp(Ry) | aij =01if i < j},
passing to A, we get S(p) = {Pr(pRy) NA|1 <k <n} ={Pxp)|1<
kE <n}.

(3) Let p € Spec R and P = Py (p) with 1 < k < n. Let h = Kdim R,,.
Then h = hty P (cf. 5.3). It suffices to show

n if k=mn and i = h,
0 ifk=mnandi#h,

1 ifk#nandi=h+1,
0 ifk#nandi#h+1.

To check it, first we pass to the localization A, and secondly we reduce A
by a system of parameters of the base ring. Moreover, by 5.1 we may reduce
the problem to the case where (R, m) is a local ring with Kdim R = 0.
Hence p = m and idy A = 1 by (1). For each 1 < k < n let e, € A with
lex)ij = 1if i = j = k and [eg];; = 0 otherwise. Let P, = Aey, and Qj, = e A.
Let [¥]Y = Hompg(x, R) denote the Matlis dual. Then the canonical exact
sequence

Mi(P’ A4) =

0—-A—P'— @ P /P, — 0
2<k<n

of A-modules provides a minimal injective resolution for A, because idy A =
1 and P, = [Qy]" is an indecomposable injective A-module (2.6.2(1)). It is
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routine to check P/ Py = [Qx_1]" for 2 < k < n so that
EQ(A) = E4(4/Pu(m))" and E4(4) = O Ea(A/PBr(m)).
1<k<n-1
Thus the assertions follow (recall that m(P) =1 for all P € Max A). =

EXAMPLE 8.8. Let (R, m, k) be a regular local ring with Kdim R = d and
let K = Q(R) be the quotient field of R. The R-algebra

R R
e=[n 3
has the following properties.

(1) Kdim A=d, depthp A=min{d, 1}, and gl.dim A=idy A=max{d, 1}.
(2) For each p € Spec R let S(p) = {P € SpecA | PN R =p}. Then

{‘Bl:[“ml g],%2=[i i}} if p=m,

{E E} if p#m.

(3) The minimal injective resolution of A has the form:
(d=0) 0—A—Ea(4/P1)* = Ea(4/P2) — 0,
(d=1) 0—=A—My(K)— E (A/B1) ®EA(A/PB2) — 0,
(d>2) 0—A—-My(K)—E' - ... -E!=0,

where B! = [®p€Spechith ht p p=1 EA(A/[E E])] @ Ea(A/PB2) fori = 1,

Ei = [@pESpechith htp p=t EA(A/['; g})] @EA(A/ml)(Zill) fO’F 2<:1< d’
and B4 = E4(A/P1)4.

Proof. Tt suffices to show that gl.dim A = max{d, 1}, since gl.dimA =
idy A if gl.dimA < oco. Let J = J(A). Then J = [2 ﬁ] and A/J = Kk X k.
Hence Max A = S(m) = {P1,P2} where P; = [2 g}, By = [R R}. We

mm

have m(P) =1 for all P € Max A. Let S; = A/P; (i =1,2) and e; = [[1) 8],
00

€9 = [0 1]. Then S7 and Sy have the presentations

S(p) =

0—m-Aeg — Aeg — 51 — 0 and 0— Ae; — Aeg — Sy — 0.

Hence pd, S2 = 1. Let L = Aes. Let £ = 21, ..., 24 be a minimal system of
generators of m and let

Ke=Ke(z;R): 0Ky —Kq1—...—K = R=K
be the Koszul complex of R generated by the sequence. Then K, is a minimal
free resolution of kK = R/m and the complex

LopKe:0— LOpKy— LOpKy 1 —...— LopK; 2255 [ — Log K,
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gives rise to a minimal projective resolution of the A-module L/mL, since

L = R? as R-modules and mA C J. Hence pd, S; = d (note Im(L ®r K3

L9rS [ = L @p Ky) = mL). Thus gldimA = max{pd, Si,pd, S2} =

max{d, 1}.
(2) If p # m, then A, = Ma(R,), whence A, contains the unique maximal
ideal pA, = Ma(pRy). Thus S(p) = {[g E] }, because ['; E] =pA, N A

(3) Let p € SpecR be different from m and put P = ['; g]. Then

by 8.1 we have p'(P,A) = d;n,p for every i € Z because u'(P,A) =
pi(Ma(pRy), Ma(Ry)) by 5.1(1). We will show

CLAIM. If i € Z, then p'(Pa, A) = di1. Furthermore:

(a) pi(Pr, A) = 28,0 for d =0, p*(P1, A) = §;1 for d =1, and for d > 2
we have

| (%) i 2<i<d,
(b) wBuA)=9d+1 ifi=d,
0 otherwise.
Proof. Let [%]* = Homy(*, A). Take the A-dual of the presentation 0 —
Aey — Aey — S — 0 of Sy. Then because S5 = (0) and [Ae;|* = e;A
(i =1,2), we get the short exact sequence

0 — ead = ey A — Ext}i(Sy,4) — 0

where € : egA1— e A is the map 6([2 2}) = ([g 8]). Hence KA/mQ(Ext}l(Sg, A))
= 0, (Ext!(S2, A)) = 1 so that p*(Pa, A) = §;1 for all i € Z.

(a) (d =0) Note that S1 = Ae; and [Ae;|* X e A = []g ]g].

(d=1) See 7.6. Recall that A is a Gorenstein R-algebra with m(P) =1
for all P € Max A (cf. (1)).

(b) (d > 2) We have p'(P1,A) = 0if ¢ < 1 or i > d (cf. 3.7). Let
2 < i < d. Then by the presentation 0 — mL — Ae; — S1 — 0 of S; with
L = Aeg we naturally have the isomorphism

Ext!(S1, A) = Ext!(L/mL, A).

Now take the A-dual of the above projective resolution L®r K, of L/mL and
note that Hom,(L®rK,, A1) = Hompg(K,, L*) as complexes of A°P-modules.
Then ' '
ExtY(L/mL, A) = Exth(R/m, L*).
Therefore since L* = eg /A = [31 %], we get
Cassp, (Ext’y(L/mL, A)) = €. (Ext)y(L/mL, A)) = £ (Extk(R/m, L*))
= (. (Extih(R/m, m)) + £, (Extiz(R/m, R)).

Hence uf(P1, A) = (ifll) if 2 <i<dand pu'(P1,A) = d+ 1 because R is a
regular local ring with KdimR =d > 2. =
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In Example 8.8 let d = 2. Then the minimal injective resolution of A has
the following form:

0— A — My(K) — &y EA(M[E ED D EA(A/B2)

pESpec R, htg p=1
— EA(4/P1)° — 0.

Let p be any height 1 prime ideal in R and put P = [g ';}. Then hty P =1,
htyPo = 2, and P C Po. We have p?(Pa, A) = 0 while u! (P, A) = 1. This
shows that Lemma 3.3 of Bass is no more true if we replace Assg EY{(M)
with Assy EY(M). We have pdy A/P> = 1 < htyPy = 2 and A is not
a Cohen-Macaulay R-module, since KdimA = 2 but depthp A = 1. This
provides a counterexample to [A] ((1.1) Theorem (ii)) and the claim of
Brown and Hajarnavis [BHal] (p. 199, |16, proof of Theorem 2.5) that
rank(M) < prdimp(R/M) as well.

QUESTION 8.9. Let R be a commutative Noetherian local ring with max-
imal ideal m. Then p'(m, R) > 0 if depthy R < i <idgr R ([Rol]). Let A be a
module-finite R-algebra and i € Z. Is it true that m € Assg EY(A) if and only
if depthp A <i <idy A? The answer is affirmative if A is Cohen-Macaulay
as an R-module.
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